steri nterprise

avabeans™

Se dition

Ed Roman
Scott Ambler
Tyler Jewell

Wiley Computer Publishing

W

John Wiley & Sons, Inc.
NEW YORK « CHICHESTER + WEINHEIM « BRISBANE + SINGAPORE + TORONTO

Publisher: Robert Ipsen

Editor: Robert M. Elliott

Developmental Editor: Emilie Herman

Managing Editor: John Atkins

Associate New Media Editor: Brian Snapp

Text Design & Composition: MacAllister Publishing Services, LLC

Designations used by companies to distinguish their products are often claimed as trade-
marks. In all instances where John Wiley & Sons, Inc., is aware of a claim, the product
names appear in initial capital or ALL CAPITAL LETTERS. Readers, however, should con-
tact the appropriate companies for more complete information regarding trademarks and
registration.

This book is printed on acid-free paper.

Copyright © 2002 by The Middleware Company. All rights reserved.
Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copy-
right Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222
Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4744. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley
& Sons, Inc., 605 Third Avenue, New York, NY 10158-0012, (212) 850-6011, fax (212) 850-
6008, E-Mail: permreq@wiley.com.

This publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold with the understanding that the publisher is not
engaged in professional services. If professional advice or other expert assistance is
required, the services of a competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data:
ISBN: 0-471-41711-4
Printed in the United States of America.

10987654321

To my wonderful wife, Younhi.

—Ed Roman

Acknowledgments

Preface
Introduction
About the Author

Part One Overview

Chapter 1 Overview
The Motivation for EJB
Divide and Conquer to the Extreme
Component Architectures
Introducing Enterprise JavaBeans
Why Java?
EJB as a Business Solution
The EJB Ecosystem
The Bean Provider
The Application Assembler
The EJB Deployer
The System Administrator
The Container and Server Provider
The Tool Vendors
Summary of Roles

The Java 2 Platform, Enterprise Edition (J2EE)

The J2EE Technologies
Summary

Chapter 2 EJB Fundamentals

Enterprise Beans
Types of Beans

Distributed Objects: The Foundation for EJB
Distributed Objects and Middleware

Explicit Middleware
Implicit Middleware

What Constitutes an Enterprise Bean?

The Enterprise Bean Class

Xix
xxi

XxXi

12

13
14
14

16
17
17
18
19
19
20
20

22
23

26

29

29
30

32

34
34
35
37
37

vii

viii

Chapter 3

Part Two

Chapter 4

The EJB Object

The Home Object

The Local Interfaces
Deployment Descriptors
Vendor-Specific Files
Ejb-Jar File

Summary of Terms

Summary

Writing Your First Bean

How to Develop an EJB Component
The Remote Interface

The Local Interface

The Home Interface

The Local Home Interface

The Bean Class

The Deployment Descriptor

The Vendor-Specific Files

The Ejb-jar File

Deploying the Bean

The Optional EJB Client JAR file

Understanding How to Call Beans
Looking up a Home Object

Running the System
The Server-Side Output
The Client-Side Output

Implementing Component Interfaces
A Solution

Summary
The Triad of Beans

Introduction to Session Beans
Session Bean Lifetime

Session Bean Subtypes
Stateful Session Beans
Stateless Session Beans

Special Characteristics of Stateful Session Beans
Achieving the Effect of Pooling with Stateful Beans
The Rules Governing Conversational State

Activation and Passivation Callbacks

38
44
46
50
51
51
52

54

55
55
57
58
58
59
62
66
67
67
68
68

69
70

74
75
75

75
76

77

79

81
81

82
82
83

84
85
86
87

. contents NIV

Method Implementation Summary 89
A Simple Stateful Session Bean 89
Life Cycle Diagrams for Session Beans 100
Summary 103
Chapter 5 Introduction to Entity Beans 105
Persistence Concepts 105
Java Object Serialization 106
Object-Relational Mapping 106
Object Databases 109
What Is an Entity Bean? 109
About the Files that Make up an Entity Bean 112
Features of Entity Beans 112
Entity Beans Survive Failures 112
Entity Bean Instances Are a View into a Database 113
Several Entity Bean Instances May Represent the Same
Underlying Data 114
Entity Bean Instances Can Be Pooled 116
There Are Two Ways to Persist Entity Beans 118
Creation and Removal of Entity Beans 119
Entity Beans Can Be Found 121
You Can Modify Entity Bean Data without Using EJB 123
Entity Contexts 124
getEJBLocalObject() / getEJBObject() 124
getPrimaryKey() 125
Summary 126
Chapter 6 Writing Bean-Managed Persistent Entity Beans 127
Entity Bean Coding Basics 127
Finding Existing Entity Beans: ejbFind() 129
Bean-Managed Persistence Example: A Bank Account 136
Account.java 137
AccountLocal.java 138
AccountHome,java 138
AccountLocalHome java 138
AccountPK java 139
AccountBean.java 143
AccountException.java 156
Client.java 156
The Deployment Descriptor 156
The Container-Specific Deployment Descriptor 161
Setting up the Database 161
Running the Client Program 161
Server-Side Output 162

Client-Side Output 163

Chapter 7

Chapter 8

Putting It All Together: Walking through a BMP Entity
Bean’s Life Cycle

Summary

Writing Container-Managed Persistent Entity Beans

Features of CMP Entity Beans
CMP Entity Beans Are Subclassed
CMP Entity Beans Have No Declared Fields
CMP Get/Set Methods Are Defined in the Subclass
CMP Entity Beans Have an Abstract Persistence Schema
CMP Entity Beans Have a Query Language
CMP Entity Beans Can Have ejbSelect() Methods

Implementation Guidelines for Container-Managed
Persistence

Container-Managed Persistence Example: A Product Line
Product.java
ProductLocal.java
ProductHome.java
ProductLocalHome.java
ProductPK.java
ProductBean.java
The Deployment Descriptor
The Container-Specific Deployment Descriptor
Client.java

Running the Client Program
The Life Cycle of a CMP Entity Bean
Summary

Introduction to Message-Driven Beans
Motivation to Use Message-Driven Beans

The Java Message Service (JMS)
Messaging Domains
The JMS API

Integrating JMS with EJB
What Is a Message-Driven Bean?

Developing Message-Driven Beans
The Semantics
A Simple Example

Advanced Concepts

Message-Driven Bean Gotchas
Message Ordering
Missed ejbRemove() Calls
Poison Messages

163
166

167

167
167
168
170
172
173
175

176

180
181
182
182
184
184
187
191
195
196

196
200
200

201
201

203
204
206

211
212

214
214
215

223

225
225
226
228

Chapter 9

How to Return Results Back to Message Producers
The Future: Asynchronous Method Invocations

Summary

Adding Functionality to Your Beans

Calling Beans from Other Beans
Default JNDI Lookups
Understanding EJB References

Resource Factories
Environment Properties

Understanding EJB Security
Security Step 1: Authentication
Security Step 2: Authorization
Security Propagation

Understanding Handles
Home Handles

Summary

Part Three Advanced Enterprise JavaBeans Concepts

Chapter 10 Transactions

Motivation for Transactions
Atomic Operations
Network or Machine Failure
Multiple Users Sharing Data

Benefits of Transactions
The ACID Properties

Transactional Models
Flat Transactions
Nested Transactions
Other Transactional Models

Enlisting in Transactions with Enterprise JavaBeans
Underlying Transaction System Abstraction
Declarative, Programmatic, and Client-Initiated Transactions
Choosing a Transaction Style

Container-Managed Transactions
EJB Transaction Attribute Values

Programmatic Transactions in EJB
CORBA’s Object Transaction Service (OTS)
The Java Transaction Service (JTS)
The Java Transaction API (JTA)
Declarative versus Programmatic Transactions Example

xi

230
235

236

237

237
238
239

241
244

245
246
257
266

268
269

270

271

275

276
276
277
278

279
280

282
282
284
286

286
287
287
290

292
294

300
300
301
301
304

xii

Chapter 11

Chapter 12

Transactions from Client Code

Transactional Isolation
The Need for Concurrency Control
Isolation and EJB
The Dirty Read Problem
The Unrepeatable Read Problem
The Phantom Problem
Transaction Isolation Summary
Isolation and EJB
Pessimistic and Optimistic Concurrency Control

Distributed Transactions
Durability and the Two-Phase Commit Protocol

The Transactional Communications Protocol and Transaction

Contexts
Designing Transactional Conversations in EJB

Summary

BMP and CMP Relationships
The CMP and BMP Difference
Cardinality

1:1 Relationships

1:N Relationships
M:N Relationships

Directionality
Implementing Directionality with BMP
Implementing Directionality with CMP
Directionality May Not Map to Database Schemas
Bidirectional or Unidirectional?

Lazy Loading

Aggregation vs. Composition and Cascading Deletes

Relationships and EJB-QL

Recursive Relationships

Circular Relationships

Referential Integrity
Relationships, Referential Integrity, and Client Code

Summary

Persistence Best Practices

When to Use Entity Beans
Control
Parameter Passing Analogy
Procedural Versus Object-Oriented
Caching

306

307
308
309
311
312
313
314
315
316

316
317

318
320
323

325
326

326
328
332
336

344
344
345
347
349

349
350
352
363
354

365
357

360

361

362
362
362
363
363

Chapter 13

Enforcement of Schema Independence
Ease of Use

Migration

Rapid Application Development

Choosing between CMP and BMP
Code Reduction and Rapid Application Development
Performance
Bugs
Control
Application Server and Database Independence
Relationships
Learning Curve and Cost
Choosing the Right Granularity for Entity Beans

Persistence Tips and Tricks
Beware the Object-Relational Impedance Mismatch
Hard-Coded Versus Soft-Coded SQL
When to Use Stored Procedures
Normalizing and Denormalizing
Use Your EJB Object Model to Drive Your Data Model
Follow a Good Data Design Process
Use Surrogate Keys
Understand the Impacts of Database Updates
Versioning EJB Components
Living with a Legacy Database Design
Handling Large Result Sets

Summary

EJB Best Practices and Performance Optimizations

When to Use Stateful versus Stateless

When to Use Messaging versus RMI-IIOP

How to Guarantee a Response Time with Capacity Planning
How to Achieve Singletons with EJB

Wrap Entity Beans with Session Beans
Performance-Tuning Entity Beans

Choosing between Local Interfaces and Remote Interfaces
How to Debug EJB Issues

Partitioning Your Resources

Assembling Components

Developing Components to Be Reusable

When to Use XML in an EJB System

Legacy Integration with EJB

Summary

xiii

364
364
364
365

365
365
366
366
367
367
368
368

368

370
370
370
371
373
375
375
376
377
377
379
387

390

391
391
393
397
398
398
400
401
402
404
405
406
407
408
410

xiv

Chapter 14

Chapter 15

Chapter 16

Clustering

Overview of Large-Scale Systems
What Is a Large-Scale System?
Basic Terminology
Partitioning Your Clusters

Instrumenting Clustered EJBs
How EJBs Can Be Clustered
The Concept of Idempotence
Stateless Session Bean Clustering
Stateful Session Bean Clustering
Entity Bean Clustering
Message-Driven Bean Clustering

Other EJB Clustering Issues
First Contact
Initial Access Logic

Summary

Starting Your EJB Project on the Right Foot
Get the Business Requirements Down
Decide Whether J2EE is Appropriate
Decide Whether EJB Is Appropriate
Staff Your Project

Design Your Complete Object Model
Implement a Single Vertical Slice
Choose an Application Server

Divide Your Team

Invest in Tools

Invest in a Standard Build Process
Next Steps

Summary

Choosing an EJB Server

J2EE 1.3 Brand

Pluggable JRE

Conversion Tools

Complex Mappings

Third-Party JDBC Driver Support
Lazy-Loading

Deferred Database Writes

411

411
412
413
415

416
419
420
421
423
425
429

430
430
430

431

433
433
434
434
438
439
439
442
443
445
446
446
447

449
450
450
450
451
451
451
451

- contents BBV

Pluggable Persistence Providers 451
In-Memory Data Cache 452
Integrated Tier Support 452
Scalability 452
High Availability 453
Security 453
IDE Integration 454
UML Editor Integration 454
Intelligent Load Balancing 455
Stateless Transparent Fail-over 455
Clustering 455
Java Management Extension (JMX) 456
Administrative Support 456
Hot Deployment 456
Instance Pooling 456
Automatic EJB Generation 457
Clean Shutdown 457
Real-Time Deployment 457
Distributed Transactions 458
Superior Messaging Architecture 458
Provided EJB Components 458
J2EE Connector Architecture (JCA) 459
Web Services 459
Workflow 459
Open Source 460
Specialized Services 460
Nontechnical Criteria 461
Summary 462
Chapter 17 EJB-J2EE Integration: Building a Complete Application 463
The Business Problem 463
A Preview of the Final Web Site 464
Scoping the Technical Requirements 468
Object Model for the Business Logic Tier 469
Object Model for the Presentation Tier 475
Example Code 482

Summary 488

ECONTENTS S

Part Four Appendixes 489
Appendix A RMI-IIOP and JNDI Tutorial 491
Java RMI-IIOP 492
Remote Method Invocations 492
The Remote Interface 493
The Remote Object Implementation 496
Stubs and Skeletons 497
Object Serialization and Parameter Passing 499
Passing By-Value 500
Object Serialization 500
What Should You Make Transient? 502
Object Serialization and RMI-IIOP 503
The Java Naming and Directory Interface (JNDI) 505
Naming and Directory Services 506
Problems with Naming and Directories 507
Enter JNDI 508
Benefits of JNDI 509
JNDI Architecture 509
JNDI Concepts 511
Programming with JNDI 515
Integrating RMI-IIOP and JNDI 517
Binding an RMI-IIOP Server to JNDI 518
Looking up an RMI-IIOP Server with JNDI 519
Summary 520
Appendix B CORBA Interoperability 523
What Is CORBA? 523
CORBA as the Basis for EJB 524
Why Should I Care about CORBA? 524
Drawbacks of CORBA 525
Understanding How CORBA Works 525
Object Request Brokers 525
OMG's Interface Definition Language 526
OMG IDL Maps to Concrete Languages 528
CORBA Static Invocations 529
CORBA’s Many Services 531
The Need for RMI-IIOP 531
The Need for RMI-CORBA Interoperability 532
Combining RMI with CORBA 533
Steps to Take for RMI and CORBA to Work Together:
An Overview 538

RMI-IIOP Client with a CORBA Object Implementation 538

L CONTENTS IRt

CORBA Client with an RMI-IIOP Object Implementation 539
Bootstrapping with RMI-IIOP and CORBA 540
The Big Picture: CORBA and EJB Together 540
Sample Code 541
Summary 543
Appendix C Deployment Descriptor Reference 545
How to Read a DTD 545
The Header and Root Element 546
Defining Session Beans 547
<session> 547
Defining Entity Beans 549
<entity> 549
<cmp-field> 5561
<query> 552
<query-method> 552
<method-params> 553
Defining Message-Driven Beans 553
<message-driven> 553
<message-driven-destination> 555
Defining Environment Properties 555
<env-entry> 556
Defining EJB References 556
<ejb-ref> 557
<ejb-local-ref> 558
Defining Security 558
<security-role-ref> 558
<security-identity> 559
<run-as> 559
Defining Resource Factories 560
<resource-ref> 560
<resource-env-ref> 561
Defining Relationships 561
<relationships> 562
<ejb-relation> 562
<ejb-relationship-role> 563
<relationship-role-source> 563
<cmr-field> 564
Defining the Assembly Descriptor 564
<assembly-descriptor> 565
<security-role> 566
<method-permission> 566

<container-transaction> 567

xviii

<exclude-list>
<method>
<method-params>

Appendix D The EJB Query Language (EJB-QL)

Overview
A Simple Example

The Power of Relationships

EJB-QL Syntax
The FROM Clause
The WHERE Clause
The SELECT Clause
Truth Tables

Final Note

Summary

Appendix E EJB Quick Reference Guide

Session Bean Diagrams
Stateless Session Bean Diagrams
Stateful Session Bean Diagrams

Entity Bean Diagrams

Message-Driven Bean Diagrams

EJB API Reference
EJBContext
EJBHome
EJBLocalHome
EJBLocalObject
EJBMetaData
EJBObject
EnterpriseBean
EntityBean
EntityContext
Handle
HomeHandle
MessageDrivenBean

MessageDrivenContext

SessionBean
SessionContext

SessionSynchronization

Exception Reference

Transaction Reference

567
568
568

569

569
570
571

572
572
574
578
581

583
583

585

586
587
589

592
597

598
599
600
601
601
602
602
603
604
610
610
611
611
611
612
614
614

616
617

621

T

his book has been a project spanning several years. Many have commented
that the first edition was one of the best technical books they ever read. What's
made this book a reality are the many people that aided in its development.

We took a big risk in developing the second edition of this book and decided
to build the book on the Web. We received feedback from around the world
when writing this book, and thus we have an evolving list of contributors and
reviewers. The list is too large to mention here but is available at www.The
ServerSide.com.

As a special thanks, we’d like to acknowledge the great folks over at John
Wiley & Sons. They have been absolutely outstanding throughout this book’s
evolution. In particular, we’d like to thank Bob Elliott, Emilie Herman, and
Bob Ipsen for their incredible efforts.

xix

occurred in my life almost three years ago. I remember sitting in my cubicle
at Trilogy Software, an e-commerce company in Austin, Texas, lost in deep
middleware thoughts. My challenge was to devise an interesting load-bal-
ancing strategy for our in-house application server, which we called the back-
bone.

ﬁ s I write these words, I can’t help but think back to an inflection point that

The backbone was a superb software system. It was cleanly written, easy to
use, and boasted some very high-end features—features such as distributed
object support, object-relational mapping, and extensible domain object mod-
eling. It had almost anything you needed for Internet development. It was a
worthy investment for Trilogy.

I was part of a task force to add enterprise features to this backbone, such as
transaction control, security, and load-balancing. Our goal was to improve the
backbone into a product worthy of large-scale deployment.

So that day, after hours of racking my brain, I finally finished crafting what I
believed to be a highly creative and optimal load-balancing strategy. Looking
for feedback, I walked to my friend Court Demas’ office. Court is one of those
developers who can really pick apart almost any design and expose its flaws—
a unique quality that only a few developers I know have.

Walking into Court’s office, I was expecting a typical developer-level conver-
sation, and that’s what I received. We turned the design inside and out, mark-
ing up my freshly printed hard copy with scribbles and other unintelligible
comments that only we could understand. Finally, satisfied that we had
reached a conclusion, I thanked Court and walked toward the door, prepared
to implement the changes we had agreed upon.

But I didn’t make it that far. Court said something to me that would change my
way of thinking. His comment baffled and confused me at first, but would
eventually result in a complete paradigm shift and career move for me. What
did Court say? Nothing profound, but simply, “You know Ed, this stuff is
really what Enterprise JavaBeans is for.”

xxii

At first, I had no idea what he was talking about. Enterprise JavaBeans?
What's that? Something like regular JavaBeans? Eventually, Court managed to
explain to me what EJB was. And once he explained it, I knew that Trilogy had
to do a 180-degree turn or lose its competitive advantage.

You see, EJB is a specification for a server-side component marketplace. EJB
enables you to purchase off-the-shelf components from one vendor, combine
them with components from another vendor, and run those components in an
application server written by yet a third vendor. This means companies can
collaborate on the server side. EJB enables you to buy, rather than build, ele-
ments of server-side applications.

The EJB value proposition had strong ramifications for Trilogy. EJB repre-
sented a way for Trilogy to get out of the middleware business and concentrate
on its e-commerce strategic efforts. This meant discarding the backbone com-
pletely in favor of a third-party vendor’s architecture. Not only would this
reduce Trilogy’s maintenance costs, but it would also solidify its software
suite, since their middleware would now be written by professionals who had
been in the business for 20 years. This proposition would eventually lead to
Trilogy forming an entirely new business unit.

I decided to start researching EJB and pushing for Trilogy to adopt it. I went to
the Sun Microsystems Web page, downloaded the EJB 1.0 specification in PDF
form, and printed it out. Back then, the specification was about a third of the
size it is today.

Understanding the specification turned out to be much more challenging than
downloading it. The specification was written for system-level vendors and
was not meant to be a tutorial for end developers. The section on entity beans,
for example, took me a good two months to really grasp, as the notion of per-
sistent components was new to me.

This arduous struggle with understanding the E]B specification is what even-
tually led me to write this book for you. This book represents everything I
wish I had when I first started using EJB in 1998. So what is this book about?
Well, it may be more accurate to tell you what this book is not. This is not EJB
propaganda. It is not a book on how to write EJB code on any single applica-
tion server. This is not a nice book that paints a perfect picture of the EJB
world. Nor is it an advertisement for any particular EJB product or a campaign
to rid the world of Microsoft.

The goal of this book is to help you. I want you to be able to craft solid, secure,
and scalable server-side deployments. As you read this book, you'll learn how
to design, implement, and deploy EJB solutions. This book covers both the
vision and the reality of EJB from an independent developer’s perspective. I
hope it will prepare you for the challenges you will face.

L PREFACE R

I wish the grass was greener and that I could write a book on how clean and
portable EJB is; but the truth is that this technology is not perfect, and you
should know exactly what the imperfections are. I will expose you to the grue-
some and incompatible parts of EJB and also explain how the industry is solv-
ing these problems.

Indeed, the newer specifications (especially EJB 2.0) improve portability and
reduce incompatibilities tremendously. I hope that by the time you're done
reading this book, you are convinced that the vision of EJB is solid, and the
future is very bright.

My hope is that I can save you time and energy, and aid you in designing well-
crafted server-side deployments. But this is merely the beginning. The E]JB
marketplace is just getting started, and there’s a whole lot more work ahead. I
encourage you to take an active role in the middleware industry and to work
with me taking EJB to the next level. Feel free to write your experiences, tips,
and design strategies, and post them on TheServerSide.com to share with
others. Our goal is to increase our knowledge of EJB as a community, and
together, we can do it.

Ed Roman

T

his book is a tutorial on Enterprise JavaBeans (E]JB). It's about E]JB concepts,
methodology, and development. This book also contains a number of
advanced EJB topics, giving you a practical and real-world understanding of
the subject. By reading this book, you will acquire a deep understanding of EJB.

Make no mistake about it—what you are about to read is not easy. EJB incor-
porates concepts from a wealth of areas, including distributed computing,
databases, security, component-driven software, and more. Combining them
is a magnificent stride forward for the Java community, but with that comes a
myriad of concepts to learn and understand. This book will teach you the con-
cepts and techniques for authoring reusable components in Java, and it will
do so from the ground up. You need only to understand Java to understand
this book.

While you're reading this book, you may want to download the E]B specifica-
tion, available on http:/ /java.sun.com.

Goals for This Edition

The first edition of this book came out in 1999. We had to make some tough
calls when writing the second edition, and we are confident you'll like them.
Here are our goals:

m To update the book for EJB 2.0. EJB 2.0 has many new useful features that
we will detail throughout the book.

m To be broad and also deep. We do not regurgitate the complete EJB speci-
fication in this book, nor do we cover every last detail of EJB in this book.
Rather, we cover the most important parts of EJB, leaving room to discuss
advanced issues. For a complete reference while you are coding, search
through the EJB specification using Adobe Acrobat. Readers who are look-
ing for a well-written book that is interactive, fun to read, and covers the
basics through advanced subjects have come to the right place.

xxvi INTRODUCTION

m To be concise. Your time as a reader is extremely valuable, and you're
likely waiting to read a stack of books besides this one. Given that most
people don’t have time to read 1,000-plus-page books, we actually wanted
to reduce the size of this book as much as possible. So we’ve tightened
things up and eliminated redundant examples. This way, you can get to
actually program with EJB, rather than reading a book for months on end.
The irony of this story is that it was harder for us to write a shorter book
than a long book!

m To be a book for developers. This book is not intended for high-level
businessmen. This is a technical book for a technical audience.

m To write a book the right way. This book’s primary author, Ed Roman,
has taken his skills in training and knowledge transfer and applied them
to this book. Thus, we’ve infused this book with the following attributes:

m A conversational style. When you read this book, sometimes you'll
feel like you're almost having a discussion with us. We think this is far
superior to spending eons trying to re-read a formal writing style over
and over again.

m Use of diagrams and bulleted lists. The adage a picture is worth a
thousand words applies here. These tactics are great for breaking up
blocks of text. They keep things varied and make the book a much
faster read.

m A consistent voice. Even though several coauthors wrote this book,
you’ll hear one voice. This was done to combine best-of-breed knowl-
edge from several expert coauthors, while maintaining a uniform look
and feel throughout the book.

m To be an introductory book, but also to get quickly into advanced top-
ics. We figured that the average developer has had enough of books that
merely skim the surface. We wanted to write a book that pushed beyond
the basics. Our approach when writing this book was to always err on the
side of being advanced. To achieve this, we did an immense amount of
research. We participated in the mailing lists, performed many real-world
projects, attended conferences and seminars, and networked with the top
experts throughout the world.

m To be vendor-neutral. All vendor-specific deployment steps are external-
ized to the book’s accompanying source code. This makes this book useful
for any E]B server.

m To add useful EJB information garnered from our instructor-led training
classes. Having taught EJB/J2EE for years, we have learned significantly

INTRODUCTION xxvii

from our students. We have interlaced this book with many of our own
students’ questions and answers in relevant sections.

m To take all the source code and make it available online. By making the
code available on the Web, you know it’s the latest version. This will
ensure the code you receive works right the first time.

Organization of the Book

The text is organized into the following five parts:

Part 1 is a whirlwind introduction to EJB programming. Part 1 serves as a
great overview for people in a hurry. While Part 1 is essential information
to EJB newcomers, veterans will also find nuggets of useful knowledge as
well. The following chapters are covered:

Chapter 1 is a tour of enterprise computing. We’ll talk about components,
distributed frameworks, and containers. We'll also introduce EJB and J2EE.

Chapter 2 moves onto the fundamentals of building an EJB system, including
the tricky concept of request interception. We'll also look at the files that
makeup an enterprise bean.

Chapter 3 shows you how to put together a simple enterprise bean. We'll also
learn how JNDI is used in EJB, and see how to call that bean from a client.

Part 2 devotes exclusive attention to programming with EJB. We’ll see how to
use the triad of beans: entity beans, session beans, and message-driven
beans. We'll cover the basics of writing each type of bean, including an
example as well as detailed life cycle diagrams.

Chapter 4 covers session beans. We'll look at the difference between stateful
and stateless session beans, how to code a session bean, and what’s going
on behind-the-scenes with session beans.

Chapter 5 is a conceptual introduction to entity beans. We'll look at persis-
tence concepts, what makes entity beans unique, and the files involved
when building entity beans.

Chapter 6 covers bean-managed persistent (BMP) entity beans. We'll see how
to program a BMP entity bean, and also look at what’s happening behind
the scenes with BMP.

Chapter 7 covers container-managed persistent (CMP) entity beans. We'll
focus in on the exciting new advances that EJB 2.0 has introduced, we’ll
learn how to program a CMP entity bean, and also look at what’s happen-
ing behind the scenes with CMP.

xxviii

INTRODUCTION

Chapter 8 covers message-driven beans. We'll first review the Java Message
Service (JMS), which is a pre-requisite for learning message-driven beans.
We'll then dive in and understand how to program with message-driven
beans.

Chapter 9 discusses the E]B environment, along with services provided by
the container. This includes security, environment properties, resource fac-
tories, references between beans, and handles.

Part 3 is the most exciting part of the book, and covers advanced EJB con-
cepts. The following chapters are included:

Chapter 10 tackles transactions. Transactions are a crucial topic for anyone
building an EJB deployment that involves state. We’ll discuss transactions
at a conceptual level, and how to apply them to EJB. We'll also learn about
the Java Transaction API (JTA).

Chapter 11 covers relationships between entity beans. This is a critical con-
cept for anyone performing complex persistence. We'll understand the
concepts of cardinality, directionality, referential integrity, and cascading
deletes. We'll also see how to code relationships for both CMP and BMP
entity beans.

Chapter 12 covers persistence best practices. You'll learn exciting concepts
such as how to choose between session beans and entity beans, how to
choose between BMP and CMP, and survey a collection of persistence best
practices that we’ve assembled from our knowledge and experience.

Chapter 13 covers EJB design strategies to help your projects succeed. You'll
learn about interesting topics such as how to choose between local inter-
faces and remote interfaces, how to choose between stateful and stateless
systems, and how to choose between a 3-tier and 4-tier deployment.

Chapter 14 discusses clustering in large-scale EJB systems. You'll learn about
how clustering works behind-the-scenes, and learn a few strategies for
how containers might achieve clustering. This is a critical topic for anyone
building a system that involves several machines working together.

Chapter 15 covers E]B project management. We'll talk about how to get your
project started on the right foot. This includes how to choose whether EJB
is right for you, how to build a first-pass of your system, and how to
divide up your development team.

Chapter 16 covers how to choose an EJB server. We'll describe our methodol-
ogy for how an organization can compare and contrast different vendors’
offerings. We’ll also list our set of criteria for what we would want in an
EJB server.

Chapter 17 shows how to build a real-world J2EE system using EJB compo-
nents. We’ll see how the EJB components should be used together in an

INTRODUCTION XXix

enterprise, as well as how to connect them with clients such as Java
Servlets and JavaServer Pages (JSPs). We'll also demonstrate how to design
an EJB object model using UML.

The Appendices are a collection of ancillary EJB topics. Some developers
may want to read the appendices, while some may not need to do so.

Appendix A teaches you Java Remote Method Invocation over the Internet
Inter-ORB Protocol (RMI-IIOP) and the Java Naming and Directory Inter-
face (JNDI). These technologies are pre-requisites for using EJB. If you're
just starting down the EJB road, you must read this appendix first.

Appendix B discusses how to integrate E]B and CORBA systems together.
We’ll learn about how EJB and CORBA are interoperable through RMI-
IIOP, and see sample code for calling an EJB component from a CORBA
client.

Appendix C is a deployment descriptor reference guide. This will be useful
for you later, when you're writing a deployment descriptor and need a
guide.

Appendix D covers the new EJB query language (EJB-QL) in detail.

Appendix E is an API and diagram reference guide. This is useful when you
need to look up the purpose of a method or class in EJB.

Throughout the book, this icon will signal a tip, note, or other helpful advice n EJB
ﬂ programming.

tive. We have taken our knowledge of adult learning, and scattered boxes like this
throughout the book. Each box asks you a question to get you thinking. The answers
to the questions are posted on the book’s accompanying Web site. What do you
think the benefits are of this paradigm?

In a similar paradigm to our training courses, the content of this book is very interac-

Hlustrations in the Text

Almost all of the illustrations in this book are written in the Unified Modeling
Language (UML). UML is the de facto standard methodology for illustrating
software engineering concepts in an unambiguous way. If you don’t know
UML, pick up a copy of The Unified Modeling Language User Guide (Addison-
Wesley, ISBN 0201571684), which illustrates how to effectively use UML
in your everyday software. UML is a highly important achievement in
object-oriented methodology. It's a common mechanism for engineers to

XXX INTRODUCTION

communicate and design, and it forces you to abstract your object model prior
to implementation. We cannot stress its use enough.

The Accompanying Web Site

This book would not be complete without a way to keep you in touch after it
was published. A Web site is available for resources related to this book. There
you'll find

m All of the source code you see in this book. The code comes complete with
build scripts, ready to build and run. It should be portable to a variety of
application servers that are EJB 2.0- and J2EE 1.3-compliant.

m Updates to the source code examples.
m Links to EJB resources.

m FError corrections from the text.

The Web site is at www.wiley.com/compbooks/roman.

Feedback

When you begin your EJB programming, we’re sure you'll have many experi-
ences to share with other readers as well. Feel free to email examples, case
studies, horror stories, or tips that you've found helpful in your experiences,
and we’ll post them on the Web site.

Send bug reports to bookbugs@middleware-company.com.

Send general communications to Ed Roman at:
edro@middleware-company.com.

From Here

Now that we’ve gotten the logistics out of the way, let’s begin our exploration
of Enterprise JavaBeans with Part 1, an introduction to EJB concepts and pro-
gramming.

Ed Roman is one of the world’s leading authorities on high-end middleware
technologies. He has been heavily involved with Sun Microsystems” enter-
prise Java solutions from their inception, and has designed, built, and de-
ployed a variety of enterprise applications, including architecting and
developing complete application server products. He devotes a significant
amount of time towards influencing and refining Sun’s enterprise specifica-
tions, contributes regularly to middleware interest mailing lists, and regularly
speaks at middleware-related conferences.

Ed is CEO of The Middleware Company (www.middleware-company.com), a
firm specializing in EJB, J2EE, and XML-based Web Services training and con-
sulting. The mission of The Middleware Company is to educate and aid in the
design, development, and deployment of middleware solutions. Are you or
your company making a purchase decision, performing EJB design work, inte-
grating a legacy system to EJB, performing e-commerce-related deployments,
or working on any other middleware endeavors? If you need some assistance,
The Middleware Company can be a valuable resource.

Ed also is CEO of TheServerSide.com, which is the de facto J2EE community
Web site. Every day, thousands of developers get together on TheServerSide.
com to share E]JB design patterns, hear about the latest E]B news, ask and
answer EJB development questions, and read articles. After you've read this
book, visit TheServerSide.com to catch up on the latest EJB information.
TheServerSide.com is a completely free service and is intended to help the
community.

And last but not least, if you want to get involved in the middleware field, Ed
is always looking for great people who want to work on exciting projects using
the latest technologies. You can reach him at edro@middleware-company.com.

About the Coauthors

Tyler Jewell oversees BEA’s technology evangelism efforts, which are char-
tered to use print and speaking media to deepen developers’ respect for enter-
prise technologies and BEA products. Tyler is an experienced developer,

xxxi

Xxxii

ABOUT THE AUTHOR

lecturer, and author. He has worked on more than 40 e-business development
projects, has delivered over 200 speeches, and has published nearly 6,000
pages of content worldwide.

Tyler is a co-author of Professional Java Server Programming—]J2EE 1.3 (Wrox,
2001). He is a member of O’Reilly’s editorial advisory panel and maintains a
monthly J2EE column at www.onjava.com. He also is a technology adviser to
TheServerSide.com.

In his spare time, Tyler is an avid volleyball and poker enthusiast and a con-
noisseur of fine red wines. He can be reached at tyler@bea.com.

Scott W. Ambler is president and a senior consultant of Ronin International,
www.ronin-intl.com, a software services consulting firm that specializes in soft-
ware process mentoring, Agile Modeling (AM), and object/component-based
software architecture and development. He is also founder and thought leader
of the Agile Modeling (AM) methodology, www.agilemodeling.com.

Scott is the author of the books The Object Primer, 2nd Edition (2001), Building
Object Applications That Work (1997), Process Patterns (1998), and More Process
Patterns (1999), and co-author of The Elements of Java Style (2000), all published
by Cambridge University Press. He is author of the forthcoming Agile Model-
ing (Autumn 2001) from John Wiley & Sons. He is also co-editor with Larry
Constantine of the Unified Process series from R&D books (2000-2001). Scott is
a contributing editor with Software Development magazine (www.sdmagazine.
com), a contributor to IBM DeveloperWorks (www.ibm.com/developer), and a
columnist with Computing Canada.

Scott’s personal Web site, www.ambysoft.com, has a wide variety of white
papers, including the AmbySoft Inc. “Coding Standards for Java,” which are
available for free download. In his spare time, Scott studies T’ai Chi and the
Goju Ryu and Kobudo styles of karate. Scott has spoken at a wide variety of
international conferences including software development, UML world, object
expo, Java expo, and application development.

Platform, Enterprise Edition (J2EE), of which the Enterprise JavaBeans (EJB) com-
ponent architecture is a vital piece. J2EE is a conglomeration of concepts, pro-
gramming standards, and innovations—all written in the Java programming
language. With J2EE, you can rapidly construct distributed, scalable, reliable,
and portable secure server-side deployments.

In Part 1, we introduce the server-side development platform that is the Java 2

Chapter 1 begins by exploring the need for a server-side component architec-
ture such as EJB. You'll see the rich needs of server-side computing, such as
scalability, high availability, resource management, and security. We'll look
at each of the different parties that are involved in an EJB deployment.
We'll also survey the J2EE server-side development platform.

Chapter 2 moves on to the Enterprise JavaBeans fundamentals. We’ll look at
the concept of request interception, which is crucial for understanding how
EJB works. We'll also look at the different files that go into a bean and how
they work together.

Chapter 3 gets down and dirty with EJB programming. Here, we’ll write our
first simple bean. We’ll show how to code each of the files that compose
the bean, and we’ll also look at how to call that bean from clients.

Overview

ties the process of building enterprise-class distributed component applica-
tions in Java. By using EJB, you can write scalable, reliable, and secure
applications without writing your own complex distributed component
framework. EJB is about rapid application development for the server side;
you can quickly and easily construct server-side components in Java by lever-
aging a prewritten distributed infrastructure provided by the industry. EJB is
designed to support application portability and reusability across any ven-
dor’s enterprise middleware services.

E nterprise JavaBeans (E]B) is a server-side component architecture that simpli-

If you are new to enterprise computing, these concepts will be clarified
shortly. E]B is a complicated subject and thus deserves a thorough explanation.
In this chapter, we’ll introduce EJB by answering the following questions:

m What plumbing do you need to build a robust distributed object
deployment?

m What is EJB, and what value does it add?
m Who are the players in the E]B ecosystem?

Let’s kick things off with a brainstorming session.

The

Motivation for EJB

Figure 1.1 shows a typical business application. This application could exist in
any vertical industry and could solve any business problem. Here are some
examples:

m A stock trading system
A banking application
A customer call center

|
-
m A procurement system
L

An insurance risk analysis application

Notice that this application is a distributed system. We broke up what would
normally be a large, monolithic application and divorced each layer of the
application from the others, so that each layer is completely independent and
distinct.

Take a look at this picture, and ask yourself the following question based
purely on your personal experience and intuition: If we take a monolithic appli-
cation and break it up into a distributed system with multiple clients connecting to
multiple servers and databases over a network, what do we need to worry about now
(as shown in Figure 1.1)?

Take a moment to think of as many issues as you can. Then turn the page and
compare your list to ours. Don’t cheat!

Client Client Client

Server Server

Database

Figure 1.1 Standard multitier deployment.

I T [s

In the past, most companies built their own middleware. For example, a finan-
cial services firm might build some of the middleware services above to help
them put together a stock trading system.

These days, companies that build their own middleware risk setting them-
selves up for failure. High-end middleware is hideously complicated to build
and maintain, requires expert-level knowledge, and is completely orthogonal
to most companies’ core business. Why not buy instead of build?

The application server was born to let you buy these middleware services, rather
than build them yourself. Application servers provide you with common mid-
dleware services, such as resource pooling, networking, and more. Applica-
tion servers allow you to focus on your application and not worry about the
middleware you need for a robust server-side deployment. You write the code
specific to your vertical industry and deploy that code into the runtime envi-
ronment of an application server. You've just solved your business problem by
dividing and conquering.

Divide and Conquer to the Extreme

We've just discussed how you can gain your middleware from an application
server, empowering you to focus on your business problem. But there’s even bet-
ter news: You may be able to buy a partial solution to the business problem itself.

To achieve this, you need to build your application out of components. A com-
ponent is code that implements a set of well-defined interfaces. It is a manage-
able, discrete chunk of logic. Components are not entire applications—they
cannot run alone. Rather, they can be used as puzzle pieces to solve some
larger problem.

The idea of software components is very powerful. A company can purchase a
well-defined module that solves a problem and combine it with other compo-
nents to solve larger problems. For example, consider a software component
that computes the price of goods. We’ll call this a pricing component. You hand
the pricing component information about a set of products, and it figures out
the total price of the order.

The pricing problem can get quite hairy. For example, let’s assume we're order-
ing computer parts, such as memory and hard drives. The pricing component
figures out the correct price based on a set of pricing rules that may include:

Base prices of a single memory upgrade or a single hard disk

Quantity discounts that a customer receives for ordering more than 10 mem-
ory modules

Things to Consider When Building Large Business Systems

By now you should have a decent list of things you'd have to worry about when
building large business systems. Here's a short list of the big things we came up
with. Don’t worry if you don’t understand all of them yet—you will.

Il Remote method invocations. We need logic that connects a client and server via
a network connection. This includes dispatching method requests, brokering of
parameters, and more.

Il Load balancing. Clients must be directed to the server with the lightest load. If a
server is overloaded, a different server should be chosen.

Il Transparent fail-over. If a server crashes, or if the network crashes, can clients
be rerouted to other servers without interruption of service? If so, how fast
does fail-over happen? Seconds? Minutes? What is acceptable for your business
problem?

Il Back-end integration. Code needs to be written to persist business data into
databases as well as integrate with legacy systems that may already exist.

Il Transactions. What if two clients access the same row of the database simulta-
neously? Or what if the database crashes? Transactions protect you from these
issues.

Il Clustering. What if the server contains state when it crashes? Is that state repli-
cated across all servers, so that clients can use a different server?

Il Dynamic redeployment. How do you perform software upgrades while the site
is running? Do you need to take a machine down, or can you keep it running?

Il clean shutdown. If you need to shut down a server, can you do it in a smooth,
clean manner so that you don't interrupt service to clients who are currently
using the server?

Il Logging and auditing. If something goes wrong, is there a log that we can con-
sult to determine the cause of the problem? A log would help us debug the
problem so it doesn’t happen again.

Il Systems Management. In the event of a catastrophic failure, who is monitoring
our system? We would like monitoring software that paged a system administra-
tor if a catastrophe occurred.

Il Threading. Now that we have many clients connecting to a server, that server is
going to need the capability of processing multiple client requests simultane-
ously. This means the server must be coded to be multi-threaded.

Il Message-oriented middleware. Certain types of requests should be message-
based where the clients and servers are very loosely coupled. We need infra-
structure to accommodate messaging.

Il Object life cycle. The objects that live within the server need to be created or
destroyed when client traffic increases or decreases, respectively.

Il Resource pooling. If a client is not currently using a server, that server’s precious
resources can be returned to a pool to be reused when other clients connect.
This includes sockets (such as database connections) as well as objects that live
within the server.

Il Security. The servers and databases need to be shielded from saboteurs. Known
users must be allowed to perform only operations that they have rights to
perform.

Il Caching. Let’s assume there is some database data that all clients share and
make use of, such as a common product catalog. Why should your servers
retrieve that same catalog data from the database over and over again? You
could keep that data around in the servers’ memory and avoid costly network
roundtrips and database hits.

Bl And much, much, much more.

Each of these issues is a separate service that needs to be addressed for seri-
ous server-side computing. These services are needed in any business problem
and in any vertical industry. And each of these services requires a lot of thought
and a lot of plumbing to resolve. Together, these services are called middleware.

Bundling discounts that the customer receives for ordering both memory and
a hard disk

Preferred customer discounts that you can give to big-name customers
Locale discounts depending on where the customer lives

Overhead costs such as shipping and taxes

These pricing rules are in no way unique to ordering computer parts. Other
industries, such as health care, appliances, airline tickets, and others need the
same pricing functionality. Obviously, it would be a huge waste of resources if
each company that needed complex pricing had to write its own sophisticated
pricing engine. Thus, it makes sense that a vendor provides a generic pricing
component that can be reused for different customers. For example:

1. The U.S. Postal Service can use the pricing component to compute ship-
ping costs for mailing packages. This is shown in Figure 1.2.

2. An automobile manufacturer can use the pricing component to determine
prices for cars. This manufacturer may set up a Web site that allows cus-
tomers to get price quotes for cars over the Internet. Figure 1.3 illustrates
this scenario.

3. An online grocery store can use the pricing component as one discrete
part of a complete workflow solution. When a customer purchases gro-
ceries over the Web, the pricing component first computes the price of the
groceries. Next, a different vendor’s component bills the customer with
the generated price. Finally, a third component fulfills the order, setting
things in motion for the groceries to be delivered to the end user. We
depict this in Figure 1.4.

Post Office worker

Workstation / Dumb Terminal

Pricing
Component

Call into legacy system

| —

0
Legacy System

Figure 1.2 Reusing a pricing component for the U.S. Postal Service.

Reusable components are quite enticing because components promote rapid
application development. An IT shop can quickly assemble an application
from prewritten components rather than writing the entire application from
scratch. This means:

Client Browser

/ Client Browser
\/ ——

Client Browser

C———— -

\.I_I_I_|

Web Server
Pricing
Component

Figure 1.3 Reusing a pricing component for quoting car prices over the Internet.

=
=y
—y
—y
—
=
[—

I — -
N~
Web Server

Workflow Logic

— 1: Price Order — L—3: Fulfill Order —

2: Bill Order to Customer

v A v
Pricing Billing Fufillment
Component Component Component

Figure 1.4 Reusing a pricing component as part of an e-commerce workflow solution.

The IT shop needs less in-house expertise. The IT shop can consider the
pricing component to be a black box, and it does not need experts in com-
plex pricing algorithms.

The application is assembled faster. The component vendor has already
written the tough logic, and the IT shop can leverage that work, saving
development time.

11

There is a lower total cost of ownership. The component vendor’s cash cow
is its components, and therefore it must provide top-notch documentation,
support, and maintenance if it is to stay in business. Because the compo-
nent vendor is an expert in its field, the component generally has fewer
bugs and higher performance than an IT shop’s home-grown solution. This
reduces the IT shop’s maintenance costs.

Once the rules of engagement have been laid down for how components
should be written, a component marketplace is born, where vendors can sell
reusable components to companies. The components are deployed within
application servers, which provide the needed middleware.

Component Marketplace a Myth?

There is a very small component marketplace today. For years we’ve been hoping
that the marketplace will explode, but it is behind schedule. There are several
reasons for Independent Software Vendors (ISVs) not shipping components:

Maturity. Because components live inside application servers, the application
servers must be mature before we see components written to those servers.

Politics. Many ISVs have written their own application servers. Some (falsely) view
this as a competitive advantage.

Questionable value. Most ISVs are customer-driven (meaning they prioritize what
their customers are asking for). Since components are new to many customers,
many of them are not asking for their ISVs to support components.

It is our opinion that the marketplace will eventually explode, and it’s just a
matter of time. If you represent an ISV, this could be a fantastic opportunity
for you.

The good news is that the marketplace already beginning to emerge. Most
packaged e-commerce ISVs (Ariba, Broadvision, Vignette, and so on) are shipping
or have announced support for server-side Java technologies.

In the meantime, you’ll have to build your own components from scratch
within your organizations. Some of our customers at The Middleware Company
are attempting this by having departments provide components to other depart-
ments. In effect, that department is acting as an internal ISV.

Bl OvERVIEW

Component Architectures

It has been a number of years since the idea of multitier server-side deploy-
ments surfaced. Since then, well over 50 application servers have appeared on
the market. At first, each application server provided component services in a
nonstandard, proprietary way. This occurred because there was no agreed def-
inition of what a component should be. The result? Once you bet on an appli-
cation server, your code was locked into that vendor’s solution. This greatly
reduced portability and was an especially tough pill to swallow in the Java
world, which promotes openness and portability. It also hampered the com-
merce of components, because a customer could not combine a component
written to one application server with another component written to a differ-
ent application server.

What we need is an agreement, or set of interfaces, between application servers
and components. This agreement will enable any component to run within
any application server. This will allow components to be switched in and out
of various application servers without having to change code or potentially
even recompile the components themselves. Such an agreement is called com-
ponent architecture and is shown in Figure 1.5.

m Any CD player can play any compact disc because of the CD standard. Think of an

? If you're trying to explain components to a nontechie, try these analogies:
application server as a CD player and components as compact discs.

m In the United States, any TV set can tune into any broadcast because of the NTSC
standard. Think of an application server as a TV set and components as television
broadcasts.

Application Server

agreed-upon
interfaces
Components - specified by ~—=
component
architecture

Figure 1.5 A component architecture.

. overview I}

Introducing Enterprise JavaBeans

The Enterprise JavaBeans (EJB) standard is a component architecture for
deployable server-side components in Java. It is an agreement between com-
ponents and application servers that enable any component to run in any
application server. EJB components (called enterprise beans) are deployable,
and can be imported and loaded into an application server, which hosts those
components.

The top three values of EJB are as follows:

1. Itis agreed upon by the industry. Those who use E]JB will benefit from its
widespread use. Because everyone will be on the same page, in the future
it will be easier to hire employees who understand your systems (since
they may have prior EJB experience), learn best practices to improve your
system (by reading books like this one), partner with businesses (since
technology will be compatible), and sell software (since customers will
accept your solution). The concept of “train once, code anywhere” applies.

2. Portability is easier. The E]B specification is published and available freely
to all. Since E]JB is a standard, you do not need to gamble on a single, pro-
prietary vendor’s architecture. And although portability will never be
free, it is cheaper than without a standard.

3. Rapid application development. Your application can be constructed
faster because you get middleware from the application server. There’s
also less of a mess to maintain.

Note that while E]JB does have these virtues, there are also scenarios where EJB
is inappropriate. See Chapter 15 for a complete discussion of when to (and
when not to) use EJB.

Physically, EJB is actually two things in one:

A specification. This is a 500-plus-page Adobe Acrobat PDF file, freely downloadable
from http://java.sun.com. This specification lays out the rules of engagement
between components and application servers. It constricts how you program so
that you can interoperate.

A set of Java interfaces. Components and application servers must conform to these
interfaces. Since all components are written to the same interfaces, they all look
the same to the application server. The application server therefore can manage
anyone’s components. You can freely download these interfaces from
http://java.sun.com.

14

Why Java?

v
v

EJB components must be written in Java only and require dedication to Java.
This is indeed a serious restriction. The good news, however, is that Java is an
ideal language to build components, for many reasons.

Interface/implementation separation. We need a clean interface/implemen-
tation separation to ship components. After all, customers who purchase com-
ponents shouldn’t be messing with implementation. Upgrades and support
will become horrendous. Java supports this at a syntactic level via the interface
keyword and class keyword.

Safe and secure. The Java architecture is much safer than traditional program-
ming languages. In Java, if a thread dies, the application stays up. Pointers are
no longer an issue. Memory leaks occur much less often. Java also has a rich
library set, so that Java is not just the syntax of a language but a whole set of
prewritten, debugged libraries that enable developers to avoid reinventing the
wheel in a buggy way. This safety is extremely important for mission-critical
applications. Sure, the overhead required to achieve this level of safety might
make your application slower, but 90 percent of all business programs are glo-
rified Graphical User Interfaces (GUIs) to databases. That database is going to
be your number one bottleneck, not Java.

Cross-platform. Java runs on any platform. Since EJB is an application of Java,
this means E]B should also easily run on any platform. This is valuable for cus-
tomers who have invested in a variety of powerful hardware, such as Win32,
UNIX, and mainframes. They do not want to throw away these investments.

If you don’t want to go the EJB route, you have two other choices as well:
m Microsoft’s .NET managed components, part of the Microsoft.NET platform

m The Object Management Group (OMG’s) Common Object Request Broker Archi-
tecture (CORBA)

Note that many EJB servers are based upon and can interoperate with CORBA (see
Appendix B for strategies for achieving this).

EJB as a Business Solution

EJB is specifically used to help solve business problems. EJB components (enter-
prise beans) might perform any of the following tasks.

Perform business logic. Examples include computing the taxes on the shop-
ping cart, ensuring that the manager has authority to approve the purchase
order, or sending an order confirmation email using the JavaMail API.

I e | 15

Access a database. Examples include submitting an order for books, transfer-
ring money between two bank accounts, or calling a stored procedure to
retrieve a trouble ticket in a customer support system. Enterprise beans
achieve database access using the Java Database Connectivity (JDBC) APL

Access another system. Examples include calling a high-performing CICS
legacy system written in COBOL that computes the risk factor for a new
insurance account, calling a legacy VSAM data store, or calling SAP R/3.
Enterprise beans achieve existing application integration via the Java Con-
nector Architecture (JCA).

EJB components are not GUI components; rather, enterprise beans sit behind
the GUIs and do all the hard work. Examples of GUIs that can connect to enter-
prise beans include the following:

Thick clients. Thick clients execute on a user’s desktop. They could connect
via the network with EJB components that live on a server. These EJB com-
ponents may perform any of the tasks listed above (business logic, data-
base logic, or accessing other systems). Thick clients in Java include applets
and applications.

Dynamically generated web pages. Web sites that are complex need their
Web pages generated specifically for each request. For example, the home-
page for Amazon.com is completely different for each user, depending on
the user’s profile. Java servlets and JavaServer Pages (JSPs) are used to
generate such specific pages. Both servlets and JSPs live within a Web
server and can connect to EJB components, generating pages differently
based upon the values returned from the EJB layer.

XML-based Web Service wrappers. Some business applications require no
user interface at all. They exist to interconnect with other business part-
ners’ applications that may provide their own user interface. For example,
Dell Computer Corporation needs to purchase Intel chips to manufacture
desktop computers. Intel could expose a Web Service that enables Dell’s
software to connect and order chips. In this case, Intel’s system does not
have a user interface of its own, but rather acts as a Web Service. Possible
technologies used here include SOAP, UDDI, ebXML, and WSDL. This is
shown in Figure 1.6.

The real difference between GUI components (thick clients, dynamically gener-
ated Web pages, and Web Service wrappers) and enterprise beans is the domain
that each component type is intended to be part of. GUI components are well
suited to handle client-side operations, such as rendering GUIs (although they
don’t necessarily need to have one), performing other presentation-related
logic, and lightweight business logic operations. They deal directly with the
end-user or business partner.

16

Intel
SOAP XML-Based
Dell _UDD| Web Service EJBs
Web Site ebXML Wrappers
WSDL (Servlets, JSPs)

Figure 1.6 EJBs as the back-end to Web services.

End-User Web Browser

Enterprise beans, on the other hand, are not intended for the client side; they
are server-side components. They are meant to perforrn server-side operations,
such as executing complex algorithms or performing high-volume business
transactions. The server side has different kinds of needs from a rich GUI envi-
ronment. Server-side components need to run in a highly available (24 X 7),
fault-tolerant, transactional, and multiuser secure environment. The applica-
tion server provides this high-end server-side environment for the enterprise
beans, and it provides the runtime containment necessary to manage enter-
prise beans.

The EJB Ecosystem

To get an EJB deployment up and running successfully, you need more than just
an application server and components. In fact, E]B encourages collaboration of
more than six different parties. Each of these parties is an expert in its own field
and is responsible for a key part of a successful EJB deployment. Because each
party is a specialist, the total time required to build an enterprise-class deploy-
ment is significantly reduced. Together, these players form the EJB Ecosystem.

Let’s discuss who the players are in the EJB Ecosystem. As you read on, think
about your company’s business model to determine which role you fill. If
you're not sure, ask yourself what the core competency of your business is.
Also think about what roles you might play in upcoming projects.

of businesses choosing EJB because everyone else is using it, or because it is new
and exciting. Those are the wrong reasons to use EJB and can result in disappointing
results. For a complete discussion of when and when not to use EJB, see Chapter 15.

? The EJB Ecosystem is not for everyone. At my company, we've heard ghastly stories

17

JavaBeans. Enterprise JavaBeans

You may have heard of another standard called JavaBeans. JavaBeans are com-
pletely different from Enterprise JavaBeans.

In a nutshell, JavaBeans are Java classes that have get/set methods on them.
They are reusable Java components with properties, events, and methods (similar
to Microsoft’s ActiveX controls) that can be easily wired together to create (often
visual) Java applications.

JavaBeans are much smaller than Enterprise JavaBeans. You can use JavaBeans
to assemble larger components or to build entire applications. JavaBeans, how-
ever, are development components and are not deployable components. You typ-
ically do not deploy a JavaBean; rather, JavaBeans help you construct larger
software that is deployable. And because they cannot be deployed, JavaBeans do
not need to live in a runtime environment. Since JavaBeans are just Java classes,
they do not need an application server to instantiate them, to destroy them, and
to provide other services to them. The application itself is made up of JavaBeans.

The Bean Provider

The bean provider supplies business components, or enterprise beans. Enter-
prise beans are not complete applications, but rather are deployable compo-
nents that can be assembled into complete solutions. The bean provider could
be an ISV selling components or an internal department providing compo-
nents to other departments.

Many vendors ship reusable components today. You can get the complete list
from www.componentsource.com or www.flashline.com. In the future,
traditional enterprise software vendors (such as sales force automation ven-
dors, enterprise resource planning vendors, financial services vendors, and
e-commerce vendors) will offer their software as enterprise beans or provide
connectors to their current technology.

The Application Assembler

The application assembler is the overall application architect. This party is
responsible for understanding how various components fit together and
writes the applications that combine components. An application assembler
may even author a few components along the way. His or her job is to build an
application from those components that can be deployed in a number of

settings. The application assembler is the consumer of the beans supplied by
the bean provider.

The application assembler could perform any or all of the following tasks:

m From knowledge of the business problem, decide which combination of
existing components and new enterprise beans are needed to provide an
effective solution; in essence, plan the application assembly.

m Supply a user interface (perhaps Swing, servlet/]JSP, application/applet,
or Web Service wrapper).

m Write new enterprise beans to solve some problems specific to your busi-
ness problem.

m Write the code that calls on components supplied by bean providers.

m Write integration code that maps data between components supplied by
different bean providers. After all, components won’t magically work
together to solve a business problem, especially if different vendors write
the components.

An example of an application assembler is a systems integrator, a consulting
firm, or an in-house programmer.

The EJB Deployer

After the application assembler builds the application, the application must be
deployed (and go live) in a running operational environment. Some challenges
faced here include the following:

m Securing the deployment with a firewall and other protective measures

m Integrating with an LDAP server for security lists, such as Lotus Notes or
Microsoft Active Directory

m Choosing hardware that provides the required level of performance

m Providing redundant hardware and other resources for reliability and
fault tolerance

m Performance-tuning the system

Frequently the application assembler (who is usually a developer or systems
analyst) is not familiar with these issues. This is where the EJB deployer comes
into play. E]B deployers are aware of specific operational requirements and
perform the tasks above. They understand how to deploy beans within servers
and how to customize the beans for a specific environment. The EJB deployer

19

has the freedom to adapt the beans, as well as the server, to the environment in
which the beans are to be deployed.

An EJB deployer can be a staff person, an outside consultant, or a vendor.
Examples of EJB deployers include Loudcloud and Host]2EE.com, which both
offer hosting solutions for EJB deployments.

The System Administrator

Once the deployment goes live, the system administrator steps in to oversee
the stability of the operational solution. The system administrator is responsi-
ble for the upkeep and monitoring of the deployed system and may make use
of runtime monitoring and management tools that the EJB server provides.

For example, a sophisticated EJB server might page a system administrator if
a serious error occurs that requires immediate attention. Some E]B servers
achieve this by developing hooks into professional monitoring products, such
as Tivoli and Computer Associates. Others are providing their own systems
management by supporting the Java Management Extension (JMX).

The Container and Server Provider

The container provider supplies an EJB container (the application server). This
is the runtime environment in which beans live. The container supplies mid-
dleware services to the beans and manages them. Examples of E]B containers

Qualities of Service in EJB

Monitoring of EJB deployments is not specified in the EJB specification. It is an
optional service that advanced EJB servers can provide. This means that each EJB
server could provide the service differently.

At first blush you might think this hampers application portability. However, in
reality this service should be provided transparently behind the scenes, and
should not affect your application code. It is a quality of service that lies beneath
the application level and exists at the systems level. Changing application servers
should not affect your EJB code.

Other transparent qualities of service not specified in the EJB specification
include load balancing, transparent fail-over, caching, clustering, and connection
pooling algorithms.

LBl OVERVIEW

are BEA’s WebLogic, iPlanet’s iPlanet Application Server, IBM’s WebSphere,
Oracle’s Oracle 9i, Macromedia’s JRun, Persistence’s PowerTier, Brokat’s
Gemstone/], HP’s Bluestone, IONA’s iPortal, Borland’s AppServer, and the
JBoss open source code application server.

The server provider is the same as the container provider. Sun has not yet dif-
ferentiated these (and they may never do so). We will use the terms EJB con-
tainer and EJB server interchangeably in this book.

The Tool Vendors

To facilitate the component development process, there should be a standard-
ized way to build, manage, and maintain components. In the EJB Ecosystem,
there are several Integrated Development Environments (IDEs) assist you in
rapidly building and debugging components. Examples are Webgain’s Visual
Cafe, IBM’s VisualAge for Java, or Borland’s JBuilder.

Other tools enable you to model components in the Unified Modeling Lan-
guage (UML), which is the diagram style used in this book. You can then auto-
generate EJB code from that UML. Examples of products in this space are
Togethersoft’s Together /] and Rational’s Rational Rose.

There are other tools as well, such as tools to organize components (Flashline,
ComponentSource), testing tools (JUnit, RSW Software), and build tools (Ant).

Summary of Roles

Figure 1.7 summarizes the interaction of the different parties in E]JB.

You may be wondering why so many different participants are needed to pro-
vide an EJB deployment. The answer is that EJB enables companies or indi-
viduals to become experts in certain roles, and division of labor leads to
best-of-breed deployments.

The EJB specification makes each role clear and distinct, enabling experts in
different areas to participate in a deployment without loss of interoperability.
Note that some of these roles could be combined as well. For example, the EJB
server and EJB container today come from the same vendor. Or at a small
startup company, the bean provider, application assembler, and deployer
could all be the same person who is trying to build a business solution using
EJB from scratch. What roles do you see yourself playing?

For some of the parties E]B merely suggests possible duties, such as the system
administrator overseeing the well-being of a deployed system. For other par-
ties, such as the bean provider and container provider, EJB defines a set of

21

1 1 Do) f

Application Deployer System Administrator
Assembler (Maintains Deployment)

Bean Provider i

EJB Container/Server
Provider

Figure 1.7 The parties of EJB.

strict interfaces and guidelines that must be followed or the entire ecosystem
will break down. By clearly defining the roles of each party, EJB lays a founda-
tion for a distributed, scalable component architecture where multiple ven-
dors” products can interoperate.

A future EJB specification will define a new role, called the persistence manager,
which plugs into an application server. Your components harness the persistence
manager to map your business data into storage, such as mapping objects into rela-
tional databases.

The persistence manager may be written to understand how to persist business data
to any storage type. Examples include legacy systems, flat file systems, relational
databases, object databases, or a proprietary system.

The persistence manager provider may be the same as the container/server vendor,
such as the case with IBM’s WebSphere, which includes built-in persistence capabili-
ties. Examples of ISV persistence manager providers include WebGain’s TOPLink and
Thought Inc’s Cocobase.

Unfortunately, the persistence manager provider role is not explicitly defined in the
EJB 2.0 specification. Due to time constraints, a standard for plugging persistence
managers into application servers won't exist until a future version of EJB. The good
news is this won't affect the portability of your code, because your application
doesn’t care whether it’s being persisted by the container or by some persistence
manager that happens to plug into the container. The bad news is that you'll need to
rely on proprietary agreements between persistence manager providers and applica-
tion server vendors, which means that not every persistence manager may work in
every application server — for now.

2Bl OVERVIEW

The Java 2 Platform, Enterprise Edition (J2EE)

EJB is only a portion of a larger offering from Sun Microsystems called the Java
2 Platform, Enterprise Edition (J2EE). The mission of J2EE is to provide a
platform-independent, portable, multiuser, secure, and standard enterprise-
class platform for server-side deployments written in the Java language.

J2EE is a specification, not a product. J2EE specifies the rules of engagement
that people must agree on when writing enterprise software. Vendors then
implement the J2EE specifications with their J2EE-compliant products.

Because J2EE is a specification (meant to address the needs of many compa-
nies), it is inherently not tied to one vendor; it also supports cross-platform
development. This encourages vendors to compete, yielding best-of-breed
products. It also has its downside, which is that incompatibilities between ven-
dor products will arise—some problems due to ambiguities with specifica-
tions, other problems due to the human nature of competition.

J2EE is one of three different Java platforms. Each platform is a conceptual
superset of the next smaller platform.

The Java 2 Platform, Micro Edition (J2ME) is a development platform for
Java-enabled devices, such as Palm Pilots, pagers, watches, and so on. This
is a restricted form of the Java language due to the inherent performance
and capacity limitations of small devices.

The Java 2 Platform, Standard Edition (J2SE) contains standard Java ser-
vices for applets and applications, such as input/output facilities, graphi-
cal user interface facilities, and more. This platform contains what most
people use in standard Java Development Kit (JDK) programming.

The Java 2 Platform, Enterprise Edition (J2EE) takes Java’s Enterprise APlIs
and bundles them together in a complete development platform for
enterprise-class server-side deployments in Java.

The arrival of J2EE is significant because it creates a unified platform for
server-side Java development. J2EE consists of the following deliverables
from Sun Microsystems.

Specifications. Each enterprise API within J2EE has its own specification,
which is a PDF file downloadable from http:/ /java.sun.com. Each time
there is a new version of J2EE, Sun locks-down the versions of each Enter-
prise API specification and bundles them together as the de facto versions
to use when developing with J2EE. This increases code portability across
vendors’ products because each vendor supports exactly the same API
revision. This is analogous to a company such as Microsoft releasing a new

- overview JIF}

version of Windows every few years: Every time a new version of Win-
dows comes out, Microsoft locks-down the versions of the technologies
bundled with Windows and releases them together.

Test suite. Sun provides a test suite for J2EE server vendors to test their
implementations against. If a server passes the tests, Sun issues a compli-
ance brand, alerting customers that the vendor’s product is indeed J2EE-
compliant. There are numerous J2EE-certified vendors, and you can read
reviews of their products for free on TheServerSide.com.

Reference implementation. To enable developers to write code against J2EE
as they have with the JDK, Sun provides its own free reference implemen-
tation of J2EE. Sun is positioning it as a low-end reference platform, as it is
not intended for commercial use.

BluePrints Document. Each of the Enterprise APIs has a clear role in J2EE, as
defined by Sun’s J2EE BluePrints document. This document is a download-
able PDF file that describes how to use the J2EE technologies together.

The J2EE Technologies

The Java 2 Platform, Enterprise Edition is a robust suite of middleware ser-
vices that make life very easy for server-side application developers. J2EE
builds on the existing technologies in the J2SE. J2SE includes the base Java sup-
port and the various libraries (.awt, .net, .io) with support for both applets and
applications. Because J2EE builds on J2SE, a J2EE-compliant product must not
only implement all of J2EE, but must also implement all of J2SE. This means
that building a J2EE product is an absolutely huge undertaking. This barrier to
entry has resulted in significant industry consolidation in the Enterprise Java
space, with a few players emerging from the pack as leaders.

We will discuss version 1.3 of]2EE, which supports EJB 2.0. Some of the major
J2EE technologies are shown working together in Figure 1.8.

To understand more about the real value of J2EE, here is each API that a J2EE
1.3-compliant implementation must provide for you.

Enterprise JavaBeans (E]JB). EJB defines how server-side components are
written and provides a standard contract between components and the
application servers that manage them. E]B is the cornerstone for J2EE and
uses several other J2EE technologies.

Java Remote Method Invocation (RMI) and RMI-IIOP. RMI is the Java lan-
guage’s native way to communicate between distributed objects, such as
two different objects running on different machines. RMI-IIOP is an exten-
sion of RMI that can be used for CORBA integration. RMI-IIOP is the offi-
cial API that we use in J2EE (not RMI). We cover RMI-IIOP in Appendix A.

24

Client Tier

J2EE Server

Back-End
Systems

Web Browser

Figure 1.8 A Java 2 Platform, Enterprise Edition deployment.

Java Naming and Directory Interface (JNDI). JNDI is used to access naming
and directory systems. You use JNDI from your application code for a vari-
ety of purposes, such as connecting to EJB components or other resources
across the network, or accessing user data stored in a naming service such

B o Applets,
usiness Partner Applications, e
or Other System C(;,FF:B A Clients =
! |
Web services technologies
(SOAP, UDDI, WSDL, ebXML) ioP HTTP HTTP
Firewall
Servlets JSPs
EJBs
Connectors
JMS saL . Web Services Technologies
Proprietary Protocol (SOAP, UDDI, WSDL, ebXML)
Existing System Business
Legacy System Partner
ERP System or Other System
Databases

as Microsoft Exchange or Lotus Notes. JNDI is covered in Appendix A.

Java Database Connectivity (JDBC). JDBC is an API for accessing relational
databases. The value of JDBC is that you can access any relational database

using the same API. JDBC is used in Chapter 6.

Wireless Device

I | 25

Java Transaction API (JTA) Java Transaction Service (JTS). The JTA and JTS
specifications allow for components to be bolstered with reliable transac-
tion support. JTA and JTS are explained in Chapter 10.

Java Messaging Service (JMS). JMS allows for your J2EE deployment to
communicate using messaging. You can use messaging to communicate
within your J2EE system as well as outside your J2EE system. For example,
you can connect to existing message-oriented middleware (MOM) systems
such as IBM MQSeries or Microsoft Message Queue (MSMQ). Messaging is
an alternative paradigm to RMI-IIOP, and has its advantages and disad-
vantages. We explain JMS in Chapter 8.

Java Servlets. Servlets are networked components that you can use to extend
the functionality of a Web server. Servlets are request/response oriented in
that they take requests from some client host (such as a Web browser) and
issue a response back to that host. This makes servlets ideal for performing
Web tasks, such as rendering an HTML interface. Servlets differ from EJB
components in that the breadth of server-side component features that EJB
offers is not readily available to servlets. Servlets are much better suited to
handling simple request/response needs, and they do not require sophisti-
cated management by an application server. We illustrate using Servlets
with EJB in Chapter 17.

Java Pages (JSPs). JSPs are very similar to servlets. In fact, JSP scripts are
compiled into servlets. The largest difference between JSP scripts and
servlets is that JSP scripts are not pure Java code; they are much more cen-
tered around look-and-feel issues. You would use JSP when you want the
look and feel of your deployment to be physically separate and easily
maintainable from the rest of your deployment. JSPs are perfect for this,
and they can be easily written and maintained by non-Java savvy staff
members (JSPs do not require a Java compiler). We illustrate using JSPs
with EJB in Chapter 17.

Java IDL. Java IDL is Sun Microsystems’ Java-based implementation of
CORBA. Java IDL allows for integration with other languages. Java IDL
also allows for distributed objects to leverage CORBA's full range of
services. J2EE is thus fully compatible with CORBA, completing the
Java 2 Platform, Enterprise Edition. We discuss CORBA integration in
Appendix B.

JavaMail. The JavaMail service allows you to send email messages in a
platform-independent, protocol-independent manner from your Java pro-
grams. For example, in a server-side J2EE deployment, you can use Java-
Mail to confirm a purchase made on your Internet e-commerce site by
sending an email to the customer. Note that JavaMail depends on the

LBl OVERVIEW

JavaBeans Activation Framework (JAF), which makes JAF part of J2EE as
well. We do not cover JavaMail in this book.

J2EE Connector Architecture (JCA). Connectors allow you to access existing
enterprise information systems from a J2EE deployment. This could
include any existing system, such as a mainframe systems running high-
end transactions (such as those deployed with IBM’s CICS or BEA’s
TUXEDO), Enterprise Resource Planning (ERP) systems, or your own pro-
prietary systems. Connectors are useful because they automatically man-
age the details of middleware navigation to existing systems, such as
handling transaction and security concerns. Another value of the JCA is
that you can write a driver to access an existing system once, and then
deploy that driver into any J2EE-compliant server. This is important
because you only need to learn how to access any given existing system
once. Furthermore, the driver needs to be developed only once and can be
reused in any J2EE server. This is extremely useful for independent soft-
ware vendors (ISVs) who want their software to be accessible from within
application servers. Rather than write a custom driver for each server, the
ISV can write a single driver. We discuss legacy integration more in Chap-
ters 12 and 13.

The Java API for XML Parsing (JAXP). There are many applications of XML
in a J2EE deployment. For example, you might need to parse XML if you
are performing B2B interactions (such as through Web services), if you are
accessing legacy systems and mapping data to and from XML, or if you are
persisting XML documents to a database. JAXP is the de facto API for pars-
ing XML documents in a J2EE deployment and is an implementation-
neutral interface to XML parsers. You typically use the JAXP API from
within servlets, JSPs, or EJB components. There is a free whitepaper avail-
able on TheServerSide.com that describes how to build Web services
with J2EE.

The Java Authentication and Authorization Service (JAAS). JAAS is a stan-
dard API for performing security-related operations in J2EE. Conceptually,
JAAS also enables you to plug in a security system to a J2EE deployment.
See Chapter 9 for more details on security and E]B.

Summary

We’ve achieved a great deal in this chapter. First, we brainstormed a list of
issues involved in a large, multitier deployment. We then understood that a
server-side component architecture allows us to write complex business appli-
cations without understanding tricky middleware services. We then dove into

. overview NI

the EJB standard and fleshed out its value proposition. We investigated the
different players involved in an E]JB deployment and wrapped up by explor-
ing J2EE.

The good news is that we’re just getting started, and many more interesting
and advanced topics lie ahead. The next chapter delves into the concept of
request interception, which is the mental leap you need to make to understand
EJB. Let’s go!

EJB Fundamentals

C

hapter 1 introduced the motivation behind EJB. In this chapter, we’ll dive into
EJB in detail. After reading this chapter, you will understand the different
types of enterprise beans. You'll also understand what an enterprise bean
component is comprised of, including the enterprise bean class, the remote
interface, the local interface, the E]JB object, the local object, the home interface,
the home object, the deployment descriptor, and the Ejb-jar file.

EJB technology is based on two other technologies: Java RMI-IIOP and JNDI. Under-
standing these technologies is mandatory before continuing.

We have provided tutorials on each of these technologies in the appendices of this
book. If you don’t yet know RMI-1IOP or JNDI, go ahead and read Appendix A now.

Enterprise Beans

An enterprise bean is a server-side software component that can be deployed in
a distributed multitier environment. An enterprise bean can compose one or
more Java objects because a component may be more than just a simple object.
Regardless of an enterprise bean’s composition, the clients of the bean deal
with a single exposed component interface. This interface, as well as the enter-
prise bean itself, must conform to the EJB specification. The specification
requires that your beans expose a few required methods; these required

29

L/ OVERVIEW

methods allow the EJB container to manage beans uniformly, regardless of
which container your bean is running in.

Note that the client of an enterprise bean could be anything—a servlet, an
applet, or even another enterprise bean. In the latter case, a client request to a
bean can result in a whole chain of beans being called. This is a very powerful
idea because you can subdivide a complex bean task, allowing one bean to call
on a variety of prewritten beans to handle the subtasks. This hierarchical con-
cept is quite extensible.

As a real-world example, imagine you go to a music store to purchase a com-
pact disc. The cashier takes your credit card and runs it through a scanner. The
scanner has a small Java Virtual Machine running within it, which acts as a
client of enterprise beans running on a central server. The central server enter-
prise beans perform the following tasks:

1. Contact American Express, a Web service that itself has an EJB-compliant
application server containing a number of beans. The beans are responsi-
ble for conducting the credit card transaction on behalf of that client.

2. Call a product catalog bean, which updates inventory and subtracts the
quantity the customer purchased.

3. Call an order entry bean, which enters the record for the customer and
returns that record locator to the scanner to give to the customer on a
receipt.

As you can see, this is a powerful, flexible model, which can be extended as
needed.

Types of Beans

EJB 2.0 defines three different kinds of enterprise beans:

Session beans. Session beans model business processes. They are like verbs
because they are actions. The action could be anything, such as adding num-
bers, accessing a database, calling a legacy system, or calling other enterprise
beans. Examples include a pricing engine, a workflow engine, a catalog
engine, a credit card authorizer, or a stock-trading engine.

Entity beans. Entity beans model business data. They are like nouns because
they are data objects—that is, Java objects that cache database information.
Examples include a product, an order, an employee, a credit card, or a stock.
Session beans typically harness entity beans to achieve business goals, such as
a stock-trading engine (session bean) that deals with stocks (entity beans). For
more examples of this, see Table 2.1.

EJB Fundamentals 31

Table 2.1 Session Beans Calling Entity Beans

SESSION BEAN ENTITY BEAN

Bank teller Bank account
Credit card authorizer Credit card
DNA sequencer DNA strand
Order entry system Order, Line item
Catalog engine Product
Auction broker Bid, Item
Purchase order Approval router Purchase order

Message-driven beans. Message-driven beans are similar to session beans in
that they are actions. The difference is that you can call message-driven beans
only by sending messages to those beans (fully described in Chapter 8). Exam-
ples of message-driven beans include beans that receive stock trade messages,
credit card authorization messages, or workflow messages. These message-
driven beans might call other enterprise beans as well.

You may be wondering why the E]JB paradigm is so robust in offering the var-
ious kinds of beans. Why couldn’t Sun come up with a simpler model?
Microsoft’s n-tier vision, for example, does not include the equivalent of entity
beans—components that represent data in permanent storage.

The answer is that Sun is not the only company involved in constructing the
EJB standard. Many companies have been involved, each with customers that
have different kinds of distributed systems. To accommodate the needs of dif-
ferent enterprise applications, Sun allowed users the flexibility of each kind of
bean.

Admittedly this increases the ramp-up time to learn EJB. It also adds an ele-
ment of danger because some developers may misuse the intentions of each
bean type. But it pays off in the long run with increased functionality. By
including session beans, Sun provides a mechanism to model business
processes in a distributed multitier environment. By including entity beans in
the EJB specification, Sun has taken the first steps toward persistent, distrib-
uted objects usable by those business processes. And with message-driven
beans, you can use messaging to access your EJB system.

See Figure 2.1 for a diagram showing some of the many possibilities of clients
interacting with an EJB component system.

2Bl OVERVIEW

. Business
Presentation HTML Client Partner System
Tier |
SOAP, | UDDI,
H-I;TP WSDL, | ebXML
Firewall
<& Web Server
A 4
Messaging C++ Java Application
Client Client Java Applet Servlet JSP
Messaging CORBA/IIOP RMI-IIOP RI\/’II-IIOP RMI-1IOP
/— f Application Server
7 v v ¥
Eﬁlgvl\élrt‘esBs:ag:- EJB Session Bean EJB Session Bean
Business
/ / Tier
Y A 4
EJB Session Bean EJB Entity Bean EJBBzgision

Figure 2.1 Clients interacting with an EJB component system.

Distributed Objects: The Foundation for EJB

Now that you've seen the different types of beans, let’s dive into the technol-
ogy behind them. EJB components are based on distributed objects. A distrib-
uted object is an object that is callable from a remote system. It can be called
from an in-process client, an out-of-process client, or a client located elsewhere
on the network.

Figure 2.2 shows how a client can call a distributed object. The following is an
explanation of the diagram:

1. The client calls a stub, which is a client-side proxy object. This stub is respon-
sible for masking network communications from the client. The stub

EJB Fundamentals 33

knows how to call over the network using sockets, massaging parameters
as necessary into their network representation.

2. The stub calls over the network to a skeleton, which is a server-side proxy
object. The skeleton masks network communication from the distributed
object. The skeleton understands how to receive calls on a socket. It also
knows how to massage parameters from their network representations to
their Java representations.

3. The skeleton delegates the call to the distributed object. The distributed
object does its work, and then returns control to the skeleton, which
returns to the stub, which then returns control to the client.

Akey point here is that both the stub and the distributed object implement the
same interface (called the remote interface). This means the stub clones the dis-
tributed object’s method signatures. A client who calls a method on the stub
thinks he is calling the distributed object directly; in reality, the client is calling
an empty stub that knows how to go over the network. This is called
local/remote transparency.

You can achieve distributed objects using many technologies, including the
OMG’s CORBA, Microsoft’s DCOM, and Sun’s Java RMI-IIOP.

Distributed

Client Object

Remote Interface (L

Remote Interface

T

Stub Skeleton

Figure 2.2 Distributed objects.

L OVERVIEW

Distributed Objects and Middleware

Distributed objects are great because they allow you to break up an application
across a network. However, as a distributed object application gets larger,
you’ll need help from middleware services, such as transactions and security.
There are two ways to get middleware: explicitly and implicitly. Let’s investi-
gate both approaches.

Explicit Middleware

In traditional distributed object programming (such as traditional CORBA),
you can harness middleware by purchasing that middleware off the shelf and
writing code that calls that middleware API. For example, you could gain
transactions by writing to a transaction API. We call this explicit middleware
because you need to write to an API to gain that middleware. This is shown in

Figure 2.3
Transaction API Transaction
=7 O Service
I Security API
. Distributed : .
Client Object [T > 0—— Security Service

Remote Interfacel

Ao— Database Driver
Database API

i Remote Interface
'..>T

Stub Skeleton

Figure 2.3 Explicit middleware (gained through APIs).

EJB Fundamentals 35

Here’s a bank account distributed object that knows how to transfer funds
from one account to another. It is filled with pseudo-code that illustrates
explicit middleware.

transfer (Account accountl, Account account2, long amount) ({
// 1: Call middleware API to perform a security check

// 2: Call middleware API to start a transaction

// 3: Call middleware API to load rows from the database

// 4: Subtract the balance from one account, add to the other
// 5: Call middleware API to store rows in the database

// 6: Call middleware API to end the transaction

}

As you can see, we are gaining middleware, but our business logic is inter-
twined with the logic to call these middleware APIs. The downsides to this
approach are

Difficult to write. The code is bloated. We simply want to perform a transfer,
but it requires a large amount of code.

Difficult to maintain. If you want to change how you do middleware, you
need to rewrite your code.

Difficult to support. If you are an Independent Software Vendor (ISV) selling
an application, or an internal department providing code to another
department, you are unlikely to provide source code to your customers.
This is because the source code is your intellectual property, and also
because upgrading your customers to the next version of your software is
difficult if those customers modify source code. Thus, your customers can-
not change their middleware (such as changing how security works).

Implicit Middleware

The crucial difference between systems of the past (transaction processing
monitors such as TUXEDO or CICS, or traditional distributed object technolo-
gies such as CORBA, DCOM, or RMI) and the newer, component-based tech-
nologies (EJB, CORBA Component Model, and Microsoft.NET) is that in this
new world, you can harness complex middleware in your enterprise applica-
tions without writing to middleware APIs. This is shown in Figure 2.4, and
works as follows:

1. Write your distributed object to contain only business logic. Do not write to
complex middleware APIs. For example, this is the code that would run
inside the distributed object:

transfer (Account accountl, Account account2, long amount) {
// 1: Subtract the balance from one account, add to the other

}

Distributed

Client Obiject

Remote Interface l Transaction API Transaction
=7 © Service

Request Security API

Interceptor [T > 0— Security Service

Remote Interface J)

Ao— Database Driver
Database API

Remote Interface
..>T

Stub Skeleton The request
interceptor knows
what to do because
you describe your
needs in a special
descriptor file.

Figure 2.4 Implicit middleware (gained through declarations).

2. Declare the middleware services that your distributed object needs in a
separate descriptor file, such as a plain text file. For example, you might
declare that you need transactions, persistence, and a security check.

3. Run a command-line tool provided for you by the middleware vendor.
This tool takes your descriptor file as input and generates an object that
we’ll call the request interceptor.

4. The request interceptor intercepts requests from the client, performs the
middleware that your distributed object needs (such as transactions, secu-
rity, and persistence), and then delegates the call to the distributed object.

The values of implicit middleware (also called declarative middleware) are:

Easy to write. You don’t actually write any code to middleware APIs; rather,
you declare what you need in a simple text file. The request interceptor

EJB Fundamentals 37

provides the middleware logic for you transparently. You focus away from
the middleware and concentrate on your application’s business code. This
is truly divide and conquer!

Easy to maintain. The separation of business logic and middleware logic is
clean and maintainable. It is less code, which makes things simpler.
Furthermore, changing middleware does not require changing
application code.

Easy to support. Customers can change the middleware they need by tweak-
ing the descriptor file. For example, they can change how a security check
is done without modifying source code. This avoids upgrade headaches
and intellectual property issues.

What Constitutes an Enterprise Bean?

Now that we understand request interception, we can dive in and see exactly
what constitutes an enterprise bean. As we will see, an enterprise bean com-
ponent is not a single monolithic file—a number of files work together to make
up an enterprise bean.

The Enterprise Bean Class

The first part of your bean is the implementation itself, which contains the guts
of your logic, called the enterprise bean class. This is simply a Java class that con-
forms to a well-defined interface and obeys certain rules. The rules are neces-
sary for your beans to run in any EJB container.

An enterprise bean class contains implementation details of your component.
Although there are no hard-and-fast rules in EJB, session bean, entity bean,
and message-driven bean implementations are all very different from each
other.

For session beans, an enterprise bean class typically contains business-
process-related logic, such as logic to compute prices, transfer funds between
bank accounts, or perform order entry.

For entity beans, an enterprise bean class typically contains data-related logic,
such as logic to change the name of a customer, reduce the balance of a bank
account, or modify a purchase order.

For message-driven beans, an enterprise bean class typically contains
message-oriented logic, such as logic to receive a stock trade message and call
a session bean that knows how to perform stock trading.

LI OVERVIEW

The E]B specification defines a few standard interfaces that your bean class can
implement. These interfaces force your bean class to expose certain methods
that all beans must provide, as defined by the EJB component model. The EJB
container calls these required methods to manage your bean and alert your
bean to significant events.

The most basic interface that all bean classes (session, entity, and message-
driven) must implement is the javax.ejb.EnterpriseBean interface, shown in
Source 2.1.

This interface serves as a marker interface; implementing this interface indi-
cates that your class is indeed an enterprise bean class. The interesting aspect
of javax.ejb.EnterpriseBean is that it extends java.io.Serializable. This means that
all enterprise beans can be converted to a bit-blob and share all the properties
o