
Working with XML

Top Contents Index Glossary

Working with XML
The Java API for Xml Parsing (JAXP) Tutorial

by Eric Armstrong

[Version 1.1, Update 31 -- 21 Aug 2001]

This tutorial covers the following topics:

Part I: Understanding XML and the Java XML APIs explains the basics of XML
and gives you a guide to the acronyms associated with it. It also provides an overview
of the JavaTM XML APIs you can use to manipulate XML-based data, including the Java
API for XML Parsing ((JAXP). To focus on XML with a minimum of programming,
follow The XML Thread, below.

Part II: Serial Access with the Simple API for XML (SAX) tells you how to read
an XML file sequentially, and walks you through the callbacks the parser makes to
event-handling methods you supply.

Part III: XML and the Document Object Model (DOM) explains the structure of
DOM, shows how to use it in a JTree, and shows how to create a hierarchy of objects
from an XML document so you can randomly access it and modify its contents. This is
also the API you use to write an XML file after creating a tree of objects in memory.

Part IV: Using XSLT shows how the XSL transformation package can be used to
write out a DOM as XML, convert arbitrary data to XML by creating a SAX parser,
and convert XML data into a different format.

Additional Information contains a description of the character encoding schemes
used in the Java platform and pointers to any other information that is relevant to, but
outside the scope of, this tutorial.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/index.html (1 of 2) [8/22/2001 12:51:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/index.html
http://java.sun.com/xml/jaxp-1.1/docs/api/index.html

Working with XML

The XML Thread

Scattered throughout the tutorial there are a number of sections devoted more to explaining
the basics of XML than to programming exercises. They are listed here so as to form an
XML thread you can follow without covering the entire programming tutorial:

● A Quick Introduction to XML
● Writing a Simple XML File
● Substituting and Inserting Text
● Defining a Document Type
● Defining Attributes and Entities
● Referencing Binary Entities
● Defining Parameter Entities
● Designing an XML Document

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/index.html (2 of 2) [8/22/2001 12:51:28 PM]

Understanding XML and the Java XML APIs

Top Contents Index Glossary

Part I. Understanding XML and the Java XML APIs

This section describes the Extensible Markup Language (XML), its related specifications,
and the APIs for manipulating XML files. It contains the following files:

What You'll Learn

This section of the tutorial covers the following topics:

1. A Quick Introduction to XML shows you how an XML file is structured and gives you some
ideas about how to use XML.

2. XML and Related Specs: Digesting the Alphabet Soup helps you wade through the acronyms
surrounding the XML standard.

3. An Overview of the APIs gives you a high-level view of the JAXP and associated APIs.

4. Designing an XML Data Structure gives you design tips you can use when setting up an XML
data structure.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/index.html [8/22/2001 12:51:30 PM]

1. A Quick Introduction to XML

Top Contents Index Glossary

1. A Quick Introduction to XML

Link Summary

Local Links

● XML and Related Specs
● Designing an XML Data

Structure
● RDF
● XSL

External Links

● XML FAQ
● XML Info and Recommended

Reading
● SGML/XML Web Page
● Scientific American article

Glossary Terms
attributes, declaration, DTD,
element, entity, prolog, tag, well-
formed

This page covers the basics of XML. The goal is to give you
just enough information to get started, so you understand what
XML is all about. (You'll learn about XML in later sections of
the tutorial.) We then outline the major features that make
XML great for information storage and interchange, and give
you a general idea of how XML can be used. This section of
the tutorial covers:

● What Is XML?
● Why Is XML Important?
● How Can You Use XML?

What Is XML?

XML is a text-based markup language that is fast
becoming the standard for data interchange on the
Web. As with HTML, you identify data using tags
(identifiers enclosed in angle brackets, like this: <...>).
Collectively, the tags are known as "markup".

But unlike HTML, XML tags identify the data, rather
than specifying how to display it. Where an HTML tag
says something like "display this data in bold font"
(...), an XML tag acts like a field name in
your program. It puts a label on a piece of data that identifies it (for example:
<message>...</message>).

Note:
Since identifying the data gives you some sense of what means (how to
interpret it, what you should do with it), XML is sometimes described as a
mechanism for specifying the semantics (meaning) of the data.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (1 of 10) [8/22/2001 12:51:31 PM]

http://www.ucc.ie/xml/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.oasis-open.org/cover/
http://www.sciam.com/1999/0599issue/0599bosak.html

1. A Quick Introduction to XML

In the same way that you define the field names for a data structure, you are free to use any
XML tags that make sense for a given application. Naturally, though, for multiple
applications to use the same XML data, they have to agree on the tag names they intend to
use.

Here is an example of some XML data you might use for a messaging application:

<message>
 <to>you@yourAddress.com</to>
 <from>me@myAddress.com</from>
 <subject>XML Is Really Cool</subject>
 <text>
 How many ways is XML cool? Let me count the ways...
 </text>
</message>

Note: Throughout this tutorial, we use boldface text to highlight things we
want to bring to your attention. XML does not require anything to be in
bold!

The tags in this example identify the message as a whole, the destination and sender
addresses, the subject, and the text of the message. As in HTML, the <to> tag has a
matching end tag: </to>. The data between the tag and and its matching end tag defines
an element of the XML data. Note, too, that the content of the <to> tag is entirely
contained within the scope of the <message>..</message> tag. It is this ability for
one tag to contain others that gives XML its ability to represent hierarchical data structures

Once again, as with HTML, whitespace is essentially irrelevant, so you can format the data
for readability and yet still process it easily with a program. Unlike HTML, however, in
XML you could easily search a data set for messages containing "cool" in the subject,
because the XML tags identify the content of the data, rather than specifying its
representation.

Tags and Attributes

Tags can also contain attributes -- additional information included as part of the tag itself,
within the tag's angle brackets. The following example shows an email message structure
that uses attributes for the "to", "from", and "subject" fields:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Cool">

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (2 of 10) [8/22/2001 12:51:31 PM]

1. A Quick Introduction to XML

 <text>
 How many ways is XML cool? Let me count the ways...
 </text>
</message>

As in HTML, the attribute name is followed by an equal sign and the attribute value, and
multiple attributes are separated by spaces. Unlike HTML, however, in XML commas
between attributes are not ignored -- if present, they generate an error.

Since you could design a data structure like <message> equally well using either
attributes or tags, it can take a considerable amount of thought to figure out which design
is best for your purposes. The last part of this tutorial, Designing an XML Data Structure,
includes ideas to help you decide when to use attributes and when to use tags.

Empty Tags

One really big difference between XML and HTML is that an XML document is always
constrained to be well formed. There are several rules that determine when a document is
well-formed, but one of the most important is that every tag has a closing tag. So, in XML,
the </to> tag is not optional. The <to> element is never terminated by any tag other
than </to>.

Note: Another important aspect of a well-formed document is that all tags
are completely nested. So you can have
<message>..<to>..</to>..</message>, but never
<message>..<to>..</message>..</to>. A complete list of
requirements is contained in the list of XML Frequently Asked Questions
(FAQ) at http://www.ucc.ie/xml/#FAQ-VALIDWF. (This FAQ is
on the w3c "Recommended Reading" list at
http://www.w3.org/XML/.)

Sometimes, though, it makes sense to have a tag that stands by itself. For example, you
might want to add a "flag" tag that marks message as important. A tag like that doesn't
enclose any content, so it's known as an "empty tag". You can create an empty tag by
ending it with /> instead of >. For example, the following message contains such a tag:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Cool">
 <flag/>
 <text>
 How many ways is XML cool? Let me count the ways...
 </text>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (3 of 10) [8/22/2001 12:51:31 PM]

http://www.ucc.ie/xml/#FAQ-VALIDWF
http://www.w3.org/XML/

1. A Quick Introduction to XML

</message>

Note: The empty tag saves you from having to code <flag></flag> in order to have a
well-formed document. You can control which tags are allowed to be empty by creating a
Document Type Definition, or DTD. We'll talk about that in a few moments. If there is no
DTD, then the document can contain any kinds of tags you want, as long as the document
is well-formed.

Comments in XML Files

XML comments look just like HTML comments:

<message to="you@yourAddress.com" from="me@myAddress.com"
 subject="XML Is Really Cool">
 <!-- This is a comment -->
 <text>
 How many ways is XML cool? Let me count the ways...
 </text>
</message>

The XML Prolog

To complete this journeyman's introduction to XML, note that an XML file always starts
with a prolog. The minimal prolog contains a declaration that identifies the document as an
XML document, like this:

<?xml version="1.0"?>

The declaration may also contain additional information, like this:

<?xml version="1.0" encoding="ISO-8859-1" standalone="yes"?>

The XML declaration is essentially the same as the HTML header, <html>, except that it
uses <?..?> and it may contain the following attributes:

version
Identifies the version of the XML markup language used in the data. This attribute
is not optional.

encoding
Identifies the character set used to encode the data. "ISO-8859-1" is "Latin-1" the
Western European and English language character set. (The default is compressed

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (4 of 10) [8/22/2001 12:51:31 PM]

1. A Quick Introduction to XML

Unicode: UTF-8.)
standalone

Tells whether or not this document references an external entity or an external data
type specification (see below). If there are no external references, then "yes" is
appropriate

The prolog can also contain definitions of entities (items that are inserted when you
reference them from within the document) and specifications that tell which tags are valid
in the document, both declared in a Document Type Definition (DTD) that can be defined
directly within the prolog, as well as with pointers to external specification files. But those
are the subject of later tutorials. For more information on these and many other aspects of
XML, see the Recommended Reading list of the w3c XML page at
http://www.w3.org/XML/.

Note: The declaration is actually optional. But it's a good idea to include it
whenever you create an XML file. The declaration should have the version
number, at a minimum, and ideally the encoding as well. That standard
simplifies things if the XML standard is extended in the future, and if the
data ever needs to be localized for different geographical regions.

Everything that comes after the XML prolog constitutes the document's content.

Processing Instructions

An XML file can also contain processing instructions that give commands or information
to an application that is processing the XML data. Processing instructions have the
following format:

 <?target instructions?>

where the target is the name of the application that is expected to do the processing, and
instructions is a string of characters that embodies the information or commands for the
application to process.

Since the instructions are application specific, an XML file could have multiple processing
instructions that tell different applications to do similar things, though in different ways.
The XML file for a slideshow, for example, could have processing instructions that let the
speaker specify a technical or executive-level version of the presentation. If multiple
presentation programs were used, the program might need multiple versions of the
processing instructions (although it would be nicer if such applications recognized
standard instructions).

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (5 of 10) [8/22/2001 12:51:31 PM]

http://www.w3.org/XML/

1. A Quick Introduction to XML

Note: The target name "xml" (in any combination of upper or lowercase
letters) is reserved for XML standards. In one sense, the declaration is a
processing instruction that fits that standard. (However, when you're
working with the parser later, you'll see that the method for handling
processing instructions never sees the declaration.)

Why Is XML Important?

There are a number of reasons for XML's surging acceptance. This section lists a few of
the most prominent.

Plain Text

Since XML is not a binary format, you can create and edit files with anything from a
standard text editor to a visual development environment. That makes it easy to debug
your programs, and makes it useful for storing small amounts of data. At the other end of
the spectrum, an XML front end to a database makes it possible to efficiently store large
amounts of XML data as well. So XML provides scalability for anything from small
configuration files to a company-wide data repository.

Data Identification

XML tells you what kind of data you have, not how to display it. Because the markup tags
identify the information and break up the data into parts, an email program can process it, a
search program can look for messages sent to particular people, and an address book can
extract the address information from the rest of the message. In short, because the different
parts of the information have been identified, they can be used in different ways by
different applications.

Stylability

When display is important, the stylesheet standard, XSL, lets you dictate how to portray
the data. For example, the stylesheet for:

<to>you@yourAddress.com</to>

can say:

1. Start a new line.
2. Display "To:" in bold, followed by a space
3. Display the destination data.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (6 of 10) [8/22/2001 12:51:31 PM]

1. A Quick Introduction to XML

Which produces:

To: you@yourAddress

Of course, you could have done the same thing in HTML, but you wouldn't be able to
process the data with search programs and address-extraction programs and the like. More
importantly, since XML is inherently style-free, you can use a completely different
stylesheet to produce output in postscript, TEX, PDF, or some new format that hasn't even
been invented yet. That flexibility amounts to what one author described as "future-
proofing" your information. The XML documents you author today can be used in future
document-delivery systems that haven't even been imagined yet.

Inline Reusabiliy

One of the nicer aspects of XML documents is that they can be composed from separate
entities. You can do that with HTML, but only by linking to other documents. Unlike
HTML, XML entities can be included "in line" in a document. The included sections look
like a normal part of the document -- you can search the whole document at one time or
download it in one piece. That lets you modularize your documents without resorting to
links. You can single-source a section so that an edit to it is reflected everywhere the
section is used, and yet a document composed from such pieces looks for all the world like
a one-piece document.

Linkability

Thanks to HTML, the ability to define links between documents is now regarded as a
necessity. The next section of this tutorial, XML and Related Specs, discusses the link-
specification initiative. This initiative lets you define two-way links, multiple-target links,
"expanding" links (where clicking a link causes the targeted information to appear inline),
and links between two existing documents that are defined in a third.

Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a program to
process XML data. For example, in HTML a <dt> tag can be delimited by </dt>,
another <dt>, <dd>, or </dl>. That makes for some difficult programming. But in
XML, the <dt> tag must always have a </dt> terminator, or else it will be defined as a
<dt/> tag. That restriction is a critical part of the constraints that make an XML
document well-formed. (Otherwise, the XML parser won't be able to read the data.) And
since XML is a vendor-neutral standard, you can choose among several XML parsers, any
one of which takes the work out of processing XML data.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (7 of 10) [8/22/2001 12:51:31 PM]

1. A Quick Introduction to XML

Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical document
structures are, in general, faster to access because you can drill down to the part you need,
like stepping through a table of contents. They are also easier to rearrange, because each
piece is delimited. In a document, for example, you could move a heading to a new
location and drag everything under it along with the heading, instead of having to page
down to make a selection, cut, and then paste the selection into a new location.

How Can You Use XML?

There are several basic ways to make use of XML:

● Traditional data processing, where XML encodes the data for a program to process

● Document-driven programming, where XML documents are containers that build
interfaces and applications from existing components

● Archiving -- the foundation for document-driven programming, where the
customized version of a component is saved (archived) so it can be used later

● Binding, where the DTD or schema that defines an XML data structure is used to
automatically generate a significant portion of the application that will eventually
process that data

Traditional Data Processing

XML is fast becoming the data representation of choice for the Web. It's terrific when used
in conjunction with network-centric Java-platform programs that send and retrieve
information. So a client/server application, for example, could transmit XML-encoded data
back and forth between the client and the server.

In the future, XML is potentially the answer for data interchange in all sorts of
transactions, as long as both sides agree on the markup to use. (For example, should an
email program expect to see tags named <FIRST> and <LAST>, or <FIRSTNAME> and
<LASTNAME>?) The need for common standards will generate a lot of industry-specific
standardization efforts in the years ahead. In the meantime, mechanisms that let you
"translate" the tags in an XML document will be important. Such mechanisms include
projects like the RDF initiative, which defines "meta tags", and the XSL specification,
which lets you translate XML tags into other XML tags.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (8 of 10) [8/22/2001 12:51:31 PM]

1. A Quick Introduction to XML

Document-Driven Programming (DDP)

The newest approach to using XML is to construct a document that describes how an
application page should look. The document, rather than simply being displayed, consists
of references to user interface components and business-logic components that are "hooked
together" to create an application on the fly.

Of course, it makes sense to utilize the Java platform for such components. Both Java
BeansTM for interfaces and Enterprise Java BeansTM for business logic can be used to
construct such applications. Although none of the efforts undertaken so far are ready for
commercial use, much preliminary work has already been done.

Note: The Java programming language is also excellent for writing XML-
processing tools that are as portable as XML. Several Visual XML editors
have been written for the Java platform. For a listing of editors, processing
tools, and other XML resources, see the "Software" section of Robin Cover's
SGML/XML Web Page.

Binding

Once you have defined the structure of XML data using either a DTD or the one of the
schema standards, a large part of the processing you need to do has already been defined.
For example, if the schema says that the text data in a <date> element must follow one of
the recognized date formats, then one aspect of the validation criteria for the data has been
defined -- it only remains to write the code. Although a DTD specification cannot go the
same level of detail, a DTD (like a schema) provides a grammar that tells which data
structures can occur, in what sequences. That specification tells you how to write the high-
level code that processes the data elements.

But when the data structure (and possibly format) is fully specified, the code you need to
process it can just as easily be generated automatically. That process is known as binding --
creating classes that recognize and process different data elements by processing the
specification that defines those elements. As time goes on, you should find that you are
using the data specification to generate significant chunks of code, so you can focus on the
programming that is unique to your application.

Archiving

The Holy Grail of programming is the construction of reusable, modular components.
Ideally, you'd like to take them off the shelf, customize them, and plug them together to
construct an application, with a bare minimum of additional coding and additional
compilation.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (9 of 10) [8/22/2001 12:51:31 PM]

http://www.oasis-open.org/cover/

1. A Quick Introduction to XML

The basic mechanism for saving information is called archiving. You archive a component
by writing it to an output stream in a form that you can reuse later. You can then read it in
and instantiate it using its saved parameters. (For example, if you saved a table component,
its parameters might be the number of rows and columns to display.) Archived components
can also be shuffled around the Web and used in a variety of ways.

When components are archived in binary form, however, there are some limitations on the
kinds of changes you can make to the underlying classes if you want to retain
compatibility with previously saved versions. If you could modify the archived version to
reflect the change, that would solve the problem. But that's hard to do with a binary object.
Such considerations have prompted a number of investigations into using XML for
archiving. But if an object's state were archived in text form using XML, then anything and
everything in it could be changed as easily as you can say, "search and replace".

XML's text-based format could also make it easier to transfer objects between applications
written in different languages. For all of these reasons, XML-based archiving is likely to
become an important force in the not-too-distant future.

Summary

XML is pretty simple, and very flexible. It has many uses yet to be discovered -- we are
just beginning to scratch the surface of its potential. It is the foundation for a great many
standards yet to come, providing a common language that different computer systems can
use to exchange data with one another. As each industry-group comes up with standards
for what they want to say, computers will begin to link to each other in ways previously
unimaginable.

For more information on the background and motivation of XML, see this great article in
Scientific American at
http://www.sciam.com/1999/0599issue/0599bosak.html.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/1_xml.html (10 of 10) [8/22/2001 12:51:31 PM]

http://www.sciam.com/1999/0599issue/0599bosak.html

2. XML and Related Specs

Top Contents Index Glossary

2. XML and Related Specs: Digesting the Alphabet Soup

Link Summary

Local Links

● Defining a Document Type
● DOM: Manipulating Document Contents
● SAX: Serial Access with the Simple API
● Using XSLT

External Links

● Basic Standards
❍ XML & DTD
❍ Namespaces
❍ XSL

● Schema Standards

❍ RELAX
❍ Schematron
❍ SOX
❍ TREX
❍ XML Schema (Structures)
❍ XML Schema (Datatypes)

● Linking and Presentation Standards

❍ XML Linking
❍ XHTML

● Knowledge Standards

❍ RDF
❍ RDF Schema
❍ Topic Maps and the Web
❍ XML Topic Maps
❍ W3C Semantic Web

Standards that Build on XML

❍ Extended Document Standards
■ DrawML
■ MathML
■ SMIL
■ SVG

❍ eCommerce Standards
■ ICE
■ ebXML

Now that you have a basic understanding of XML, it makes sense to get a high-
level overview of the various XML-related acronyms and what they mean. There is
a lot of work going on around XML, so there is a lot to learn.

The current APIs for accessing XML documents either serially or in random access
mode are, respectively, SAX and DOM. The specifications for ensuring the validity
of XML documents are DTD (the original mechanism, defined as part of the XML
specification) and various schema proposals (newer mechanisms that use XML
syntax to do the job of describing validation criteria).

Other future standards that are nearing completion include the XSL standard -- a
mechanism for setting up translations of XML documents (for example to HTML
or other XML) and for dictating how the document is rendered. The transformation
part of that standard, XSLT, is completed and covered in this tutorial. Another
effort nearing completion is the XML Link Language specification (XLL), which
enables links between XML documents.

Those are the major initiatives you will want to be familiar with. This section also
surveys a number of other interesting proposals, including the HTML-lookalike
standard, XHTML, and the meta-standard for describing the information an XML
document contains, RDF. There are also standards efforts that aim to extend XML,
including XLink, and XPointer.

Finally, there are a number of interesting standards and standards-proposals that
build on XML, including Synchronized Multimedia Integration Language (SMIL),
Mathematical Markup Language (MathML), Scalable Vector Graphics (SVG), and
DrawML, as well as a number of eCommerce standards.

The remainder of this section gives you a more detailed description of these
initiatives. To help keep things straight, it's divided into:

● Basic Standards
● Schema Standards
● Linking and Presentation Standards
● Knowledge Standards
● Standards that Build on XML

Skim the terms once, so you know what's here, and keep a copy of this document
handy so you can refer to it whenever you see one of these terms in something
you're reading. Pretty soon, you'll have them all committed to memory, and you'll
be at least "conversant" with XML!

Basic Standards

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (1 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/WD-xsl
http://www.xml.gr.jp/relax/
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.w3.org/TR/NOTE-SOX/
http://www.thaiopensource.com/trex/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/XML/Linking
http://www.w3.org/TR/WD-html-in-xml/
http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/PR-rdf-schema/
http://www.topicmaps.org/
http://www.topicmaps.org/xtm/index.html
http://www.w3.org/2001/sw/
http://www.w3.org/TR/1998/NOTE-drawml-19981203
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/WD-SVG
http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/
http://www.w3.org/TR/WD-xml-link
http://www.w3.org/TR/WD-xptr

2. XML and Related Specs

■ cXML
■ CBL

Glossary Terms

DTD, entity, prolog

These are the basic standards you need to be familiar with. They come up in pretty
much any discussion of XML.

SAX
Simple API for XML

This API was actually a product of collaboration on the XML-DEV mailing
list, rather than a product of the W3C. It's included here because it has the
same "final" characteristics as a W3C recommendation.

You can also think of this standard as the "serial access" protocol for XML. This is the fast-to-execute mechanism you would
use to read and write XML data in a server, for example. This is also called an event-driven protocol, because the technique is
to register your handler with a SAX parser, after which the parser invokes your callback methods whenever it sees a new
XML tag (or encounters an error, or wants to tell you anything else).

For more information on the SAX protocol, see Serial Access with the Simple API for XML.

DOM
Document Object Model

The Document Object Model protocol converts an XML document into a collection of objects in your program. You can then
manipulate the object model in any way that makes sense. This mechanism is also known as the "random access" protocol,
because you can visit any part of the data at any time. You can then modify the data, remove it, or insert new data. For more
information on the DOM specification, see Manipulating Document Contents with the Document Object Model.

DTD
Document Type Definition

The DTD specification is actually part of the XML specification, rather than a separate entity. On the other hand, it is optional -
- you can write an XML document without it. And there are a number of schema proposals that offer more flexible
alternatives. So it is treated here as though it were a separate specification.

A DTD specifies the kinds of tags that can be included in your XML document, and the valid arrangements of those tags. You
can use the DTD to make sure you don't create an invalid XML structure. You can also use it to make sure that the XML
structure you are reading (or that got sent over the net) is indeed valid.

Unfortunately, it is difficult to specify a DTD for a complex document in such a way that it prevents all invalid combinations
and allows all the valid ones. So constructing a DTD is something of an art. The DTD can exist at the front of the document,
as part of the prolog. It can also exist as a separate entity, or it can be split between the document prolog and one or more
additional entities.

However, while the DTD mechanism was the first method defined for specifying valid document structure, it was not the last.
Several newer schema specifications have been devised. You'll learn about those momentarily.

For more information, see Defining a Document Type.

Namespaces

The namespace standard lets you write an XML document that uses two or more sets of XML tags in modular fashion.
Suppose for example that you created an XML-based parts list that uses XML descriptions of parts supplied by other
manufacturers (online!). The "price" data supplied by the subcomponents would be amounts you want to total up, while the
"price" data for the structure as a whole would be something you want to display. The namespace specification defines
mechanisms for qualifying the names so as to eliminate ambiguity. That lets you write programs that use information from
other sources and do the right things with it.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (2 of 7) [8/22/2001 12:51:33 PM]

http://corp.ariba.com/News/AribaArchive/cxml.htm
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html

2. XML and Related Specs

The latest information on namespaces can be found at http://www.w3.org/TR/REC-xml-names.

XSL
Extensible Stylesheet Language

The XML standard specifies how to identify data, not how to display it. HTML, on the other hand, told how things should be
displayed without identifying what they were. The XSL standard has two parts, XSLT (the transformation standard, described
next) and XSL-FO (the part that covers formatting objects, also known as flow objects). XSL-FO gives you the ability to
define multiple areas on a page and then link them together. When a text stream is directed at the collection, it fills the first
area and then "flows" into the second when the first area is filled. Such objects are used by newsletters, catalogs, and
periodical publications.

The latest W3C work on XSL is at http://www.w3.org/TR/WD-xsl.

XSLT (+XPATH)
Extensible Stylesheet Language for Transformations

The XSLT transformation standard is essentially a translation mechanism that lets you specify what to convert an XML tag
into so that it can be displayed -- for example, in HTML. Different XSL formats can then be used to display the same data in
different ways, for different uses. (The XPATH standard is an addressing mechanism that you use when constructing
transformation instructions, in order to specify the parts of the XML structure you want to transform.)

For more information, see Using XSLT.

Schema Standards

A DTD makes it possible to validate the structure of relatively simple XML documents, but that's as far as it goes.

A DTD can't restrict the content of elements, and it can't specify complex relationships. For example, it is impossible to specify with a DTD
that a <heading> for a <book> must have both a <title> and an <author>, while a <heading> for a <chapter> only needs a <title>. In a DTD,
once you only get to specify the structure of the <heading> element one time. There is no context-sensitivity.

This issue stems from the fact that a DTD specification is not hierarchical. For a mailing address that contained several "parsed character
data" (PCDATA) elements, for example, the DTD might look something like this:

 <!ELEMENT mailAddress (name, address, zipcode)>
 <!ELEMENT name (#PCDATA)>
 <!ELEMENT address (#PCDATA)>
 <!ELEMENT zipcode (#PCDATA)>

As you can see, the specifications are linear. That fact forces you to come up with new names for similar elements in different settings. So if
you wanted to add another "name" element to the DTD that contained the <firstName>, <middleInitial>, and <lastName>, then you would
have to come up with another identifier. You could not simply call it "name" without conflicting with the <name> element defined for use in
a <mailAddress>.

Another problem with the nonhierarchical nature of DTD specifications is that it is not clear what comments are meant to explain. A
comment at the top like <!-- Address used for mailing via the postal system --> would apply to all of the
elements that constitute a mailing address. But a comment like <!-- Addressee --> would apply to the name element only. On the
other hand, a comment like <!-- A 5-digit string --> would apply specifically to the #PCDATA part of the zipcode element,
to describe the valid formats. Finally, DTDs do not allow you to formally specify field-validation criteria, such as the 5-digit (or 5 and 4)
limitation for the zipcode field.

Finally, a DTD uses syntax which substantially different from XML, so it can't be processed with a standard XML parser. That means you
can't read a DTD into a DOM, for example, modify it, and then write it back out again.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (3 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/WD-xsl

2. XML and Related Specs

To remedy these shortcomings, a number of proposals have been made for a more database-like, hierarchical "schema" that specifies
validation criteria. The major proposals are shown below.

XML Schema

A large, complex standard that has two parts. One part specifies structure relationships. (This is the largest and most complex
part.) The other part specifies mechanisms for validating the content of XML elements by specifying a (potentially very
sophisticated) datatype for each element. The good news is that XML Schema for Structures lets you specify any kind of
relationship you can conceive of. The bad news is that it takes a lot of work to implement, and it takes a bit of learning to use.
Most of the alternatives provide for simpler structure definitions, while incorporating the XML Schema datatype standard.

For more information on the XML Schema proposal, see the W3C specs XML Schema (Structures) and XML Schema
(Datatypes).

RELAX
Regular Language description for XML

Simpler than XML Structure Schema, RELAX uses XML syntax to express the structure relationships that are present in a
DTD, and adds the XML Datatype Schema mechanisms, as well. Includes a DTD to RELAX converter.

For more information on Relax, see http://www.xml.gr.jp/relax/.

SOX
Schema for Object-oriented XML

SOX is a schema proposal that includes extensible data types, namespaces, and embedded documentation.

For more information on SOX, see http://www.w3.org/TR/NOTE-SOX.

TREX
Tree Regular Expressions for XM

A means of expressing validation criteria by describing a pattern for the structure and content of an XML document. Includes
a RELAX to TREX converter.

For more information on TREX, see http://www.thaiopensource.com/trex/.

Schematron
Schema for Object-oriented XML

An assertion-based schema mechanism that allows for sophisticated validation.

For more information on Schematron, see
http://www.ascc.net/xml/resource/schematron/schematron.html.

Linking and Presentation Standards

Arguably the two greatest benefits provided by HTML were the ability to link between documents, and the ability to create simple formatted
documents (and, eventually, very complex formatted documents). The following standards aim at preserving the benefits of HTML in the
XML arena, and to adding additional functionality, as well.

XML Linking

These specifications provide a variety of powerful linking mechanisms, and are sure to have a big impact on how XML

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (4 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/
http://www.xml.gr.jp/relax/
http://www.w3.org/TR/NOTE-SOX/
http://www.thaiopensource.com/trex/
http://www.ascc.net/xml/resource/schematron/schematron.html

2. XML and Related Specs

documents are used.

XLink: The XLink protocol is a proposed specification to handle links between XML documents. This
specification allows for some pretty sophisticated linking, including two-way links, links to multiple documents,
"expanding" links that insert the linked information into your document rather than replacing your document
with a new page, links between two documents that are created in a third, independent document, and indirect
links (so you can point to an "address book" rather than directly to the target document -- updating the address
book then automatically changes any links that use it).

XML Base: This standard defines an attribute for XML documents that defines a "base" address, that is used
when evaluating a relative address specified in the document. (So, for example, a simple file name would be
found in the base-address directory.)

XPointer: In general, the XLink specification targets a document or document-segment using its ID. The
XPointer specification defines mechanisms for "addressing into the internal structures of XML documents",
without requiring the author of the document to have defined an ID for that segment. To quote the spec, it
provides for "reference to elements, character strings, and other parts of XML documents, whether or not they
bear an explicit ID attribute".

For more information on the XML Linking standards, see http://www.w3.org/XML/Linking.

XHTML

The XHTML specification is a way of making XML documents that look and act like HTML documents. Since an XML
document can contain any tags you care to define, why not define a set of tags that look like HTML? That's the thinking
behind the XHTML specification, at any rate. The result of this specification is a document that can be displayed in browsers
and also treated as XML data. The data may not be quite as identifiable as "pure" XML, but it will be a heck of a lot easier to
manipulate than standard HTML, because XML specifies a good deal more regularity and consistency.

For example, every tag in a well-formed XML document must either have an end-tag associated with it or it must end in />.
So you might see <p>...</p>, or you might see <p/>, but you will never see <p> standing by itself. The upshot of that
requirement is that you never have to program for the weird kinds of cases you see in HTML where, for example, a <dt> tag
might be terminated by </DT>, by another <DT>, by <dd>, or by </dl>. That makes it a lot easier to write code!

The XHTML specification is a reformulation of HTML 4.0 into XML. The latest information is at
http://www.w3.org/TR/xhtml1.

Knowledge Standards

When you start looking down the road five or six years, and visualize how the information on the web will begin to turn into one huge
knowledge base (the "semantic web"). For the latest on the semantic web, visit http://www.w3.org/2001/sw/. In the meantime, here are the
fundamental standards you'll want to know about:

RDF
Resource Description Framework

RDF is a proposed standard for defining data about data. Used in conjunction with the XHTML specification, for example, or
with HTML pages, RDF could be used to describe the content of the pages. For example, if your browser stored your ID
information as FIRSTNAME, LASTNAME, and EMAIL, an RDF description could make it possible to transfer data to an
application that wanted NAME and EMAILADDRESS. Just think: One day you may not need to type your name and address at
every web site you visit!

For the latest information on RDF, see http://www.w3.org/TR/REC-rdf-syntax.

RDF Schema

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (5 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/XML/Linking
http://www.w3.org/TR/xhtml1
http://www.w3.org/2001/sw/
http://www.w3.org/TR/REC-rdf-syntax

2. XML and Related Specs

The RDF Schema proposal allows the specification of consistency rules and additional information that describe how the
statements in a Resource Description Framework (RDF) should be interpreted.

For more information on the RDF Schema recommendation, see http://www.w3.org/TR/rdf-schema.

XTM
XML Topic Maps

In many ways a simpler, more readily usable knowledge-representation than RDF, the topic maps standard is one worth
watching. So far, RDF is the W3C standard for knowledge representation, but topic maps could possibly become the
"developer's choice" among knowledge representation standards.

For more information on XML Topic Maps, http://www.topicmaps.org/xtm/index.html. For information on topic maps and the
web, see http://www.topicmaps.org/.

Standards That Build on XML

The following standards and proposals build on XML. Since XML is basically a language-definition tool, these specifications use it to define
standardized languages for specialized purposes.

Extended Document Standards

These standards define mechanisms for producing extremely complex documents -- books, journals, magazines, and the like -- using XML.

SMIL
Synchronized Multimedia Integration Language

SMIL is a W3C recommendation that covers audio, video, and animations. It also addresses the difficult issue of
synchronizing the playback of such elements.

For more information on SMIL, see http://www.w3.org/TR/REC-smil.

MathML
Mathematical Markup Language

MathML is a W3C recommendation that deals with the representation of mathematical formulas.

For more information on MathML, see http://www.w3.org/TR/REC-MathML.

SVG
Scalable Vector Graphics

SVG is a W3C working draft that covers the representation of vector graphic images. (Vector graphic images that are built
from commands that say things like "draw a line (square, circle) from point x,y to point m,n" rather than encoding the image
as a series of bits. Such images are more easily scalable, although they typically require more processing time to render.)

For more information on SVG, see http://www.w3.org/TR/WD-SVG.

DrawML
Drawing Meta Language

DrawML is a W3C note that covers 2D images for technical illustrations. It also addresses the problem of updating and
refining such images.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (6 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/TR/rdf-schema
http://www.topicmaps.org/xtm/index.html
http://www.topicmaps.org/
http://www.w3.org/TR/REC-smil/
http://www.w3.org/TR/REC-MathML/
http://www.w3.org/TR/WD-SVG

2. XML and Related Specs

For more information on DrawML, see http://www.w3.org/TR/NOTE-drawml.

eCommerce Standards

These standards are aimed at using XML in the world of business-to-business (B2B) and business-to-consumer (B2C) commerce.

ICE
Information and Content Exchange

ICE is a protocol for use by content syndicators and their subscribers. It focuses on "automating content exchange and reuse,
both in traditional publishing contexts and in business-to-business relationships".

For more information on ICE, see http://www.w3.org/TR/NOTE-ice.

ebXML
Electronic Business with XML

This standard aims at creating a modular electronic business framework using XML. It is the product of a joint initiative by
the United Nations (UN/CEFACT) and the Organization for the Advancement of Structured Information Systems (OASIS).

For more information on ebXML, see http://www.ebxml.org/.

cxml
Commerce XML

cxml is a RosettaNet (www.rosettanet.org) standard for setting up interactive online catalogs for different buyers,
where the pricing and product offerings are company specific. Includes mechanisms to handle purchase orders, change orders,
status updates, and shipping notifications.

For more information on cxml, see http://www.cxml.org/

CBL
Common Business Library

CBL is a library of element and attribute definitions maintained by CommerceNet (www.commerce.net).

For more information on CBL and a variety of other initiatives that work together to enable eCommerce applications, see
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html.

Summary

XML is becoming a widely-adopted standard that is being used in a dizzying variety of application areas. For more information on Java and
XML in the open source community, visit http://xml.apache.org/

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/2_specs.html (7 of 7) [8/22/2001 12:51:33 PM]

http://www.w3.org/TR/NOTE-drawml
http://www.w3.org/TR/NOTE-ice
http://www.ebxml.org/
http://www.rosettanet.org/
http://www.cxml.org/
http://www.commerce.net/
http://www.commerce.net/projects/currentprojects/eco/wg/eCo_Framework_Specifications.html
http://xml.apache.org/

3. API Overview

Top Contents Index Glossary

3. An Overview of the APIs

Link Summary

Local Links

● The XML Thread
● Designing an XML Data Structure
● The Simple API for XML (SAX)
● The Document Object Model (DOM)
● Using XSLT
● Examples

API References

● javax.xml.parsers
● org.xml.sax
● org.w3c.dom
● javax.xml.transform

External Links

● http://www.jdom.org
● http://www.dom4j.org
● JDOM JCP Standards Effort: JSR 102

Glossary Terms

DTD, namespace, unparsed entity,
URI, URL, URN, W3C

This page gives you a map so you can find your way around JAXP and
the associated XML APIs. The first step is to understand where JAXP
fits in with respect to the major Java APIs for XML:

JAXP: Java API for XML Parsing
This API is the subject of the present tutorial. It provides a
common interface for creating and using the standard SAX,
DOM, and XSLT APIs in Java, regardless of which vendor's
implementation is actually being used..

JAXB: Java Architecture for XML Binding

This standard defines a mechanism for writing out Java objects
as XML (marshalling) and for creating Java objects from such
structures (unmarshalling). (You compile a class description to
create the Java classes, and use those classes in your
application.)

JDOM: Java DOM

The standard DOM is a very simple data structure that
intermixes text nodes, element nodes, processing instruction
nodes, CDATA nodes, entity references, and several other kinds
of nodes. That makes it difficult to work with in practice,
because you are always sifting through collections of nodes,
discarding the ones you don't need into order to process the ones
you are interested in. JDOM, on the other hand, creates a tree of
objects from an XML structure. The resulting tree is much easier
to use, and it can be created from an XML structure without a
compilation step. For more information on JDOM, visit
http://www.jdom.org. For information on the Java Community
Process (JCP) standards effort for JDOM, see JSR 102.

DOM4J

Although it is not on the JCP standards track, DOM4J is an open-source, object-oriented alternative to DOM that
is in many ways ahead of JDOM in terms of implemented features. As such, it represents an excellent alternative
for Java developers who need to manipulate XML-based data. For more information on DOM4J, see
http://www.dom4j.org.

JAXM: Java API for XML Messaging

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (1 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/examples/index.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/package-summary.html
http://www.jdom.org%20/
http://www.dom4j.org/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_102_jdom.html
http://www.jdom.org%20/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_102_jdom.html
http://www.dom4j.org/

3. API Overview

The JAXM API defines a mechanism for exchanging asynchronous XML-based messages between applications.
("Asynchronous" means "send it and forget it".)

JAX-RPC: Java API for XML-based Remote Process Communications

The JAX-RPC API defines a mechanism for exchanging synchronous XML-based messages between
applications. ("Synchronous" means "send a message and wait for the reply".)

JAXR: Java API for XML Registries

The JAXR API provides a mechanism for publishing available services in an external registry, and for consulting
the registry to find those services.

The JAXP APIs

Now that you know where JAXP fits into the big picture, the remainder of this page discusses the JAXP APIs .

The main JAXP APIs are defined in the javax.xml.parsers package. That package contains two vendor-neutral
factory classes: SAXParserFactory and DocumentBuilderFactory that give you a SAXParser and a DocumentBuilder,
respectively. The DocumentBuilder, in turn, creates DOM-compliant Document object.

The factory APIs give you the ability to plug in an XML implementation offered by another vendor without changing
your source code. The implementation you get depends on the setting of the
javax.xml.parsers.SAXParserFactory and javax.xml.parsers.DocumentBuilderFactory
system properties. The default values (unless overridden at runtime) point to the reference implementation.

The remainder of this section shows how the different JAXP APIs work when you write an application.

An Overview of the Packages

As discussed in the previous section, the SAX and DOM APIs are defined by XML-DEV group and by the W3C,
respectively. The libraries that define those APIs are:

javax.xml.parsers
The JAXP APIs, which provide a common interface for different vendors' SAX and DOM parsers.

org.w3c.dom
Defines the Document class (a DOM), as well as classes for all of the components of a DOM.

org.xml.sax
Defines the basic SAX APIs.

javax.xml.transform
Defines the XSLT APIs that let you transform XML into other forms.

The "Simple API" for XML (SAX) is the event-driven, serial-access mechanism that does element-by-element
processing. The API for this level reads and writes XML to a data repository or the Web. For server-side and high-
performance apps, you will want to fully understand this level. But for many applications, a minimal understanding will
suffice.

The DOM API is generally an easier API to use. It provides a relatively familiar tree structure of objects. You can use the
DOM API to manipulate the hierarchy of application objects it encapsulates. The DOM API is ideal for interactive
applications because the entire object model is present in memory, where it can be accessed and manipulated by the user.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (2 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/SAXParserFactory.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/DocumentBuilderFactory.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/DocumentBuilder.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Document.html

3. API Overview

On the other hand, constructing the DOM requires reading the entire XML structure and holding the object tree in
memory, so it is much more CPU and memory intensive. For that reason, the SAX API will tend to be preferred for
server-side applications and data filters that do not require an in-memory representation of the data.

Finally, the XSLT APIs defined in javax.xml.transform let you write XML data to a file or convert it into other forms.
And, as you'll see in the XSLT section, of this tutorial, you can even use it in conjunction with the SAX APIs to convert
legacy data to XML.

The Simple API for XML (SAX) APIs

The basic outline of the SAX
parsing APIs are shown at
right. To start the process, an
instance of the
SAXParserFactory
classed is used to generate an
instance of the parser.

The parser wraps a
SAXReader object. When the
parser's parse() method is
invoked, the reader invokes
one of several callback
methods implemented in the
application. Those methods
are defined by the interfaces
ContentHandler,
ErrorHandler,
DTDHandler, and
EntityResolver.

Here is a summary of the key
SAX APIs:

SAXParserFactory
A SAXParserFactory object creates an instance of the parser determined by the system property,
javax.xml.parsers.SAXParserFactory.

SAXParser

The SAXParser interface defines several kinds of parse() methods. In general, you pass an XML data source
and a DefaultHandler object to the parser, which processes the XML and invokes the appropriate methods in the
handler object.

SAXReader

The SAXParser wraps a SAXReader. Typically, you don't care about that, but every once in a while you need to
get hold of it using SAXParser's getXMLReader(), so you can configure it. It is the SAXReader which carries
on the conversation with the SAX event handlers you define.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (3 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/SAXParserFactory.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/SAXParser.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html

3. API Overview

DefaultHandler

Not shown in the diagram, a DefaultHandler implements the ContentHandler, ErrorHandler,
DTDHandler, and EntityResolver interfaces (with null methods), so you can override only the ones you're
interested in.

ContentHandler

Methods like startDocument, endDocument, startElement, and endElement are invoked when an
XML tag is recognized. This interface also defines methods characters and processingInstruction,
which are invoked when the parser encounters the text in an XML element or an inline processing instruction,
respectively.

ErrorHandler

Methods error, fatalError, and warning are invoked in response to various parsing errors. The default
error handler throws an exception for fatal errors and ignores other errors (including validation errors). That's one
reason you need to know something about the SAX parser, even if you are using the DOM. Sometimes, the
application may be able to recover from a validation error. Other times, it may need to generate an exception. To
ensure the correct handling, you'll need to supply your own error handler to the parser.

DTDHandler

Defines methods you will generally never be called upon to use. Used when processing a DTD to recognize and
act on declarations for an unparsed entity.

EntityResolver

The resolveEntity method is invoked when the parser must identify data identified by a URI. In most cases,
a URI is simply a URL, which specifies the location of a document, but in some cases the document may be
identified by a URN -- a public identifier, or name, that is unique in the web space. The public identifier may be
specified in addition to the URL. The EntityResolver can then use the public identifier instead of the URL to
find the document, for example to access a local copy of the document if one exists.

A typical application implements most of the ContentHandler methods, at a minimum. Since the default
implementations of the interfaces ignore all inputs except for fatal errors, a robust implementation may want to
implement the ErrorHandler methods, as well.

The SAX Packages

The SAX parser is defined in the following packages.

Package Description

org.xml.sax Defines the SAX interfaces. The name "org.xml" is the package prefix that was
settled on by the group that defined the SAX API.

org.xml.sax.ext
Defines SAX extensions that are used when doing more sophisticated SAX
processing, for example, to process a document type definitions (DTD) or to see the
detailed syntax for a file.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (4 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/package-summary.html

3. API Overview

org.xml.sax.helpers

Contains helper classes that make it easier to use SAX -- for example, by defining a
default handler that has null-methods for all of the interfaces, so you only need to
override the ones you actually want to implement.

javax.xml.parsers Defines the SAXParserFactory class which returns the SAXParser. Also defines
exception classes for reporting errors.

The Document Object Model (DOM) APIs

The diagram below shows the JAXP APIs in action:

You use the javax.xml.parsers.DocumentBuilderFactory class to get a DocumentBuilder instance, and use that to
produce a Document (a DOM) that conforms to the DOM specification. The builder you get, in fact, is determined by the
System property, javax.xml.parsers.DocumentBuilderFactory, which selects the factory implementation
that is used to produce the builder. (The platform's default value can be overridden from the command line.)

You can also use the DocumentBuilder newDocument() method to create an empty Document that implements the
org.w3c.dom.Document interface. Alternatively, you can use one of the builder's parse methods to create a Document
from existing XML data. The result is a DOM tree like that shown in the diagram.

Note:
Although they are called objects, the entries in the DOM tree are actually fairly low-level data structures.
For example, under every element node (which corresponds to an XML element) there is a text node which
contains the name of the element tag! This issue will be explored at length in the DOM section of the
tutorial, but users who are expecting objects are usually surprised to find that invoking the text()
method on an element object returns nothing! For a truly object-oriented tree, see the JDOM API.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (5 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/package-frame.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Document.html
http://www.jdom.org%20/

3. API Overview

The DOM Packages

The Document Object Model implementation is defined in the following packages:

Package Description

org.w3c.dom Defines the DOM programming interfaces for XML (and, optionally, HTML)
documents, as specified by the W3C.

javax.xml.parsers

Defines the DocumentBuilderFactory class and the DocumentBuilder class, which
returns an object that implements the W3C Document interface. The factory that is
used to create the builder is determined by the javax.xml.parsers system
property, which can be set from the command line or overridden when invoking the
newInstance method. This package also defines the
ParserConfigurationException class for reporting errors.

The XML Style Sheet Translation (XSLT) APIs

The diagram at right shows the
XSLT APIs in action.

A TransformerFactory
object is instantiated, and used to
create a Transformer. The
source object is the input to the
transformation process. A source
object can be created from SAX
reader, from a DOM, or from an
input stream.

Similarly, the result object is the
result of the transformation
process. That object can be a
SAX event handler, a DOM, or
an output stream.

When the transformer is created,
it may be created from a set of
transformation instructions, in
which case the specified
transformations are carried out. If
it is created without any specific instructions, then the transformer object simply copies the source to the result.

The XSLT Packages

The XSLT APIs are defined in the following packages:

Package Description

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (6 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/package-frame.html

3. API Overview

javax.xml.transform

Defines the TransformerFactory and Transformer classes, which you
use to get a object capable of doing transformations. After creating a transformer
object, you invoke its transform() method, providing it with an input
(source) and output (result).

javax.xml.transform.dom Classes to create input (source) and output (result) objects from a DOM.

javax.xml.transform.sax Classes to create input (source) from a SAX parser and output (result) objects
from a SAX event handler.

javax.xml.transform.stream Classes to create input (source) and output (result) objects from an I/O stream.

Overview of the JAR Files

Here are the jar files that make up the JAXP bundles, along with the interfaces and classes they contain.

JAR file Packages Contents

jaxp.jar
● javax.xml.parsers
● javax.xml.transform

❍ javax.xml.transform.dom
❍ javax.xml.transform.sax
❍ javax.xml.transform.stream

Interfaces

crimson.jar ● org.xml.sax
❍ org.xml.sax.helpers
❍ org.xml.sax.ext

● org.w3c.dom

Interfaces and helper
classes

xalan.jar All of the above Implementation Classes

Note:
When defining the classpath, specify the jar files in the order shown here: jaxp.jar, crimson.jar,
xalan.jar.

Where Do You Go from Here?

At this point, you have enough information to begin picking your own way through the JAXP libraries. Your next step
from here depends on what you want to accomplish. You might want to go to:

The XML Thread
If you want to learn more about XML, spending as little time as possible on the Java APIs. (You will see all of the
XML sections in the normal course of the tutorial. Follow this thread if you want to bypass the API programming
steps.)

Designing an XML Data Structure

If you are creating XML data structures for an application and want some tips on how to proceed. (This is the next

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (7 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/dom/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/sax/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/stream/package-summary.html

3. API Overview

step in the XML overview.)

Serial Access with the Simple API for XML (SAX)

If the data structures have already been determined, and you are writing a server application or an XML filter that
needs to do the fastest possible processing. This section also takes you step by step through the process of
constructing an XML document.

Manipulating Document Contents with the Document Object Model (DOM)

If you need to build an object tree from XML data so you can manipulate it in an application, or convert an in-
memory tree of objects to XML. This part of the tutorial ends with a section on namespaces.

Using XSLT

If you need to transform XML tags into some other form, if you want to generate XML output, or if you want to
convert legacy data structures to XML.

Browse the Examples

To see some real code. The reference implementation comes with a large number of examples (even though many
of them may not make much sense just yet). You can find them in the JAXP examples directory, or you can
browse to the XML Examples page. The table below divides them into categories depending on whether they are
primarily SAX-related, are primarily DOM-related, or serve some special purpose.

Example Description

Sample XML
Files

Samples the illustrate how XML files are constructed.

Simple File
Parsing

A very short example that creates a DOM using XmlDocument's
static createXmlDocument method and echoes it to
System.out. Illustrates the least amount of coding necessary to read
in XML data, assuming you can live with all the defaults -- for
example, the default error handler, which ignores errors.

Building XML
Documents with
DOM

A program that creates a Document Object Model in memory and uses
it to output an XML structure.

Using SAX

An application that uses the SAX API to echo the content and structure
of an XML document using either the validating or non-validating
parser, on either a well-formed, valid, or invalid document so you can
see the difference in errors that the parsers report. Lets you set the
org.xml.sax.parser system variable on the command line to
determine the parser returned by
org.xml.sax.helpers.ParserFactory.

XML Namespace
Support

An application that reads an XML document into a DOM and echoes
its namespaces.

Swing JTree
Display

An example that reads XML data into a DOM and populates a JTree.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (8 of 9) [8/22/2001 12:51:38 PM]

http://java.sun.com/xml/jaxp-1.1/examples/index.html
http://java.sun.com/xml/jaxp-1.1/examples/index.html

3. API Overview

Text Transcoding
A character set translation example. A document written with one
character set is converted to another.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/3_apis.html (9 of 9) [8/22/2001 12:51:38 PM]

4. Designing an XML Data Structure

Top Contents Index Glossary

4. Designing an XML Data Structure

Link Summary

Local Links

● Defining Attributes and Entities in the
DTD

External Links

● http://www.XML.org
● http://www.xmlx.com
● http://www.oasis-

open.org/cover/elementsAndAttrs.html

Glossary Terms

DTD, entity, external entity, parameter
entity

This page covers some heuristics you can use when
making XML design decisions.

Saving Yourself Some Work

Whenever possible, use an existing DTD. It's usually
a lot easier to ignore the things you don't need than to
design your own from scratch. In addition, using a
standard DTD makes data interchange possible, and
may make it possible to use data-aware tools
developed by others.

So, if an industry standard exists, consider referencing
that DTD with an external parameter entity. One place
to look for industry-standard DTDs is at the
repository created by the Organization for the
Advancement of Structured Information Standards
(OASIS) at http://www.XML.org. Another place
to check is CommerceOne's XML Exchange at
http://www.xmlx.com, which is described as "a
repository for creating and sharing document type definitions".

Note:
Many more good thoughts on the design of XML structures are at the OASIS page,
http://www.oasis-open.org/cover/elementsAndAttrs.html. If you
have any favorite heuristics that can improve this page, please send an email! For the
address, see Work in Progress.

Attributes and Elements

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/4_design.html (1 of 5) [8/22/2001 12:51:40 PM]

http://www.xml.org/
http://www.xmlx.com/
http://www.oasis-open.org/cover/elementsAndAttrs.html
http://www.oasis-open.org/cover/elementsAndAttrs.html
http://www.xml.org/
http://www.xmlx.com/
http://www.oasis-open.org/cover/elementsAndAttrs.html

4. Designing an XML Data Structure

One of the issues you will encounter frequently when designing an XML structure is whether to model a
given data item as a subelement or as an attribute of an existing element. For example, you could model
the title of a slide either as:

<slide>
 <title>This is the title</title>
</slide>

or as:

<slide title="This is the title">...</slide>

In some cases, the different characteristics of attributes and elements make it easy to choose. Let's
consider those cases first, and then move on to the cases where the choice is more ambiguous.

Forced Choices

Sometimes, the choice between an attribute and an element is forced on you by the nature of attributes
and elements. Let's look at a few of those considerations:

The data contains substructures
In this case, the data item must be modeled as an element. It can't be modeled as an attribute,
because attributes take only simple strings. So if the title can contain emphasized text like this:
The Best Choice, then the title must be an element.

The data contains multiple lines

Here, it also makes sense to use an element. Attributes need to be simple, short strings or else they
become unreadable, if not unusable.

The data changes frequently

When the data will be frequently modified, especially by the end user, then it makes sense to
model it as an element. XML-aware editors tend to make it very easy to find and modify element
data. Attributes can be somewhat harder to get to, and therefore somewhat more difficult to
modify.

The data is a small, simple string that rarely if ever changes

This is data that can be modeled as an attribute. However, just because you can does not mean
that you should. Check the "Stylistic Choices" section below, to be sure.

The data is confined to a small number of fixed choices

Here is one time when it really makes sense to use an attribute. Using the DTD, the attribute can
be prevented from taking on any value that is not in the preapproved list. An XML-aware editor

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/4_design.html (2 of 5) [8/22/2001 12:51:40 PM]

4. Designing an XML Data Structure

can even provide those choices in a drop-down list. Note, though, that the gain in validity
restriction comes at a cost in extensibility. The author of the XML document cannot use any value
that is not part of the DTD. If another value becomes useful in the future, the DTD will have to be
modified before the document author can make use of it.

Stylistic Choices

As often as not, the choices are not as cut and dried as those shown above. When the choice is not forced,
you need a sense of "style" to guide your thinking. The question to answer, then, is what makes good
XML style, and why.

Defining a sense of style for XML is, unfortunately, as nebulous a business as defining "style" when it
comes to art or music. There are a few ways to approach it, however. The goal of this section is to give
you some useful thoughts on the subject of "XML style".

Visibility
The first heuristic for thinking about XML elements and attributes uses the concept of visibility. If
the data is intended to be shown -- to be displayed to some end user -- then it should be modeled
as an element. On the other hand, if the information guides XML processing but is never
displayed, then it may be better to model it as an attribute. For example, in order-entry data for
shoes, shoe size would definitely be an element. On the other hand, a manufacturer's code number
would be reasonably modeled as an attribute.

Consumer / Provider

Another way of thinking about the visibility heuristic is to ask who is the consumer and/or
provider of the information. The shoe size is entered by a human sales clerk, so it's an element.
The manufacturer's code number for a given shoe model, on the other hand, may be wired into the
application or stored in a database, so that would be an attribute. (If it were entered by the clerk,
though, it should perhaps be an element.) You can also think in terms of who or what is
processing the information. Things can get a bit murky at that end of the process, however. If the
information "consumers" are order-filling clerks, will they need to see the manufacturer's code
number? Or, if an order-filling program is doing all the processing, which data items should be
elements in that case? Such philosophical distinctions leave a lot of room for differences in style.

Container vs. Contents
Another way of thinking about elements and attributes is to think of an element as a container. To
reason by analogy, the contents of the container (water or milk) correspond to XML data modeled
as elements. On the other hand, characteristics of the container (blue or white, pitcher or can)
correspond to XML data modeled as attributes. Good XML style will, in some consistent way,
separate each container's contents from its characteristics.

To show these heuristics at work: In a slideshow the type of the slide (executive or technical) is best

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/4_design.html (3 of 5) [8/22/2001 12:51:40 PM]

4. Designing an XML Data Structure

modeled as an attribute. It is a characteristic of the slide that lets it be selected or rejected for a particular
audience. The title of the slide, on the other hand, is part of its contents. The visibility heuristic is also
satisfied here. When the slide is displayed, the title is shown but the type of the slide isn't. Finally, in this
example, the consumer of the title information is the presentation audience, while the consumer of the
type information is the presentation program.

Normalizing Data

In the SAX tutorial, the section Defining Attributes and Entities in the DTD shows how to create an
external entity that you can reference in an XML document. Such an entity has all the advantages of a
modularized routine -- changing that one copy affects every document that references it. The process of
eliminating redundancies is known as normalizing, so defining entities is one good way to normalize
your data.

In an HTML file, the only way to achieve that kind of modularity is with HTML links -- but of course the
document is then fragmented, rather than whole. XML entities, on the other hand, suffer no such
fragmentation. The entity reference acts like a macro -- the entity's contents are expanded in place,
producing a whole document, rather than a fragmented one. And when the entity is defined in an external
file, multiple documents can reference it.

The considerations for defining an entity reference, then, are pretty much the same as those you would
apply to modularize program code:

1. Whenever you find yourself writing the same thing more than once, think entity.
That lets you write it one place and reference it multiple places.

2. If the information is likely to change, especially if it is used in more than one place, definitely
think in terms of defining an entity. An example is defining productName as an entity so that
you can easily change the documents when the product name changes.

3. If the entity will never be referenced anywhere except in the current file, define it in the
local_subset of the document's DTD, much as you would define a method or inner class in a
program.

4. If the entity will be referenced from multiple documents, define it as an external entity, the same
way that would define any generally usable class as an external class.

External entities produce modular XML that is smaller, easier to update and maintain. They can also
make the resulting document somewhat more difficult to visualize, much as a good OO design can be
easy to change, once you understand it, but harder to wrap your head around at first.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/4_design.html (4 of 5) [8/22/2001 12:51:40 PM]

4. Designing an XML Data Structure

You can also go overboard with entities. At an extreme, you could make an entity reference for the word
"the" -- it wouldn't buy you much, but you could do it.

Note:
The larger an entity is, the less likely it is that changing it will have unintended effects.
When you define an external entity that covers a whole section on installation instructions,
for example, making changes to the section is unlikely to make any of the documents that
depend on it come out wrong. Small inline substitutions can be more problematic, though.
For example, if productName is defined as an entity, the name change can be to a
different part of speech, and that can kill you! Suppose the product name is something like
"HtmlEdit". That's a verb. So you write, "You can HtmlEdit your file...". Then, when the
official name is decided, it's "Killer". After substitution, that becomes "You can Killer your
file...". Argh. Still, even if such simple substitutions can sometimes get you in trouble, they
can also save a lot of work. To be totally safe, though, you could set up entities named
productNoun, productVerb, productAdj, and productAdverb!

Normalizing DTDs

Just as you can normalize your XML document, you can also normalize your DTD declarations by
factoring out common pieces and referencing them with a parameter entity. This process is described in
the SAX tutorial in Defining Parameter Entities. Factoring out the DTDs (also known as modularizing or
normalizing) gives the same advantages and disadvantages as normalized XML -- easier to change,
somewhat more difficult to follow.

You can also set up conditionalized DTDs, as described in the SAX tutorial section Conditional Sections.
If the number and size of the conditional sections is small relative to the size of the DTD as a whole, that
can let you "single source" a DTD that you can use for multiple purposes. If the number of conditional
sections gets large, though, the result can be a complex document that is difficult to edit.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/overview/4_design.html (5 of 5) [8/22/2001 12:51:40 PM]

Alpha Index

Top Contents Index Glossary

XML Alphabetic Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z #_

A

ANY

DTD element value

archiving

use of XML for

ATTLIST

DTD tag, defining an attribute list

attribute

and tags
adding to an element, naming
defining in the DTD
specification of, with ATTLIST tag
vs element design decision

B

binary entity
See unparsed entity.

binding
use of XML for

C

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (1 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

CBL
XML-based standard

CDATA

special XML tag for handling text with XML-style syntax
special DTD qualifier used for specifying attribute values
need for a LexicalEventListener when generating XML output
using a LexicalEventListener to echo in XML output
echoing of, with a LexicalEventListener in the SAX echo app
DTD attribute type

characters

special characters, handling of
character references
vs. ignorable whitespace

character encodings

See encodings

command line
use of environment variable to select validating or nonvalidating parser

command scripts

for compiling and running Java XML apps

comment

Comments in XML Files
writing an XML file
using a LexicalEventListener to echo in XML output
echoing of, with a LexicalEventListener in the SAX echo app

compiling

of SAX echo app
See Also: command scripts

conditional sections

in a DTD, controllable with parameter entities

consumer/provider

attributes vs. elements, stylistic choice

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (2 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

container/contents

attributes vs. elements, stylistic choice

content

and the XML prolog

ContentHandler interface
handling document events
SAX API
SAXExceptions thrown
identifying a document's location
processing instructions, handling of
supplied to parser in SAX echo app
extended by LexicalEventListener

copyright symbol

entity definition

cXML
XML-based standard

D

data
contrasted with "document"
data elements
identified by tags
normalization of

design of XML documents

attributes vs elements
attributes vs elements, example of
consumer/provider
container/contents
visibility heuristic

DDP

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (3 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

use of XML for

declaration

The XML Prolog
creating an XML file

DefaultHandler class

implements SAX APIs
use of, in Echo app
extending of, to implement the ErrorHandler interface

DOCTYPE tag

use of, to specify the DTD

document

contrasted with "data"
document elements

DOM

Java XML APIs, overview
Document Object Model
XML and Related Specs
w3c specification

double quotes (curly quotes)

entity definition

DTD
compared to schemas
creating
defining attributes
defining attributes, ATTLIST tag
defining elements (element declarations)
defining entities
defining nested elements
defining the root element
defining text
effect on definition of empty elements
limitations of

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (4 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

nonvalidating parser, effect on
normalization of
parameter entities, creating and referencing of
parsing a parameterized DTD
referencing the DTD
required for generation of non-fatal errors
required for generation of warnings
required to use validating parser
special element value: ANY
special element value: EMPTY
specifying with the DOCTYPE tag
use of existing, if possible
use of, for binding
w3c specification
XML and Related Specs

DTDEventListener interface
Java XML API
using startDTD and endDTD methods to identify DTD processing

DTDHandler interface

SAX API
using the DTDHandler API

E

element
defined by tags
defining in the DTD
special DTD values ANY and EMPTY
naming of, adding attributes to
nesting of
nested elements, adding
vs attribute design decision

empty element

adding of
as further defined by the DTD

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (5 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

EMPTY
DTD element value

encodings

Java's encoding schemes
setting up I/O in SAX echo app

entity

definable in The XML Prolog
defining in the DTD
predefined entities for special characters
referenced in an XML Document
summary of entity types
DTD attribute type
useful entity definitions

entity reference

to predefined entities for special characters
use of, in an XML Document
echoing of, in the SAX echo app
referencing external entities
use of for binary entities (not recommended)

ENTITY

DTD tag

ENTITIES
DTD attribute type

EntityResolver interface

SAX API
using the EnityResolver API

environment variable

use of, to select validating or nonvalidating parser

error conditions
Handling Errors with the Non-Validating Parser
fatal error

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (6 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

introducing
(non-fatal) error

understanding
handling, mechanisms
experimenting with validation errors in the SAX echo app
handling of, in the validating parser

warning
DTD required for, handling of
DTD warnings that could occur

ErrorHandler interface
SAX API
use of, for handling non-fatal errors

examples

description of, in Java XML release

exceptions
ParserConfigurationException

handling of, in a SAX app
IOException

wrapping in a SAX exception
SAXException

thrown by DocumentHandler methods
handling of

SAXParseException
basic handling of
improved handling of
delivered to ErrorHandler methods

external entity
summary of entity types
referencing
echoing, with the SAX echo app
use of, for normalizing an XML structure

external subset

referencing the DTD

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (7 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

F

fatal error
See error conditions

FIXED

attribute specification in the DTD

flow objects

defined by XSL

formatting objects

defined by XSL

G

general entity
summary of entity types

H

HTML
HTML-style text, adding of
inline reusability -- none, vs. XML
linking, compared to XML
tags similar to XML
vs. stylability of XML documents
reusing a DTD that defines HTML-style tags in XML

I

ICE
XML-based standard

ID

DTD attribute type

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (8 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

identity transform
defined

IDREF

DTD attribute type

IDREFS
DTD attribute type

IMPLIED

attribute specification in the DTD

InputSource class

used in setting up the SAX echo app

IOException
wrapping in a SAX exception: see exceptions

J

K

L

LexicalHandler interface
must use, else comments do not appear in SAX echo app
how it works
working with a LexicalHandler

line endings
normalization of, to NL (\n)

local subset
referencing the DTD

M

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (9 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

MathML
XML-based standard

methods
comment

LexicalEventListener interface
characters

handling document events
vs. ignorableWhitespace

ignorableWhitespace
documents vs. data, DTD required
vs. characters method

makeParser
setting up the SAX echo app

notationDecl
the DTDHandler API

processingInstruction
processing instructions, handling of

resolveEntity
the EnityResolver API

setDocumentLocator
identifying a document's location
order of, with respect to startDocument

startCDATA / endCDATA
LexicalHandler interface

startDocument / endDocument
explanation of use in the SAX echo app
handling document events
order of, with respect to setDocumentLocator

startDtd / endDtd
using to identify DTD processing with a DtdEventListener

startElement / endElement
handling document events

startParsedEntity / endParsedEntity
LexicalHandler interface

unparsedEntityDecl
the DTDHandler API

MIME data types

used to reference a binary entity

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (10 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

mixed-content model

defining in the DTD

N

Namespace
XML and Related Specs
used to reference a binary entity
w3c specification

NDATA

defining an unparsed entity with

NMTOKEN

DTD attribute type

NMTOKENS

DTD attribute type

nonvalidating parser

See parser

normalization

Normalizing Data
Normalizing DTDs
normalization of line endings to NL (\n)

notation
use of for binary entities (not recommended)

NOTATION

DTD attribute type
use of for binary entities (not recommended)
processing of, using the DTDHandler API

O

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (11 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

OASIS
comments on design of XML documents
repository for DTDs

output

compressing of, in SAX echo app
spacing of, in SAX echo app
writing of, in SAX echo app

P

packages
org.xml.sax
org.xml.sax.helpers
org.w3c.dom
imported into SAX echo app

parameter entity

creating and referencing in the DTD
for reusing an existing DTD definition
summary of entity types
use of, to control conditional sections

parsed entity

summary of entity types
using a LexicalEventListener to echo in XML output
echoing of, with a LexicalEventListener in the SAX echo app

parser

SAX Parser
echoing an XML file with
effect of DTD on, overview of
DTD's Effect on the Nonvalidating Parser
selected using an environment variable

Parser interface

SAX Parser

ParserConfigurationException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (12 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

See exceptions

ParserFactory class
SAX Parser
imported into SAX echo app
used in setting up the SAX echo app

PCDATA

DTD keyword

processing instruction

declaration of
handling of

prolog

The XML Prolog

public ID
See URN

Q

R

REQUIRED
attribute specification in the DTD

RDF

used for traditional data processing
XML and Related Specs
w3c specification

RDF Schema

XML and Related Specs
w3c specification

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (13 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

reference
See entity reference.

RELAX

schema standard

root

writing an XML file
defining in the DTD

running
of SAX echo app
See Also: command scripts

S

SAX
echoing an XML file with
Java XML APIs, overview
SAX Parser
serial access with
XML and Related Specs
w3c specification

SAXException

see exceptions

SAXParseException
see exceptions

schema
use of, for binding
standards

schematron

schema standard

scripts

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (14 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

See: command scripts

SGML

...

SMIL

XML-based standard

SOX

schema standard

SVG

XML-based standard

system ID

See URL

T

tag
used to identify data
Tags and Attributes
Empty Tags
naming of

text

handling text with XML-style syntax

topic maps
knowledge standard

trademark symbols

entity definitions

TREX
schema standard

U

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (15 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

unicode
...

unparsed entity

summary of entity types
referencing a binary entity
defining with the NDATA keyword

URI

use of, when specifying a parameter entity
See Also: URL and URN

URL

identifying the document's location in the SAX echo app
specifying an external entity using a SYSTEM identifier
use of, to specify the DTD

URN

identifying the document's location in the SAX echo app
specifying an external entity using a PUBLIC identifier
use of EntityResolver to convert to a URL

US-ASCII
Java's encoding schemes
setting up I/O in SAX echo app

UTF-8

Java's encoding schemes
setting up I/O in SAX echo app

UTF-16

Java's encoding schemes
setting up I/O in SAX echo app

V

valid
as determined by a DTD

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (16 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

validating parser
effect of DTD on
error handling in
generation of non-fatal errors, from DTD
selected using an environment variable
use of, in SAX echo app

ValidatingParser interface
SAX Parser

visibility heuristic

attributes vs. elements, stylistic choice
example of

W

w3c
XML and Related Specs.

warning

See error conditions

well-formed
with respect to empty Tags
nesting of tags

whitepsace

tracking ignorable whitespace

X

XHTML
XML and Related Specs
w3c specification
reuse of XHTML DTD in the SAX echo app

XLink

XML and Related Specs

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (17 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

w3c specification

XLL

XML and Related Specs
w3c specification

XML

A Quick Introduction to XML
archving, using XML
attributes
binary entitites
binding, using XML
comments
designing an XML document
Document Type Definition
entities
HTML, comparison with

inline reusability
linking
similarity of tags
stylability of documents

parameter entities
processing instructions
prolog
text, substituting of
Writing a Simple XML File
XML and Related Specs

XML Schema
schema standard

Xpath

XSLT and,

XPointer
XML and Related Specs
w3c specification

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (18 of 19) [8/22/2001 12:51:44 PM]

Alpha Index

XSL
used for traditional data processing
stylability of XML documents
XML and Related Specs
XSLT and,
w3c specification

XSL-FO
part of XSL

XSLT

basic standard
overview of APIs
part of XSL
using

XTM

XML Topic Maps

Y

Z

_ (non-alpha)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/alphaIndex.html (19 of 19) [8/22/2001 12:51:44 PM]

Table of Contents

Top Contents Index Glossary

Working with XML: Table of Contents

Part I: Understanding XML and the Java XML APIs
1. A Quick Introduction to XML
What is XML?
Why is XML Important?
What can you do with XML?

2. XML and Related Specs: Digesting the Alphabet Soup
Basic Standards
Schema Standards
Linking and Presentation Standards
Knowledge Standards
Standards that Build on XML
Extended Document Standards
eCommerce Standards

3. An Overview of the APIs
The JAXP APIs
An Overview of the Packages
The Simple API for XML (SAX) APIs
The Document Object Model (DOM) APIs
The XML Style Sheet Translation (XSLT) APIs
Overview of the JAR Files
Where Do You Go from Here?

4. Designing an XML Data Structure
Saving Yourself Some Work
Attributes and Elements
Normalizing Data
Normalizing DTDs

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (1 of 6) [8/22/2001 12:51:46 PM]

Table of Contents

Part II: Serial Access with the Simple API for XML (SAX)
1. Writing a Simple XML File

Creating the File
Writing the Declaration
Adding a Comment
Defining the Root Element
Adding Attributes to an Element
Adding Nested Elements
Adding HTML-Style Text
Adding an Empty Element
The Finished Product

2a. Echoing an XML File with the SAX Parser

Creating the Skeleton
Importing Classes
Setting up for I/O
Implementing the ContentHandler Interface
Setting up the Parser
Writing the Output
Spacing the Output
Handling Content Events
Compiling the Program
Running the Program
Command Scripts
Checking the Output
Identifying the Events
Compressing the Output
Inspecting the Output
Documents and Data

2b. Adding Additional Event Handlers

Identifying the Document's Location
Handling Processing Instructions
Summary

3. Handling Errors with the Nonvalidating Parser

Introducing an Error
Handling a SAXParseException
Handling a SAXException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (2 of 6) [8/22/2001 12:51:46 PM]

Table of Contents

Improving the SAXParseException Handler
Handling a ParserConfigurationException
Handling an IOException
Understanding NonFatal Errors
Handling NonFatal Errors
Handling Warnings

4. Substituting and Inserting Text
Handling Special Characters
Using an Entity Reference in an XML Document
Handling Text with XML-Style Syntax
Handling CDATA and Other Characters

5a. Creating a Document Type Definition (DTD)

Basic DTD Definitions
Defining Text and Nested Elements
Limitations of DTDs
Special Element Values in the DTD
Referencing the DTD

5b. DTD's Effect on the Nonvalidating Parser

Tracking Ignorable Whitespace
Cleanup
Documents and Data
Empty Elements, Revisited

5c. Defining Attributes and Entities in the DTD

Defining Attributes in the DTD
Defining Entities in the DTD
Echoing the Entity References
Additional Useful Entities
Referencing External Entities
Echoing the External Entity
Summarizing Entities

5d. Referencing Binary Entities

Using a MIME Data Type
The Alternative: Using Entity References

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (3 of 6) [8/22/2001 12:51:46 PM]

Table of Contents

6. Using the Validating Parser
Configuring the Factory
Using the Environment Variable
Experimenting with Validation Errors
Error Handling in the Validating Parser

7a. Defining Parameter Entities and Conditional Sections

Creating and Referencing a Parameter Entity
Conditional Sections

7b. Parsing the Parameterized DTD

DTD Warnings

8. Handling Lexical Events
How the LexicalHandler Works
Working with a LexicalHandler

9. Using the DTDHandler and EntityResolver

The DTDHandler API
The EnityResolver API

Part III: XML and the Document Object Model (DOM)
1. Reading XML data into a DOM
Creating the Program
Additional Information
Looking Ahead

2a. Displaying a DOM Hierarchy
Echoing Tree Nodes
Convert DomEcho to a GUI App
Create Adapters to Display the DOM in a JTree
Finish it Up

2b. Examining the Structure of a DOM
Displaying a Simple Tree
Displaying a More Complex Tree
Finishing Up

3. Constructing a User-Friendly JTree from a DOM

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (4 of 6) [8/22/2001 12:51:46 PM]

Table of Contents

Compressing the Tree View
Acting on Tree Selections
Handling Modifications
Finishing Up

4. Creating and Manipulating a DOM
Obtaining a DOM from the Factory
Normalizing the DOM
Other Operations
Finishing Up

5. Using Namespaces
Defining a Namespace
Referencing a Namespace
Defining a Namespace Prefix

Part IV: Using XSLT
1. Introducing XSLT and XPath

The XSLT Packages
How XPath Works
XPath Reference

2. Writing Out a DOM as an XML File

Reading the XML
Creating a Transformer
Writing the XML
Writing Out a Subtree of the DOM
Summary

3. Generating XML from an Arbitrary Data Structure

Creating a Simple File
Creating a Simple Parser
Modifying the "Parser" to Generate SAX Events
Using the Parser as a SAXSource
Doing the Conversion

4. Transforming XML Data with XSLT

Defining an Ultra-Simple article Document Type
Creating a Test Document

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (5 of 6) [8/22/2001 12:51:46 PM]

Table of Contents

Writing an XSLT Transform
Processing the Basic Structure Elements
Writing the Basic Program
Trimming the Whitespace
Processing the Remaining Structure Elements
Process Inline (Content) Elements
Printing the HTML
What Else Can XSLT Do?

5. Concatenating XSLT Transformations with a Filter Chain

Writing the Program
Understanding How it Works
Testing the Program

Additional Information

Java's Encoding Schemes

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/TOC.html (6 of 6) [8/22/2001 12:51:46 PM]

Glossary

Top Contents Index Glossary

XML Glossary

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

A

archiving
Saving the state of an object and restoring it.

attribute

A qualifier on an XML tag that provides additional information. For example, in the tag <slide
title="My Slide">, title is an attribute, and My Slide is its value.

B

binary entity
See unparsed entity.

binding
Construction of the code needed to process a well-defined bit of XML data.

C

comment
Text in an XML document that is ignored, unless the parser is specifically told to recognize it. A
comment is enclosed in a comment tag, like this: <!-- This is a comment -->

content

The part of an XML document that occurs after the prolog, including the root element and
everything it contains.

CDATA

A predefined XML tag for "Character DATA" that says "don't interpret these characters", as

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (1 of 10) [8/22/2001 12:51:56 PM]

Glossary

opposed to "Parsed Character Data" (PCDATA), in which the normal rules of XML syntax apply
(for example, angle brackets demarcate XML tags, tags define XML elements, etc.). CDATA
sections are typically used to show examples of XML syntax. Like this:

 <![CDATA[<slide>..A sample slide..</slide>]]>

which displays as:

 <slide>..A sample slide.. </slide>

D

data

The contents of an element, generally used when the element does not contain any subelements.
When it does, the more general term content is generally used. When the only text in an XML
structure is contained in simple elements, and elements that have subelements have little or no
data mixed in, then that structure is often thought of as XML "data", as opposed to an XML
document.

DDP

Document-Driven Programming. The use of XML to define applications.

declaration

The very first thing in an XML document, which declares it as XML. The minimal declaration is
<?xml version="1.0"?>. The declaration is part of the document prolog.

document
In general, an XML structure in which one or more elements contains text intermixed with
subelements. See also: data.

DOM

Document Object Model. A tree of objects with interfaces for traversing the tree and writing an
XML version of it, as defined by the W3C specification.

DTD

Document Type Definition. An optional part of the document prolog, as specified by the XML

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (2 of 10) [8/22/2001 12:51:56 PM]

Glossary

standard. The DTD specifies constraints on the valid tags and tag sequences that can be in the
document. The DTD has a number of shortcomings however, which has led to various schema
proposals. For example, the DTD entry <!ELEMENT username (#PCDATA)> says that the
XML element called username contains "Parsed Character DATA" -- that is, text alone, with no
other structural elements under it. The DTD includes both the local subset, defined in the current
file, and the external subset, which consists of the definitions contained in external .dtd files that
are referenced in the local subset using a parameter entity.

E

element
A unit of XML data, delimited by tags. An XML element can enclose other elements. For
example, in the XML structure,
"<slideshow><slide>..</slide><slide>..</slide></slideshow>", the
<slideshow> element contains two <slide> elements.

entity
A distinct, individual item that can be included in an XML document by referencing it. Such an
entity reference can name an entity as small as a character (for example, "<", which
references the less-than symbol, or left-angle bracket (<). An entity reference can also reference
an entire document, or external entity, or a collection of DTD definitions (a parameter entity).

entity reference
A reference to an entity that is substituted for the reference when the XML document is parsed. It
may reference a predefined entity like < or it may reference one that is defined in the DTD. In
the XML data, the reference could be to an entity that is defined in the local subset of the DTD or
to an external XML file (an external entity). The DTD can also carve out a segment of DTD
specifications and give it a name so that it can be reused (included) at multiple points in the DTD
by defining a parameter entity.

error
A SAX parsing error is generally a validation error -- in other words, it occurs when an XML
document is not valid, although it can also occur if the declaration specifies an XML version that
the parser cannot handle. See also: fatal error, warning.

external entity
An entity that exists as an external XML file, which is included in the XML document using an
entity reference.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (3 of 10) [8/22/2001 12:51:56 PM]

Glossary

external subset
That part of the DTD that is defined by references to external .dtd files.

F

fatal error
A fatal error occurs in the SAX parser when a document is not well formed, or otherwise cannot
be processed. See also: error, warning.

G

general entity
An entity that is referenced as part of an XML document's content, as distinct from a parameter
entity, which is referenced in the DTD. A general entity can be a parsed entity or an unparsed
entity.

H

HTML
HyperText Markup Language. The language of the Web. A system where every document has a
globally unique location, and documents can link to one another.

I

J

K

L

local subset
That part of the DTD that is defined within the current XML file.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (4 of 10) [8/22/2001 12:51:56 PM]

Glossary

M

mixed-content model
A DTD specification that defines an element as containing a mixture of text and one more other
elements. The specification must start with #PCDATA, followed by alternate elements, and must
end with the "zero-or-more" asterisk symbol (*). For example:

 <!ELEMENT item (#PCDATA | item)* >

N

namespace
A standard that lets you specify a unique label to the set of element names defined by a DTD. A
document using that DTD can be included in any other document without having a conflict
between element names. The elements defined in your DTD are then uniquely identified so that,
for example, the parser can tell when an element called <name> should be interpreted according
to your DTD, rather than using the definition for an element called "name" in a different DTD.

normalization
The process of removing redundancy by modularizing, as with subroutines, and of removing
superfluous differences by reducing them to a common denominator. For example, line endings
from different systems are normalized by reducing them to a single NL, and multiple whitespace
characters are normalized to one space.

notation

A mechanism for defining a data format for a non-XML document referenced as an unparsed
entity. This is a holdover from SGML that creaks a bit. The newer standard is to use MIME
datatypes and namespaces to prevent naming conflicts.

O

OASIS
Organization for the Advancement of Structured Information Standards. Their home site is
http://www.oasis-open.org/. The DTD repository they sponsor is at http://www.XML.org.

P

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (5 of 10) [8/22/2001 12:51:56 PM]

http://www.oasis-open.org/
http://www.xml.org/

Glossary

parameter entity
An entity that consists of DTD specifications, as distinct from a
general entity. A parameter entity defined in the DTD can then be referenced at other points, in
order to prevent having to recode the definition at each location it is used.

parsed entity
A general entity which contains XML, and which is therefore parsed when inserted into the XML
document, as opposed to an unparsed entity.

parser
A module that reads in XML data from an input source and breaks it up into chunks so that your
program knows when it is working with a tag, an attribute, or element data. A nonvalidating
parser ensures that the XML data is well formed, but does not verify that it is valid.
See also: validating parser.

processing instruction

Information contained in an XML structure that is intended to be interpreted by a specific
application.

prolog

The part of an XML document that precedes the XML data. The prolog includes the declaration
and an optional DTD.

Q

R

reference
See entity reference

RDF
Resource Description Framework. A standard for defining the kind of data that an XML file
contains. Such information could help ensure semantic integrity, for example by helping to make
sure that a date is treated as a date, rather than simply as text.

RDF schema
A standard for specifying consistency rules (for example, price must be greater than zero,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (6 of 10) [8/22/2001 12:51:56 PM]

Glossary

discount must be less than 15%) that apply to the specifications contained in an RDF.

root
The outermost element in an XML document. The element that contains all other elements.

S

SAX
"Simple API for XML". An event-driven interface in which the parser invokes one of several
methods supplied by the caller when a "parsing event" occurs. "Events" include recognizing an
XML tag, finding an error, encountering a reference to an external entity, or processing a DTD
specification.

schema
A database-inspired method for specifying constraints on XML documents using an XML-based
language. Schemas address deficiencies in DTDs, such as the inability to put constraints on the
kinds of data that can occur in a particular field (for example, all numeric). Since schemas are
founded on XML, they are hierarchical, so it is easier to create an unambiguous specification, and
possible to determine the scope over which a comment is meant to apply.

SGML
Standard Generalized Markup Language. The parent of both HTML and XML. However, while
HTML shares SGML's propensity for embedding presentation information in the markup, XML is
a standard that allows information content to be totally separated from the mechanisms for
rendering/displaying that content.

T

tag
A piece of text that describes a unit of data, or element, in XML. The tag is distinguishable as
markup, as opposed to data, because it is surrounded by angle brackets (< and >). For example,
the element <name>My Name</name> has the start tag <name>, the end tag </name>,
which enclose the data "My Name". To treat such markup syntax as data, you use an entity
reference or a CDATA section.

U

Unicode

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (7 of 10) [8/22/2001 12:51:56 PM]

Glossary

A standard defined by the Unicode Consortium that uses a 16-bit "code page" which maps digits
to characters in languages around the world. Because 16 bits covers 32,768 codes, Unicode is
large enough to include all the world's languages, with the exception of ideographic languages
that have a different character for every concept, like Chinese. For more info, see
http://www.unicode.org/.

unparsed entity
A general entity that contains something other than XML. By its nature, then, an unparsed entity
contains binary data.

URI
A "Universal Resource Identifier". A URI is either a URL or a URN. (URLs and URNs are
concrete entities that actually exist. A "URI" is an abstract superclass -- it's a name we can use
when we know we are dealing with either an URL or an URN, and we don't care which.

URL
Universal Resource Locator. A pointer to a specific location (address) on the Web that is unique
in all the world. The first part of the URL defines the type of address. For example, http:/
identifies a Web location. The ftp:/ prefix identifies a downloadable file. Other prefixes
include file:/ (a file on the local disk system) and mailto:/ (an email address).

URN
Universal Resource Name. A unique identifier that identifies an entity, but doesn't tell where it is
located. That lets the system look it up to see if a local copy exists before going out to find it on
the Web. It also allows the web location to change, while still allowing the object to be found.

V

valid
A valid XML document, in addition to being well formed, conforms to all the constraints imposed
by a DTD. In other words, it does not contain any tags that are not permitted by the DTD, and the
order of the tags conforms to the DTD's specifications.

validating parser
A validating parser is a parser which ensures that an XML document is valid, as well as well-
formed.
See also: parser.

W
http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (8 of 10) [8/22/2001 12:51:56 PM]

http://www.unicode.org/

Glossary

w3c
The World Wide Web Consortium. The international body that governs Internet standards.

warning
A SAX parser warning is generated when the document's DTD contains duplicate definitions, and
similar situations that are not necessarily an error, but which the document author might like to
know about, since they could be. See also: fatal error, error.

well-formed
A well-formed XML document is syntactically correct. It does not have any angle brackets that
are not part of tags. (The entity references < and > are used to embed angle brackets in
an XML document.) In addition, all tags have an ending tag or are themselves self-ending
(<slide>..</slide> or <slide/>). In addition, in a well-formed document, all tags are
fully nested. They never overlap, so this arrangement would produce an error:
<slide>. Knowing that a document is well formed makes
it possible to process it. A well-formed document may not be valid however. To determine that,
you need a validating parser and a DTD.

X

XHTML
An XML lookalike for HTML defined by one of several XHTML DTDs. To use XHTML for
everything would of course defeat the purpose of XML, since the idea of XML is to identify
information content, not just tell how to display it. XHTML makes the conversion from HTML to
XML, though. You can also reference it in a DTD, which allows you to say, for example, that the
text in an element can contain and tags, rather than being limited to plain text.

XLink
The part of the XLL specification that is concerned with specifying links between documents.

XLL
The XML Link Language specification, consisting of XLink and XPointer.

XML
Extensible Markup Language, which allows you to define the tags (markup) that you need to
identify the data and text in XML documents.

XML Schema

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (9 of 10) [8/22/2001 12:51:56 PM]

http://www.w3.org/

Glossary

The w3c schema specification for XML documents..

XPath
See XSL.

XPointer

The part of the XLL specification that is concerned with identifying sections of documents so that
they can referenced in links or included in other documents.

XSL
Extensible Stylesheet Language. An important standard that achieves several goals. XSL lets you:

a. Specify an addressing mechanism, so you can identify the parts of an XML file that a
transformation applies to. (XPath)

b. Specify tag conversions, so you convert XML data into a different formats. (XSLT)
c. Specify display characteristics, such page sizes, margins, and font heights and widths, as

well as the flow objects on each page. Information fills in one area of a page and then
flows automatically flows to the next object when that area fills up. That allows you to
wrap text around pictures, for example, or to continue a newsletter article on a different
page. (XML-FO)

XSL-FO

See XSL.

XSLT

See XSL.

Y

Z

_ (non-alpha)

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z _

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/glossary.html (10 of 10) [8/22/2001 12:51:56 PM]

Serial Access with SAX

Top Contents Index Glossary

Part II: Serial Access with the Simple API for XML
(SAX)

Link Summary

Local Links

● Manipulating Document
Contents with the Document
Object Model

In this part of the tutorial, we focus on the event-driven, serial-
access mechanism for accessing XML documents, SAX. This
is the protocol that most servlets and network-oriented
programs will want to use to transmit and receive XML
documents, because it's the fastest and least memory-intensive
mechanism that is currently available for dealing with XML
documents.

On the other hand, the SAX protocol requires a lot more
programming than the Document Object Model (DOM). It's also a bit harder to visualize, because it is an
event-driven model. (You provide the callback methods, and the parser invokes them as it reads the XML
data.) Finally, you can't "back up" to an earlier part of the document, or rearrange it, any more than you
can back up a serial data stream or rearrange characters you have read from that stream.

For those reasons, developers who are writing a user-oriented application that displays an XML
document and possibly modifies it will want to use the DOM mechanism described in the next part of the
tutorial, Manipulating Document Contents with the Document Object Model.

However, even if you plan to do build DOM apps exclusively, there are several important reasons for
familiarizing yourself with the SAX model:

● Same Error Handling
When parsing a document for a DOM, the same kinds of exceptions are generated, so the error
handling for JAXP SAX and DOM apps are identical.

● Handling Validation Errors
By default, the specifications require that validation errors (which you'll be learning more about in
this part of the tutorial) are ignored. If you want to throw an exception in the event of a validation
error (and you probably do) then you need to understand how the SAX error handling works.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/index.html (1 of 2) [8/22/2001 12:51:57 PM]

Serial Access with SAX

● Converting Existing Data
As you'll see in the DOM section of the tutorial, Sun's reference implementation provides a
mechanism you can use to convert an existing data set to XML -- however, taking advantage of
that mechanism requires an understanding the SAX model.

What You'll Learn

This section of the tutorial covers the following topics:

1. Writing a Simple XML File
2. a) Echoing an XML File with the SAX Parser

b) Adding Additional Event Handlers
3. Handling Errors with the Nonvalidating Parser
4. Substituting and Inserting Text
5. a) Creating a Document Type Definition (DTD)

b) DTD's Effect on the Nonvalidating Parser
c) Defining Attributes and Entities
d) Referencing Binary Entitites

6. Using the Validating Parser
7. a) Defining Parameter Entities and Conditional Sections

b) Parsing the Parameterized DTD
8. Using a LexicalEventListener
9. Using the DTDHandler and EntityResolver

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/index.html (2 of 2) [8/22/2001 12:51:57 PM]

Manipulating Contents with DOM

Top Contents Index Glossary

Part III: XML and the Document Object Model (DOM)

Link Summary

Glossary Terms

DOM, element, SAX

In the SAX section of the tutorial, you wrote an XML file that
contains slides for a presentation. You then used the Simple
API for XML (SAX) API to echo the XML to your display.

In this section of the tutorial, you'll use the Document Object
Model (DOM) to build a small SlideShow application. You'll
start by constructing a DOM and inspecting it, then see how to write a DOM as an XML structure,
display it in a GUI, and manipulate the tree structure.

Overview of the Document Object Model

A Document Object Model is a garden-variety tree structure, where each node contains one of the
components from an XML structure. The two most common types of nodes are element nodes and text
nodes. Using DOM functions lets you create nodes, remove nodes, change their contents, and traverse
the node hierarchy.

What You'll Learn

In this section of the tutorial, you'll parse an existing XML file to construct a DOM, display and inspect
the DOM hierarchy, convert the DOM into a user-friendly JTree, and explore the syntax of namespaces.
You'll also create a DOM from scratch, and see how to use some of the implementation-specific features
in Sun's JAXP reference implementation to convert an existing data set to XML.

This section of the tutorial covers the following topics:

1. Reading XML data into a DOM
2. a) Displaying a DOM Hierarchy

b) Examining the Structure of a DOM
3. Constructing a User-Friendly JTree from a DOM
4. Creating and Manipulating a DOM

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/index.html (1 of 2) [8/22/2001 12:51:57 PM]

Manipulating Contents with DOM

5. Using Namespaces

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/index.html (2 of 2) [8/22/2001 12:51:57 PM]

Using XSLT

Top Contents Index Glossary

Part IV: Using XSLT

Link Summary

Glossary Terms

XSLT

In this section of the tutorial, you'll learn how to use XSLT to
write out a DOM as an XML file. You'll also see how to
generate a DOM from an arbitrary data file in order to convert
it to XML. Finally, you'll use XSLT to convert XML data into
a different form, unlocking the mysteries of the XPath
addressing mechanism along the way.

Overview of the Xml Stylesheet Language for Transformations
(XSLT)

XSLT defines mechanisms for addressing XML data (XPath) and for specifying transformations on the
data, in order to convert it into other forms

What You'll Learn

In this section of the tutorial, you'll parse an existing XML file to construct a DOM, display and inspect
the DOM hierarchy, convert the DOM into a user-friendly JTree, and explore the syntax of namespaces.
You'll also create a DOM from scratch, and see how to use some of the implementation-specific features
in Sun's JAXP reference implementation to convert an existing data set to XML.

This section of the tutorial covers the following topics:

1. Introducting XSLT and XPath
2. Writing Out a DOM as an XML File
3. Generating XML from an Arbitrary Data Structure
4. Transforming XML Data with XSLT
5. Concatenating XSLT Transformations with a Filter Chain

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/index.html (1 of 2) [8/22/2001 12:51:58 PM]

Using XSLT

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/index.html (2 of 2) [8/22/2001 12:51:58 PM]

5a. Creating a DTD

Top Contents Index Glossary

5a. Creating a Document Type Definition (DTD)

Link Summary

Exercise Links

● slideshow1a.dtd
● slideshow1a-dtd.html
● slideSample05.xml
● slideSample05-xml.html

Glossary Terms

declaration, DTD, external
subset, local subset, mixed-
content model, prolog, root,
valid

After the XML declaration, the document prolog can include a
DTD, which lets you specify the kinds of tags that can be
included in your XML document. In addition to telling a
validating parser which tags are valid, and in what
arrangements, a DTD tells both validating and nonvalidating
parsers where text is expected, which lets the parser determine
whether the whitespace it sees is significant or ignorable.

Basic DTD Definitions

When you were parsing the slide show, for example, you saw
that the characters method was invoked multiple times
before and after comments and slide elements. In those cases,
the whitespace consisted of the line endings and indentation
surrounding the markup. The goal was to make the XML
document readable -- the whitespace was not in any way part
of the document contents. To begin learning about DTD
definitions, let's start by telling the parser where whitespace is ignorable.

Note: The DTD defined in this section is contained in slideshow1a.dtd. (The
browsable version is slideshow1a-dtd.html.)

Start by creating a file named slideshow.dtd. Enter an XML declaration and a comment to identify
the file, as shown below:

<?xml version='1.0' encoding='utf-8'?>

<!-- DTD for a simple "slide show". -->

Next, add the text highlight below to specify that a slideshow element contains slide elements and
nothing else:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5a_dtd.html (1 of 5) [8/22/2001 12:51:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1a.dtd
http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1a.dtd

5a. Creating a DTD

<!-- DTD for a simple "slide show". -->

<!ELEMENT slideshow (slide+)>

As you can see, the DTD tag starts with <! followed by the tag name (ELEMENT). After the tag name
comes the name of the element that is being defined (slideshow) and, in parentheses, one or more
items that indicate the valid contents for that element. In this case, the notation says that a slideshow
consists of one or more slide elements.

Without the plus sign, the definition would be saying that a slideshow consists of a single slide
element. Here are the qualifiers you can add to an element definition:

Qualifier Name Meaning

? Question Mark Optional (zero or one)

* Asterisk Zero or more

+ Plus Sign One or more

You can include multiple elements inside the parentheses in a comma separated list, and use a qualifier
on each element to indicate how many instances of that element may occur. The comma-separated list
tells which elements are valid and the order they can occur in.

You can also nest parentheses to group multiple items. For an example, after defining an image element
(coming up shortly), you could declare that every image element must be paired with a title element
in a slide by specifying ((image, title)+). Here, the plus sign applies to the image/title pair
to indicate that one or more pairs of the specified items can occur.

Defining Text and Nested Elements

Now that you have told the parser something about where not to expect text, let's see how to tell it where
text can occur. Add the text highlighted below to define the slide, title, item, and list elements:

<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

The first line you added says that a slide consists of a title followed by zero or more item elements.
Nothing new there. The next line says that a title consists entirely of parsed character data (PCDATA).
That's known as "text" in most parts of the country, but in XML-speak it's called "parsed character data".

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5a_dtd.html (2 of 5) [8/22/2001 12:51:59 PM]

5a. Creating a DTD

(That distinguishes it from CDATA sections, which contain character data that is not parsed.) The "#" that
precedes PCDATA indicates that what follows is a special word, rather than an element name.

The last line introduces the vertical bar (|), which indicates an or condition. In this case, either PCDATA
or an item can occur. The asterisk at the end says that either one can occur zero or more times in
succession. The result of this specification is known as a mixed-content model, because any number of
item elements can be interspersed with the text. Such models must always be defined with #PCDATA
specified first, some number of alternate items divided by vertical bars (|), and an asterisk (*) at the end.

Limitations of DTDs

It would be nice if we could specify that an item contains either text, or text followed by one or more
list items. But that kind of specification turns out to be hard to achieve in a DTD. For example, you
might be tempted to define an item like this:

<!ELEMENT item (#PCDATA | (#PCDATA, item+)) >

That would certainly be accurate, but as soon as the parser sees #PCDATA and the vertical bar, it requires
the remaining definition to conform to the mixed-content model. This specification doesn't, so you get
can error that says: Illegal mixed content model for 'item'. Found (...,
where the hex character 28 is the angle bracket the ends the definition.

Trying to double-define the item element doesn't work, either. A specification like this:

<!ELEMENT item (#PCDATA) >
<!ELEMENT item (#PCDATA, item+) >

produces a "duplicate definition" warning when the validating parser runs. The second definition is, in
fact, ignored. So it seems that defining a mixed content model (which allows item elements to be
interspersed in text) is about as good as we can do.

In addition to the limitations of the mixed content model mentioned above, there is no way to further
qualify the kind of text that can occur where PCDATA has been specified. Should it contain only
numbers? Should be in a date format, or possibly a monetary format? There is no way to say in the
context of a DTD.

Finally, note that the DTD offers no sense of hierarchy. The definition for the title element applies
equally to a slide title and to an item title. When we expand the DTD to allow HTML-style markup
in addition to plain text, it would make sense to restrict the size of an item title compared to a slide
title, for example. But the only way to do that would be to give one of them a different name, such as
"item-title". The bottom line is that the lack of hierarchy in the DTD forces you to introduce a

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5a_dtd.html (3 of 5) [8/22/2001 12:51:59 PM]

5a. Creating a DTD

"hyphenation hierarchy" (or its equivalent) in your namespace. All of these limitations are fundamental
motivations behind the development of schema-specification standards.

Special Element Values in the DTD

Rather than specifying a parenthesized list of elements, the element definition could use one of two
special values: ANY or EMPTY. The ANY specification says that the element may contain any other
defined element, or PCDATA. Such a specification is usually used for the root element of a general-
purpose XML document such as you might create with a word processor. Textual elements could occur
in any order in such a document, so specifying ANY makes sense.

The EMPTY specification says that the element contains no contents. So the DTD for email messages that
let you "flag" the message with <flag/> might have a line like this in the DTD:

<!ELEMENT flag EMPTY>

Referencing the DTD

In this case, the DTD definition is in a separate file from the XML document. That means you have to
reference it from the XML document, which makes the DTD file part of the external subset of the full
Document Type Definition (DTD) for the XML file. As you'll see later on, you can also include parts of
the DTD within the document. Such definitions constitute the local subset of the DTD.

Note: The XML written in this section is contained in slideSample05.xml. (The
browsable version is slideSample05-xml.html.)

To reference the DTD file you just created, add the line highlighted below to your slideSample.xml
file:

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow.dtd">

<slideshow

Again, the DTD tag starts with "<!". In this case, the tag name, DOCTYPE, says that the document is a
slideshow, which means that the document consists of the slideshow element and everything
within it:

<slideshow>
 ...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5a_dtd.html (4 of 5) [8/22/2001 12:51:59 PM]

5a. Creating a DTD

</slideshow>

This tag defines the slideshow element as the root element for the document. An XML document
must have exactly one root element. This is where that element is specified. In other words, this tag
identifies the document content as a slideshow.

The DOCTYPE tag occurs after the XML declaration and before the root element. The SYSTEM identifier
specifies the location of the DTD file. Since it does not start with a prefix like http:/ or file:/, the
path is relative to the location of the XML document. Remember the setDocumentLocator method?
The parser is using that information to find the DTD file, just as your application would to find a file
relative to the XML document. A PUBLIC identifier could also be used to specify the DTD file using a
unique name -- but the parser would have to be able to resolve it

The DOCTYPE specification could also contain DTD definitions within the XML document, rather than
referring to an external DTD file. Such definitions would be contained in square brackets, like this:.

<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [
 ...local subset definitions here...
]>

You'll take advantage of that facility later on to define some entities that can be used in the document.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5a_dtd.html (5 of 5) [8/22/2001 12:51:59 PM]

5c. Attributes and Entities in a DTD

Top Contents Index Glossary

5c. Defining Attributes and Entities in the DTD

Link Summary

Exercise Links

● slideshow1b.dtd
● slideshow1b-dtd.html
● slideSample06.xml
● slideSample06-xml.html
● Echo09-06
● slideSample07.xml
● slideSample07-xml.html
● copyright.xml
● copyright-xml.html
● Echo09-07

Glossary Terms

entity, external entity, notation

The DTD you've defined so far is fine for use with the
nonvalidating parser. It tells where text is expected and where
it isn't, which is all the nonvalidating parser is going to pay
attention to. But for use with the validating parser, the DTD
needs to specify the valid attributes for the different elements.
You'll do that in this section, after which you'll define one
internal entity and one external entity that you can reference in
your XML file.

Defining Attributes in the DTD

Let's start by defining the attributes for the elements in the
slide presentation.

Note:
The XML written in this section is contained in
slideshow1b.dtd. (The browsable version is
slideshow1b-dtd.html.)

Add the text highlighted below to define the attributes for the
slideshow element:

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow
 title CDATA #REQUIRED
 date CDATA #IMPLIED
 author CDATA "unknown"
>
<!ELEMENT slide (title, item*)>

The DTD tag ATTLIST begins the series of attribute definitions. The name that follows ATTLIST

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (1 of 7) [8/22/2001 12:52:00 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1b.dtd
http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1b.dtd

5c. Attributes and Entities in a DTD

specifies the element for which the attributes are being defined. In this case, the element is the
slideshow element. (Note once again the lack of hierarchy in DTD specifications.)

Each attribute is defined by a series of three space-separated values. Commas and other separators are not
allowed, so formatting the definitions as shown above is helpful for readability. The first element in each
line is the name of the attribute: title, date, or author, in this case. The second element indicates
the type of the data: CDATA is character data -- unparsed data, once again, in which a left-angle bracket
(<) will never be construed as part of an XML tag. The following table presents the valid choices for the
attribute type.

Attribute Type Specifies...

(value1 | value2 | ...) A list of values separated by vertical bars. (Example below)

CDATA "Unparsed character data". (For normal people, a text string.)

ID A name that no other ID attribute shares.

IDREF A reference to an ID defined elsewhere in the document.

IDREFS A space-separated list containing one or more ID references.

ENTITY The name of an entity defined in the DTD.

ENTITIES A space-separated list of entities.

NMTOKEN
A valid XML name composed of letters, numbers, hyphens,
underscores, and colons.

NMTOKENS A space-separated list of names.

NOTATION
The name of a DTD-specified notation, which describes a non-
XML data format, such as those used for image files.*

*This is a rapidly obsolescing specification which will be discussed in greater length
towards the end of this section.

When the attribute type consists of a parenthesized list of choices separated by vertical bars, the attribute
must use one of the specified values. For an example, add the text highlighted below to the DTD:

<!ELEMENT slide (title, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

This specification says that the slide element's type attribute must be given as type="tech",

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (2 of 7) [8/22/2001 12:52:00 PM]

5c. Attributes and Entities in a DTD

type="exec", or type="all". No other values are acceptable. (DTD-aware XML editors can use
such specifications to present a pop-up list of choices.)

The last entry in the attribute specification determines the attributes default value, if any, and tells
whether or not the attribute is required. The table below shows the possible choices.

Specification Specifies...

#REQUIRED The attribute value must be specified in the document.

#IMPLIED
The value need not be specified in the document. If it
isn't, the application will have a default value it uses.

"defaultValue"
The default value to use, if a value is not specified in
the document.

#FIXED "fixedValue"
The value to use. If the document specifies any value at
all, it must be the same.

Defining Entities in the DTD

So far, you've seen predefined entities like & and you've seen that an attribute can reference an
entity. It's time now for you to learn how to define entities of your own.

Note: The XML defined here is contained in slideSample06.xml. (The browsable
version is slideSample06-xml.html.) The output is shown in Echo09-06.

Add the text highlighted below to the DOCTYPE tag in your XML file:

<!DOCTYPE slideshow SYSTEM "slideshow1.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets">
]>

The ENTITY tag name says that you are defining an entity. Next comes the name of the entity and its
definition. In this case, you are defining an entity named "product" that will take the place of the product
name. Later when the product name changes (as it most certainly will), you will only have to change the
name one place, and all your slides will reflect the new value.

The last part is the substitution string that replaces the entity name whenever it is referenced in the XML
document. The substitution string is defined in quotes, which are not included when the text is inserted
into the document.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (3 of 7) [8/22/2001 12:52:00 PM]

5c. Attributes and Entities in a DTD

Just for good measure, we defined two versions, one singular and one plural, so that when the marketing
mavens come up with "Wally" for a product name, you will be prepared to enter the plural as "Wallies"
and have it substituted correctly.

Note: Truth be told, this is the kind of thing that really belongs in an external DTD. That
way, all your documents can reference the new name when it changes. But, hey, this is an
example...

Now that you have the entities defined, the next step is to reference them in the slide show. Make the
changes highlighted below to do that:

<slideshow
 title="WonderWidget&product; Slide Show"
 ...

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets&products;!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets&products; are great</item>
 <item/>
 <item>Who buys WonderWidgets&products;</item>
 </slide>

The points to notice here are that entities you define are referenced with the same syntax
(&entityName;) that you use for predefined entities, and that the entity can be referenced in an
attribute value as well as in an element's contents.

Echoing the Entity References

When you run the Echo program on this version of the file, here is the kind of thing you see:

ELEMENT: <title>
CHARS: Wake up to
CHARS: WonderWidgets
CHARS: !
END_ELM: </title>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (4 of 7) [8/22/2001 12:52:00 PM]

5c. Attributes and Entities in a DTD

Note that the existence of the entity reference generates an extra call to the characters method, and
that the text you see is what results from the substitution.

Additional Useful Entities

Here are three other examples for entity definitions that you might find useful when you write an XML
document:

<!ENTITY ldquo "“"> <!-- Left Double Quote -->
<!ENTITY rdquo "”"> <!-- Right Double Quote -->
<!ENTITY trade "™"> <!-- Trademark Symbol (TM) -->
<!ENTITY rtrade "®"> <!-- Registered Trademark (R) -->
<!ENTITY copyr "©"> <!-- Copyright Symbol -->

Referencing External Entities

You can also use the SYSTEM or PUBLIC identifier to name an entity that is defined in an external file.
You'll do that now.

Note: The XML defined here is contained in slideSample07.xml and in
copyright.xml. (The browsable versions are slideSample07-xml.html and
copyright-xml.html.) The Echo output is shown in Echo09-07.

To reference an external entity, add the text highlighted below to the DOCTYPE statement in your XML
file:

<!DOCTYPE slideshow SYSTEM "slideshow.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets">
 <!ENTITY copyright SYSTEM "copyright.xml">
]>

This definition references a copyright message contained in a file named copyright.xml. Create that
file and put some interesting text in it, perhaps something like this:

<!-- A SAMPLE copyright -->
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (5 of 7) [8/22/2001 12:52:00 PM]

5c. Attributes and Entities in a DTD

Finally, add the text highlighted below to your slideSample.xml file to reference the external entity:

<!-- TITLE SLIDE -->
 ...
</slide>

<!-- COPYRIGHT SLIDE -->
<slide type="all">
 <item>©right;</item>
</slide>

You could also use an external entity declaration to access a servlet that produces the current date using a
definition something like this:

 <!ENTITY currentDate SYSTEM
 "http://www.example.com/servlet/CurrentDate?fmt=dd-MMM-yyyy">

You would then reference that entity the same as any other entity:

Today's date is ¤tDate;.

Echoing the External Entity

When you run the Echo program on your latest version of the slide presentation, here is what you see:

 ...
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <item>
 CHARS:
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...
 END_ELM: </item>
 END_ELM: </slide>
 ...

Note that the newline which follows the comment in the file is echoed as a character, but that the
comment itself is ignored. That is the reason that the copyright message appears to start on the next line

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (6 of 7) [8/22/2001 12:52:00 PM]

5c. Attributes and Entities in a DTD

after the CHARS: label, instead of immediately after the label -- the first character echoed is actually the
newline that follows the comment.

Summarizing Entities

An entity that is referenced in the document content, whether internal or external, is termed a general
entity. An entity that contains DTD specifications that are referenced from within the DTD is termed a
parameter entity. (More on that later.)

An entity which contains XML (text and markup), and which is therefore parsed, is known as a parsed
entity. An entity which contains binary data (like images) is known as an unparsed entity. (By its very
nature, it must be external.) We'll be discussing references to unparsed entities in the next section of this
tutorial.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5c_dtd.html (7 of 7) [8/22/2001 12:52:00 PM]

1. Writing a Simple XML File

Top Contents Index Glossary

1. Writing a Simple XML File

Link Summary

Local Links

● A Quick Introduction to XML
● Java's Encoding Schemes
● The XML Prolog
● Using a LexicalHandler
● Parsing the Parameterized DTD

Exercise Links

● slideSample01.xml
● slideSample01-xml.html

Glossary Terms

attribute, declaration, DTD,
element, namespace, tag,
XHTML

Let's start out by writing up a simple version of the kind of
XML data you could use for a slide presentation. In this
exercise, you'll use your text editor to create the data in order
to become comfortable with the basic format of an XML file.
You'll be using this file and extending it in later exercises.

Creating the File

Using a standard text editor, create a file called
slideSample.xml.

Note: Here is a version of it that already exists:
slideSample01.xml. (The browsable version is
slideSample01-xml.html.) You can use this version to
compare your work, or just review it as you read this
guide.

Writing the Declaration

Next, write the declaration, which identifies the file as an
XML document. The declaration starts with the characters
"<?", which is the standard XML identifier for a processor
instruction. (You'll see other processor instructions later on in this tutorial.)

<?xml version='1.0' encoding='utf-8'?>

This line identifies the document as an XML document that conforms to version 1.0 of the XML
specification, and says that it uses the 8-bit Unicode character-encoding scheme. (For information on
encoding schemes, see Java's Encoding Schemes.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (1 of 6) [8/22/2001 12:52:01 PM]

1. Writing a Simple XML File

Since the document has not been specified as "standalone", the parser assumes that it may contain
references to other documents. (To see how to specify a document as "standalone", see A Quick
Introduction to XML, The XML Prolog.)

Adding a Comment

Comments are ignored by XML parsers. You never see them in fact, unless you activate special settings
in the parser. You'll see how to do that later on in the tutorial, when we discuss Using a LexicalHandler.
For now, add the text highlighted below to put a comment into the file.

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

Defining the Root Element

After the declaration, every XML file defines exactly one element, known as the root element. Any other
elements in the file are contained within that element. Enter the text highlighted below to define the root
element for this file, slideshow:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow>

</slideshow>

Note:
XML element names are case-sensitive. The end-tag must exactly match the start-tag.

Adding Attributes to an Element

A slide presentation has a number of associated data items, none of which require any structure. So it is
natural to define them as attributes of the slideshow element. Add the text highlighted below to set up
some attributes:

...
<slideshow
 title="Sample Slide Show"
 date="Date of publication"

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (2 of 6) [8/22/2001 12:52:01 PM]

1. Writing a Simple XML File

 author="Yours Truly"
 >

</slideshow>

When you create a name for a tag or an attribute, you can use hyphens ("-"), underscores ("_"), colons
(":"), and periods (".") in addition to characters and numbers. Unlike HTML, values for XML attributes
are always in quotation marks, and multiple attributes are never separated by commas.

Note:
Colons should be used with care or avoided altogether, because they are used when
defining the namespace for an XML document.

Adding Nested Elements

XML allows for hierarchically structured data, which means that an element can contain other elements.
Add the text highlighted below to define a slide element and a title element contained within it:

<slideshow
 ...
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

</slideshow>

Here you have also added a type attribute to the slide. The idea of this attribute is that slides could be
earmarked for a mostly technical or mostly executive audience with type="tech" or type="exec",
or identified as suitable for both with type="all".

More importantly, though, this example illustrates the difference between things that are more usefully
defined as elements (the title element) and things that are more suitable as attributes (the type attribute).
The visibility heuristic is primarily at work here. The title is something the audience will see. So it is an
element. The type, on the other hand, is something that never gets presented, so it is an attribute. Another
way to think about that distinction is that an element is a container, like a bottle. The type is a
characteristic of the container (is it tall or short, wide or narrow). The title is a characteristic of the
contents (water, milk, or tea). These are not hard and fast rules, of course, but they can help when you
design your own XML structures.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (3 of 6) [8/22/2001 12:52:01 PM]

1. Writing a Simple XML File

Adding HTML-Style Text

Since XML lets you define any tags you want, it makes sense to define a set of tags that look like HTML.
The XHTML standard does exactly that, in fact. You'll see more about that towards the end of the SAX
tutorial. For now, type the text highlighted below to define a slide with a couple of list item entries that
use an HTML-style tag for emphasis (usually rendered as italicized text):

 ...
 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

We'll see later that defining a title element conflicts with the XHTML element that uses the same name.
We'll discuss the mechanism that produces the conflict (the DTD) and several possible solutions when
we cover Parsing the Parameterized DTD.

Adding an Empty Element

One major difference between HTML and XML, though, is that all XML must be well-formed -- which
means that every tag must have an ending tag or be an empty tag. You're getting pretty comfortable with
ending tags, by now. Add the text highlighted below to define an empty list item element with no
contents:

 ...
 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (4 of 6) [8/22/2001 12:52:01 PM]

1. Writing a Simple XML File

</slideshow>

Note that any element can be empty element. All it takes is ending the tag with "/>" instead of ">". You
could do the same thing by entering <item></item>, which is equivalent.

Note:
Another factor that makes an XML file well-formed is proper nesting. So
<i>some text</i> is well-formed, because the <i>...</i> sequence is
completely nested within the .. tag. This sequence, on the other hand, is not
well-formed: <i>some text</i>.

The Finished Product

Here is the completed version of the XML file:

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>
</slideshow>

Now that you've created a file to work with, you're ready to write a program to echo it using the SAX
parser. You'll do that in the next section.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (5 of 6) [8/22/2001 12:52:01 PM]

1. Writing a Simple XML File

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/1_write.html (6 of 6) [8/22/2001 12:52:01 PM]

4. Substituting and Inserting Text

Top Contents Index Glossary

4. Substituting and Inserting Text

Link Summary

Exercise Links

● slideSample03.xml
● slideSample03-xml.html
● Echo07-03
● slideSample04.xml
● slideSample04-xml.html
● Echo07-04

API Links

● LexicalHandler

Glossary Terms

CDATA, DTD, entity, entity
reference

The next thing we want to with the parser is to customize it a
bit, so you can see how to get information it usually ignores.
But before we can do that, you're going to need to learn a few
more important XML concepts. In this section, you'll learn
about:

● Handling Special Characters ("<", "&", and so on)

● Handling Text with XML-style syntax

Handling Special Characters

In XML, an entity is an XML structure (or plain text) that has
a name. Referencing the entity by name causes it to be
inserted into the document in place of the entity reference. To
create an entity reference, the entity name is surrounded by an
ampersand and a semicolon, like this:

&entityName;

Later, when you learn how to write a DTD, you'll see that you
can define your own entities, so that &yourEntityName; expands to all the text you defined for that
entity. For now, though, we'll focus on the predefined entities and character references that don't require
any special definitions.

Predefined Entities

An entity reference like & contains a name (in this case, “amp”) between the start and end
delimiters. The text it refers to (&) is substituted for the name, like a macro in a C or C++ program. The
following table shows the predefined entities for special characters.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/4_refs.html (1 of 5) [8/22/2001 12:52:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html

4. Substituting and Inserting Text

Character Reference

& &

< <

> >

" "

' '

Character References

A character reference like “ contains a hash mark (#) followed by a number. The number is the
Unicode value for a single character, such as 65 for the letter “A”, 147 for the left-curly quote, or 148 for
the right-curly quote. In this case, the "name" of the entity is the hash mark followed by the digits that
identify the character.

Using an Entity Reference in an XML Document

Suppose you wanted to insert a line like this in your XML document:

Market Size < predicted

The problem with putting that line into an XML file directly is that when the parser sees the left-angle
bracket (<), it starts looking for a tag name, which throws off the parse. To get around that problem, you
put < in the file, instead of "<".

Note: The results of the modifications below are contained in slideSample03.xml.
(The browsable version is slideSample03-xml.html.) The results of processing it are shown
in Echo07-03.

If you are following the programming tutorial, add the text highlighted below to your
slideSample.xml file:

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 ...
 </slide>

 <slide type="exec">
 <title>Financial Forecast</title>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/4_refs.html (2 of 5) [8/22/2001 12:52:02 PM]

4. Substituting and Inserting Text

 <item>Market Size < predicted</item>
 <item>Anticipated Penetration</item>
 <item>Expected Revenues</item>
 <item>Profit Margin </item>
 </slide>

</slideshow>

When you run the Echo program on your XML file, you see the following output:

ELEMENT: <item>
CHARS: Market Size
CHARS: <
CHARS: predicted
END_ELM: </item>

The parser converted the reference into the entity it represents, and passed the entity to the application.

Handling Text with XML-Style Syntax

When you are handling large blocks of XML or HTML that include many of the special characters, it
would be inconvenient to replace each of them with the appropriate entity reference. For those situations,
you can use a CDATA section.

Note: The results of the modifications below are contained in slideSample04.xml.
(The browsable version is slideSample04-xml.html.) The results of processing it are shown
in Echo07-04.

A CDATA section works like <pre>...</pre> in HTML, only more so -- all whitespace in a CDATA
section is significant, and characters in it are not interpreted as XML. A CDATA section starts with
<![CDATA[and ends with]]>. Add the text highlighted below to your slideSample.XML file to
define a CDATA section for a fictitious technical slide:

 ...
 <slide type="tech">
 <title>How it Works</title>
 <item>First we fozzle the frobmorten</item>
 <item>Then we framboze the staten</item>
 <item>Finally, we frenzle the fuznaten</item>
 <item><![CDATA[Diagram:

 frobmorten <------------ fuznaten

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/4_refs.html (3 of 5) [8/22/2001 12:52:02 PM]

4. Substituting and Inserting Text

 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 Staten+ <3> = frenzle
 <2>
]]></item>
 </slide>
</slideshow>

When you run the Echo program on the new file, you see the following output:

 ELEMENT: <item>
 CHARS: Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 Staten+ <3> = frenzle
 <2>

 END_ELM: </item>

You can see here that the text in the CDATA section arrived as one entirely uninterpreted character
string.

Handling CDATA and Other Characters

The existence of CDATA makes the proper echoing of XML a bit tricky. If the text to be output is not in
a CDATA section, then any angle brackets, ampersands, and other special characters in the text should
be replaced with the appropriate entity reference. (Replacing left angle brackets and ampersands is most
important, other characters will be interpreted properly without misleading the parser.)

But if the output text is in a CDATA section, then the substitutions should not occur, to produce text like
that in the example above. In a simple program like our Echo application, it's not a big deal. But any
realistic kind of XML-filtering application will want to keep track of whether it is in a CDATA section,
in order to treat characters properly.

One other area to watch for is attributes. The text of an attribute value could also contain angle brackets
and semicolons that need to be replaced by entity references. (Attribute text can never be in a CDATA
section, though, so there is never any question about doing that substitution.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/4_refs.html (4 of 5) [8/22/2001 12:52:02 PM]

4. Substituting and Inserting Text

Later in this tutorial, you will see how to use a LexicalHandler to find out whether or not you are
processing a CDATA section. Next, though, you will see how to define a DTD.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/4_refs.html (5 of 5) [8/22/2001 12:52:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html

8. Handling Lexical Events

 Top Contents Index Glossary

8. Handling Lexical Events

Link Summary

Local Links

● An Overview of the Java XML
APIs

Exercise Links

● Echo11.java
● Echo11-09
● Echo12.java
● slideSample10.xml
● slideSample10-xml.html
● Echo12-10

API References

● DeclHandler
● LexicalHandler

Glossary Terms

DOM

You saw earlier that if you are writing text out as XML, you need
to know if you are in a CDATA section. If you are, then angle
brackets (<) and ampersands (&) should be output unchanged.
But if you're not in a CDATA section, they should be replaced by
the predefined entities < and &. But how do you know
if you're processing a CDATA section?

Then again, if you are filtering XML in some way, you would
want to pass comments along. Normally the parser ignores
comments. How can you get comments so that you can echo
them?

Finally, there are the parsed entity definitions. If an XML-
filtering app sees &myEntity; it needs to echo the same string -
- not the text that is inserted in its place. How do you go about
doing that?

This section of the tutorial answers those questions. It shows you
how to use org.xml.sax.ext.LexicalHandler to
identify comments, CDATA sections, and references to parsed
entities.

Comments, CDATA tags, and references to parsed entities
constitute lexical information -- that is, information that concerns
the text of the XML itself, rather than the XML's information
content. Most applications, of course, are concerned only with
the content of an XML document. Such apps will not use the
LexicalEventListener API. But apps that output XML text will find it invaluable.

Note:
Lexical event handling is a optional parser feature. Parser implementations are not required to
support it. (The reference implementation does so.) This discussion assumes that the parser you
are using does so, as well.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (1 of 7) [8/22/2001 12:52:03 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/DeclHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html

8. Handling Lexical Events

How the LexicalHandler Works

To be informed when the SAX parser sees lexical information, you configure the XmlReader that underlies
the parser with a LexicalHandler. (For an overview of those APIs, see An Overview of the Java XML
APIs.) The LexicalHandler interface defines these even-handling methods:

● comment(String comment)
Passes comments to the application.

● startCDATA(), endCDATA()
Tells when a CDATA section is starting and ending, which tells your application what kind of
characters to expect the next time characters() is called.

● startEntity(String name), endEntity(String name)
Gives the name of a parsed entity.

● startDTD(String name, String publicId, String systemId), endDTD()
Tells when a DTD is being processed, and identifies it.

Working with a LexicalHandler

In the remainder of this section, you'll convert the Echo app into a lexical handler and play with its features.

Note:
The code shown in this section is in Echo11.java. The output is shown in Echo11-09.

To start, add the code highlighted below to implement the LexicalHandler interface and add the
appropriate methods.

import org.xml.sax.ext.LexicalHandler;

public class Echo extends HandlerBase
 implements LexicalHandler
{
 public static void main(String argv[])
 {
 ...
 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo11();
 Echo handler = new Echo();
 ...

At this point, the Echo class extends one class and implements an additional interface. You changed the class

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (2 of 7) [8/22/2001 12:52:03 PM]

8. Handling Lexical Events

of the handler variable accordingly, so you can use the same instance as either a DefaultHandler or a
LexicalHandler, as appropriate..

Next, add the code highlighted below to get the XMLReader that the parser delegates to, and configure it to
send lexical events to your lexical handler:

 public static void main(String argv[])
 {
 ...
 try {
 ...
 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 XMLReader xmlReader = saxParser.getXMLReader();
 xmlReader.setProperty(
 "http://xml.org/sax/properties/lexical-handler",
 handler
);
 saxParser.parse(new File(argv[0]), handler);
 } catch (SAXParseException spe) {
 ...

Here, you configured the XMLReader using the setProperty() method defined in the XMLReader class.
The property name, defined as part of the SAX standard, is the URL,
http://xml.org/sax/properties/lexical-handler.

Finally, add the code highlighted below to define the appropriate methods that implement the interface.

 public void processingInstruction(String target, String data)
 ...
 }

 public void comment(char[] ch, int start, int length)
 throws SAXException
 {
 }

 public void startCDATA()
 throws SAXException
 {
 }

 public void endCDATA()
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (3 of 7) [8/22/2001 12:52:03 PM]

8. Handling Lexical Events

 }

 public void startEntity(String name)
 throws SAXException
 {
 }

 public void endEntity(String name)
 throws SAXException
 {
 }

 public void startDTD(String name, String publicId, String systemId)
 throws SAXException
 {
 }

 public void endDTD()
 throws SAXException
 {
 }

 private void emit(String s)
 ...

You have now turned the Echo class into a lexical handler. In the next section, you'll start experimenting with
lexical events.

Echoing Comments

The next step is to do something with one of the new methods. Add the code highlighted below to echo
comments in the XML file:

public void comment(String text)
 throws SAXException
{
 String text = new String(ch, start, length);
 nl(); emit("COMMENT: "+text);
}

When you compile the Echo program and run it on your XML file, the result looks something like this:

COMMENT: A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (4 of 7) [8/22/2001 12:52:03 PM]

8. Handling Lexical Events

 DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT: ...

The line endings in the comments are passed as part of the comment string, once again normalized to newlines
(\n). You can also see that comments in the DTD are echoed along with comments from the file. (That can
pose problems when you want to echo only comments that are in the data file. To get around that problem,
you can use the startDTD and endDTD methods.)

Echoing Other Lexical Information

To finish up this section, you'll exercise the remaining LexicalHandler methods.

Note:
The code shown in this section is in Echo12.java. The file it operates on is
slideSample10.xml. (The browsable version is slideSample10-xml.html.) The results of
processing are in Echo12-10.

Make the changes highlighted below to remove the comment echo (you don't need that any more) and echo
the other events:

public void comment(String text)
throws SAXException
{
 String text = new String(ch, start, length);
 nl(); emit("COMMENT: "+text);
}

public void startCDATA()
throws SAXException
{
 nl(); emit("START CDATA SECTION");
}

public void endCDATA()
throws SAXException
{
 nl(); emit("END CDATA SECTION");
}

public void startEntity(String name)
throws SAXException
{
 nl(); emit("START ENTITY: "+name);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (5 of 7) [8/22/2001 12:52:03 PM]

8. Handling Lexical Events

}

public void endEntity(String name)
throws SAXException
{
 nl(); emit("END ENTITY: "+name);
}

public void startDTD(String name, String publicId, String systemId)
throws SAXException
{
 nl(); emit("START DTD: "+name
 +"\n publicId=" + publicId
 +"\n systemId=" + systemId);
}

public void endDTD()
throws SAXException
{
 nl(); emit("END DTD");
}

Here is what you see when the DTD is processed:

START DTD: slideshow
 publicId=null
 systemId=file:/..../samples/slideshow3.dtd
END DTD

Note:
To see events that occur while the DTD is being processed, use org.xml.sax.ext.DeclHandler.

Here is what happens when the internally defined products entity is processed with the latest version of the
program:

ELEMENT: <slide-title>
CHARS: Wake up to
START PARSED ENTITY: products
CHARS: WonderWidgets
END PARSED ENTITY: products, INCLUDED=true
CHARS: !
END_ELM: </slide-title>

And here is the result of processing the external copyright entity:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (6 of 7) [8/22/2001 12:52:03 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/DeclHandler.html

8. Handling Lexical Events

 START PARSED ENTITY: copyright
 CHARS:
This is the standard copyright message ...
 END PARSED ENTITY: copyright, INCLUDED=true

Finally, you get output like this for the CDATA section:

START CDATA SECTION
CHARS: Diagram:

frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
staten --------------------+ <3> = frenzle
 <2>

END CDATA SECTION

In summary, the LexicalHandler gives you the event-notifications you need to produce an accurate
reflection of the original XML text.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/8_lex.html (7 of 7) [8/22/2001 12:52:03 PM]

5b. DTD & Nonvalidating Parser

Top Contents Index Glossary

5b. DTD's Effect on the Nonvalidating Parser

Link Summary

Exercise Links

● Echo07-05
● Echo08.java
● Echo08-05
● Echo09.java

In the last section, you defined a rudimentary document type and
used it in your XML file. In this section, you'll use the Echo
program to see how the data appears to the SAX parser when the
DTD is included.

Note:
The output shown in this section is contained in Echo07-
05.

Running the Echo program on your latest version of
slideSample.xml shows that many of the superfluous calls to the characters method have now
disappeared:

ELEMENT: <slideshow
 ATTR: ...
>
PROCESS: ...
 ELEMENT: <slide
 ATTR: ...
 >
 ELEMENT: <title>
 CHARS: Wake up to ...
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: ...
 >
 ...

It is evident here that the whitespace characters which were formerly being echoed around the slide
elements are no longer appearing, because the DTD declares that slideshow consists solely of slide

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5b_dtd.html (1 of 4) [8/22/2001 12:52:04 PM]

5b. DTD & Nonvalidating Parser

elements:

<!ELEMENT slideshow (slide+)>

Tracking Ignorable Whitespace

Now that the DTD is present, the parser is no longer the characters method with whitespace that it
knows to be irrelevant. From the standpoint of an application that is only interested in processing the
XML data, that is great. The application is never bothered with whitespace that exists purely to make the
XML file readable.

On the other hand, if you were writing an application that was filtering an XML data file, and you
wanted to output an equally readable version of the file, then that whitespace would no longer be
irrelevant -- it would be essential. To get those characters, you need to add the
ignorableWhitespace method to your application. You'll do that next.

Note:
The code written in this section is contained in Echo08.java. The output is in Echo08-
05.

To process the (generally) ignorable whitespace that the parser is seeing, add the code highlighted below
to implement the ignorableWhitespace event handler in your version of the Echo program:

 public void characters (char buf[], int offset, int len)
 ...
 }

 public void ignorableWhitespace(char buf[], int offset, int Len)
 throws SAXException
 {
 nl(); emit("IGNORABLE");
 }

 public void processingInstruction(String target, String data)

This code simply generates a message to let you know that ignorable whitespace was seen.

Note:
Again, not all parsers are created equal. The SAX specification does not require this
method to be invoked. The Java XML implementation does so whenever the DTD makes it
possible.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5b_dtd.html (2 of 4) [8/22/2001 12:52:04 PM]

5b. DTD & Nonvalidating Parser

When you run the Echo application now, your output looks like this:

ELEMENT: <slideshow
 ATTR: ...
>
IGNORABLE
IGNORABLE
PROCESS: ...
IGNORABLE
IGNORABLE
 ELEMENT: <slide
 ATTR: ...
 >
 IGNORABLE
 ELEMENT: <title>
 CHARS: Wake up to ...
 END_ELM: </title>
 IGNORABLE
 END_ELM: </slide>
IGNORABLE
IGNORABLE
 ELEMENT: <slide
 ATTR: ...
 >
 ...

Here, it is apparent that the ignorableWhitespace is being invoked before and after comments and
slide elements, where characters was being invoked before there was a DTD.

Cleanup

Now that you have seen ignorable whitespace echoed, remove that code from your version of the Echo
program -- you won't be needing it any more in the exercises ahead.

Note:
That change has been made in Echo09.java.

Documents and Data

Earlier, you learned that one reason you hear about XML documents, on the one hand, and XML data, on
the other, is that XML handles both comfortably, depending on whether text is or is not allowed between

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5b_dtd.html (3 of 4) [8/22/2001 12:52:04 PM]

5b. DTD & Nonvalidating Parser

elements in the structure.

In the sample file you have been working with, the slideshow element is an example of a data
element -- it contains only subelements with no intervening text. The item element, on the other hand,
might be termed a document element, because it is defined to include both text and subelements.

As you work through this tutorial, you will see how to expand the definition of the title element to
include HTML-style markup, which will turn it into a document element as well.

Empty Elements, Revisited

Now that you understand how certain instances of whitespace can be ignorable, it is time revise the
definition of an "empty" element. That definition can now be expanded to include

<foo> </foo>

where there is whitespace between the tags and the DTD defines that whitespace as ignorable.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5b_dtd.html (4 of 4) [8/22/2001 12:52:04 PM]

6. Validating Parser

 Top Contents Index Glossary

6. Using the Validating Parser

Link Summary

Exercise Links

● Echo10.java
● Echo10-01
● Echo10-06
● Echo10-07

API References

❍ SAXParserFactory

Glossary Terms

DTD, error, XHTML

By now, you have done a lot of experimenting with the nonvalidating parser.
It's time to have a look at the validating parser and find out what happens
when you use it to parse the sample presentation.

Two things to understand about the validating parser at the outset are:

a. The DTD is required.
2. Since the DTD is present, the ignorableWhitespace method is

invoked whenever the DTD makes that possible.

Configuring the Factory

The first step is modify the Echo program so that it uses the validating parser
instead of the nonvalidating parser.

Note:
The code in this section is contained in Echo10.java.

To use the validating parser, make the changes highlighted below:

public static void main(String argv[])
{
 if (argv.length != 1) {
 ...
 }
 // Use the default (non-validating) parser
 // Use the validating parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setValidating(true);
 try {
 ...

Here, you configured the factory so that it will produce a validating parser when newSAXParser is invoked. You can also
configure it to return a namespace-aware parser using setNamespaceAware(true). The reference implementation supports
any combination of configuration options. If the combination of .

Changing the Environment Variable

If no other factory class is specified, the default SAXParserFactory class is used. To use a different manufacturer's parser, you
can change the value of the environment variable that points to it. You can do that from the command line, like this:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/6_val.html (1 of 3) [8/22/2001 12:52:05 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/SAXParserFactory.html

6. Validating Parser

> java -Djavax.xml.parsers.SAXParserFactory=yourFactoryHere ...

The factory name you specify must be a fully qualified class name (all package prefixes included). For more information, see the
documentation in the newInstance() method of the SAXParserFactory class.

Experimenting with Validation Errors

To see what happens when the XML document does not specify a DTD, remove the DOCTYPE statement from the XML file and
run the Echo program on it.

Note:
The output shown here is contained in Echo10-01.

The result you see looks like this:

<?xml version='1.0' encoding='UTF-8'?>
** Warning, line 5, uri file: ...
 Valid documents must have a <!DOCTYPE declaration.
** Parsing error, line 5, uri file: ...
 Element type "slideshow" is not declared.

So now you know that a DTD is a requirement for a valid document. That makes sense. (Note, though, that the lack of a type
declaration only generates a warning, as specified in the standard. On the other hand, any attempt to actually parse the document is
immediately greeted with an error! Oh well...)

So what happens when you run the parser on your current version of the slide presentation, with the DTD specified?

Note:
The output shown here is contained in Echo10-07.

This time, the parser gives the following error message:

** Parsing error, line 28, uri file:...
 Element "slide" does not allow "item" here.

This error occurs because the definition of the slide element requires a title. That element is not optional, and the copyright
slide does not have one. To fix the problem, add the question mark highlighted below to make title an optional element:

<!ELEMENT slide (image?, title?, item*)>

Now what happens when you run the program?

Note:
You could also remove the copyright slide, which produces the same result shown below, as reflected in Echo10-06.

The answer is that everything runs fine, until the parser runs into the tag contained in the overview slide. Since that tag was
not defined in the DTD, the attempt to validate the document fails. The output looks like this:

...
 ELEMENT: <title>
 CHARS: Overview

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/6_val.html (2 of 3) [8/22/2001 12:52:05 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/SAXParserFactory.html#newInstance()

6. Validating Parser

 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Why ** Parsing error, line 24, uri file:...
Element "item" does not allow "em" -- (#PCDATA|item)
org.xml.sax.SAXParseException: Element "item" does not allow "em" -- (#PCDATA|item)
 at com.sun.xml.parser.Parser.error(Parser.java:2798)
...

The error message identifies the part of the DTD that caused validation to fail. In this case it is the line that defines an item
element as (#PCDATA | item).

Exercise: Make a copy of the file and remove all occurrences of from it. Can the file be validated now? (In
the next section, you'll learn how to define parameter entries so that we can use XHTML in the elements we are
defining as part of the slide presentation.)

Error Handling in the Validating Parser

It is important to recognize that the only reason an exception is thrown when the file fails validation is as a result of the error-
handling code you entered in the early stages of this tutorial. That code is reproduced below:

public void error(SAXParseException e)
throws SAXParseException
{
 throw e;
}

If that exception is not thrown, the validation errors are simply ignored.

Exercise: Try commenting out the line that throws the exception. What happens when you run the parser now?

In general, a SAX parsing error is a validation error, although we have seen that it can also be generated if the file specifies a
version of XML that the parser is not prepared to handle. The thing to remember is that your application will not generate a
validation exception unless you supply an error handler like the one above.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/6_val.html (3 of 3) [8/22/2001 12:52:05 PM]

2a. Echoing an XML File with the SAX Parser

 Top Contents Index Glossary

2a. Echoing an XML File with the SAX Parser

Link Summary

Local Links

● An Overview of the Java XML APIs
● Java's Encoding Schemes
● Handling Errors with the Non-

Validating Parser
● Substituting and Inserting Text

Examples

● compile, run
● compile.bat, run.bat
● Echo01.java
● slideSample01.xml
● slideSample01-xml.html
● Echo01-01
● Echo02.java
● Echo02-01
● Echo03.java
● Echo03-01

API References

● DefaultHandler
● org.xml.sax
● ContentHandler
● LexicalHandler
● SAXException
● AttributeList

Glossary Terms

DOM

In real life, you are going to have little need to echo an XML file with a SAX parser.
Usually, you'll want to process the data in some way in order to do something useful with
it. (If you want to echo it, it's easier to build a DOM tree and use that for output.) But
echoing an XML structure is a great way to see the SAX parser in action, and it can be
useful for debugging.

In this exercise, you'll echo SAX parser events to System.out. Consider it the "Hello
World" version of an XML-processing program. It shows you how to use the SAX parser
to get at the data, and then echoes it to show you what you've got.

Note:
The code discussed in this section is in Echo01.java. The file it operates on is
slideSample01.xml. (The browsable version is slideSample01-xml.html.)

Creating the Skeleton

Start by creating a file named Echo.java and enter the skeleton for the application:

public class Echo
{
 public static void main(String argv[])

 {

 }

}

Since we're going to run it standalone, we need a main method. And we need command-
line arguments so we can tell the app which file to echo.

Importing Classes

Next, add the import statements for the classes the app will use:

import java.io.*;
import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo
{
 ...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (1 of 11) [8/22/2001 12:52:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/SAXException.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/AttributeList.html

2a. Echoing an XML File with the SAX Parser

The classes in java.io, of course, are needed to do output. The org.xml.sax package defines all the interfaces we use for the SAX
parser. The SAXParserFactory class creates the instance we use. It throws a ParserConfigurationException if it is unable to produce a parser
that matches the specified configuration of options. (You'll see more about the configuration options later.) The SAXParser is what the
factory returns for parsing, and the DefaultHandler defines the class that will handle the SAX events that the parser generates.

Setting up for I/O

The first order of business is to process the command line argument, get the name of the file to echo, and set up the output stream. Add the
text highlighted below to take care of those tasks and do a bit of additional housekeeping:

 public static void main(String argv[])

 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 } catch (Throwable t) {
 t.printStackTrace();
 }
 System.exit(0);
 }

 static private Writer out;

When we create the output stream writer, we are selecting the UTF-8 character encoding. We could also have chosen US-ASCII, or UTF-16,
which the Java platform also supports. For more information on these character sets, see Java's Encoding Schemes.

Implementing the ContentHandler Interface

The most important interface for our current purposes is the ContentHandler interface. That interface requires a number of methods that
the SAX parser invokes in response to different parsing events. The major event handling methods are: startDocument, endDocument,
startElement, endElement, and characters.

The easiest way to implement that interface is to extend the DefaultHandler class, defined in the org.xml.sax.helpers package. That class
provides do-nothing methods for all of the ContentHandler events . Enter the code highlighted below to extend that class:

 public class Echo extends DefaultHandler
 {
 ...
 }

Note:
DefaultHandler also defines do-nothing methods for the other major events, defined in the DTDHandler,
EntityResolver, and ErrorHandler interfaces. You'll learn more about those methods as we go along.

Each of these methods is required by the interface to throw a SAXException. An exception thrown here is sent back to the parser, which
sends it on to the code that invoked the parser. In the current program, that means it winds up back at the Throwable exception handler at
the bottom of the main method.

When a start tag or end tag is encountered, the name of the tag is passed as a String to the startElement or endElement method, as
appropriate. When a start tag is encountered, any attributes it defines are also passed in an Attributes list. Characters found within the

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (2 of 11) [8/22/2001 12:52:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/package-summary.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/SAXException.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/Attributes.html

2a. Echoing an XML File with the SAX Parser

element are passed as an array of characters, along with the number of characters (length) and an offset into the array that points to the
first character.

Setting up the Parser

Now (at last) you're ready to set up the parser. Add the text highlighted below to set it up and get it started:

 public static void main(String argv[])

 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo();

 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();
 }
 System.exit(0);
 }

With these lines of code, you created a SAXParserFactory instance, as determined by the setting of the
javax.xml.parsers.SAXParserFactory system property. You then got a parser from the factory and gave the parser an instance
of this class to handle the parsing events, telling it which input file to process.

Note:
The javax.xml.parsers.SAXParser class is a wrapper that defines a number of convenience methods. It wraps the
(somewhat-less friendly) org.xml.sax.Parser object. If needed, you can obtain that parser using the SAXParser's
getParser() method.

For now, you are simply catching any exception that the parser might throw. You'll learn more about error processing in a later section of the
tutorial, Handling Errors with the Nonvalidating Parser.

Writing the Output

The ContentHandler methods throw SAXExceptions but not IOExceptions, which can occur while writing. The
SAXException can wrap another exception, though, so it makes sense to do the output in a method that takes care of the exception-
handling details. Add the code highlighted below to define an emit method that does that:

static private Writer out;

private void emit(String s)
throws SAXException
{

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (3 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
}
...

When emit is called, any I/O error is wrapped in SAXException along with a message that identifies it. That exception is then thrown
back to the SAX parser. You'll learn more about SAX exceptions later on. For now, keep in mind that emit is a small method that handles
the string output. (You'll see it called a lot in the code ahead.)

Spacing the Output

There is one last bit of infrastructure we need before doing some real processing. Add the code highlighted below to define a nl() method
that writes the kind of line-ending character used by the current system:

 private void emit(String s)
 ...

 }

 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);

 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

Note: Although it seems like a bit of a nuisance, you will be invoking nl() many times in the code ahead. Defining it now
will simplify the code later on. It also provides a place to indent the output when we get to that section of the tutorial.

Handling Content Events

Finally, let's write some code that actually processes the ContentHandler events. Add the code highlighted below to handle the start-
document and end-document events:

 static private Writer out;

 public void startDocument()
 throws SAXException
 {
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 nl();
 }

 public void endDocument()
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (4 of 11) [8/22/2001 12:52:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html

2a. Echoing an XML File with the SAX Parser

 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 private void emit(String s)
 ...

Here, you are echoing an XML declaration when the parser encounters the start of the document. Since you set up the
OutputStreamWriter using the UTF-8 encoding, you include that specification as part of the declaration.

Note: However, the IO classes don't understand the hyphenated encoding names, so you specified "UTF8" rather than "UTF-
8".

At the end of the document, you simply put out a final newline and flush the output stream. Not much going on there. Now for the interesting
stuff. Add the code highlighted below to process the start-element and end-element events:

 public void startElement(String namespaceURI,
 String sName, // simple name (localName)
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 String eName = sName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 emit(" ");
 emit(aName+"=\""+attrs.getValue(i)+"\"");
 }
 }
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 emit("</"+sName+">");
 }

 private void emit(String s)
 ...

With this code, you echoed the element tags, including any attributes defined in the start tag. Note that when the startElement() method is
invoked, the simple name ("local name") for elements and attributes could turn out to be the empty string, if namespace processing was not
enabled. The code handles that case by using the qualifed name whenever the simple name is the empty string.

To finish this version of the program, add the code highlighted below to echo the characters the parser sees:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (5 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 String s = new String(buf, offset, len);
 emit(s);
 }

 private void emit(String s)
 ...

Congratulations! You've just written a SAX parser application. The next step is to compile and run it.

Note: To be strictly accurate, the character handler should scan the buffer for ampersand characters ('&') and left-angle bracket
characters ('<') and replace them with the strings "&" or "<", as appropriate. You'll find out more about that kind of
processing when we discuss entity references in Substituting and Inserting Text.

Compiling the Program

To compile the program you created, you'll execute the appropriate command for your system (or use one of the command scripts mentioned
below):

Windows:

javac -classpath %JAXP%\jaxp.jar;%JAXP%\crimson.jar;%JAXP%\xalan.jar Echo.java

Unix:

javac -classpath ${JAXP}/jaxp.jar:${JAXP}/crimson.jar:${JAXP}/xalan.jar Echo.java

where:

● javac is a version 1.2 or later java platform compiler
● JAXP is where you installed the JAXP libraries.
● jaxp.jar contains the JAXP-specific APIs
● crimson.jar contains the interfaces and classes that make up the SAX and DOM APIs, as well as the reference

implementation for the parser. (To use a different parser, substitute it here. For example, specify xerces.jar to use
the parser from apache.org.)

● xalan.jar contains the implementation classes for the XSLT transform package. (Similarly, substitute this
specification to use a different XSLT package.)

Note:
Although Xalan is not strictly needed at this point in the tutorial, you'll be using it later on.

Running the Program

To run the program, you'll once again execute the appropriate command for your system (or use one of the command scripts mentioned
below):

Windows:

Java -classpath .;%JAXP%\jaxp.jar;%JAXP%\crimson.jar;%JAXP%\xalan.jar Echo
slideSample.xml

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (6 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

UNIX:

Java -classpath .:${JAXP}/jaxp.jar:${JAXP}/crimson.jar:${JAXP}/xalan.jar Echo
slideSample.xml

Command Scripts

To make life easier, here are some command scripts you can use to compile and run your apps as you work through this tutorial.

 UNIX Windows

Scripts compile, run compile.bat, run.bat

Netscape Click, choose File-->Save As
Right click, choose
Save Link As.

Internet
Explorer

-/- Right click, choose Save Target As.

Checking the Output

The program's output as shown in Echo01-01. Here is part of it, showing some of its weird-looking spacing:

...
<slideshow title="Sample Slide Show" date="Date of publication" author="Yours Truly">

 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>
 ...

Looking at this output, a number of questions arise. Namely, where is the excess vertical whitespace coming from? And why is it that the
elements are indented properly, when the code isn't doing it? We'll answer those questions in a moment. First, though, there are a few points
to note about the output:

● The comment defined at the top of the file

<!-- A SAMPLE set of slides -->

does not appear in the listing. Comments are ignored by definition, unless you implement a LexicalHandler. You'll see
more about that later on in this tutorial.

● Element attributes are listed all together on a single line. If your window isn't really wide, you won't see them all.

● The single-tag empty element you defined (<item/>) is treated exactly the same as a two-tag empty element (<item></item>).
It is, for all intents and purposes, identical. (It's just easier to type and consumes less space.)

Identifying the Events

This version of the echo program might be useful for displaying an XML file, but it's not telling you much about what's going on in the
parser. The next step is to modify the program so that you see where the spaces and vertical lines are coming from.

Note: The code discussed in this section is in Echo02.java. The output it produces is shown in Echo02-01.

Make the changes highlighted below to identify the events as they occur:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (7 of 11) [8/22/2001 12:52:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ext/LexicalHandler.html

2a. Echoing an XML File with the SAX Parser

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 nl();
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 ...
 }

 public void startElement(...)
 throws SAXException
 {
 nl(); emit("ELEMENT: ");
 emit("<"+name);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 emit(" ");
 emit(attrs.getName(i)+"=\""+attrs.getValue(i)+"\"");
 nl();
 emit(" ATTR: ");
 emit(attrs.getLocalName(i));
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(...)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+name+">");
 }

 public void characters(char buf[], int offset, int Len)
 throws SAXException
 {
 nl(); emit("CHARS: |");
 String s = new String(buf, offset, Len);
 emit(s);
 emit("|");
 }

Compile and run this version of the program to produce a more informative output listing. The attributes are now shown one per line, which

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (8 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

is nice. But, more importantly, output lines like this one:

CHARS: |

 |

show that the characters method is responsible for echoing both the spaces that create the indentation and the multiple newlines that
separate the attributes.

Note: The XML specification requires all input line separators to be normalized to a single newline. The newline character is
specified as \n in Java, C, and UNIX systems, but goes by the alias "linefeed" in Windows systems.

Compressing the Output

To make the output more readable, modify the program so that it only outputs characters containing something other than whitespace.

Note: The code discussed in this section is in Echo03.java.

Make the changes shown below to suppress output of characters that are all whitespace:

 public void characters(char buf[], int offset, int Len)
 throws SAXException
 {
 nl(); emit("CHARS: |");
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, Len);
 emit(s);
 emit("|");
 if (!s.trim().equals("")) emit(s);
 }

If you run the program now, you will see that you have eliminated the indentation as well, because the indent space is part of the whitespace
that precedes the start of an element. Add the code highlighted below to manage the indentation:

 static private Writer out;

 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 ...

 public void startElement(...)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 ...
 }

 public void endElement(...)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (9 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

 indentLevel--;
 }
 ...
 private void nl()
 throws SAXException
 {
 ...
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);

 } catch (IOException e) {
 ...
 }

This code sets up an indent string, keeps track of the current indent level, and outputs the indent string whenever the nl method is called. If
you set the indent string to "", the output will be un-indented (Try it. You'll see why it's worth the work to add the indentation.)

You'll be happy to know that you have reached the end of the "mechanical" code you have to add to the Echo program. From here on, you'll
be doing things that give you more insight into how the parser works. The steps you've taken so far, though, have given you a lot of insight
into how the parser sees the XML data it processes. It's also given you a helpful debugging tool you can use to see what the parser sees.

Inspecting the Output

The complete output for this version of the program is shown in Echo03-01. Part of that output is shown here:

 ELEMENT: <slideshow
 ...
 CHARS:
 CHARS:
 ELEMENT: <slide
 ...
 END_ELM: </slide>
 CHARS:
 CHARS:

Note that the characters method was invoked twice in a row. Inspecting the source file slideSample01.xml shows that there is a
comment before the first slide. The first call to characters comes before that comment. The second call comes after. (Later on, you'll see
how to be notified when the parser encounters a comment, although in most cases you won't need such notifications.)

Note, too, that the characters method is invoked after the first slide element, as well as before. When you are thinking in terms of
hierarchically structured data, that seems odd. After all, you intended for the slideshow element to contain slide elements, not text.
Later on, you'll see how to restrict the slideshow element using a DTD. When you do that, the characters method will no longer be
invoked.

In the absence of a DTD, though, the parser must assume that any element it sees contains text like that in the first item element of the
overview slide:

<item>Why WonderWidgets are great</item>

Here, the hierarchical structure looks like this:

ELEMENT: <item>
CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (10 of 11) [8/22/2001 12:52:08 PM]

2a. Echoing an XML File with the SAX Parser

 END_ELM:
CHARS: are great
END_ELM: </item>

Documents and Data

In this example, it's clear that there are characters intermixed with the hierarchical structure of the elements. The fact that text can surround
elements (or be prevented from doing so with a DTD or schema) helps to explain why you sometimes hear talk about "XML data" and other
times hear about "XML documents". XML comfortably handles both structured data and text documents that include markup. The only
difference between the two is whether or not text is allowed between the elements.

Note:
In an upcoming section of this tutorial, you will work with the ignorableWhitespace method in the ContentHandler
interface. This method can only be invoked when a DTD is present. If a DTD specifies that slideshow does not contain text,
then all of the whitespace surrounding the slide elements is by definition ignorable. On the other hand, if slideshow can
contain text (which must be assumed to be true in the absence of a DTD), then the parser must assume that spaces and lines it
sees between the slide elements are significant parts of the document.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2a_echo.html (11 of 11) [8/22/2001 12:52:08 PM]

7a. Parameter Entities and Conditional Sections

 Top Contents Index Glossary

7a. Defining Parameter Entities and Conditional
Sections

Link Summary

Exercise Links

● slideshow2.dtd
● slideshow2-dtd.html
● slideSample08.xml
● slideSample08-xml.html
● xhtml.dtd

External Links

● Modularized XHTML

Glossary Terms

content, DTD, general entity,
mixed content model,
namespace, parameter entity,
SGML, URI, XHTML

Just as a general entity lets you reuse XML data in multiple
places, a parameter entity lets you reuse parts of a DTD in
multiple places. In this section of the tutorial, you 'll see how
to define and use parameter entities. You'll also see how to use
parameter entities with conditional sections in a DTD.

Creating and Referencing a Parameter
Entity

Recall that the existing version of the slide presentation could
not be validated because the document used tags, and
those are not part of the DTD. In general, we'd like to use a
whole variety of HTML-style tags in the text of a slide, not
just one or two, so it makes more sense to use an existing
DTD for XHTML than it does to define all the tags we might
ever need. A parameter entity is intended for exactly that kind
of purpose.

Note:
The DTD specifications shown here are contained in
slideshow2.dtd. The XML file that references it is
slideSample08.xml. (The browsable versions are
slideshow2-dtd.html and slideSample08-xml.html.)

Open your DTD file for the slide presentation and add the text highlighted below to define a parameter
entity that references an external DTD file:

<!ELEMENT slide (image?, title?, item*)>
<!ATTLIST slide

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7a_pe.html (1 of 4) [8/22/2001 12:52:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml.dtd
http://www.w3.org/TR/xhtml-modularization/

7a. Parameter Entities and Conditional Sections

 ...
>

<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT title ...

Here, you used an <!ENTITY> tag to define a parameter entity, just as for a general entity, but using a
somewhat different syntax. You included a percent sign (%) before the entity name when you defined the
entity, and you used the percent sign instead of an ampersand when you referenced it.

Also, note that there are always two steps for using a parameter entity. The first is to define the entity
name. The second is to reference the entity name, which actually does the work of including the external
definitions in the current DTD. Since the URI for an external entity could contain slashes (/) or other
characters that are not valid in an XML name, the definition step allows a valid XML name to be
associated with an actual document. (This same technique is used in the definition of namespaces, and
anywhere else that XML constructs need to reference external documents.)

Notes:

● The DTD file referenced by this definition is xhtml.dtd. You can either copy that file to your
system or modify the SYSTEM identifier in the <!ENTITY> tag to point to the correct URL.

● This file is a small subset of the XHTML specification, loosely modeled after the Modularized
XHTML draft, which aims at breaking up the DTD for XHTML into bite-sized chunks, which can
then be combined to create different XHTML subsets for different purposes. When work on the
modularized XHTML draft has been completed, this version of the DTD should be replaced with
something better. For now, this version will suffice for our purposes.

The whole point of using an XHTML-based DTD was to gain access to an entity it defines that covers
HTML-style tags like and . Looking through xhtml.dtd reveals the following entity, which
does exactly what we want:

<!ENTITY % inline "#PCDATA|em|b|a|img|br">

This entity is a simpler version of those defined in the Modularized XHTML draft. It defines the HTML-
style tags we are most likely to want to use -- emphasis, bold, and break, plus a couple of others for
images and anchors that we may or may not use in a slide presentation. To use the inline entity, make
the changes highlighted below in your DTD file:

<!ELEMENT title (#PCDATA %inline;)*>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7a_pe.html (2 of 4) [8/22/2001 12:52:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml.dtd
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-modularization/

7a. Parameter Entities and Conditional Sections

<!ELEMENT item (#PCDATA %inline; | item)* >

These changes replaced the simple #PCDATA item with the inline entity. It is important to notice that
#PCDATA is first in the inline entity, and that inline is first wherever we use it. That is required by
XML's definition of a mixed-content model. To be in accord with that model, you also had to add an
asterisk at the end of the title definition. (In the next two sections, you'll see that our definition of the
title element actually conflicts with a version defined in xhtml.dtd, and see different ways to
resolve the problem.)

Note:
The Modularized XHTML DTD defines both inline and Inline entities, and does so
somewhat differently. Rather than specifying #PCDATA|em|b|a|img|Br, their
definitions are more like (#PCDATA|em|b|a|img|Br)*. Using one of those
definitions, therefore, looks more like this:

 <!ELEMENT title %Inline; >

Conditional Sections

Before we proceed with the next programming exercise, it is worth mentioning the use of parameter
entities to control conditional sections. Although you cannot conditionalize the content of an XML
document, you can define conditional sections in a DTD that become part of the DTD only if you specify
include. If you specify ignore, on the other hand, then the conditional section is not included.

Suppose, for example, that you wanted to use slightly different versions of a DTD, depending on whether
you were treating the document as an XML document or as a SGML document. You could do that with
DTD definitions like the following:

someExternal.dtd:
 <![INCLUDE [
 ... XML-only definitions
]]>
 <![IGNORE [
 ... SGML-only definitions
]]>
 ... common definitions

The conditional sections are introduced by "<![", followed by the INCLUDE or IGNORE keyword and
another "[". After that comes the contents of the conditional section, followed by the terminator: "]]>".
In this case, the XML definitions are included, and the SGML definitions are excluded. That's fine for
XML documents, but you can't use the DTD for SGML documents. You could change the keywords, of

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7a_pe.html (3 of 4) [8/22/2001 12:52:09 PM]

7a. Parameter Entities and Conditional Sections

course, but that only reverses the problem.

The solution is to use references to parameter entities in place of the INCLUDE and IGNORE keywords:

someExternal.dtd:
 <![%XML; [
 ... XML-only definitions
]]>
 <![%SGML; [
 ... SGML-only definitions
]]>
 ... common definitions

Then each document that uses the DTD can set up the appropriate entity definitions:

<!DOCTYPE foo SYSTEM "someExternal.dtd" [
 <!ENTITY % XML "INCLUDE" >
 <!ENTITY % SGML "IGNORE" >
]>
<foo>
 ...
</foo>

This procedure puts each document in control of the DTD. It also replaces the INCLUDE and IGNORE
keywords with variable names that more accurately reflect the purpose of the conditional section,
producing a more readable, self-documenting version of the DTD.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7a_pe.html (4 of 4) [8/22/2001 12:52:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html

 Top Contents Index Glossary

2b. Adding Additional Event Handlers

Link Summary

Local Links

● A Quick Introduction to XML

Examples

● Echo04.java
● Echo04-01
● slideSample02.xml
● slideSample02-xml.html
● Echo05.java
● Echo05-02

API References

● Locator

Glossary Terms

URL, URN

Besides ignorableWhitespace, there are two other
ContentHandler methods that can find uses in even
simple applications: setDocumentLocator and
processingInstruction. In this section of the tutorial,
you'll implement those two event handlers.

Identifying the Document's Location

A locator is an object that contains the information necessary
to find the document. The Locator class encapsulates a
system ID (URL) or a public identifier (URN), or both. You
would need that information if you wanted to find something
relative to the current document -- in the same way, for
example, that an HTML browser processes an
href="anotherFile" attribute in an anchor tag -- the
browser uses the location of the current document to find
anotherFile.

You could also use the locator to print out good diagnostic
messages. In addition to the document's location and public
identifier, the locator contains methods that give the column
and line number of the most recently-processed event. The
setDocumentLocator method is called only once at the
beginning of the parse, though. To get the current line or
column number, you would save the locator when
setDocumentLocator is invoked and then use it in the other event-handling methods.

Note:
The code discussed in this section is in Echo04.java. Its output is stored at Echo04-
01.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html (1 of 5) [8/22/2001 12:52:10 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/Locator.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/Locator.html

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html

Add the method below to the Echo program to get the document locator and use it to echo the document's
system ID.

 ...
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 public void setDocumentLocator(Locator l)
 {
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 ...

Notes:

● This method, in contrast to every other ContentHandler method, does not return a
SAXException. So, rather than using emit for output, this code writes directly to
System.out. (This method is generally expected to simply save the Locator for later use,
rather than do the kind of processing that generates an exception, as here.)

● The spelling of these methods is "Id", not "ID". So you have getSystemId and
getPublicId.

When you compile and run the program on slideSample01.xml, here is the significant part of the
output:

LOCATOR
 SYS ID: file:<path>/../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
...

Here, it is apparent that setDocumentLocator is called before startDocument. That can make a
difference if you do any initialization in the event handling code.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html (2 of 5) [8/22/2001 12:52:10 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html

Handling Processing Instructions

It sometimes makes sense to code application-specific processing instructions in the XML data. In this
exercise, you'll add a processing instruction to your slideSample.xml file and then modify the Echo
program to display it.

Note:
The code discussed in this section is in Echo05.java. The file it operates on is
slideSample02.xml. (The browsable version is slideSample02-xml.html.) The output
is stored at Echo05-02.

As you saw in A Quick Introduction to XML, the format for a processing instruction is <?target
data?>, where "target" is the target application that is expected to do the processing, and "data" is the
instruction or information for it to process. Add the text highlighted below to add a processing instruction
for a mythical slide presentation program that will query the user to find out which slides to display
(technical, executive-level, or all):

<slideshow
 ...
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->

Notes:

● The "data" portion of the processing instruction can contain spaces, or may even be null. But there
cannot be any space between the initial <? and the target identifier.

● The data begins after the first space.

● Fully qualifying the target with the complete web-unique package prefix makes sense, so as to
preclude any conflict with other programs that might process the same data.

● For readability, it seems like a good idea to include a colon (:) after the name of the application,
like this:
<?my.presentation.Program: QUERY="..."?>
The colon makes the target name into a kind of "label" that identifies the intended recipient of the

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html (3 of 5) [8/22/2001 12:52:10 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html

instruction. However, while the w3c spec allows ":" in a target name, some versions of IE5
consider it an error. For this tutorial, then, we avoid using a colon in the target name.

Now that you have a processing instruction to work with, add the code highlighted below to the Echo
app:

public void characters(char buf[], int offset, int len)
...
}

public void processingInstruction(String target, String data)
throws SAXException
{
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
}

private void emit(String s)
...

When your edits are complete, compile and run the program. The relevant part of the output should look
like this:

...
CHARS:
CHARS:
PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
CHARS:
CHARS:
...

Now that you've had a chance to work with the processing instruction, you can remove that instruction
from the XML file. You won't be needing it any more.

Summary

With the minor exception of ignorableWhitespace, you have used most of the
ContentHandler methods that you need to handle the most commonly useful SAX events. You'll see
ignorableWhitespace a little later on. Next, though, you'll get deeper insight into how you handle
errors in the SAX parsing process.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html (4 of 5) [8/22/2001 12:52:10 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/2b_echo.html (5 of 5) [8/22/2001 12:52:10 PM]

3. Handling Errors with the Non-Validating Parser

Top Contents Index Glossary

3. Handling Errors with the Nonvalidating Parser

Link Summary

Exercises

● slideSampleBad1.xml
● slideSampleBad1-xml.html
● Echo05-Bad1
● Echo06.java
● Echo06-Bad1
● slideSampleBad2.xml
● slideSampleBad2-xml.html
● Echo06-Bad2
● Echo07.java
● Echo07-Bad2

API Links

● ContentHandler
● ErrorHandler
● DefaultHandler

Glossary Terms

DTD, error, fatal error, valid, warning,
well-formed

This version of the Echo program uses the nonvalidating parser. So it
can't tell if the XML document contains the right tags, or if those tags are
in the right sequence. In other words, it can't tell you if the document is
valid. It can, however, tell whether or not the document is well-formed.

In this section of the tutorial, you'll modify the slideshow file to generate
different kinds of errors and see how the parser handles them. You'll also
find out which error conditions are ignored, by default, and see how to
handle them.

Introducing an Error

The parser can generate one of three kinds of errors: fatal error, error, and
warning. In this exercise, you'll make a simple modification to the XML
file to introduce a fatal error. Then you'll see how it's handled in the Echo
app.

Note: The XML structure you'll create in this exercise is in
slideSampleBad1.xml. (The browsable version is
slideSampleBad1-xml.html.) The output is in Echo05-Bad1.

One easy way to introduce a fatal error is to remove the final "/" from
the empty item element to create a tag that does not have a
corresponding end tag. That constitutes a fatal error, because all XML
documents must, by definition, be well formed. Do the following:

1. Copy slideSample.xml to badSample.xml.

2. Edit badSample.xml and remove the character shown below:

 ...
<!-- OVERVIEW -->
<slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
</slide>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (1 of 8) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ErrorHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html

3. Handling Errors with the Non-Validating Parser

 ...

to produce:

 ...
<item>Why WonderWidgets are great</item>
<item>
<item>Who buys WonderWidgets</item>
 ...

3. Run the Echo program on the new file.

The output you get now looks like this:

...
 ELEMENT: <item>
 CHARS: The
 ELEMENT:
 CHARS: Only
 END_ELM:
 CHARS: Section
 END_ELM: </item>
 CHARS:
 END_ELM:
CHARS: org.xml.sax.SAXParseException: Expected "</item>"
 to terminate element starting on line 20.
...
at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
at Echo05.main(Echo05.java:61)

When a fatal error occurs, the parser is unable to continue. So, if the application does not generate an exception (which
you'll see how to do a moment), then the default error-event handler generates one. The stack trace is generated by the
Throwable exception handler in your main method:

 ...
} catch (Throwable t) {
 t.printStackTrace();
}

That stack trace is not too useful, though. Next, you'll see how to generate better diagnostics when an error occurs.

Handling a SAXParseException

When the error was encountered, the parser generated a SAXParseException -- a subclass of SAXException that
identifies the file and location where the error occurred.

Note: The code you'll create in this exercise is in Echo06.java. The output is in Echo06-Bad1.

Add the code highlighted below to generate a better diagnostic message when the exception occurs:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (2 of 8) [8/22/2001 12:52:12 PM]

3. Handling Errors with the Non-Validating Parser

 ...
} catch (SAXParseException spe) {
 // Error generated by the parser
 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

} catch (Throwable t) {
 t.printStackTrace();
}

Running the program now generates an error message which is a bit more helpful, like this:

** Parsing error, line 22, uri file:<path>/slideSampleBad1.xml
 Next character must be...

Note:
Catching all throwables like this is not a good idea for production applications. We're just doing it now so we
can build up to full error handling gradually.

Handling a SAXException

A more general SAXException instance may sometimes be generated by the parser, but it more frequently occurs when
an error originates in one of application's event handling methods. For example, the signature of the startDocument
method in the ContentHandler interface is defined as returning a SAXException:

public void startDocument() throws SAXException

All of the ContentHandler methods (except for setDocumentLocator) have that signature declaration.

A SAXException can be constructed using a message, another exception, or both. So, for example, when
Echo.startDocument outputs a string using the emit method, any I/O exception that occurs is wrapped in a
SAXException and sent back to the parser:

private void emit(String s)
throws SAXException
{
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
}

Note: If you saved the Locator object when setDocumentLocator was invoked, you could use it to
generate a SAXParseException, identifying the document and location, instead of generating a

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (3 of 8) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html

3. Handling Errors with the Non-Validating Parser

SAXException.

When the parser delivers the exception back to the code that invoked the parser, it makes sense to use the original exception
to generate the stack trace. Add the code highlighted below to do that:

 ...
} catch (SAXParseException err) {
 System.out.println("** Parsing error"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());

} catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

} catch (Throwable t) {
 t.printStackTrace();
}

This code tests to see if the SAXException is wrapping another exception. If so, it generates a stack trace originating
from where that exception occurred to make it easier to pinpoint the code responsible for the error. If the exception contains
only a message, the code prints the stack trace starting from the location where the exception was generated.

Improving the SAXParseException Handler

Since the SAXParseException can also wrap another exception, add the code highlighted below to use it for the stack
trace:

 ...
} catch (SAXParseException err) {
 System.out.println("** Parsing error"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());

 // Unpack the delivered exception to get the exception it contains
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

} catch (SAXException e) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = e;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (4 of 8) [8/22/2001 12:52:12 PM]

3. Handling Errors with the Non-Validating Parser

 if (e.getException() != null)
 x = e.getException();
 x.printStackTrace();

} catch (Throwable t) {
 t.printStackTrace();
}

The program is now ready to handle any SAX parsing exceptions it sees. You've seen that the parser generates exceptions
for fatal errors. But for nonfatal errors and warnings, exceptions are never generated by the default error handler, and no
messages are displayed. Next, you'll learn more about errors and warnings and find out how to supply an error handler to
process them.

Handling a ParserConfigurationException

Finally, recall that the SAXParserFactory class could throw an exception if it were for unable to create a parser. Such an
error might occur if the factory could not find the class needed to create the parser (class not found error), was not
permitted to access it (illegal access exception), or could not instantiate it (instantiation error).

Add the code highlighted below to handle such errors:

} catch (SAXException e) {
 Exception x = e;
 if (e.getException() != null)
 x = e.getException();
 x.printStackTrace();

} catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

} catch (Throwable t) {
 t.printStackTrace();

This code, like the SAXException handler, takes into account the possibility that the reported exception might be wrapping
another exception. (Admittedly, there are quite a few error handlers here. But at least now you know the kinds of
exceptions that can occur.)

Note:
A javax.xml.parsers.FactoryConfigurationError could also be thrown if the factory class specified by
the system property cannot be found or instantiated. That is a non-trappable error, since the program is not
expected to be able to recover from it.

Handling an IOException

Finally, while we're at it, let's stop intercepting all Throwable objects and catch the only remaining exceptions there is to
catch, IOExceptions:

} catch (ParserConfigurationException pce) {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (5 of 8) [8/22/2001 12:52:12 PM]

3. Handling Errors with the Non-Validating Parser

 // Parser with specified options can't be built
 pce.printStackTrace();

} catch (Throwable t) {
 t.printStackTrace();
} catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
}

Understanding NonFatal Errors

In general, a nonfatal error occurs when an XML document fails a validity constraint. If the parser finds that the document
is not valid (which means that it contains an invalid tag or a tag in location that is disallowed), then an error event is
generated. In general, then, errors are generated by a validaating parser, given a DTD that tells it which tags are valid.
There is one kind of error, though, that is generated by the nonvalidating parser you have been working with so far. You'll
experiment with that error next.

Note: The file you'll create in this exercise is slideSampleBad2.xml. (The browsable version is
slideSampleBad2-xml.html.) The output is in Echo06-Bad2.

The SAX specification requires an error event to be generated if the XML document uses a version of XML that the parser
does not support. To generate such an error, make the changes shown below to alter your XML file so it specifies
version="1.2".

<?xml version='1.02' encoding='utf-8'?>

Now run your version of the Echo program on that file. What happens? (See below for the answer.)

Answer: Nothing happens! By default, the error is ignored. The output from the Echo program looks the
same as if version="1.0" had been properly specified. To do something else, you need to supply your
own error handler. You'll do that next.

Handling Nonfatal Errors

A standard treatment for "nonfatal" errors is to treat them as if they were fatal. After all, if a validation error occurs in a
document you are processing, you probably don't want to continue processing it. In this exercise, you'll do exactly that.

Note: The code for the program you'll create in this exercise is in Echo07.java. The output is in Echo07-
Bad2.

To take over error handling, you override the DefaultHandler methods that handle fatal errors, nonfatal errors, and warnings
as part of the ErrorHandler interface. The SAX parser delivers a SAXParseException to each of these methods, so
generating an exception when an error occurs is as simple as throwing it back.

Add the code highlighted below to override the handlers for errors:

public void processingInstruction(String target, String data)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (6 of 8) [8/22/2001 12:52:12 PM]

3. Handling Errors with the Non-Validating Parser

throws SAXException
{
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
}

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{
 throw e;
}

Now when you run your app on the file with the faulty version number, you get an exception, as shown here (but slightly
reformatted for readability):

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ** Parsing error, line 1, uri file:/<path>/slideSampleBad2.xml
 XML version "1.0" is recognized, but not "1.2".
org.xml.sax.SAXParseException: XML version "1.0" is recognized, but not "1.2".
...
at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
at Echo07.main(Echo07.java:61)

Note: The error actually occurs after the startDocument event has been generated. The document header
that the program "echoes" is the one it creates on the assumption that everything is ok, rather than the one
that is actually in the file.

Handling Warnings

Warnings, too, are ignored by default. Warnings are informative, and require a DTD. For example, if an element is defined
twice in a DTD, a warning is generated -- it's not illegal, and it doesn't cause problems, but it's something you might like to
know about since it might not have been intentional.

Add the code highlighted below to generate a message when a warning occurs:

// treat validation errors as fatal
public void error(SAXParseException e)
throws SAXParseException
{
 throw e;
}

// dump warnings too
public void warning(SAXParseException err)
throws SAXParseException
{
 System.out.println("** Warning"

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (7 of 8) [8/22/2001 12:52:12 PM]

3. Handling Errors with the Non-Validating Parser

 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
}

Since there is no good way to generate a warning without a DTD, you won't be seeing any just yet. But when one does
occur, you're ready!

Note: By default, DefaultHandler throws an exception when a fatal error occurs. You could override the
fatalError method to throw a different exception, if you like. But if your code doesn't, the reference
implementation's SAX parser will.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/3_error.html (8 of 8) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html

 Top Contents Index Glossary

7b. Parsing the Parameterized DTD

Link Summary

Local Links

● Schema Proposals
● Manipulating Document

Contents with the Document
Object Model

Exercise Links

● Echo10-08
● slideshow3.dtd
● slideshow3-dtd.html
● slideSample09.xml
● slideSample09-xml.html
● copyright.xml
● copyright-xml.html
● xhtml.dtd
● xhtml-dtd.html
● Echo10-09

External Links

● Modularized XHTML

Glossary Terms

namespace

This section uses the Echo program to see what happens when
you reference xhtml.dtd in slideshow.dtd. It also
covers the kinds of warnings that are generated by the SAX
parser when a DTD is present.

Note: The output described in this section is contained
in Echo10-08.

When you try to echo the slide presentation, you find that it
now contains a new error. The relevant part of the output is
shown here (formatted for readability):

<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 22,
 uri file:.../slideshow.dtd
Element "title" was already declared.
org.xml.sax.SAXParseException: ...

It seems that xhtml.dtd defines a title element which is
entirely different from the title element defined in the
slideshow DTD. Because there is no hierarchy in the DTD,
these two definitions conflict.

Note:
The Modularized XHTML DTD also defines a title
element that is intended to be the document title, so we
can't avoid the conflict by changing xhtml.dtd -- the
problem would only come back to haunt us later.

You could also use XML namespaces to resolve the conflict,
or use one of the more hierarchical schema proposals

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html (1 of 4) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml.dtd
http://www.w3.org/TR/xhtml-modularization/
http://www.w3.org/TR/xhtml-modularization/

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html

described in Schema Proposals. For now, though, let's simply
rename the title element in slideshow.dtd.

Note:
The XML shown here is contained in slideshow3.dtd and slideSample09.xml, which
references copyright.xml and xhtml.dtd. (The browsable versions are slideshow3-dtd.html,
slideSample09-xml.html, copyright-xml.html, and xhtml-dtd.html.) The results of
processing are shown in Echo10-09.

To keep the two title elements separate, we'll resort to a "hyphenation hierarchy". Make the changes
highlighted below to change the name of the title element in slideshow.dtd to slide-title:

<!ELEMENT slide (image?, slide-title?, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT slide-title (%inline;)*>

The next step is to modify the XML file to use the new element name. To do that, make the changes
highlighted below:

...
<slide type="all">
<slide-title>Wake up to ... </slide-title>
</slide>

...

<!-- OVERVIEW -->
<slide type="all">
<slide-title>Overview</slide-title>
<item>...

Now run the Echo program on this version of the slide presentation. It should run to completion and
display output like that shown in Echo10-09.

Congratulations! You have now read a fully validated XML document. The changes you made had the

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html (2 of 4) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml.dtd

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html

effect of putting your DTD's title element into a slideshow "namespace" that you artificially
constructed by hyphenating the name. Now the title element in the "slideshow namespace" (slide-
title, really) no longer conflicts with the title element in xhtml.dtd. In the next section of the
tutorial, you'll see how to do that without renaming the definition. To finish off this section, we'll take a
look at the kinds of warnings that the validating parser can produce when processing the DTD.

DTD Warnings

As mentioned earlier in this tutorial, warnings are generated only when the SAX parser is processing a
DTD. Some warnings are generated only by the validating parser. The nonvalidating parser's main goal is
operate as rapidly as possible, but it too generates some warnings. (The explanations that follow tell
which does what.)

The XML specification suggests that warnings should be generated as result of:

● Providing additional declarations for entities, attributes, or notations.
(Such declarations are ignored. Only the first is used. Also, note that duplicate definitions of
elements always produce a fatal error when validating, as you saw earlier.)

● Referencing an undeclared element type.
(A validity error occurs only if the undeclared type is actually used in the XML document. A
warning results when the undeclared element is referenced in the DTD.)

● Declaring attributes for undeclared element types.

The Java XML SAX parser also emits warnings in other cases, such as:

● No <!DOCTYPE ...> when validating.

● Referencing an undefined parameter entity when not validating.
(When validating, an error results. Although nonvalidating parsers are not required to read
parameter entities, the Java XML parser does so. Since it is not a requirement, the Java XML
parser generates a warning, rather than an error.)

● Certain cases where the character-encoding declaration does not look right.

At this point, you have digested many XML concepts, including DTDs, external entities. You have also
learned your way around the SAX parser. The remainder of the SAX tutorial covers advanced topics that
you will only need to understand if you are writing SAX-based applications. If your primary goal is to
write DOM-based apps, you can skip ahead to Manipulating Document Contents with the Document
Object Model.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html (3 of 4) [8/22/2001 12:52:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/7b_pe.html (4 of 4) [8/22/2001 12:52:12 PM]

9. DTDHandler and EntityResolver

 Top Contents Index Glossary

9. Using the DTDHandler and EntityResolver

Link Summary

Local Links

● Referencing Binary Entities

API Links

● DefaultHandler
● DTDHandler
● EntityResolver
● InputSource

Glossary Terms

notation, SGML, unparsed
entity, URL, URN

In this section of the tutorial, we'll carry on a short discussion
of the two remaining SAX event handlers: DTDHandler and
EntityResolver. The DTDHandler is invoked when the
DTD encounters an unparsed entity or a notation declaration.
The EntityResolver comes into play when a URN
(public ID) must be resolved to a URL (system ID).

The DTDHandler API

In the section Referencing Binary Entities you saw a method
for referencing a file that contains binary data, like an image
file, using MIME data types. That is the simplest, most
extensible mechanism to use. For compatibility with older
SGML-style data, though, it is also possible to define an
unparsed entity.

The NDATA keyword defines an unparsed entity, like this:

<!ENTITY myEntity SYSTEM "..URL.." NDATA gif>

The NDATA keyword says that the data in this entity is not parsable XML data, but is instead data that
uses some other notation. In this case, the notation is named "gif". The DTD must then include a
declaration for that notation, which would look something like this:

<!NOTATION gif SYSTEM "..URL..">

When the parser sees an unparsed entity or a notation declaration, it does nothing with the information
except to pass it along to the application using the DTDHandler interface. That interface defines two
methods:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/9_notatn.html (1 of 3) [8/22/2001 12:52:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/DTDHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/EntityResolver.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/InputSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/DTDHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/EntityResolver.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/DTDHandler.html

9. DTDHandler and EntityResolver

notationDecl(String name, String publicId, String systemId)

unparsedEntityDecl(String name, String publicId, String systemId,
 String notationName)

The notationDecl method is passed the name of the notation and either the public or system
identifier, or both, depending on which is declared in the DTD. The unparsedEntityDecl method is
passed the name of the entity, the appropriate identifiers, and the name of the notation it uses.

Note:
The DTDHandler interface is implemented by the DefaultHandler class.

Notations can also be used in attribute declarations. For example, the following declaration requires
notations for the GIF and PNG image-file formats:

<!ENTITY image EMPTY>
<!ATTLIST image
 ...
 type NOTATION (gif | png) "gif"
>

Here, the type is declared as being either gif, or png. The default, if neither is specified, is gif.

Whether the notation reference is used to describe an unparsed entity or an attribute, it is up to the
application to do the appropriate processing. The parser knows nothing at all about the semantics of the
notations. It only passes on the declarations.

The EnityResolver API

The EntityResolver API lets you convert a public ID (URN) into a system ID (URL). Your
application may need to do that, for example, to convert something like href="urn:/someName"
into "http://someURL".

The EntityResolver interface defines a single method:

resolveEntity(String publicId, String systemId)

This method returns an InputSource object, which can be used to access the entity's contents.
Converting an URL into an InputSource is easy enough. But the URL that is passed as the system ID
will be the location of the original document which is, as likely as not, somewhere out on the Web. To
access a local copy, if there is one, you must maintain a catalog somewhere on the system that maps

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/9_notatn.html (2 of 3) [8/22/2001 12:52:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/helpers/DefaultHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/EntityResolver.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/InputSource.html

9. DTDHandler and EntityResolver

names (public IDs) into local URLs.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/9_notatn.html (3 of 3) [8/22/2001 12:52:13 PM]

Encoding Schemes

Java's Encoding Schemes

This sidebar describes the character-encoding schemes that are supported by the Java platform. Use your
browser's back button to continue in the document that brought you here.

US-ASCII

US-ASCII is a 7-bit encoding scheme that covers the English-language alphabet. It is not
large enough to cover the characters used in other languages, however, so it is not very
useful for internationalization.

UTF-8

UTF-8 is an 8-bit encoding scheme. Characters from the English-language alphabet are all
encoded using an 8-bit bytes. Characters for other languages are encoding using 2, 3 or
even 4 bytes. UTF-8 therefore produces compact documents for the English language, but
very large documents for other languages. If the majority of a document's text is in
English, then UTF-8 is a good choice because it allows for internationalization while still
minimizing the space required for encoding.

UTF-16

UTF-16 is a 16-bit encoding scheme. It is large enough to encode all the characters from
all the alphabets in the world, with the exception of ideogram-based languages like
Chinese. All characters in UTF-16 are encoded using 2 bytes. An English-language
document that uses UTF-16 will be twice as large as the same document encoded using
UTF-8. Documents written in other languages, however, will be far smaller using UTF-16.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/info/encodings.html [8/22/2001 12:52:17 PM]

5d. Referencing Binary Entities

Top Contents Index Glossary

5d. Referencing Binary Entities

Link Summary

API Links

● DTDHandler

External Links

● HTML 4.0 Specification
● MIME data types

Glossary Terms

namespace, NOTATION, SGML

This section contains no programming exercises. Instead, it
discusses the options for referencing binary files like image files
and multimedia data files.

Using a MIME Data Type

There are two ways to go about referencing an unparsed entity
like a binary image file. One is to use the DTD's NOTATION-
specification mechanism. However, that mechanism is a complex,
non-intuitive holdover that mostly exists for compatibility with
SGML documents. We will have occasion to discuss it in a bit
more depth when we look at the DTDHandler API, but suffice it
for now to say that the combination of the recently defined XML
namespaces standard, in conjunction with the MIME data types
defined for electronic messaging attachments, together provide a
much more useful, understandable, and extensible mechanism for
referencing unparsed external entities.

Note: The XML described here is in slideshow1b.dtd. We won't actually be echoing any
images. That's beyond the scope of this tutorial's Echo program. This section is simply for
understanding how such references can be made. It assumes that the application which will be
processing the XML data knows how to handle such references.

To set up the slideshow to use image files, add the text highlighted below to your slideshow.dtd file:

<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5d_dtd.html (1 of 3) [8/22/2001 12:52:17 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/DTDHandler.html
http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.2
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/DTDHandler.html
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/

5d. Referencing Binary Entities

 alt CDATA #IMPLIED
 src CDATA #REQUIRED
 type CDATA "image/gif"
>

These modifications declare image as an optional element in a slide, define it as empty element, and define
the attributes it requires. The image tag is patterned after the HTML 4.0 tag, img, with the addition of an
image-type specifier, type. (The img tag is defined in the HTML 4.0 Specification.)

The image tag's attributes are defined by the ATTLIST entry. The alt attribute, which defines alternate text
to display in case the image can't be found, accepts character data (CDATA). It has an "implied" value, which
means that it is optional, and that the program processing the data knows enough to substitute something like
"Image not found". On the other hand, the src attribute, which names the image to display, is required.

The type attribute is intended for the specification of a MIME data type, as defined
at ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/. It has a default value:
image/gif.

Note: It is understood here that the character data (CDATA) used for the type attribute will be one
of the MIME data types. The two most common formats are: image/gif, and image/jpeg.
Given that fact, it might be nice to specify an attribute list here, using something like:

 type ("image/gif", "image/jpeg")

That won't work, however, because attribute lists are restricted to name tokens. The forward slash
isn't part of the valid set of name-token characters, so this declaration fails. Besides that, creating
an attribute list in the DTD would limit the valid MIME types to those defined today. Leaving it
as CDATA leaves things more open ended, so that the declaration will continue to be valid as
additional types are defined.

In the document, a reference to an image named "intro-pic" might look something like this:

<image src="image/intro-pic.gif", alt="Intro Pic", type="image/gif" />

The Alternative: Using Entity References

Using a MIME data type as an attribute of an element is a mechanism that is flexible and expandable. To create
an external ENTITY reference using the notation mechanism, you need DTD NOTATION elements for jpeg and
gif data. Those can of course be obtained from some central repository. But then you need to define a different
ENTITY element for each image you intend to reference! In other words, adding a new image to your
document always requires both a new entity definition in the DTD and a reference to it in the document. Given
the anticipated ubiquity of the HTML 4.0 specification, the newer standard is to use the MIME data types and a
declaration like image, which assumes the application knows how to process such elements.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5d_dtd.html (2 of 3) [8/22/2001 12:52:17 PM]

http://www.w3.org/TR/REC-html40/struct/objects.html#h-13.2
ftp://ftp.isi.edu/in-notes/iana/assignments/media-types/

5d. Referencing Binary Entities

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/5d_dtd.html (3 of 3) [8/22/2001 12:52:17 PM]

2. Writing a DOM

Top Contents Index Glossary

2. Writing Out a DOM as an XML File

Link Summary

Local Links

● Reading XML into a DOM, Additional
Information

● Compiling the Program
● Running the Program

Exercise Links

● slideSample01.xml
● slideSample01-xml.html
● TransformationApp01.java
● TransformationApp02.java
● TransformationApp03.java
● TransformationLog02
● TransformationLog03

API Links

● DomSource
● StreamResult

Once you have constructed a DOM, either by parsing an XML file or building it
programmatically, you frequently want to save it as XML. This section shows
you how to do that using the XSLT transform package.

Using that package, you'll create a transformer object to wire a DomSource to a
StreamResult. You'll then invoke the transformer's transform() method to
do the job!

Reading the XML

The first step is to create a DOM in memory by parsing an XML file. By now,
you should be getting pretty comfortable with the process!

Note:
The code discussed in this section is in
TransformationApp01.java.

The code below provides a basic template to start from. (It should be familiar.
It's basically the same code you wrote at the start of the DOM tutorial. If you
saved it then, that version should be pretty much the equivalent of what you see
below.)

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

import java.io.*;

public class TransformationApp
{
 static Document document;

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println ("Usage: java TransformationApp filename");
 System.exit (1);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (1 of 6) [8/22/2001 12:52:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/dom/DOMSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/stream/StreamResult.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/dom/DOMSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/stream/StreamResult.html

2. Writing a DOM

 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File f = new File(argv[0]);
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

}

Creating a Transformer

The next step is to create a transformer you can use to transmit the XML to System.out.

Note:
The code discussed in this section is in TransformationApp02.java. The file it runs on is slideSample01.xml. (The
browsable version is slideSample01-xml.html.) The output is in TransformationLog02.

Start by adding the import statements highlighted below:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.dom.DOMSource;

import javax.xml.transform.stream.StreamResult;

import java.io.*;

Here, you've added a series of classes which should be now be forming a standard pattern: an entity (Transformer), the factory to

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (2 of 6) [8/22/2001 12:52:18 PM]

2. Writing a DOM

create it (TransformerFactory), and the exceptions that can be generated by each. Since a transformation always has a source and a
result, you then imported the classes necessary to use a DOM as a source (DomSource), and an output stream for the the result
(StreamResult).

Next, add the code to carry out the transformation:

try {
 File f = new File(argv[0]);
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

 // Use a Transformer for output
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 DOMSource source = new DOMSource(document);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

Here, you created a transformer object, used the DOM to construct a source object, and used System.out to construct a result object.
You then told the transformer to operate on the source object and output to the result object.

Note:
In this case, the "transformer" isn't actually changing anything. In XSLT terminology, you are using the identity
transform, which means that the "transformation" generates a copy of the source, unchanged..

Finally, add the code highlighted below to catch the new errors that can be generated:

} catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();

} catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

} catch (SAXException sxe) {
 ...

Notes:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (3 of 6) [8/22/2001 12:52:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/dom/DOMSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/stream/StreamResult.html

2. Writing a DOM

● TransformerExceptions are thrown by the transformer object.
● TransformerConfigurationExceptions are thrown by the factory.

Addendum:
Astute reader Malcolm Gorman points out that, as it is currently written, the transformation app won't preserve athe
XML document's DOCTYPE setting. He proposes the following code to remedy the omission:
String systemValue = (new File(document.getDoctype().getSystemId())).getName();
transformer.setOutputProperty(OutputKeys.DOCTYPE_SYSTEM, systemValue);

Writing the XML

For instructions on how to compile and run the program, see Compiling the Program and Running the Program, from the SAX
tutorial. (Substitute "TransformationApp" for "Echo" as the name of the program.)

When you run the program on slideSample01.xml, this is the output you see:

<?xml version="1.0" encoding="UTF-8"?>

<!-- A SAMPLE set of slides -->
<slideshow title="Sample Slide Show" date="Date of publication" author="Yours Truly">

 <!-- TITLE SLIDE -->

 <slide type="all">

 <title>Wake up to WonderWidgets!</title>

 </slide>

 <!-- OVERVIEW -->

 <slide type="all">

 <title>Overview</title>

 <item>Why
 WonderWidgets are great
 </item>

 <item />

 <item>Who
 buys WonderWidgets
 </item>

 </slide>

</slideshow>

Note:
See Reading XML into a DOM, Additional Information to find out more about configuring the factory and handling
validation errors.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (4 of 6) [8/22/2001 12:52:18 PM]

2. Writing a DOM

Writing Out a Subtree of the DOM

It is also possible to operate on a subtree of a DOM. In this section of the tutorial, you'll experiment with that option.

Note:
The code discussed in this section is in TransformationApp03.java. The output is in TransformationLog03.

The only difference in the process is that now you will create a DOMSource using a node in the DOM, rather than the entire DOM.
The first step will be to import the classes you need to get the node you want. Add the code highlighted below to do that:

import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

The next step is to find a good node for the experiment. Add the code highlighted below to select the first <slide> element:

 try {
 File f = new File(argv[0]);
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

 // Get the first <slide> element in the DOM
 NodeList list = document.getElementsByTagName("slide");
 Node node = list.item(0);

Finally, make the changes shown below to construct a source object that consists of the subtree rooted at that node:

 DOMSource source = new DOMSource(document);
 DOMSource source = new DOMSource(node);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

Now run the app. Your output should look like this:

 <?xml version="1.0" encoding="UTF-8"?>
<slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

Clean Up

Because it will be easiest to do now, make the changes shown below to back out the additions you made in this section.
(TransformationApp04.java contains these changes.)

Import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;
...
 try {
 ...
 // Get the first <slide> element in the DOM
 NodeList list = document.getElementsByTagName("slide");
 Node node = list.item(0);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (5 of 6) [8/22/2001 12:52:18 PM]

2. Writing a DOM

 ...
 DOMSource source = new DOMSource(node);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

Summary

At this point, you've seen how to use a transformer to write out a DOM, and how to use a subtree of a DOM as the source object in a
transformation. In the next section, you'll see how to use a transformer to create XML from any data structure you are capable of
parsing.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/2_write.html (6 of 6) [8/22/2001 12:52:18 PM]

1. Intro to XSLT

Top Contents Index Glossary

1. Introducing XSLT and XPath

Link Summary

Local Links

● Generating XML from an
Arbitrary Data Structure

● Transforming XML Data with
XSLT

External Links

● XPath Specification

Glossary Terms

DOM, SAX, URI, XSL

The XML Stylesheet Language (XSL) has three major
subcomponents:

● XSL-FO
The "flow object" standard. By far the largest
subcomponent, this standard gives mechanisms for
describing font sizes, page layouts, and how
information "flows" from one page to another. This
subcomponent is not covered by JAXP, nor is it
included in this tutorial.

● XSLT
This the transformation language, which lets you
transform XML into some other format. For example,
you might use XSLT to produce HTML, or a different
XML structure. You could even use it to produce plain
text or to put the information in some other document
format. (And as you'll see in Generating XML from an
Arbitrary Data Structure, a clever application can press
it into service to manipulate non-XML data, as well.)

● XPath
At bottom, XSLT is a language that lets you specify what sorts of things to do when a particular
element is encountered. But to write a program for different parts of an XML data structure, you
need to be able to specify the part of the structure you are talking about at any given time. XPath
is that specification language. It is an addressing mechanism that lets you specify a path to an
element so, for example, <article><title> can be distinguished from <person><title>. That way,
you can describe different kinds of translations for the different <title> elements.

The remainder of this section describes the XSLT package structure, and discusses the XPath addressing
mechanism in a bit more depth.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (1 of 10) [8/22/2001 12:52:20 PM]

http://www.w3.org/TR/xpath

1. Intro to XSLT

The XSLT Packages

There XSLT packages break down as follows:

javax.xml.transform
This package defines the factory class you use to get a Transformer object. You then
configure the transformer with input (Source) and output (Result) objects, and invoke its
transform() method to make the transformation happen. The source and result objects are
created using classes from one of the other three packages.

javax.xml.transform.dom

Defines the DOMSource and DOMResult classes that let you use a DOM as an input to or
output from a transformation.

javax.xml.transform.sax

Defines the SAXSource and SAXResult classes that let you use a SAX event generator as
input to a transformation, or deliver SAX events as output to a SAX event processor.

javax.xml.transform.stream

Defines the StreamSource and StreamResult classes that let you use an I/O stream as an
input to or output from a transformation.

How XPath Works

The XPath specification is the foundation for a variety of specifications, including XSLT and
linking/addressing specifications like XPointer. So an understanding of XPath is fundamental to a lot of
advanced XML usage. This section provides a thorough introduction to XSLT, so you can refer to as
needed later on.

Note:
In this tutorial, you won't actually use XPath until you get to the last page of this section,
Transforming XML Data with XSLT. So, if you like, you can skip this section and go on
ahead to the next page, Writing Out a DOM as an XML File. (When you get to the last
page, there will be a note that refers you back here, so you don't forget!)

In general, an XPath expression specifies a pattern that selects a set of XML nodes. XSLT templates then
use those patterns when applying transformations. (XPointer, on the other hand, adds mechanisms for
defining a point or a range, so that XPath expressions can be used for addressing.)

The nodes in an XPath expression refer to more than just elements. They also refer to text and attributes,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (2 of 10) [8/22/2001 12:52:20 PM]

1. Intro to XSLT

among other things. In fact, the XPath specification defines an abstract document model that defines
seven different kinds of nodes:

● root
● element
● text
● attribute
● comment
● processing instruction
● namespace

Note:
The root element of the XML data is modeled by an element node. The XPath root node
contains the document's root element, as well as other information relating to the
document.

The data model is described in the last section of the XPath Specification, Section 5. (Like many
specifications, it is frequently helpful to start reading near the end! Frequently, many of the important
terms and underlying assumptions are documented there. That sequence has often been the "magic key"
that unlocks the contents of a W3C specification.)

In this abstract model, syntactic distinctions disappear, and you are left with a normalized view of the
data. In a text node, for example, it makes no difference whether the text was defined in a CDATA
section, or if it included entity references;. The text node will consist of normalized data, as it exists after
all parsing is complete. So the text will contain a "<" character, regardless of whether an entity reference
like < or a CDATA section was used to include it. (Similarly for the "&" character.)

In this section of the tutorial, we'll deal mostly with element nodes and text nodes. For the other
addressing mechanisms, see the XPath Specification.

Basic XPath Addressing

An XML document is a tree-structured (hierarchical) collection of nodes. Like a hierarchical directory
structure, it is useful to specify a path that points a particular node in the hierarchy. (Hence the name of
the specification: XPath). In fact, much of the notation of directory paths is carried over intact:

● The forward slash (/) is used as a path separator.
● An absolute path from the root of the document starts with a /.
● A relative path from a given location starts with anything else.
● A double period (..) indicates the parent of the current node.
● A single period . indicates the current node.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (3 of 10) [8/22/2001 12:52:20 PM]

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

1. Intro to XSLT

In an xHTML document, for example, the path /h1/h2/ would indicate an h2 element under an h1.
(Recall that in XML, element names are case sensitive, so this kind of specification works much better in
xHTML than it would in HTML.)

In a pattern-matching specification like XSLT, the specification /h1/h2 selects all h2 elements that lie
under an h1 element. To select a specific h2 element, square brackets ([]) are used for indexing (like
those used for arrays). The path /h1[4]/h2[5] would therefore select the fifth h2 element under the
fourth h1 element.

Note:
In xHTML, all element names are in lowercase. But as a matter of style, uppercase names
are easier to read and easier to write about. (Although they are admittedly harder to write.)
For the remainder of XPATH tutorial, then, and for the section on using XSLT transforms,
all XML element names will be in uppercase. (Attribute names, on the other hand, will
remain in lowercase.)

As you've seen, a name in XPath specification refers to an element. To refer to attribute, you prefix it's
name with an "@" sign. For example, @type refers to the type attribute of an element. Assuming you
have an XML document with list elements, for example, the expression list/@type selects the
type attribute of the list element.

Note:
(Since the expression does not begin with /, the reference specifies a list node relative to
the current context -- whatever position in the document that happens to be.)

Basic XPath Expressions

The full range of XPath expressions takes advantage of the wildcards, operators, and functions that
XPath defines. You'll be learning more about those shortly. Here, we'll take a look at a couple of the
most common XPath expressions, simply to introduce the concept.

The expression @type="unordered" specifies an attribute named type whose value is "unordered".
So an expression like LIST/@type specifies the type attribute of a LIST element.

But now for something a little different! In XPath, the square-bracket notation ([]) normally associated
with indexing is extended to specify selection-criteria. For example, the expression
LIST[@type="unordered"] selects all LIST elements whose type value is "unordered".

Similar expressions exist for elements, where each element has an associated string-value. (You'll see
how the string-value is determined for a complicated element in a little while. For now, we'll stick with
super-simple elements that have a single text string.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (4 of 10) [8/22/2001 12:52:20 PM]

1. Intro to XSLT

Suppose you model what's going on in your organization with an XML structure that consists of
PROJECT elements and ACTIVITY elements that have a text string with the project name, multiple
PERSON elements to list the people involved and, optionally, a STATUS element that records the
projects status. Here are some more examples that use the extended square-bracket notation:

● /PROJECT[.="MyProject"] selects a PROJECT named "MyProject".
● /PROJECT[STATUS] -- selects all projects that have a STATUS child element.
● /PROJECT[STATUS="Critical"] -- selects all projects that have a STATUS child element

with the string-value "Critical".

Combining Index Addresses

The XPath specification defines quite a few addressing mechanisms, and they can be combined in many
different ways. As a result, XPath delivers a lot of expressive power for a relatively simple specification.
This section illustrates two more interesting combinations:

● LIST[@type="ordered"][3] -- selects all LIST elements of type "ordered", and returns the
third.

● LIST[3][@type="ordered"] -- selects the third LIST element, but only if it is of "ordered"
type.

Note:
Many more combinations of address operators are listed in section 2.5 of the XPath
Specification. This is arguably the most useful section of the spec for defining an XSLT
transform.

Wildcards

By definition, an unqualified XPath expression selects a set of XML nodes that matches that specified
pattern. For example, /HEAD matches all top-level HEAD entries, while /HEAD[1] matches only the
first. But XPath expressions can also contain one of several wildcards to broaden the scope of the pattern
matching:

*
matches any element node (not attributes or
text)

node()

matches all nodes of any kind: element nodes,
text nodes, attribute nodes,
processing instruction nodes, namespace
nodes, and comment nodes.

@* matches all attribute nodes

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (5 of 10) [8/22/2001 12:52:20 PM]

http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

1. Intro to XSLT

In the project database example, for instance, /*/PERSON[.="Fred"] matches any PROJECT or
ACTIVITY element that includes Fred.

Extended-Path Addressing

So far, all of the patterns we've seen have specified an exact number of levels in the hierarchy. For
example, /HEAD specifies any HEAD element at the first level in the hierarchy, while /*/* specifies
any element at the second level in the hierarchy. To specify an indeterminate level in the hierarchy, use a
double forward slash (//). For example, the XPath expression //PARA selects all paragraph
elements in a document, wherever they may be found.

The // pattern can also be used within a path. So the expression /HEAD/LIST//PARA indicates all
paragraph elements in a subtree that begins from /HEAD/LIST.

XPath Data Types and Operators

XPath expressions yield either a set of nodes,: a string, a boolean (true/false value), or a number.
Expressions can also be created using one of several operations on these values:

| Alternative. So PARA|LIST selects all PARA and LIST elements.

or, and Returns the or/and of two boolean values.

=, != Equal or not equal, for booleans, strings, and numbers.

<, >, <=, >=
Less than, greater than, less than or equal to, greater than or equal to -- for
numbers.

+, -, *, div,
mod

Add, subtract, multiply, floating-point divide, and modulus (remainder)
operations
(e.g. 6 mod 4 = 2)

Finally, expressions can be grouped in parentheses, so you don't have to worry about operator
precedence. (Which, for those of you who who are good at such things, is roughly the same as that shown
in the table.)

String-Value of an Element

Before going on, it's worthwhile to understand how the string-value of more complex element is
determined. We'll do that now.

The string-value of an element is the concatenation of all descendent text nodes, no matter how deep. So,
for a "mixed-model" XML data element like this:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (6 of 10) [8/22/2001 12:52:20 PM]

1. Intro to XSLT

<PARA>This paragraph contains a bold word</PARA>

the string-value of <PARA> is "This paragraph contains a bold word". In particular, note that is a
child of <PARA> and that the text contained in all children is concatenated to form the string-value.

Also, it is worth understanding that the text in the abstract data model defined by XPath is fully
normalized. So whether the XML structure contains the entity reference "<" or "<" in a CDATA
section, the element's string-value will contain the "<" character. Therefore, when generating HTML or
XML with an XSLT stylesheet, occurrences of "<" will have to be converted to < or enclosed in a
CDATA section. Similarly, occurrence of "&" will need to be converted to &.

XPath Functions

This section ends with an overview of the XPath functions. You can use XPath functions to select a
collection of nodes in the same way that you would use an element-specification. Other functions return
a string, a number, or a boolean value. For example, the expression /PROJECT/text() gets the
string-value of project nodes.

Many functions depend on the current context. In the example above, the context for each invocation of
the text() function is the PROJECT node that is currently selected.

There are many XPath functions -- too many to describe in detail here. This section provides a quick
listing that shows the available XPath functions, along with a summary of what they do.

Note:
Skim the list of functions to get an idea of what's there. For more information, see Section
4 of the XPath Specification.

Node-set functions

Many XPath expressions select a set of nodes. In essence, they return a node-set. One function does that,
too.

● id(...) -- returns the node with the specified id.
(Elements only have an ID when the document has a DTD, which specifies which attribute has the
ID type.)

Positional functions

These functions return positionally-based numeric values.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (7 of 10) [8/22/2001 12:52:20 PM]

http://www.w3.org/TR/xpath

1. Intro to XSLT

● last() -- returns the index of the last element. Ex: /HEAD[last()] selects the last HEAD
element.

● position() -- returns the index position. Ex: /HEAD[position() <= 5] selects the first
five HEAD elements

● count(...) -- returns the count of elements. Ex: /HEAD[count(HEAD)=0] selects all
HEAD elements that have no subheads.

String functions

These functions operate on or return strings.

● concat(string, string, ...) -- concatenates the string values
● starts-with(string1, string2) -- returns true if string1 starts with string2
● contains(string1, string2) -- returns true if string1 contains string2
● substring-before(string1, string2) -- returns the start of string1 before string2

occurs in it
● substring-after(string1, string2) -- returns the remainder of string1 after string2

occurs in it
● substring(string, idx) -- returns the substring from the index position to the end, where

the index of the first char = 1
● substring(string, idx, len) -- returns the substring from the index position, of the

specified length
● string-length() -- returns the size of the context-node's string-value
● string-length(string) -- returns the size of the specified string
● normalize-space() -- returns the normalized string-value of the current node (no leading or

trailing whitespace, and sequences of whitespace characters converted to a single space)
● normalize-space(string) -- returns the normalized string-value of the specified string
● translate(string1, string2, string3) -- converts string1, replacing occurences of

characters in string2 with the corresponding character from string3

Note:
XPath defines 3 ways to get the text of an element: text(), string(object), and the string-
value implied by an element name in an expression like this:
/PROJECT[PERSON="Fred"].

Boolean functions

These functions operate on or return boolean values..

● not(...) -- negates the specified boolean value
● true() -- returns true
● false() -- returns false

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (8 of 10) [8/22/2001 12:52:20 PM]

1. Intro to XSLT

● lang(string) -- returns true if the language of the context node (specified by xml:Lang
attributes) is the same as (or a sublanguage of) the specified language. Ex: Lang("en") is true
for <PARA xml:Lang="en">...</PARA>

Numeric functions

These functions operate on or return numeric values.

● sum(...) -- returns the sum of the numeric value of each node in the specified node-set
● floor(N) -- returns the largest integer that is not greater than N
● ceiling(N) -- returns the smallest integer that is greater than N
● round(N) -- returns the integer that is closest to N

Conversion functions

These functions convert one data type to another.

● string(...) -- returns the string value of a number, boolean, or node-set
● boolean(...) -- returns the boolean-equivalent for a number, string, or node-set

(a non-zero number, a non-empty node-set, and a non-empty string are all true)
● number(...) -- returns the numeric value of a boolean, string, or node-set

(true is 1, false is 0, a string containing a number becomes that number, the string-value of a node-
set is converted to a number)

Namespace functions

These functions let you determine the namespace-characteristics of a node.

● local-name() -- returns the name of the current node, minus the namespace-extension
● local-name(...) -- returns the name of the first node in the specified node set, minus the

namespace-extension
● namespace-uri() -- returns the namespace URI from the current node
● namespace-uri(...) -- returns the namespace URI from the first node in the specified node

set
● name() -- returns the expanded name (URI + local name) of the current node
● name(...) -- returns the expanded name (URI + local name) of the first node in the specified

node set

Summary

XPath operators, functions, wildcards, and node-addressing mechanisms can be combined in wide
variety of ways. The introduction you've had so far should give you a good head start at specifying the

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (9 of 10) [8/22/2001 12:52:20 PM]

1. Intro to XSLT

pattern you need for any particular purpose.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/1_intro.html (10 of 10) [8/22/2001 12:52:20 PM]

1. Reading Data into a DOM

Top Contents Index Glossary

1. Reading XML Data into a DOM

Link Summary

Local Links

● Creating and Manipulating a DOM
● Compiling the Program
● Running the Program
● Handling Errors
● Using the Validating Parser
● Using Namespaces
● Using XSLT

Exercise Links

● DomEcho01.java
● slideSample01.xml
● slideSample01-xml.html

API Links

● DocumentBuilder
● Document

External Links

● Level 1 DOM specification

Glossary Terms

DOM, namespace, SAX, URI,
validating parser

In this section of the tutorial, you'll construct a Document Object
Model (DOM) by reading in an existing XML file. In the following
sections, you'll see how to display the XML in a Swing tree
component and practice manipulating the DOM.

Note:
In the next part of the tutorial, Using XSLT, you'll see how to
write out a DOM as an XML file. (You'll also see how to
convert an existing data file into XML with relative ease.)

Creating the Program

The Document Object Model (DOM) provides APIs that let you
create nodes, modify them, delete and rearrange them. So it is
relatively easy to create a DOM, as you'll see in later in section 5 of
this tutorial, Creating and Manipulating a DOM.

Before you try to create a DOM, however, it is helpful to understand
how a DOM is structured. This series of exercises will make DOM
internals visible by displaying them in a Swing JTree.

Create the Skeleton

Now that you've had a quick overview of how to create a DOM, let's
build a simple program to read an XML document into a DOM then
write it back out again.

Note:
The code discussed in this section is in DomEcho01.java. The
file it operates on is slideSample01.xml. (The browsable
version is slideSample01-xml.html.)

Start with a normal basic logic for an app, and check to make sure
that an argument has been supplied on the command line:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (1 of 6) [8/22/2001 12:52:25 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/parsers/DocumentBuilder.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Document.html
http://www.w3.org/TR/REC-DOM-Level-1/

1. Reading Data into a DOM

public class DomEcho {

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 }
 }// main

}// DomEcho

Import the Required Classes

In this section, you're going to see all the classes individually named. That's so you can see where each class comes
from when you want to reference the API documentation. In your own apps, you may well want to replace import
statements like those below with the shorter form: javax.xml.parsers.*.

Add these lines to import the JAXP APIs you'll be using:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

Add these lines for the exceptions that can be thrown when the XML document is parsed:

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

Add these lines to read the sample XML file and identify errors:

import java.io.File;
import java.io.IOException;

Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

Note:
DOMExceptions are only thrown when traversing or manipulating a DOM. Errors that occur during
parsing are reporting using a different mechanism that is covered below.

Declare the DOM

The org.w3c.dom.Document class is the W3C name for a Document Object Model (DOM). Whether you parse an

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (2 of 6) [8/22/2001 12:52:25 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Document.html

1. Reading Data into a DOM

XML document or create one, a Document instance will result. We'll want to reference that object from another
method later on in the tutorial, so define it as a global object here:

public class DomEcho
{
 static Document document;

 public static void main(String argv[])
 {

It needs to be static, because you're going to you generate it's contents from the main method in a few minutes.

Handle Errors

Next, put in the error handling logic. This code is very similar to the logic you saw in Handling Errors in the SAX
tutorial, so we won't go into it in detail here. The major point worth noting is that a JAXP-conformant document
builder is required to report SAX exceptions when it has trouble parsing the XML document. The DOM parser does
not have to actually use a SAX parser internally, but since the SAX standard was already there, it seemed to make
sense to use it for reporting errors. As a result, the error-handling code for DOM and SAX applications are very
similar:

public static void main(String argv[])
{
 if (argv.length != 1) {
 ...
 }

 try {

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
}// main

The major difference between this code and the SAX error-handling code is that the DOM parser does not throw
SAXParseException's, but only SAXException's.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (3 of 6) [8/22/2001 12:52:25 PM]

1. Reading Data into a DOM

Instantiate the Factory

Next, add the code highlighted below to obtain an instance of a factory that can give us a document builder:

public static void main(String argv[])
{
 if (argv.length != 1) {
 ...
 }
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {

Get a Parser and Parse the File

Now, add the code highlighted below to get a instance of a builder, and use it to parse the specified file:

try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
} catch (SAXParseException spe) {

Save This File!
By now, you should be getting the idea that every JAXP application starts pretty much the same
way. You're right! Save this version of the file as a template. You'll use it later on as the basis for
XSLT transformation app.

Run the Program

Throughout most of the DOM tutorial, you'll be using the sample slideshows you created in the SAX section. In
particular, you'll use slideSample01.xml, a simple XML file with nothing much in it, and
slideSample10.xml, a more complex example that includes a DTD, processing instructions, entity references,
and a CDATA section.

For instructions on how to compile and run your program, see Compiling the Program and Running the Program,
from the SAX tutorial. Substitute "DomEcho" for "Echo" as the name of the program, and you're ready to roll.

For now, just run the program on slideSample01.xml. If it ran without error, you have successfully parsed an XML
document and constructed a DOM. Congratulations!

Note:
You'll have to take my word for it, for the moment, because at this point you don't have any way to
display the results. But that is feature is coming shortly...

Additional Information

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (4 of 6) [8/22/2001 12:52:25 PM]

1. Reading Data into a DOM

Now that you have successfully read in a DOM, there are one or two more things you need to know in order to use
DocumentBuilder effectively. Namely, you need to know about:

● Configuring the Factory
● Handling Validation Errors

Configuring the Factory

By default, the factory returns a nonvalidating parser that knows nothing about namespaces. To get a validating
parser, and/or one that understands namespaces, you configure the factory to set either or both of those options using
the command(s) highlighted below:

public static void main(String argv[])
{
 if (argv.length != 1) {
 ...
 }
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setValidating(true);
 factory.setNamespaceAware(true);
 try {
 ...

Note:
JAXP-conformant parsers are not required to support all combinations of those options, even though
the reference parser does. If you specify an invalid combination of options, the factory generates a
ParserConfigurationException when you attempt to obtain a parser instance.

You'll be learning more about how to use namespaces in the last section of the DOM tutorial, Using Namespaces. To
complete this section, though, you'll want to learn something about...

Handling Validation Errors

Remember when you were wading through the SAX tutorial, and all you really wanted to do was construct a DOM?
Well, here's when that information begins to pay off.

Recall that the default response to a validation error, as dictated by the SAX standard, is to do nothing. The JAXP
standard requires throwing SAX exceptions, so you exactly the same error handling mechanisms as you used for a
SAX app. In particular, you need to use the DocumentBuilder's setErrorHandler method to supply it with an
object that implements the SAX ErrorHandler interface.

Note:
DocumentBuilder also has a setEntityResolver method you can use

The code below uses an anonymous inner class adapter to provide that ErrorHandler. The highlighted code is the part

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (5 of 6) [8/22/2001 12:52:25 PM]

1. Reading Data into a DOM

that makes sure validation errors generate an exception.

builder.setErrorHandler(
 new org.xml.sax.ErrorHandler() {
 // ignore fatal errors (an exception is guaranteed)
 public void fatalError(SAXParseException exception)
 throws SAXException {
 }

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }
 }
);

This code uses an anonymous inner class to generate an instance of an object that implements the ErrorHandler
interface. Since it has no class name, it's "anonymous". You can think of it as an "ErrorHandler" instance, although
technically it's a no-name instance that implements the specified interface. The code is substantially the same as that
described the Handling Errors section of the SAX tutorial. For a more background on validation issues, refer to Using
the Validating Parser in that part of the tutorial.

Looking Ahead

In the next section, you'll display the DOM structure in a JTree and begin explore its structure. For example, you'll
see how entity references and CDATA sections appear in the DOM. And perhaps most importantly, you'll see how
text nodes (which contain the actual data) reside under element nodes in a DOM.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/1_read.html (6 of 6) [8/22/2001 12:52:25 PM]

2a. Displaying a DOM Hierarchy

Top Contents Index Glossary

2a. Displaying a DOM Hierarchy

Link Summary

Exercise Links

● DomEcho02.java

External Links

● DOM 2 Core Specification
● Understanding the TreeModel

To create a Document Object Hierarchy (DOM) or manipulate one, it helps
to have a clear idea of how nodes in a DOM are structured. In this section
of the tutorial, you'll expose the internal structure of a DOM.

Echoing Tree Nodes

What you need at this point is a way to expose the nodes in a DOM so can
see what it contains. To do that, you'll convert a DOM into a JTreeModel
and display the full DOM in a JTree. It's going to take a bit of work, but the
end result will be a diagnostic tool you can use in the future, as well as
something you can use to learn about DOM structure now.

Convert DomEcho to a GUI App

Since the DOM is a tree, and the Swing JTree component is all about displaying trees, it makes sense to stuff the DOM into a
JTree, so you can look it. The first step in that process is to hack up the DomEcho program so it becomes a GUI application.

Note:
The code discussed in this section is in DomEcho02.java.

Add Import Statements

Start by importing the GUI components you're going to need to set up the application and display a JTree:

// GUI components and layouts
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

Later on in the DOM tutorial, we'll going to tailor the DOM display to generate a user-friendly version of the JTree display.
When the user selects an element in that tree, you'll be displaying subelements in an adjacent editor pane. So, while we're
doing the setup work here, import the components you need to set up a divided view (JSplitPane) and to display the text of the
subelements (JEditorPane):

import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

Add a few support classes you're going to need to get this thing off the ground:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (1 of 13) [8/22/2001 12:52:30 PM]

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

2a. Displaying a DOM Hierarchy

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

Finally, import some classes to make a fancy border:

// For creating borders
import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

(These are optional. You can skip them and the code that depends on them if you want to simplify things.)

Create the GUI Framework

The next step is to convert the app into a GUI application. To do that, the static main method will create an instance of the
main class, which will have become a GUI pane.

Start by converting the class into a GUI pane by extending the Swing JPanel class:

public class DomEcho02 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;
 ...

While you're there, define a few constants you'll use to control window sizes:

public class DomEcho02 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

Now, in the main method, invoke a method that will create the outer frame that the GUI pane will sit in:

 public static void main(String argv[])
 {
 ...
 DocumentBuilderFactory factory ...
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (2 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

 makeFrame();

 } catch (SAXParseException spe) {
 ...

Next, you'll need to define the makeFrame method itself. It contains the standard code to create a frame, handle the exit
condition gracefully, give it an instance of the main panel, size it, locate it on the screen, and make it visible:

 ...
} // main

public static void makeFrame()
{
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 });

 // Set up the tree, the views, and display it all
 final DomEcho02 echoPanel = new DomEcho02();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize = Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2, screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
} // makeFrame

Add the Display Components

The only thing left in the effort to convert the program to a GUI app is create the class constructor and make it create the
panel's contents. Here is the constructor:

public class DomEcho02 extends JPanel
{
 ...
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho02()
 {
 } // Constructor

Here, you make use of the border classes you imported earlier to make a regal border (optional):

public DomEcho02()
{
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (3 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(CB,eb));

} // Constructor

Next, create an empty tree and put it a JScrollPane so users can see its contents as it gets large:

public DomEcho02()
{
 ...

 // Set up the tree
 JTree tree = new JTree();

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

} // Constructor

Now create a non-editable JEditPane that will eventually hold the contents pointed to by selected JTree nodes:

public DomEcho02()
{

 // Build right-side view
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

} // Constructor

With the left-side JTree and the right-side JEditorPane constructed, create a JSplitPane to hold them:

public DomEcho02()
{

 // Build split-pane view
 JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

} // Constructor

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (4 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

With this code, you set up the JSplitPane so with a vertical divider. That produces a "horizontal split" between the tree and the
editor pane. (More of a horizontal layout, really.) You also set the location of the divider so that the tree got the width it
prefers, with the remainder of the window width allocated to the editor pane.

Finally, specify the layout for the panel and add the split pane:

public DomEcho02()
{
 ...

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);

} // Constructor

Congratulations! The program is now a GUI app. You can run it now to see what the general layout will look like on screen.
For reference, here is the completed constructor:

 public DomEcho02()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder CB = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(CB,eb));

 // Set up the tree
 JTree tree = new JTree();

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Build split-pane view
 JSplitPane splitPane = new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (5 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // Constructor

Create Adapters to Display the DOM in a JTree

Now that you have a GUI framework to display a JTree in, the next step is get the JTree to display the DOM. But a JTree
wants to display a TreeModel. A DOM is a tree, but it's not a TreeModel. So you'll need to create an adapter class that makes
the DOM look like a TreeModel to a JTree.

Now, when the TreeModel passes nodes to the JTree, JTree uses the toString function of those nodes to get the text to
display in the tree. The standard toString function isn't going to be very pretty, so you'll need to wrap the DOM nodes in an
AdapterNode that returns the text we want. What the TreeModel gives to the JTree, then, will in fact be AdapterNode objects
that wrap DOM nodes.

Note:
The classes that follow are defined as inner classes. If you are coding for the 1.1 platform, you will need to
define these class as external classes.

Define the AdapterNode Class

Start by importing the tree, event, and utility classes you're going to need to make this work:

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
Import java.util.*;

public class DomEcho02 extends JPanel
{

Moving back down to the end of the program, define a set of strings for the node element types:

 ...
 } // makeFrame

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {
 "none",
 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (6 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

 "DocFragment",
 "Notation",
 };

 } // DomEcho

These are the strings that will be displayed in the JTree. The specification of these nodes types can be found in the Document
Object Model (DOM) Level 2 Core Specification, under the specification for Node. That table is reproduced below, with the
headings modified for clarity, and with the nodeType() column added:

Table of Node Type

Node nodeName() nodeValue() attributes nodeType()

Attr name of attribute value of attribute null 2

CDATASection #cdata-section content of the
CDATA Section

null 4

Comment #comment content of the comment null 8

Document #document null null 9

DocumentFragment #document-fragment null null 11

DocumentType document type name null null 10

Element tag name null NamedNodeMap 1

Entity entity name null null 6

EntityReference name of entity
referenced

null null 5

Notation notation name null null 12

ProcessingInstruction target entire content excluding
the target

null 7

Text #text content of the text node null 3

Suggestion:
Print this table and keep it handy. You need it when working with the DOM, because all of these types are intermixed in a
DOM tree. So your code is forever asking, "Is this the kind of node I'm interested in?".

Next, define the AdapterNode wrapper for DOM nodes:

 static final String[] typeName = {
 ...
 };

 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (7 of 13) [8/22/2001 12:52:30 PM]

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

2a. Displaying a DOM Hierarchy

 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";
 // Trim the value to get rid of NL's at the front
 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += t;
 }
 return s;
 }

 } // AdapterNode

} // DomEcho

This class declares a variable to hold the DOM node, and requires it to be specified as a constructor argument. It then defines
the toString operation, which returns the node type from the String array, and then adds to that additional information from
the node, to further identify it.

As you can see in the table of node types in org.w3c.dom.Node, every node has a type, and name, and a value, which may or
may not be empty. In those cases where the node name starts with "#", that field duplicates the node type, so there is in point
in including it. That explains the lines that read:

if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
}

The remainder of the toString method deserves a couple of notes, as well. For instance, these lines:

if (s.startsWith("ProcInstr"))
 s += ", ";
else
 s += ": ";

Merely provide a little "syntactic sugar". The type field for a Processing Instructions end with a colon (:) anyway, so those
codes keep from doubling the colon.

The other interesting lines are:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (8 of 13) [8/22/2001 12:52:30 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Node.html

2a. Displaying a DOM Hierarchy

String t = domNode.getNodeValue()Trim();
int x = t.indexOf("\n");
if (x >= 0) t = t.substring(0, x);
s += t;

Those lines trim the value field down to the first newline (linefeed) character in the field. If you leave those lines out, you will
see some funny characters (square boxes, typically) in the JTree.

Note:
Recall that XML stipulates that all line endings are normalized to newlines, regardless of the system the data
comes from. That makes programming quite a bit simpler.

Wrapping a DomNode and returning the desired string are the AdapterNode's major functions. But since the TreeModel
adapter will need to answer questions like "How many children does this node have?" and satisfy commands like "Give me
this node's Nth child", it will helpful to define a few additional utility methods. (The adapter could always access the DOM
node and get that information for itself, but this way things are more encapsulated.)

Add the code highlighted below to return the index of a specified child, the child that corresponds to a given index, and the
count of child nodes:

 public class AdapterNode
 {
 ...
 public String toString() {
 ...
 }

 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child == n) return i;
 }
 return -1; // Should never get here.
 }

 Public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node = domNode.getChildNodes().item(searchIndex);
 return new AdapterNode(node);
 }

 public int childCount() {
 return domNode.getChildNodes().getLength();
 }
 } // AdapterNode

} // DomEcho

Note:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (9 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

During development, it was only after I started writing the TreeModel adapter that I realized these were needed,
and went back to add them. In just a moment, you'll see why.

Define the TreeModel Adapter

Now, at last, you are ready to write the TreeModel adapter. One of the really nice things about the JTree model is the relative
ease with which you convert an existing tree for display. One of the reasons for that is the clear separation between the
displayable view, which JTree uses, and the modifiable view, which the application uses. For more on that separation, see
Understanding the TreeModel. For now, the important point is that to satisfy the TreeModel interface we only need to (a)
provide methods to access and report on children and (b) register the appropriate JTree listener, so it knows to update its view
when the underlying model changes.

Add the code highlighted below to create the TreeModel adapter and specify the child-processing methods:

 ...

 } // AdapterNode

 // This adapter converts the current Document (a DOM) into
 // a JTree model.
 Public class DomToTreeModelAdapter implements javax.swing.tree.TreeModel
 {
 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) anode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }
 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new
 // and then fire a TreeNodesChanged event.
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (10 of 13) [8/22/2001 12:52:30 PM]

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

2a. Displaying a DOM Hierarchy

 } // DomToTreeModelAdapter

} // DomEcho

In this code, the getRoot method returns the root node of the DOM, wrapped as an AdapterNode object. From here on, all
nodes returned by the adapter will be AdapterNodes that wrap DOM nodes. By the same token, whenever the JTree asks for
the child of a given parent, the number of children that parent has, etc., the JTree will be passing us an AdapterNode. We
know that, because we control every node the JTree sees, starting with the root node.

JTree uses the isLeaf method to determine whether or not to display a clickable expand/contract icon to the left of the node, so
that method returns true only if the node has children. In this method, we see the cast from the generic object JTree sends us to
the AdapterNode object we know it has to be. *We* know it is sending us an adapter object, but the interface, to be general,
defines objects, so we have to do the casts.

The next three methods return the number of children for a given node, the child that lives at a given index, and the index of a
given child, respectively. That's all pretty straightforward.

The last method is invoked when the user changes a value stored in the JTree. In this app, we won't support that. But if we did,
the app would have to make the change to the underlying model and then inform any listeners that a change had occurred.
(The JTree might not be the only listener. In many an application it isn't, in fact.)

To inform listeners that a change occurred, you'll need the ability to register them. That brings us to the last two methods
required to implement the TreeModel interface. Add the code highlighted below to define them:

public class DomToTreeModelAdapter ...
{
 ...
 public void valueForPathChanged(TreePath path, Object newValue) {
 ...
 }

 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {
 listenerList.removeElement(listener);
 }
 }

} // DomToTreeModelAdapter

Since this app won't be making changes to the tree, these methods will go unused, for now. However, they'll be there in the
future, when you need them.

Note:
This example uses Vector so it will work with 1.1 apps. If coding for 1.2 or later, though, I'd use the excellent
collections framework instead:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (11 of 13) [8/22/2001 12:52:30 PM]

2a. Displaying a DOM Hierarchy

private LinkedList listenerList = new LinkedList();

The operations on the List are then add and remove. To iterate over the list, as in the operations below, you
would use:

Iterator it = listenerList.iterator();
while (it.hasNext()) {
 TreeModelListener listener = (TreeModelListener) it.next();
 ...
}

Here, too, are some optional methods you won't be using in this app. At this point, though, you have constructed a reasonable
template for a TreeModel adapter. In the interests of completeness, you might want to add the code highlighted below. You
can then invoke them whenever you need to notify JTree listeners of a change:

 public void removeTreeModelListener(TreeModelListener listener) {
 ...
 }
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener = (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener = (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener = (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener = (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
} // DomToTreeModelAdapter

Note:
These methods are taken from the TreeModelSupport class described in Understanding the TreeModel. That

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (12 of 13) [8/22/2001 12:52:30 PM]

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

2a. Displaying a DOM Hierarchy

architecture was produced by Tom Santos and Steve Wilson, and is a lot more elegant than the quick hack going
on here. It seemed worthwhile to put them here, though, so they would be immediately at hand when and if
they're needed..

Finish it Up

At this point, you are basically done. All you need to do is jump back to the constructor and add the code to construct an
adapter and deliver it to the JTree as the TreeModel:

// Set up the tree
JTree tree = new JTree(new DomToTreeModelAdapter());

You can now compile and run the code on an XML file. In the next section, you will do that, and explore the DOM structures
that result.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2_display.html (13 of 13) [8/22/2001 12:52:30 PM]

2b. Examining DOM Structure

Top Contents Index Glossary

2b. Examining the Structure of a DOM

Link Summary

Local Links

● Table of Node Types
● Creating and Manipulating a DOM

Exercise Links

● DomEcho02.java
● slideSample01.xml
● slideSample01.xml
● slideSample10.xml
● slideSample10-xml.html
● slideshow3.dtd
● slideshow3-dtd.html
● copyright.xml
● copyright-xml.html
● xhtml.dtd
● xhtml-dtd.html

External Links

● DOM 2 Core Specification

Glossary Terms

DTD

In this section, you'll use the GUI-fied DomEcho app you created in the
last section to visually examine a DOM. You'll see what nodes make up
the DOM, and how they are arranged. With the understanding you
acquire, you'll be well prepared to construct and modify Document
Object Model structures in the future.

Displaying A Simple Tree

We'll start out by displaying a simple file, so you get an idea of basic
DOM structure. Then we'll look at the structure that results when you
include some of the more advanced XML elements.

Note:
The code used to create the figures in this section is in
DomEcho02.java. The file displayed is slideSample01.xml. (The
browsable version is slideSample01-xml.html.)

Figure 1 shows the tree you see when you run the DomEcho program
on the first XML file you created in the DOM tutorial.

Figure 1: Document, Comment, and Element Nodes Displayed

Recall that the first bit of text displayed for each node is the element type. After that comes the element name, if any,
and then the element value. This view shows three element types: Document, Comment, and Element. There is only
Document type for the whole tree -- that is the root node. The Comment node displays the value attribute, while the
Element node displays the element name, "slideshow".

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (1 of 7) [8/22/2001 12:52:33 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/xhtml.dtd
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113

2b. Examining DOM Structure

Compare the Table of Node Types with the code in the AdapterNode's toString method to see whether the name or
value is being displayed for a particular node. If you need to make it more clear, modify the program to indicate which
property is being displayed (for example, with N: name, V: value).

Expanding the slideshow element brings up the display shown in Figure 2.

Figure 2: Element Node Expanded, No Attribute Nodes Showing

Here, you can see the Text nodes and Comment nodes that are interspersed between Slide elements. The empty Text
nodes exist because there is no DTD to tell the parser that no text exists. (Generally, the vast majority of nodes in a
DOM tree will be Element and Text nodes.)

Important!
Text nodes exist under element nodes in a DOM, and data is always stored in text nodes. Perhaps the
most common error in DOM processing is to navigate to an element node and expect it to contain the
data that is stored in the XML file. Not so! Even the simplest element node has a text node under it. For
example, given <size>12</size>, there is an element node (size), and a text node under it which
contains the actual data (12).

Notably absent from this picture are the Attribute nodes. An inspection of the table in org.w3c.dom.Node shows that
there is indeed an Attribute node type. But they are not included as children in the DOM hierarchy. They are instead

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (2 of 7) [8/22/2001 12:52:33 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Node.html

2b. Examining DOM Structure

obtained via the Node interface getAttributes method.

Note:
The display of the text nodes is the reason for including the lines below in the AdapterNode's toString
method. If your remove them, you'll see the funny characters (typically square blocks) that are generated
by the newline characters that are in the text.

String t = domNode.getNodeValue().trim();
int x = t.indexOf("\n");
if (x >= 0) t = t.substring(0, x);
s += t;

Displaying a More Complex Tree

Here, you'll display the example XML file you created at the end of the SAX tutorial, to see how entity references,
processing instructions, and CDATA sections appear in the DOM.

Note:
The file displayed in this section is slideSample10.xml. The slideSample10.xml file references
slideshow3.dtd which, in turn, references copyright.xml and a (very simplistic) xhtml.dtd. (The browsable
versions are slideSample10-xml.html, slideshow3-dtd.html, copyright-xml.html, and xhtml-dtd.html.)

Figure 3 shows the result of running the DomEcho app on slideSample10.xml, which includes a DOCTYPE entry that
identifies the document's DTD.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (3 of 7) [8/22/2001 12:52:33 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/xhtml.dtd

2b. Examining DOM Structure

Figure 3: DocType Node Displayed

The DocType interface is actually an extension of w3c.org.dom.Node. It defines a getEntities method that you
would use to to obtain Entity nodes -- the nodes that define entities like the product entity, which has the value
"WonderWidgets". Like Attribute nodes, Entity nodes do not appear as children of DOM nodes.

When you expand the slideshow node, you get the display shown in Figure 4.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (4 of 7) [8/22/2001 12:52:33 PM]

2b. Examining DOM Structure

Figure 4: Processing Instruction Node Displayed

Here, the processing instruction node is highlighted, showing that those nodes do appear in the tree. The name property
contains the target-specification, which identifies the app that the instruction is directed to. The value property contains
the text of the instruction..

Note that empty text nodes are also shown here, even though the DTD specifies that a slideshow can contain slide
elements only, never text. Logically, then, you might think that these nodes would not appear. (When this file was run
through the SAX parser, those elements generated ignorableWhitespace events, rather than character events.)

The empty text elements are included because by default, DocumentBuilder creates a DOM that includes all the lexical
information necessary to reconstruct the original document, in it's original form. That includes comment nodes as well
as text nodes. There is as yet no standard mechanism for eliminating such lexical information in the DOM so you are left
with the logical structure.

Moving down to the second slide element and opening the item element under it brings up the display shown in
Figure 5.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (5 of 7) [8/22/2001 12:52:33 PM]

2b. Examining DOM Structure

Figure 5: Entity Reference Node Displayed

Here, the Entity Reference node is highlighted. Note that the entity reference contains multiple nodes under it. This
example shows only comment and a text nodes, but the entity could conceivable contain other element nodes, as well.

Moving down to the last item element under the last slide brings up the display shown in Figure 6.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (6 of 7) [8/22/2001 12:52:33 PM]

2b. Examining DOM Structure

Figure 6: CDATA Node Displayed

Here, the CDATA node is highlighted. Note that there are no nodes under it. Since a CDATA section is entirely
uninterpreted, all of its contents are contained in the node's value property.

Finishing Up

At this point, you have seen most of the nodes you will ever encounter in a DOM tree. There are one or two more that
we'll mention in the next section, but you now know what you need to know to create or modify a DOM structure. In the
next section, you'll see how to convert a DOM into a JTree that is suitable for an interactive GUI. Or, if you prefer, you
can skip ahead to the 5th section of the DOM tutorial, Creating and Manipulating a DOM, where you'll learn how to
create a DOM from scratch.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/2b_display.html (7 of 7) [8/22/2001 12:52:33 PM]

3. JTree from DOM

Top Contents Index Glossary

3. Constructing a User-Friendly JTree from a DOM

Link Summary

Local Links

● Referencing Binary Entities
● Using the DTDHandler and

EntityResolver

Exercise Links

● DomEcho03.java
● DomEcho04.java
● slideSample01.xml
● slideSample01-xml.html
● slideSample10.xml
● slideSample10-xml.html

External Links

● Understanding the TreeModel

Glossary Terms

well-formed

Now that you know what a DOM looks like internally, you'll be better
prepared to modify a DOM or construct one from scratch . Before going
on to that, though, this section presents some modifications to the
JTreeModel that let you produce a more user-friendly version of the
JTree suitable for use in a GUI.

Compressing the Tree View

Displaying the DOM in tree form is all very well for experimenting and
to learn how a DOM works. But it's not the kind of "friendly" display
that most users want to see in a JTree. However, it turns out that very
few modifications are needed to turn the TreeModel adapter into
something that will present a user-friendly display. In this section, you'll
make those modifications.

Note:
The code discussed in this section is in DomEcho03.java. The
file it operates on is slideSample01.xml. (The browsable version
is slideSample01-xml.html.)

Make the Operation Selectable

When you modify the adapter, you're going to compress the view of the
DOM, eliminating all but the nodes you really want to display. Start by
defining a boolean variable that controls whether you want the
compressed or uncompressed view of the DOM:

public class DomEcho extends JPanel
{
 static Document document;

 Boolean compress = true;

 static final int windowHeight = 460;
 ...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (1 of 15) [8/22/2001 12:52:36 PM]

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

3. JTree from DOM

Identify "Tree" Nodes

The next step is to identify the nodes you want to show up in the tree. To do that, go to the area where you defined the
names of all the element types (in the typeName array), and add the code highlighted below:

public class DomEcho extends JPanel
{
 ...

 public static void makeFrame() {
 ...
 }

 // An array of names for DOM node-types
 static String[] typeName = {
 ...
 };
 final int ELEMENT_TYPE = 1;

 // The list of elements to display in the tree
 static String[] treeElementNames = {
 "slideshow",
 "slide",
 "title", // For slideshow #1
 "slide-title", // For slideshow #10
 "item",
 };
 Boolean treeElement(String elementName) {
 for (int i=0; i<treeElementNames.length; i++) {
 if (elementName.equals(treeElementNames[i])) return true;
 }
 return false;
 }

With this code, you set up a constant you can use to identify the ELEMENT node type, declared the names of the
elements you want in the tree, and created a method tells whether or not a given element name is a "tree element". Since
slideSample01.xml has title elements and slideSample10.xml has slide-title elements, you set up the contents
of this arrays so it would work with either data file.

Note:
The mechanism you are creating here depends on the fact that structure nodes like slideshow and
slide never contain text, while text usually does appear in content nodes like item. Although those
"content" nodes may contain subelements in slideShow10.xml, the DTD constrains those subelements to
be XHTML nodes. Because they are XHTML nodes (an XML version of HTML that is constrained to be
well-formed), the entire substructure under an item node can be combined into a single string and
displayed in the htmlPane that makes up the other half of the application window. In the second part of
this section, you'll do that concatenation, displaying the text and XHTML as content in the htmlPane.

Control Node Visibility

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (2 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

The next step is to modify the AdapterNode's childCount function so that it only counts "tree element" nodes --
nodes which are designated as displayable in the JTree. Make the modifications highlighted below to do that:

public class DomEcho extends JPanel
{
 ...
 public class AdapterNode
 {
 ...

 public AdapterNode child(int searchIndex) {
 ...
 }

 public int childCount() {
 if (!compress) {
 // Indent this
 return domNode.getChildNodes().getLength();
 }
 int count = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 org.w3c.dom.Node node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName()))
 {
 ++count;
 }
 }
 return count;
 }
 } // AdapterNode

The only tricky part about this code is checking to make sure the node is an element node before comparing the node.
The DocType node makes that necessary, because it has the same name, "slideshow", as the slideshow element.

Control Child Access

Finally, you need to modify the AdapterNode's child function to return the Nth item from the list of displayable nodes,
rather than the Nth item from all nodes in the list. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{
 ...
 public class AdapterNode
 {
 ...

 public int index(AdapterNode child) {
 ...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (3 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

 }

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node = domNode.getChildNodes()Item(searchIndex);
 if (compress) {
 // Return Nth displayable node
 int elementNodeIndex = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 node = domNode.getChildNodes()Item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName())
 && elementNodeIndex++ == searchIndex) {
 break;
 }
 }
 }
 return new AdapterNode(node);
 } // child

 } // AdapterNode

There's nothing special going on here. It's a slightly modified version the same logic you used when returning the child
count.

Check the Results

When you compile and run this version of the app on slideSample01.xml, and then expand the nodes in the tree,
you see the results shown in Figure 1. The only nodes remaining in the tree are the high-level "structure" nodes.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (4 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

Figure 1: Tree View with a Collapsed Hierarchy

Extra Credit

The way the app stands now, the information that tells the app how to compress the tree for display is "hard coded". Here
are some ways you could consider extending the app:

Use a Command-Line Argument
Whether you compress or don't compress the tree could be determined by a command line argument, rather than
being a hard-coded Boolean variable. On the other hand, the list the list of elements that goes into the tree is still
hard coded, so maybe that option doesn't make much sense, unless...

Read the treeElement list from a file

If you read the list of elements to include in the tree from an external file, that would make the whole app
command driven. That would be good. But wouldn't it be really nice to derive that information from the DTD or
schema, instead? So you might want to consider...

Automatically Build the List

Watch out, though! As things stand right now, there are no standard DTD parsers! If you use a DTD, then, you'll
need to write your parser to make sense out of its somewhat arcane syntax. You'll probably have better luck if you
use a schema, instead of a DTD. The nice thing about schemas is that use XML syntax, so you can use an XML
parser to read the schema the same way you use any other file.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (5 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

As you analyze the schema, note that the JTree-displayable structure nodes are those that have no text, while the
content nodes may contain text and, optionally, XHTML subnodes. That distinction works for this example, and
will likely work for a large body of real-world applications. It's pretty easy to construct cases that will create a
problem, though, so you'll have to be on the lookout for schema/DTD specifications that embed non-XHTML
elements in text-capable nodes, and take the appropriate action.

Acting on Tree Selections

Now that the tree is being displayed properly, the next step is to concatenate the subtrees under selected nodes to display
them in the htmlPane. While you're at it, you'll use the concatenated text to put node-identifying information back in
the JTree.

Note:
The code discussed in this section is in DomEcho04.java.

Identify Node Types

When you concatenate the sub nodes under an element, the processing you do is going to depend on the type of node. So
the first thing to is to define constants for the remaining node types. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{
 ...
 // An array of names for DOM node-types
 static String[] typeName = {
 ...
 };
 static final int ELEMENT_TYPE = 1;
 static final int ATTR_TYPE = 2;
 static final int TEXT_TYPE = 3;
 static final int CDATA_TYPE = 4;
 static final int ENTITYREF_TYPE = 5;
 static final int ENTITY_TYPE = 6;
 static final int PROCINSTR_TYPE = 7;
 static final int COMMENT_TYPE = 8;
 static final int DOCUMENT_TYPE = 9;
 static final int DOCTYPE_TYPE = 10;
 static final int DOCFRAG_TYPE = 11;
 static final int NOTATION_TYPE = 12;

Concatenate Subnodes to Define Element Content

Next, you need to define add the method that concatenates the text and subnodes for an element and returns it as the
element's "content". To define the content method, you'll need to add the big chunk of code highlighted below, but
this is the last big chunk of code in the DOM tutorial!.

public class DomEcho extends JPanel
{

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (6 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

 ...
 public class AdapterNode
 {
 ...
 public String toString() {
 ...
 }

 public String content() {
 String s = "";
 org.w3c.dom.NodeList nodeList = domNode.getChildNodes();
 for (int i=0; i<nodeList.getLength(); i++) {
 org.w3c.dom.Node node = nodeList.item(i);
 int type = node.getNodeType();
 AdapterNode adpNode = new AdapterNode(node);
 if (type == ELEMENT_TYPE) {
 if (treeElement(node.getNodeName())) continue;
 s += "<" + node.getNodeName() + ">";
 s += adpNode.content();
 s += "</" + node.getNodeName() + ">";
 } else if (type == TEXT_TYPE) {
 s += node.getNodeValue();
 } else if (type == ENTITYREF_TYPE) {
 // The content is in the TEXT node under it
 s += adpNode.content();
 } else if (type == CDATA_TYPE) {
 StringBuffer sb = new StringBuffer(node.getNodeValue());
 for (int j=0; j<sb.length(); j++) {
 if (sb.charAt(j) == '<') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "lt;");
 j += 3;
 } else if (sb.charAt(j) == '&') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "amp;");
 j += 4;
 }
 }
 s += "<pre>" + sb + "\n</pre>";
 }
 }
 return s;
 }
 ...
 } // AdapterNode

This is not the most efficient code anyone ever wrote, but it works and will do fine for our purposes. In this code, you are
recognizing and dealing with the following data types:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (7 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

Element
For elements with names like the XHTML "em" node, you return the node's content sandwiched between the
appropriate and tags. However, when processing the content for the slideshow element, for
example, you don't include tags for the slide elements it contains so, when returning a node's content, you skip
any subelements that are themselves displayed in the tree.

Text
No surprise here. For a text node, you simply return the node's value.

Entity Reference
Unlike CDATA nodes, Entity References can contain multiple subelements. So the strategy here is to return the
concatenation of those subelements.

CDATA
Like a text node, you return the node's value. However, since the text in this case may contain angle brackets
and ampersands, you need to convert them to a form that displays properly in an HTML pane. Unlike the XML
CDATA tag, the HTML <pre> tag does preclude the parsing of character-format tags, break tags and the like. So
you have to convert left-angle brackets (<) and ampersands (&) to get them to display properly.

On the other hand, there are quite a few node types you are not processing with the code above. It's worth a moment to
examine them and understand why:

Attribute
These nodes do not appear in the DOM, but are obtained by invoking getAttributes on element nodes.

Entity
These nodes also do not appear in the DOM. They are obtained by invoking getEntities on DocType nodes.

Processing Instruction
These nodes don't contain displayable data.

Comment
Ditto. Nothing you want to display here.

Document
This is the root node for the DOM. There's no data to display for that.

DocType
The DocType node contains the DTD specification, with or without external pointers. It only appears under the
root node, and has no data to display in the tree.

Document Fragment
This node is equivalent to a document node. It's a root node that the DOM specification intends for holding
intermediate results during cut/paste operations, for example. Like a document node, there's no data to display.

Notation

We're just flat out ignoring this one. These nodes are used to include binary data in the DOM. As discussed
earlier in Referencing Binary Entities and Using the DTDHandler and EntityResolver, the MIME types (in

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (8 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

conjunction with namespaces) make a better mechanism for that.

Display the Content in the JTree

With the content-concatenation out of the way, only a few small programming steps remain. The first is to modify
toString so that it uses the node's content for identifying information. Add the code highlighted below to do that:

public class DomEcho extends JPanel
{
 ...
 public class AdapterNode
 {
 ...
 public String toString() {
 ...
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (compress) {
 String t = content().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += " " + t;
 return s;
 }
 if (domNode.getNodeValue() != null) {
 ...
 }
 return s;
 }

Wire the JTree to the JEditorPane

Returning now to the app's constructor, create a tree selection listener and use to wire the JTree to the JEditorPane:

public class DomEcho extends JPanel
{
 ...
 public DomEcho()
 {
 ...

 // Build right-side view
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (9 of 15) [8/22/2001 12:52:36 PM]

3. JTree from DOM

 tree.addTreeSelectionListener(
 new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath p = e.getNewLeadSelectionPath();
 if (p != null) {
 AdapterNode adpNode =
 (AdapterNode) p.getLastPathComponent();
 htmlPane.setText(adpNode.content());
 }
 }
 }
);

Now, when a JTree node is selected, it's contents are delivered to the htmlPane.

Note:
The TreeSelectionListener in this example is created using an anonymous inner-class adapter. If you are
programming for the 1.1 version of the platform, you'll need to define an external class for this purpose.

If you compile this version of the app, you'll discover immediately that the htmlPane needs to be specified as final
to be referenced in an inner class, so add the keyword highlighted below:

public DomEcho04()
{
 ...

 // Build right-side view
 final JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

Run the App

When you compile the app and run it on slideSample10.xml (the browsable version is slideSample10-xml.html), you get
a display like that shown in Figure 2. Expanding the hierarchy shows that the JTree now includes identifying text for a
node whenever possible.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (10 of 15) [8/22/2001 12:52:37 PM]

3. JTree from DOM

Figure 2: Collapsed Hierarchy Showing Text in Nodes

Selecting an item that includes XHTML subelements produces a display like that shown in Figure 3:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (11 of 15) [8/22/2001 12:52:37 PM]

3. JTree from DOM

Figure 3: Node with Tag Selected

Selecting a node that contains an entity reference causes the entity text to be included, as shown in Figure 4:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (12 of 15) [8/22/2001 12:52:37 PM]

3. JTree from DOM

Figure 4: Node with Entity Reference Selected

Finally, selecting a node that includes a CDATA section produces results like those shown in Figure 5:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (13 of 15) [8/22/2001 12:52:37 PM]

3. JTree from DOM

Figure 5: Node with CDATA Component Selected

Extra Credit

Now that you have the app working, here are some ways you might think about extending it in the future:

Use Title Text to Identify Slides
Special case the slide element so that the contents of the title node is used as the identifying text. When
selected, convert the title node's contents to a centered H1 tag, and ignore the title element when constructing
the tree.

Convert Item Elements to Lists

Remove item elements from the JTree and convert them to html lists using , , tags, including
them in the slide's content when the slide is selected.

Handling Modifications

A full discussion of the mechanisms for modifying the JTree's underlying data model is beyond the scope of this tutorial.
However, a few words on the subject are in order.

Most importantly, note that if you allow the user to modifying the structure by manipulating the JTree, you have take the
compression into account when you figure out where to apply the change. For example, if you are displaying text in the

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (14 of 15) [8/22/2001 12:52:37 PM]

3. JTree from DOM

tree and the user modifies that, the changes would have to be applied to text subelements, and perhaps require a
rearrangement of the XHTML subtree.

When you make those changes, you'll need to understand more about the interactions between a JTree, it's TreeModel,
and an underlying data model. That subject is covered in depth in the Swing Connection article, Understanding the
TreeModel.

Finishing Up

You now understand pretty much what there is know about the structure of a DOM, and you know how to adapt a DOM
to create a user-friendly display in a JTree. It has taken quite a bit of coding, but in return you have obtained valuable
tools for exposing a DOM's structure and a template for GUI apps. In the next section, you'll make a couple of minor
modifications to the code that turn the app into a vehicle for experimentation, and then experiment with building and
manipulating a DOM.

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/3_tree.html (15 of 15) [8/22/2001 12:52:37 PM]

http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
http://java.sun.com/products/jfc/tsc/articles/jtree/index.html

4. Create & Manipulate a DOM

Top Contents Index Glossary

4. Creating and Manipulating a DOM

Link Summary

Exercise Links

● DomEcho05.java

● DomEcho06.java

API Links

● org.w3c.dom.Node
● org.w3c.dom.Element

Glossary Terms

normalization

By now, you understand the structure of the nodes that make up a DOM.
A DOM is actually very easy to create. This section of the DOM tutorial
is going to take much less work than anything you've see up to now. All
the foregoing work, however, generated the basic understanding that will
make this section a piece of cake.

Obtaining a DOM from the Factory

In this version of the application, you're still going to create a document
builder factory, but this time you're going to tell it create a new DOM
instead of parsing an existing XML document. You'll keep all the
existing functionality intact, however, and add the new functionality in
such a way that you can "flick a switch" to get back the parsing behavior.

Note:
The code discussed in this section is in DomEcho05.java.

Modify the Code

Start by turning off the compression feature. As you work with the DOM in this section, you're going to want to see all the
nodes:

public class DomEcho05 extends JPanel
{
 ...
 boolean compress = true;
 boolean compress = false;

Next, you need to create a buildDom method that creates the document object. The easiest way to do that is to create
the method and then copy the DOM-construction section from the main method to create the buildDom. The
modifications shown below show you the changes you need to make to make that code suitable for the buildDom method.

public class DomEcho05 extends JPanel
{
 ...
 public static void makeFrame() {
 ...
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (1 of 6) [8/22/2001 12:52:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Node.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Element.html

4. Create & Manipulate a DOM

 public static void buildDom()
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 document = builder.newDocument(); // Create from whole cloth

 } catch (SAXException sxe) {
 ...

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 ...
 }
 }

In this code, you replaced the line that does the parsing with one that creates a DOM. Then, since the code is no longer
parsing an existing file, you removed exceptions which are no longer thrown: SAXException and IOException.

And since you are going to be working with Element objects, add the statement to import that class at the top of the
program:

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

Create Element and Text Nodes

Now, for your first experiment, add the Document operations to create a root node and several children:

public class DomEcho05 extends JPanel
{
 ...
 public static void buildDom()
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.newDocument(); // Create from whole cloth

 Element root =
 (Element) document.createElement("rootElement");
 document.appendChild(root);
 root.appendChild(document.createTextNode("Some"));
 root.appendChild(document.createTextNode(" "));
 root.appendChild(document.createTextNode("text"));

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (2 of 6) [8/22/2001 12:52:38 PM]

4. Create & Manipulate a DOM

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();
 }
 }

Finally, modify the argument-list checking code at the top of the main method so you invoke buildDom and
makeFrame instead of generating an error, as shown below:

public class DomEcho05 extends JPanel
{
 ...
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 buildDom();
 makeFrame();
 return;
 }

That's all there is to it! Now, if you supply an argument the specified file is parsed and, if you don't, the experimental code
that builds a DOM is executed.

Run the App

Compile and run the program with no arguments produces the result shown in Figure 1:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (3 of 6) [8/22/2001 12:52:38 PM]

4. Create & Manipulate a DOM

Figure 1: Element Node and Text Nodes Created

Normalizing the DOM

In this experiment, you'll manipulate the DOM you created by normalizing it (cf. normalization) after it has been
constructed.

Note:
The code discussed in this section is in DomEcho06.java.

Add the code highlighted below to normalize the DOM:.

 public static void buildDom()
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 try {
 ...
 root.appendChild(document.createTextNode("Some"));
 root.appendChild(document.createTextNode(" "));
 root.appendChild(document.createTextNode("text"));

 document.getDocumentElement().normalize();

 } catch (ParserConfigurationException pce) {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (4 of 6) [8/22/2001 12:52:38 PM]

4. Create & Manipulate a DOM

 ...

In this code, getDocumentElement returns the document's root node, and the normalize operation manipulates the
tree under it.

When you compile and run the app now, the result looks like Figure 2:

Figure 2: Text Nodes Merged After Normalization

Here, you can see that the adjacent text nodes have been combined into a single node. The normalize operation is one that
you will typically want to use after making modifications to a DOM, to ensure that the resulting DOM is as compact as
possible.

Note:
Now that you have this program to experiment with, see what happens to other combinations of CDATA,
entity references, and text nodes when you normalize the tree.

Other Operations

To complete this section, we'll take a quick look at some of the other operations you might want to apply to a DOM,
including:\

● Traversing nodes

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (5 of 6) [8/22/2001 12:52:38 PM]

4. Create & Manipulate a DOM

● Creating attributes
● Removing nodes

Traversing Nodes

The org.w3c.dom.Node interface defines a number of methods you can use to traverse nodes, including
getFirstChild, getLastChild, getNextSibling, getPreviousSibling, and getParentNode. Those
operations are sufficient to get from anywhere in the tree to any other location in the tree.

Creating Attributes

The org.w3c.dom.Element interface, which extends Node, defines a setAttribute operation, which adds an attribute to
that node. (A better name from the Java platform standpoint would have been addAttribute, since the attribute is not a
property of the class, and since a new object is created.)

You can also use the Document's createAttribute operation to create an instance of Attribute, and use an overloaded
version of setAttribute to add that.

Removing and Changing Nodes

To remove a node, you use its parent Node's removeChild method. To change it, you can either use the parent node's
replaceChild operation or the node's setNodeValue operation.

Finishing Up

Congratulations! You've learned how a DOM is structured and how to manipulate it. And you now have a DomEcho
application that you can use to display a DOM's structure, condense it down to GUI-compatible dimensions, and
experiment with to see how various operations affect the structure. Have fun with it!

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/4_create.html (6 of 6) [8/22/2001 12:52:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Node.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Element.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/w3c/dom/Node.html

5. Namespaces

 Top Contents Index Glossary

5. Using Namespaces

Link Summary

Local Links

● Defining Attributes in the DTD

External Links

● Namespace Specification

Glossary Terms

attribute, namespace, URI, URL,
URN

As you saw previously, one way or another it is necessary to
resolve the conflict between the title element defined in
slideshow.dtd and the one defined in xhtml.dtd. In the
previous exercise, you hyphenated the name in order to put it
into a different "namespace". In this section, you'll see how to
use the XML namespace standard to do the same thing
without renaming the element.

Note: At this point in time, the Java XML parsers do
not support namespaces. This section is for information
only.

The primary goal of the namespace specification is to let the
document author tell the parser which DTD to use when
parsing a given element. The parser can then consult the
appropriate DTD for an element definition. Of course, it is
also important to keep the parser from aborting when a "duplicate" definition is found, and yet still
generate an error if the document references an element like title without qualifying it (identifying the
DTD to use for the definition).

Note:
Namespaces apply to attributes as well as to elements. In this section, we consider only
elements. For more information on attributes, consult the namespace specification at
http://www.w3.org/TR/REC-xml-names/.

Defining a Namespace

To define a namespace that an element belongs to, it is necessary to add an attribute to the element's
definition, where the attribute name is xmlns ("xml namespace"). For example, you could do that in
slideshow.dtd by adding an entry like the following in the title element's attribute-list definition:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/5_ns.html (1 of 4) [8/22/2001 12:52:39 PM]

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/REC-xml-names/

5. Namespaces

<!ELEMENT title (%inline;)*>
<!ATTLIST title
 xmlns CDATA #FIXED "http://www.example.com/slideshow"
>

Declaring the attribute as FIXED has several important features:

● It prevents the document from specifying any non-matching value for the xmlns attribute (as
described in Defining Attributes in the DTD).

● The element defined in this DTD is made unique (because the parser understands the xmlns
attribute), so it does not conflict with an element that has the same name in another DTD. That
allows multiple DTDs to use the same element name without generating a parser error.

● When a document specifies the xmlns attribute for a tag, the document selects the element
definition with a matching attribute.

To be thorough, every element name in your DTD would get the exact same attribute, with the same
value. (Here, though, we're only concerned about the title element.) Note, too, that you are using a
CDATA string to supply the URI. In this case, we've specified an URL. But you could also specify a URN
, possibly by specifying a prefix like urn: instead of http:. (URNs are currently being researched.
They're not seeing a lot of action at the moment, but that could change in the future.)

Referencing a Namespace

When a document uses an element name that exists in only one of the .dtd files it references, the name
does not need to be qualified. But when an element name that has multiple definitions is used, some sort
of qualification is a necessity.

Note:
In point of fact, an element name is always qualified by it's default namespace, as defined
by name of the DTD file it resides in. As long as there as is only one definition for the
name, the qualification is implicit.

You qualify a reference to an element name by specifying the xmlns attribute, as shown here:

<title xmlns="http://www.example.com/slideshow"
 Overview
</title>

The specified namespace applies to that element, and to any elements contained within it.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/5_ns.html (2 of 4) [8/22/2001 12:52:39 PM]

5. Namespaces

Defining a Namespace Prefix

When you only need one namespace reference, it's not such a big deal. But when you need to make the
same reference several times, adding xmlns attributes becomes unwieldy. It also makes it harder to
change the name of the namespace at a later date.

The alternative is to define a namespace prefix, which as simple as specifying xmlns, a colon (:) and the
prefix name before the attribute value, as shown here:

<sl:slideshow xmlns:SL='http:/www.example.com/slideshow'
 ...>
 ...
</SL:slideshow>

This definition sets up SL as a prefix that can be used to qualify the current element name and any
element within it. Since the prefix can be used on any of the contained elements, it makes the most sense
to define it on the XML document's root element, as shown here.

Note:
The namespace URI can contain characters which are not valid in an XML name, so it
cannot be used as a prefix directly. The prefix definition associates an XML name with the
URI, which allows the prefix name to be used instead. It also makes it easier to change
references to the URI in the future.

When the prefix is used to qualify an element name, the end-tag also includes the prefix, as highlighted
here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
 ...>
 ...
 <slide>
 <SL:title>Overview<SL:title>
 </slide>
 ...
</SL:slideshow>

Finally, note that multiple prefixes can be defined in the same element, as shown here:

<SL:slideshow xmlns:SL='http:/www.example.com/slideshow'
 xmlns:xhtml='urn:...'>
 ...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/5_ns.html (3 of 4) [8/22/2001 12:52:39 PM]

5. Namespaces

</SL:slideshow>

With this kind of arrangement, all of the prefix definitions are together in one place, and you can use
them anywhere they are needed in the document. This example also suggests the use of URN to define
the xhtml prefix, instead of an URL. That definition would conceivably allow the app to reference a
local copy of the XHTML DTD or some mirrored version, with a potentially beneficial impact on
performance..

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/5_ns.html (4 of 4) [8/22/2001 12:52:39 PM]

3. Generating XML from data

Top Contents Index Glossary

3. Generating XML from an Arbitrary Data Structure

Link Summary

Exercise Links

● PersonalAddressBook.ldif
● AddressBookReader01.java
● AddressBookReaderLog01
● TransformationApp04.java
● TransformationLog04

API Links

● ContentHandler
● InputSource
● SAXSource
● XmlReader

In this section, you'll use an XSLT transformer to converting an
arbitrary data structure to XML.

In general outline, then, you're going to:

a. Modify an existing program that reads the data and modify it
to generate SAX events. (Whether that is a real parser or
simply a data filter of some kind is irrelevant for the moment.)

2. You'll then use the SAX "parser" to construct a SAXSource
for the transformation.

3. You'll use the same StreamResult object you created in the last
exercise, so you can see the results. (But note that you could
just as easily create a DOMResult object to create a DOM in
memory.)

4. You'll wire the source to the result, using the XSLT
transformer object to make the conversion.

For starters, you need a data set you want to convert and some
program which is capable of reading the data. In the next two
sections, you'll create a simple data file and a program that reads it.

Creating A Simple File

We'll start by creating a data set for an address book. You can duplicate the process, if you like, or simply make use
of the data stored in PersonalAddressBook.ldif.

The file shown below were produced by creating a new address book in Netscape messenger, giving it some dummy
data (one address card) and then exporting it in LDIF format. Here is the address book entry that was created:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (1 of 12) [8/22/2001 12:52:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/InputSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/sax/SAXSource.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/XMLReader.html
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/sax/SAXSource.html

3. Generating XML from data

Exporting the address book produces a file like the one shown below. The parts of the file that we care about are
shown in bold.

dn: cn=Fred Flinstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z
cn: Fred Flinstone
xmozillanickname: Fred
mail: Fred@barneys.house
xmozillausehtmlmail: TRUE
givenname: Fred
sn: Flinstone
telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager
cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (2 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

Note that: each line of the file contains a variable name, a colon, and a space followed by a value for the variable. The
"sn" variable contains the person's surname (last name) and, for some reason, the variable "cn" contains the
DisplayName field from the address book entry.

Note:
LDIF stands for LDAP Data Interchange Format, according to the Netscape pages. And LDAP, turn,
stands for Lightweight Directory Access Protocol. I prefer to think of LDIF as the "Line Delimited
Interchange Format", since that is pretty much what it is.

Creating A Simple Parser

The next step is to create a program that parses the data. Again, you can follow the process to write your own if you
like, or simply make a copy of the program so you can use it to do the XSLT-related exercises that follow.

Note:
The code discussed in this section is in AddressBookReader01.java. The output is in
AddressBookReaderLog01.

The text for the program is shown below. It's an absurdly simple program that doesn't even loop for multiple entries
because, after all, it's just a demo!

import java.io.*;

public class AddressBookReader01
{

 public static void main(String argv[])
 {
 // Check the arguments
 if (argv.length != 1) {
 System.err.println ("Usage: java AddressBookReader filename");
 System.exit (1);
 }
 String filename = argv[0];
 File f = new File(filename);
 AddressBookReader01 reader = new AddressBookReader01();
 reader.parse(f);
 }

 /** Parse the input */
 public void parse(File f)
 {
 try {
 // Get an efficient reader for the file
 FileReader r = new FileReader(f);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (3 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

 BufferedReader br = new BufferedReader(r);

 // Read the file and display it's contents.
 String line = br.readLine();
 while (null != (line = br.readLine())) {
 if (line.startsWith("xmozillanickname: ")) break;
 }

 output("nickname", "xmozillanickname", line);
 line = br.readLine();
 output("email", "mail", line);
 line = br.readLine();
 output("html", "xmozillausehtmlmail", line);
 line = br.readLine();
 output("firstname","givenname", line);
 line = br.readLine();
 output("lastname", "sn", line);
 line = br.readLine();
 output("work", "telephonenumber", line);
 line = br.readLine();
 output("home", "homephone", line);
 line = br.readLine();
 output("fax", "facsimiletelephonenumber", line);
 line = br.readLine();
 output("pager", "pagerphone", line);
 line = br.readLine();
 output("cell", "cellphone", line);

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 void output(String name, String prefix, String line)
 {
 int startIndex = prefix.length() + 2; // 2=length of ": "
 String text = line.substring(startIndex);
 System.out.println(name + ": " + text);
 }
}

This program contains 3 methods:

main
The main method gets the name of the file from the command line, creates an instance of the parser, and sets it
to work parsing the file. This method will be going away when we convert the program into a SAX parser.
(That's one reason for putting the parsing code into a separate method.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (4 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

parse
This method operates on the File object sent to it by the main routine. As you can see, its about as simple as it
can get! The only nod to efficiency is the use of a BufferedReader, which can become important when you
start operating on large files.

output

The output method contains the smarts about the structure of a line. Starting from the right It takes 3
arguments. The first argument gives the method a name to display, so we can output "html" as a variable
name, instead of "xmozillausehtmlmail". The second argument gives the variable name stored in the file
(xmozillausehtmlmail). The third argument gives the line containing the data. The routine then strips off the
variable name from the start of the line and outputs the desired name, plus the data.

Running this program on the address book file produces this output:

nickname: Fred
email: Fred@barneys.house
html: TRUE
firstname: Fred
lastname: Flintstone
work: 999-Quarry
home: 999-BedrockLane
fax: 888-Squawk
pager: 777-pager
cell: 555-cell

I think we can all agree that's a bit more readable!

Modifying the Parser to Generate SAX Events

The next step is to modify the parser to generate SAX events, so you can use it as the basis for a SAXSource object in
an XSLT transform.

Note:
The code discussed in this section is in AddressBookReader02.java.

Start by extending importing the additional classes you're going to need:

import java.io.*;

import org.xml.sax.*;
Import org.xml.sax.helpers.AttributesImpl;

Next, modify the application so that it extends XmlReader. That converts the app into a parser that generates the
appropriate SAX events.

Public class AddressBookReader02
 implements XMLReader

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (5 of 12) [8/22/2001 12:52:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/XMLReader.html

3. Generating XML from data

{

Now, remove the main method. You won't be needing that any more.

Public static void main(String argv[])
{
 // Check the arguments
 if (argv.length != 1) {
 System.err.println ("Usage: Java AddressBookReader filename");
 System.exit (1);
 }
 String filename = argv[0];
 File f = new File(filename);
 AddressBookReader02 reader = new AddressBookReader02();
 reader.parse(f);
}

Add some global variables that will come in handy in a few minutes:

 ContentHandler handler;

 // We're not doing namespaces, and we have no
 // attributes on our elements.
 String nsu = ""; // NamespaceURI
 Attributes atts = new AttributesImpl();
 String rootElement = "addressbook";

 String indent = "\n "; // for readability!

The SAX ContentHandler is the thing that is going to get the SAX events the parser generates. To make the app into
an XmlReader, you'll be defining a setContentHandler method. The handler variable will hold the result of
that configuration step.

And, when the parser generates SAX element events, it will need to supply namespace and attribute information.
Since this is a simple application, you're defining null values for both of those.

You're also defining a root element for the data structure (addressbook), and setting up an indent string to improve the
readability of the output.

Next, modify the parse method so that it takes an InputSource as an argument, rather than a File, and account for the
exceptions it can generate:

public void parse(File f)InputSource input)
throws IOException, SAXException

Now make the changes shown below to get the reader encapsulated by the InputSource object:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (6 of 12) [8/22/2001 12:52:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/ContentHandler.html
http://java.sun.com/xml/jaxp-1.1/docs/api/org/xml/sax/InputSource.html

3. Generating XML from data

try {
 // Get an efficient reader for the file
 FileReader r = new FileReader(f);
 java.io.Reader r = input.getCharacterStream();
 BufferedReader Br = new BufferedReader(r);

Note:
In the next section, you'll create the input source object and what you put in it will, in fact, be a
buffered reader. But the AddressBookReader could be used by someone else, somewhere down the
line. This step makes sure that the processing will be efficient, regardless of the reader you are given.

The next step is to modify the parse method to generate SAX events for the start of the document and the root
element. Add the code highlighted below to do that:

/** Parse the input */
public void parse(InputSource input)
...
{
 try {
 ...
 // Read the file and display it's contents.
 String line = br.readLine();
 while (null != (line = br.readLine())) {
 if (line.startsWith("xmozillanickname: ")) break;
 }

 if (handler==null) {
 throw new SAXException("No content handler");
 }
 handler.startDocument();
 handler.startElement(nsu, rootElement, rootElement, atts);

 output("nickname", "xmozillanickname", line);
 ...
 output("cell", "cellphone", line);

 handler.ignorableWhitespace("\n".toCharArray(),
 0, // start index
 1 // length
);
 handler.endElement(nsu, rootElement, rootElement);
 handler.endDocument();
 }
 catch (Exception e) {
 ...

Here, you first checked to make sure that the parser was properly configured with a ContentHandler. (For this app,
we don't care about anything else.) You then generated the events for the start of the document and the root element,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (7 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

and finished by sending the end-event for the root element and the end-event for the document.

A couple of items are noteworthy, at this point:

● We haven't bothered to send the setDocumentLocator event, since that is optional. Were it important,
that event would be sent immediately before the startDocument event.

● We've generated an ignorableWhitespace event before the end of the root element. This, too, is
optional, but it drastically improves readability of the output, as you'll see in a few moments. (In this case, the
whitespace consists of a single newline, which is sent the same way that characters method are sent: as a
character array, a starting index, and a length.)

Now that SAX events are being generated for the document and the root element, the next step is to modify the
output method to generate the appropriate element events for each data item. Make the changes shown below to do
that:

void output(String name, String prefix, String line)

throws SAXException
{
 int startIndex = prefix.length() + 2; // 2=length of ": "
 String text = line.substring(startIndex);
 System.out.println(name + ": " + text);

 int textLength = line.length() - startIndex;
 handler.ignorableWhitespace(indent.toCharArray(),
 0, // start index
 indent.length()
);
 handler.startElement(nsu, name, name /*"qName"*/, atts);
 handler.characters(line.toCharArray(),
 startIndex,
 textLength);
 handler.endElement(nsu, name, name);
}

Since the ContentHandler methods can send SAXExceptions back to the parser, the parser has to be prepared to deal
with them. In this case, we don't expect any, so we'll simply allow the app to fall on its sword and die if any occur.

You then calculate the length of the data, and once again generate some ignorable whitespace for readability. In this
case, there is only one level of data, so we can use a fixed indent string. (If the data were more structured, we would
have to calculate how much space to indent, depending on the nesting of the data.)

Note:
The indent string makes no difference to the data, but will make the output a lot easier to read. Once
everything is working, try generating the result without that string! All of the elements will wind up
concatenated end to end, like this:
<addressbook><nickname>Fred</nickname><email>...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (8 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

Next, add the method that configures the parser with the ContentHandler that is to receive the events it generates:

/** Allow an application to register a content event handler. */
Public void setContentHandler(ContentHandler handler) {
 this.handler = handler;
}

/** Return the current content handler. */
Public ContentHandler getContentHandler() {
 return this.handler;
}

There are several more methods that must be implemented in order to satisfy the XmlReader interface. For the
purpose of this exercise, we'll generate null methods for all of them. For a production application, though, you may
want to consider implementing the error handler methods to produce a more robust app. For now, though, add the
code highlighted below to generate null methods for them:

/** Allow an application to register an error event handler. */
Public void setErrorHandler(ErrorHandler handler)
{ }

/** Return the current error handler. */
Public ErrorHandler getErrorHandler()
{ return null; }

Finally, add the code highlighted below to generate null methods for the remainder of the XmlReader interface. (Most
of them are of value to a real SAX parser, but have little bearing on a data-conversion application like this one.)

/** Parse an XML document from a system identifier (URI). */
public void parse(String systemId)
throws IOException, SAXException
{ }

/** Return the current DTD handler. */
Public DTDHandler getDTDHandler()
{ return null; }

/** Return the current entity resolver. */
Public EntityResolver getEntityResolver()
{ return null; }

/** Allow an application to register an entity resolver. */
Public void setEntityResolver(EntityResolver resolver)
{ }

/** Allow an application to register a DTD event handler. */
Public void setDTDHandler(DTDHandler handler)
{ }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (9 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

/** Look up the value of a property. */
Public Object getProperty(java.lang.String name)
{ return null; }

/** Set the value of a property. */
Public void setProperty(java.lang.String name, java.lang.Object value)
{ }

/** Set the state of a feature. */
Public void setFeature(java.lang.String name, boolean value)
{ }

/** Look up the value of a feature. */
Public boolean getFeature(java.lang.String name)
{ return false; }

Congratulations! You now have a parser you can use to generate SAX events. In the next section, you'll use it to
construct a SAX source object that will let you transform the data into XML.

Using the Parser as a SAXSource

Given a SAX parser to use as an event source, you can (quite easily!) construct a transformer to produce a result. In
this section, you'll modify the TransformerApp you've been working with to produce a stream output result, although
you could just as easily produce a DOM result.

Note:
The code discussed in this section is in TransformationApp04.java. The results of running it are in
TransformationLog04.

Important!
Be sure to shift gears! Put the AddressBookReader aside and open up the TransformationApp. The
work you do in this section affects the TransformationApp!

Start by making the changes shown below to import the classes you'll need to construct a SAXSource object. (You
won't be needing the DOM classes at this point, so they are discarded here, although leaving them in doesn't do any
harm.)

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.sax.SAXSource;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (10 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

import javax.xml.transform.stream.StreamResult;

Next, remove a few other holdovers from our DOM-processing days, and add the code to create an instance of the
AddressBookReader:

public class TransformationApp
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main(String argv[])
 {
 ...
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 // Create the sax "parser".
 AddressBookReader saxReader = new AddressBookReader();

 try {
 File f = new File(argv[0]);
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

Guess what! You're almost done. Just a couple of steps to go. Add the code highlighted below to construct a
SAXSource object:

// Use a Transformer for output
...
Transformer transformer = tFactory.newTransformer();

// Use the parser as a SAX source for input
FileReader fr = new FileReader(f);
BufferedReader br = new BufferedReader(Fr);
InputSource inputSource = new InputSource(Fr);
SAXSource source = new SAXSource(saxReader, inputSource);
StreamResult result = new StreamResult(System.out);
transformer.transform(source, result);

Here, you constructed a buffered reader (as mentioned earlier) and encapsulated it in an input source object. You then
created a SAXSource object, passing it the reader and the InputSource object, and passed that to the transformer.

When the app runs, the transformer will configure itself as the ContentHandler for the SAX parser (the
AddressBookReader and tell the parser to operate on the inputSource object. Events generated by the parser will
then go to the transformer, which will do the appropriate thing and pass the data on to the result object.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (11 of 12) [8/22/2001 12:52:41 PM]

3. Generating XML from data

Finally, remove the exceptions you no longer need to worry about, since the TransformationApp no longer generates
them:

} catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

} catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

} catch (IOException ioe) {

You're done! You have no created a transformer which will use a SAXSource as input, and produce a StreamResult
as output..

Doing the Conversion

Now run the app on the address book file. Your output should look like this:

<?xml version="1.0" encoding="UTF-8"?>
<addressbook>
 <nickname>Fred</nickname>
 <email>fred@barneys.house</email>
 <html>TRUE</html>
 <firstname>Fred</firstname>
 <lastname>Flintstone</lastname>
 <work>999-Quarry</work>
 <home>999-BedrockLane</home>
 <fax>888-Squawk</fax>
 <pager>777-pager</pager>
 <cell>555-cell</cell>
</addressbook>

You have now successfully converted an existing data structure to XML . And it wasn't even that hard.
Congratulations!

Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/3_generate.html (12 of 12) [8/22/2001 12:52:41 PM]

4. Transforming XML

Top Contents Index Glossary

4. Transforming XML Data with XSLT

Link Summary

Local Links

● XPath addressing

Exercise Links

● TransformationApp02
● Stylizer.java

● article1.xml / article1-xml.html
● article1a.xsl / article1a-xsl.html
● stylizer1a.txt / stylizer1a.html
● article1b.xsl / article1b-xsl.html
● stylizer1b.txt / stylizer1b.html
● article1c.xsl / article1c-xsl.html
● stylizer1c.txt / stylizer1c.html

● article2.xml / article2-xml.html
● article2.xsl / article2-xsl.html
● stylizer2.txt / stylizer2.html

● article3.xml / article3-xml.html
● article3.xsl / article3-xsl.html
● stylizer3.txt / stylizer3.html

API Links

● Transformer

External Links

● Schematron validator
● XSLT Specification
● Java Printing Service (JPS)

The XML Stylesheet Language for Transformations (XSLT) can be used
for many purposes. For example, you could generate PDF or postscript
from the XML data. But generally, XSLT is used to generated formatted
HTML output, or to create an alternative XML representation of the
data.

In this section of the tutorial, you'll use an XSLT transform to translate
XML input data to HTML output.

Note:
The XSLT specification is very large and quite complex. Rather
thick books have been written on the subject. So this tutorial can
only scratch the surface. It will give you enough a background to
get started, so you can undertake simple XSLT processing tasks.
It should also give you a head start when you investigate XSLT
further.

Defining an Ultra-Simple article Document
Type

We'll start by defining a super simple document type that could be used
for writing articles. Our <article> documents will contain these
structure tags:

● <TITLE> -- The title of the article.
● <SECT> -- A section. (Consists of a heading and a body.)
● <PARA> -- A paragraph.
● <LIST> -- A list.
● <ITEM> -- An entry in a list.
● <NOTE> -- An aside, which will be offset from the main text.

The slightly unusual aspect of this structure is that we won't create a
separate element tag for a section heading. Such elements are commonly
created to distinguish the heading text (and any tags it contains) from the
body of the section (that is, any structure elements underneath the
heading).

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (1 of 19) [8/22/2001 12:52:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/Transformer.html
http://www.ascc.net/xml/resource/schematron/schematron.html
http://www.w3.org/TR/xslt
http://java.sun.com/j2se/1.4/docs/guide/jps/index.html

4. Transforming XML

Glossary Terms

DOM, mixed-content model, well-
formed

Instead, we'll allow the heading to merge seamlessly into the body of a
section. That arrangement adds some complexity to the stylesheet, but
that will give us a chance to explore XSLT's template-selection
mechanisms. It also matches our intuitive expectations about document
structure, where the text of a heading is directly followed by structure
elements, which can simplify outline-oriented editing.

Note:
However, that structure is not easily validated, because XML's mixed-content model allows text anywhere
in a section, whereas we want to confine text and inline elements so that they only appear before the first
structure element in the body of the section. The assertion-based validator (Schematron) can do it, but most
other schema mechanisms can't. So we'll dispense with defining a DTD for the document type.

In this structure, sections can be nested. The depth of the nesting will determine what kind of HTML formatting to use for
the section heading (for example, h1 or h2.) That's also useful with outline-oriented editing, because it lets you can move
sections around at will without having to worry about changing the heading tag -- or any of the other section headings that
are affected by the move.

For lists, we'll use a type attribute to specify whether the list entries are unordered (bulleted), alpha (enumerated
with lower case letters), ALPHA (enumerated with uppercase letters, or numbered.

We'll also allow for some inline tags that change the appearance of the text:

● -- bold
● <I> -- italics
● <U> -- underline
● <DEF> -- definition
● <LINK> -- link to a URL

Note:
An inline tag does not generate a line break, so a style change caused by an inline tag does not affect the flow of
text on the page (although it will affect the appearance of that text). A structure tag, on the other hand, demarcates
a new segment of text, so at a minimum it always generates a line break, in addition to other format changes.

The <DEF> tag will help make things interesting. That tag will used for terms that are defined in the text. Such terms will
be displayed in italics, they way the ordinarily are in a document. But using a special tag in the XML will allow an index
to program to one day find such definitions and add them to the index, along with keywords in headings. In the Note
above, for example, the definitions of inline tags and structure tags could have been marked with <DEF> tags, for future
indexing.

Finally, the LINK tag serves two purposes. First, it will let us create a link to a URL without having to put the URL in
twice -- so we can code <link>http//...</link> instead of http//.... Of
course, we'll also want to allow a form that looks like <link target="...">...name...</link>. That leads to
the second reason for the <link> tag -- it will give us an opportunity to play with conditional expressions in XSLT.

Note:
As one college professor said, the trick to defining a research project is to find something that is "large
enough to be feasible... but small enough to be feasible". Although the article structure is exceedingly
simple (consisting of only 11 tags), it raises enough interesting problems to keep us busy exploring XSLT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (2 of 19) [8/22/2001 12:52:45 PM]

http://www.ascc.net/xml/resource/schematron/schematron.html

4. Transforming XML

for a while! Along the way, we'll get a good view of it's basic capabilities. But there will still be large areas
of the spec that are left untouched. The last part of this tutorial will point out the major things we missed, to
give you some sense of what sorts of features await you in the specification!

Creating a Test Document

Here, you'll create a simple test document using nested <SECT> elements, a few <PARA> elements, a <NOTE> element,
a <LINK>, and a <LIST type="unordered">. The idea is to create a document with one of everything, so we can
explore the more interesting translation mechanisms.

Note:
The sample data described here is contained in article1.xml. (The browsable version is article1-xml.html.)

To make the test document, create a file called article.xml and enter the XML data shown below.

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 <PARA>This section will introduce a subsection.</PARA>
 <SECT>The Subsection Heading
 <PARA>This is the text of the subsection.
 </PARA>
 </SECT>
 </SECT>
</ARTICLE>

Note that in the XML file, the subsection is totally contained within the major section. (Unlike HTML, for example,
where headings, do no contain the body of a section.) The result is an outline structure that is harder to edit in plain-text
form, like this. But much easier to edit with an outline-oriented editor.

Someday, given an tree-oriented XML editor that understands inline tags like and <I>, it should be possible to edit
an article of this kind in outline form, without requiring a complicated stylesheet. (Thereby allowing the writer to focus on
the structure of the article, leaving layout until much later in the process.) In such an editor, the article-fragment above
would look something like this:

● <ARTICLE>
❍ <TITLE>A Sample Article
❍ <SECT>The First Major Section

■ <PARA>This section will introduce a subsection.
■ <SECT>The Subheading

■ <PARA>This is the text of the subsection. Note that ...

At the moment, tree-structured editors exist, but they treat inline tags like and <I> the same way that they treat other
structure tags, which can make the "outline" a bit difficult to read. But hopefully, that situation will improve one day.
Meanwhile, we'll press on...

Writing an XSLT Transform

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (3 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

In this part of the tutorial, you'll begin writing an XSLT transform that will convert the XML article and render it in
HTML.

Note:
The transform described in this section is contained in article1a.xsl. (The browsable version is article1a-
xsl.html.)

Start by creating a normal XML document:

<?xml version="1.0" encoding="ISO-8859-1"?>

Then add the lines shown below to create an XSL stylesheet:

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >

</xsl:stylesheet>

Now, set it up to produce HTML-compatible output:

<xsl:stylesheet
 ...
 >
 <xsl:output method="html"/>

 ...

</xsl:stylesheet>

We'll get into the detailed reasons for that entry later on in this section. But for now, note that if you want to output
anything besides well-formed XML, then you'll need an <xsl:output> tag like the one shown, specifying either
"text" or "html". (The default value is "xml".)

Note:
When you specify XML output, you can add the indent attribute to produce nicely indented XML output.
The specification looks like this: <xsl:output method="xml" indent="yes"/>.

Processing the Basic Structure Elements

You'll start filling in the stylesheet by processing the elements that go into creating a table of contents -- the root element,
the title element, and headings. You'll also process the PARA element defined in the test document.

Note:
If on first reading you skipped the section of this tutorial that discusses the XPath addressing mechanisms,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (4 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

now is a good time to go back and review that section!

Begin by adding the main instruction that processes the root element:

<xsl:stylesheet ...
 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

</xsl:stylesheet>

The XSL commands are shown in bold. (Note that they are defined in the "xsl" namespace.) The instruction
<xsl:apply-templates> processes the children of the current node. In the case, the current node is the root node.

Despite its simplicity,. this example illustrates a number of important ideas, so it's worth understanding thoroughly. The
first concept is that a stylesheet contains a number of templates, defined with the <xsl:template> tag. Each template
contains a match attribute, which selects the elements that the template will be applied to, using the XPath addressing
mechanisms.

Within the template, tags that do not start with the xsl: namespace prefix are simply copied. The newlines and
whitespace that follow them are also copied, which helps to format make the resulting output readable.

Note:
When a newline is not present, whitespace generally seems to be ignored. To include whitespace in the
output in such cases, or to include other text, you can use the <xsl:text> tag. Basically, an XSLT
stylesheet expects to process tags. So everything it sees needs to be either an <xsl:..> tag, some other
tag, or whitespace.

In this case, the non-xsl tags are HTML tags (shown in red, for readability). So when the root tag is matched, XSLT
outputs the HTML start-tags, processes any templates that apply to children of the root, and then outputs the HTML end-
tags.

Process the <TITLE> element

Next, add a template to process the article title:

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

</xsl:stylesheet>

In this case, you specified a complete path to the TITLE element, and output some HTML to make the text of the title into
a large, centered heading. In this case, the apply-templates tag ensures that if the title contains any inline tags like italics,
links, or underlining, they will be processed as well.

More importantly, the apply-templates instruction causes the text of the title to be processed. Like the DOM data model,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (5 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

the XSLT data model is based on the concept of text nodes hanging off of element nodes (which, in turn, can hang off
other element nodes, and so on). That hierarchical structure constitutes the source tree. There is also a result tree, which
contains the output.

XSLT works by transforming the source tree into the result tree. To visualize the result of XSLT operations, it is helpful
to understand the structure of those trees, and their contents. (For more on this subject, see the sidebar on the XSLT Data
Model later in this section.)

Process headings

To continue processing the basic structure elements, add a template to process the top-level headings:

 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

</xsl:stylesheet>

Here, you've specified the path to the topmost SECT elements. But this time, you've applied templates in two stages, using
the select attribute. For the first stage, you selected text nodes using the XPath text() function, as well as inline tags
like bold and italics. (The vertical pipe (|) is used to match multiple items -- text, or a bold tag, or an italics tag, etc.) In the
second stage, you selected the other structure elements contained in the file, for sections, paragraphs, lists, and notes.

Using the select tags let you put the text and inline elements between the <h1>...</h1> tags, while making sure that
all of the structure tags in the section are processed afterwards. In other words, you made sure that the nesting of the
headings in the XML document is not reflected in the HTML formatting, which is important for HTML output.

In general, the select clause lets you apply all templates to a selected subset of the information available at the current
context. As another example, this template selects all attributes of the current node:

<xsl:apply-templates select="@*"/></attributes>

Next, add the virtually identical template to process the second-level headings:

 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

</xsl:stylesheet>

Generate a runtime message

You could add templates for deeper headings, too, but at some point you have to stop, if only because HTML only goes
down to 5 levels. But for this example, you'll stop at two levels of section headings. But if the XML input happens to
contain a 3rd level, you'll want to deliver an error message to the user. This section shows you how to do that.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (6 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

Note:
We could continue processing SECT elements that are further down, by selecting them with the expression
/SECT/SECT//SECT. The // selects any SECT elements, at any depth", as defined by XPath addressing
mechanism. But we'll take the opportunity to play with messaging, instead.

Add the following template to generate an error when a section is encountered that is nested too deep:

 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

</xsl:stylesheet>

The terminate="yes" clause causes the transformation process to stop after the message is generated. Without it,
processing could still go on with everything in that section being ignored.

Extra-Credit Exercise:
Expand the stylesheet to handle sections nested up to 5 sections deep, generating <h1>..<h5> tags. Generate
an error on any section nested 6 levels deep.

Finally, finish up the stylesheet by adding a template to process the PARA tag:

 <xsl:template match="PARA">
 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

Nothing unusual here. Just another template like the ones you're used to.

Writing the Basic Program

In this part of the tutorial, you'll modify the program that used XSLT to echo an XML file unchanged, and modify it so
that it uses your stylesheet.

Note:
The code shown in this section is contained in Stylizer.java. The result is the HTML code shown in
stylizer1a.txt. (The displayable version is stylizer1a.html.)

Start by copying TransformationApp02, which parses an XML file and writes to System.out. Save it as Stylizer.java.

Next, modify occurrences of the class name and the usage-section of the program:

public class TransformationAppStylizer
{
 if (argv.length != 1 2) {
 System.err.println ("Usage: java TransformationAppStylizer stylesheet

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (7 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

filename");
 System.exit (1);
 }
 ...

Then modify the program to use the stylesheet when creating the Transformer object.

...
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;
...

public class Stylizer
{
 ...
 public static void main (String argv[])
 {
 ...
 try {
 File f = new File(arv[0]);
 File stylesheet = new File(argv[0]);
 File datafile = new File(argv[1]);

 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f datafile);
 ...
 StreamSource stylesource = new StreamSource(stylesheet);
 Transformer transformer = tFactory.newTransformer(stylesource);
 ...

This code uses the file to create a StreamSource object, and then passes the source object to the factory class to get the
transformer.

Note:
You can simplify the code somewhat by eliminating the DOMSource class entirely. Instead of creating a
DOMSource object for the XML file, create a StreamSource object for it, as well as for the stylesheet.
(Take it on for extra credit!)

Now compile and run the program using article1a.xsl on article1.xml. The results should look like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section

 </h1>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (8 of 19) [8/22/2001 12:52:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/Transformer.html

4. Transforming XML

<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading

 </h2>
<p>This is the text of the subsection.
 </p>

</body>
</html>

At this point, there is quite a bit of excess whitespace in the output. You'll see how to eliminate most of it in the next
section.

Trimming the Whitespace

The XSLT/XPath Data Model

Like the DOM, the XSL/XPath data model consists of a
tree containing a variety of nodes. Under any given
element node, there are text nodes, attribute nodes, element
nodes, comment nodes, and processing instruction nodes.

Once an XPath expression establishes a context, other
expressions produce values that are relative to that context.
For example, the expression //LIST establishes a context
consisting of a LIST node. Within the XSLT template that
processes such nodes, the expression @type refers to the
element's type attribute. (Similarly, the expression @*
refers to all of the element's attributes.)

If you recall, when you took a look at the structure of a
DOM, there were many text nodes that contained nothing
but ignorable whitespace. Most of the excess whitespace in
the output came from them. Fortunately, XSL gives you a
way to eliminate them. (For more about the node structure,
see the sidebar: The XSLT/XPath Data Model.)

Note:
The stylesheet described here is article1b.xsl. The
result is the HTML code shown in stylizer1b.txt.
(The displayable versions are article1b-xsl.html and
stylizer1b.html.)

To do remove some of the excess whitespace, add the line
highlighted below to the stylesheet.

<xsl:stylesheet ...
 >
 <xsl:output method="html"/>
 <xsl:strip-space elements="SECT"/>
 ...

This instruction tells XSL to remove any text nodes under SECT elements that contain nothing but whitespace. Nodes that
contain text other than whitespace will not be affected, and other kinds of nodes are not affected.

Now, when you run the program, the result looks like this:

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section
 </h1>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (9 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading
 </h2>
<p>This is the text of the subsection.
 </p>

</body>
</html>

That's quite an improvement. There are still newline characters and white space after the headings, but those come from
the way the XML is written:

<SECT>The First Major Section
____<PARA>This section will introduce a subsection.</PARA>
^^^^

Here, you can see that the section heading ends with a newline and indentation space, before the PARA entry starts. That's
not a big worry, because the browsers that will process the HTML routinely compress and ignore the excess space. But we
there is still one more formatting at our disposal.

Note:
The stylesheet described here is article1c.xsl. The result is the HTML code shown in stylizer1c.txt. (The
displayable versions are article1c-xsl.html and stylizer1c.html.)

To get rid of that last little bit of whitespace, add this template to the stylesheet:

 <xsl:template match="text()">
 <xsl:value-of select="normalize-space()"/>
 </xsl:template>

</xsl:stylesheet>

The output now looks like this:

<html>
<body>
<h1 align="center">A Sample Article</h1>
<h1>The First Major Section</h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading</h2>
<p>This is the text of the subsection.</p>
</body>
</html>

That is quite a bit better. Of course, it would be nicer if it were indented, but that turns out to be somewhat harder than
expected! Here are some possible avenues of attack, along with the difficulties:

● Indent option: Unfortunately, the indent="yes" option that can be applied to XML output is not available for
HTML output. Even if that option were available, it wouldn't help, because HTML elements are rarely nested!

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (10 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

Although HTML source is frequently indented to show the implied structure, the HTML tags themselves are not
nested in a way that creates a real structure.

● Indent variables: The <xsl:text> function lets you add any text you want, including whitespace. So, it could
conceivably be used to output indentation space. The problem is to vary the amount of indentation space. XSLT
variables seem like a good idea, but they don't work here. The reason is that when you assign a value to a variable
in a template, the value is only known within that template (statically, at compile time value). Even if the variable
is defined globally, the assigned value is not stored in a way that lets it be dynamically known by other templates
at runtime. Once <apply-templates/> invokes other templates, they are unaware of any variable settings
made in other templates.

● Parameterized templates: Using a "parameterized template" is another way to modify a template's behavior. But
determining the amount of indentation space to pass as the parameter remains the crux of the problem!

At the moment, then, there does not appear to be any good way to control the indentation of HTML-formatted output.
Typically, that fact is of little consequence, since the data will usually be manipulated in its XML form, while the HTML
version is only used for display a browser. It's only inconvenient in a tutorial like this, where it would be nice to see the
structure you're creating! But when you click on the link to stylizer1c.html, you see the results you expect.

Processing the Remaining Structure Elements

In this section, you'll process the LIST and NOTE elements that add additional structure to an article.

Note:
The sample document described in this section is article2.xml, the stylesheet used to
manipulate it is article2.xsl. The result is the HTML code shown in stylizer2.txt. (The
displayable versions are article2-xml.html, article2-xsl.html, and stylizer2.html.)

Start by adding some test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 ...
 </SECT>
 <SECT>The Second Major Section
 <PARA>This section adds a LIST and a NOTE.
 <PARA>Here is the LIST:
 <LIST type="ordered">
 <ITEM>Pears</ITEM>
 <ITEM>Grapes</ITEM>
 </LIST>
 </PARA>
 <PARA>And here is the NOTE:
 <NOTE>Don't forget to go to the hardware store on your
 way to the grocery!
 </NOTE>
 </PARA>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (11 of 19) [8/22/2001 12:52:45 PM]

4. Transforming XML

 </SECT>
</ARTICLE>

Note:
Although the list and note in the XML file are contained in their respective paragraphs, it really makes no
difference whether they are contained or not -- the generated HTML will be the same, either way. But
having them contained will make them easier to deal with in an outline-oriented editor.

Modify <PARA> handling

Next, modify the PARA template to account for the fact that we are now allowing some of the structure elements to be
embedded with a paragraph:

<xsl:template match="PARA">
 <p><xsl:apply-templates/></p>
 <p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </p>
 <xsl:apply-templates select="PARA|LIST|NOTE"/>
</xsl:template>

This modification uses the same technique you used for section headings. The only difference is that SECT elements are
not expected within a paragraph.

Process <LIST> and <ITEM> elements

Now you're ready to add a template to process LIST elements:

 <xsl:template match="LIST">
 <xsl:if test="@type='ordered'">

 <xsl:apply-templates/>

 </xsl:if>
 <xsl:if test="@type='unordered'">

 <xsl:apply-templates/>

 </xsl:if>
 </xsl:template>

</xsl:stylesheet>

The <xsl:if> tag uses the test="" attribute to specify a boolean condition. In this case, the value of the type
attribute is tested, and the list that is generated changes depending on whether the value is ordered or unordered.

The two important things to note for this example are:

1. There is no else clause, nor is there a return or exit statement, so it takes two <xsl:if> tags to cover the
two options. (Or the <xsl:choose> tag could have been used, which provides case-statement functionality.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (12 of 19) [8/22/2001 12:52:46 PM]

4. Transforming XML

2. Single quotes are required around the attribute values. Otherwise, the XSLT processor attempts to interpret the
word ordered as an XPath function, instead of as a string

Now finish up LIST processing by handling ITEM elements. Nothing spectacular here.

 <xsl:template match="ITEM">
 <xsl:apply-templates/>

 </xsl:template>

</xsl:stylesheet>

Ordering Templates in a Stylesheet

By now, you should have the idea that templates are independent of one another, so it doesn't generally matter where they
occur in a file. So from here on, we'll just show the template you need to add. (For the sake of comparison, they're always
added at the end of the example stylesheet.)

Order does make a difference when two templates can apply to the same node, In that case, the one that is defined last is
the one that is found and processed. For example, to change the ordering of an indented list to use lowercase alphabetics,
you could specify a template pattern that looks like this: //LIST//LIST. In that template, you would use the HTML
option to generate an alphabetic enumeration, instead of a numeric one.

But such an element could also be identified by the pattern //LIST. To make sure the proper processing is done, the
template that specifies //LIST would have to appear before the template the specifies //LIST//LIST.

Process <NOTE> elements

The last remaining structure element is the NOTE element. Add the template shown below to handle that.

<xsl:template match="NOTE">
 <blockquote><p>Note:

 <xsl:apply-templates/>
 </p></blockquote>
</xsl:template>

This code brings up an interesting issue that results from the inclusion of the
 tag. To be well-formed XML, the tag
must be specified in the stylesheet as
, but that tag is not recognized by many browsers. And while most browsers
recognize the sequence
</Br>, they all treat it like a paragraph break, instead of a single line break.

In other words, the transformation must generate a
 tag, but the stylesheet must specify
. That brings us to the
major reason for that special output tag we added early in the stylesheet:

<xsl:stylesheet ... >
 <xsl:output method="html"/>
 ...
</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (13 of 19) [8/22/2001 12:52:46 PM]

4. Transforming XML

That output specification converts empty tags like
 to their HTML form,
, on output. That conversion is
important, because most browsers do not recognize the empty-tags. Here is a list of the affected tags:

● area
● base
● basefont
● Br
● col

● frame
● hr
● img
● input

● isindex
● link
● meta
● param

Summarizing:
By default, XSLT produces well-formed XML on output. And since an XSL stylesheet is well-formed
XML to start with, you cannot easily put a tag like
 in the middle of it. The "<xsl:output
method="html"/>" solves the problem, so you can code
 in the stylesheet, but get
 in the
output.

The other major reason for specifying <xsl:output method="html"/> is that, like the specification
<xsl:output method="text"/>, generated text is not escaped. For example, if the stylesheet includes the <
entity reference, it will appear as the "<" character in the generated text. When XML is generated, on the other hand, the
< entity reference in the stylesheet would be unchanged, so it would appear as < in the generated text.

Note:
If you actually want < to be generated as part of the HTML output, you'll need to encode it as
&lt; -- that sequence becomes < on output, because only the & is converted to an &
character.

Run the program

Here is the HTML that is generated for the second section when you run the program now:

...
<h1>The Second Major Section</h1>
<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

Pears
Grapes

<p>And here is the NOTE:</p>
<blockquote>
Note:

Don't forget to go to the hardware store on your way to the grocery!
</blockquote>

Process Inline (Content) Elements

The only remaining tags in the ARTICLE type are the inline tags -- the ones that don't create a line break in the output,
but which instead are integrated into the stream of text they are part of.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (14 of 19) [8/22/2001 12:52:46 PM]

4. Transforming XML

Inline elements are different from structure elements, in that they are part of the content of a tag. If you think of an
element as a node in a document tree, then each node has both content and structure. The content is composed of the text
and inline tags it contains. The structure consists of the other elements (structure elements) under the tag.

Note:
The sample document described in this section is article3.xml, the stylesheet used to manipulate it is
article3.xsl. The result is the HTML code shown in stylizer3.txt. (The browser-displayable versions are
article3-xml.html, article3-xsl.html, and stylizer3.html.)

Start by adding one more bit of test data to the sample document:

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 ...
 </SECT>
 <SECT>The Second Major Section
 ...
 </SECT>
 <SECT>The <I>Third</I> Major Section
 <PARA>In addition to the inline tag in the heading, this section
 defines the term <DEF>inline</DEF>, which literally means
 "no line break". It also adds a simple link to the main page
 for the Java platform (<LINK>http://java.sun.com</LINK>),
 as well as a link to the
 <LINK target="http://java.sun.com/xml">XML</LINK> page.
 </PARA>
 </SECT>
</ARTICLE>

Now, process the inline <DEF> elements in paragraphs, renaming them to HTML italics tags:

<xsl:template match="DEF">
 <i> <xsl:apply-templates/> </i>
</xsl:template>

Next, comment out the text-node normalization. It has served its purpose, and new we're to the point that we need to
preserve spaces important:

<!--
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space()"/>
 </xsl:template>

-->

This modification keeps us from losing spaces before tags like <I> and <DEF>. (Try the program without this

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (15 of 19) [8/22/2001 12:52:46 PM]

4. Transforming XML

modification to see the result.)

Now, process basic inline HTML elements like , <I>, <U> for bold, italics, and underlining.

<xsl:template match="B|I|U">
 <xsl:element name="{name()}">
 <xsl:apply-templates/>
 </xsl:element>
</xsl:template>

The <xsl:element> tag lets you compute the element you want to generate. Here, you generate the appropriate the
inline tag using the name of the current element. In particular, note the use of curly braces ({}) in the name=".."
expression. Those curly braces cause the text inside the quotes to be processed as an XPath expression, instead of being
interpreted as a literal string. Here, they cause the XPath name() function to return the name of the current node.

Curly braces are recognized anywhere that an "attribute value template" can occur. (Attribute value templates are defined
in section 7.6.2 of the specification, and they appear several places in the template definitions.). In such expressions, curly
braces can also be used to refer to the value of an attribute, {@foo}, or to the content of an element {foo}.

Note:
You can also generate attributes using <xsl:attribute>. For more information see Section 7.1.3 of the
XSLT Specification.

The last remaining element is the LINK tag. The easiest way to process that tag will be to set up a named-template that we
can drive with a parameter:

 <xsl:template name="htmLink">
 <xsl:param name="dest" select="UNDEFINED"/>
 <xsl:element name="a">
 <xsl:attribute name="href">
 <xsl:value-of select="$dest"/>
 </xsl:attribute>
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

The major difference in this template is that, instead of specifying a match clause, you gave the template a name with the
name="" clause. So this template only gets executed when you invoke it.

Within the template, you also specified a parameter named "dest", using the <xsl:param> tag. For a bit of error
checking, you used the select clause to give that parameter a default value of "UNDEFINED". To reference the variable
in the <xsl:value-of> tag, you specified "$dest".

Note:
Recall that an entry in quotes is interpreted as an expression, unless it is further enclosed in single quotes.
That's why the single quotes were needed earlier, in "@type='ordered'" -- to make sure that
ordered was interpreted as a string.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (16 of 19) [8/22/2001 12:52:46 PM]

http://www.w3.org/TR/xslt

4. Transforming XML

The <xsl:element> tag generates an element. Previously, we have been able to simply specify the element we want
by coding something like <html>. But here you are dynamically generating the content of the HTML anchor (<a>) in
the body of the <xsl:element> tag. And you are dynamically generating the href attribute of the anchor using the
<xsl:attribute> tag.

The last important part of the template is the <apply-templates> tag, which inserts the text from the text node under
the LINK element. (Without it, there would be no text in the generated HTML link.)

Next, add the template for the LINK tag, and call the named template from within it:

 <xsl:template match="LINK">
 <xsl:if test="@target">
 <!--Target attribute specified.-->
 <xsl:call-template name="htmLink">
 <xsl:with-param name="dest" select="@target"/>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

 <xsl:template name="htmLink">
 ...

The test="@target" clause returns true if the target attribute exists in the LINK tag. So this if-statement generates
HTML links when the text of the link and the target defined for it are different.

The <xsl:call-template> tag invokes the named template, while <xsl:with-param> specifies a parameter
using the name clause, and its value using the select clause.

The Trouble with Variables

It is awfully tempting to create a single template and set a
variable for the destination of the link, rather than going to
the trouble of setting up a parameterized template and
calling it two different ways. The idea would be to set the
variable to a default value (say, the text of the LINK tag)
and then, if target attribute exists, set the destination
variable to the value of the target attribute.

That would be a darn good idea -- if it worked. But once
again, the issue is that variables are only known in the
scope within which they are defined. So when you code an
<xsl:if> to change the value of the variable, the value
is only known within the context of the <xsl:if> tag.
Once </xsl:if> is encountered, any change to the
variable's setting is lost.

A similarly tempting idea is the possibility of replacing the
text()|B|I|U|DEF|LINK specification with a
variable ($inline). But since the value of the variable is

As the very last step in the stylesheet construction process,
add the if-clause shown below to process LINK tags that do
not have a target attribute.

<xsl:template match="LINK">
 <xsl:if test="@target">
 ...
 </xsl:if>

 <xsl:if test="not(@target)">
 <xsl:call-template name="htmLink">
 <xsl:with-param name="dest">
 <xsl:apply-templates/>
 </xsl:with-param>
 </xsl:call-template>
 </xsl:if>
</xsl:template>

The not(...) clause inverts the previous test (there is no
else clause, remember?). So this part of the template is
interpreted when the target attribute is not specified. This

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (17 of 19) [8/22/2001 12:52:46 PM]

4. Transforming XML

determined by where it is defined, the value of a global
inline variable consists of text nodes, nodes, etc.
that happen to exist at the root level. In other words, the
value of such a variable, in this case, is null.

time, the parameter value comes not from a select clause,
but from the contents of the <xsl:with-param>
element.

Note:
Just to make it explicit: variables (which we'll
mention a bit later) and parameters can have their value specified either by a select clause, which lets
you use XPath expressions, or by the content of the element, which lets you use XSLT tags.

The content of the parameter, in this case, is generated by the <xsl:apply-templates/> tag, which inserts the
contents of the text node under the LINK element.

Run the program

When you run the program now, the results should look like this:

...
<h1>The <I>Third</I> Major Section
 </h1>
<p>In addition to the inline tag in the heading, this section
 defines the term <i>inline</i>, which literally means
 "no line break". It also adds a simple link to the main page
 for the Java platform (http://java.sun.com),
 as well as a link to the
 XML page.
 </p>

Awesome! You have now converted a rather complex XML file to HTML. (As seemingly simple as it was, it still
provided a lot of opportunity for exploration.)

Printing the HTML

You have now converted an XML file to HTML. One day, someone will produce an HTML-aware printing engine that
you'll be able to find and use through the Java Printing Service (JPS) API. At that point, you'll have ability to print an
arbitrary XML file as formatted data -- all you'll have to do is set up a stylesheet!

What Else Can XSLT Do?

As lengthy as this section of the tutorial has been, it has still only scratched the surface of XSLT's capabilities. Many
additional possibilities await you in the XSLT Specification. Here are a few of the things to look for:

● import (Section 2.6.2) and include (Section 2.6.1)
Use these statements to modularize and combine XSLT stylesheets. The include statement simply inserts any
definitions from the included file. The import statement lets you override definitions in the imported file with
definitions in your own stylesheet.

● for-each loops (Section 8)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (18 of 19) [8/22/2001 12:52:46 PM]

http://java.sun.com/j2se/1.4/docs/guide/jps/index.html
http://www.w3.org/TR/xslt

4. Transforming XML

Loop over a collection of items and process each one, in turn.

● choose (case-statement) for conditional processing (Section 9.2)
Branch to one of multiple processing paths depending on an input value.

● generating numbers (Section 7.7)
Dynamically generate numbered sections, numbered elements, and numeric literals. XSLT provides three
numbering modes:
single: Numbers items under a single heading, like an "ordered list" in HTML..
multiple: Produces multi-level numbering like "A.1.3".
any: Consecutively numbers items wherever they appear, like the footnotes in a chapter.

● formatting numbers (Section 12.3)
Control enumeration formatting, so you get numerics (format="1"), uppercase alphabetics (format="A"),
lowercase alphabetics (format="a"), or compound numbers, like "A.1", as well as numbers and currency
amounts suited for a specific international locale.

● sorting output (Section 10)
Produce output in some desired sorting order.

● mode-based templates (Section 5.7)
Lets you process an element multiple times, each time in a different "mode". You add a mode attribute to
templates, and then specify <apply-templates mode="..."> to apply only the templates with a matching
mode. Combined with the <apply-templates select="..."> to slice and dice the input processing,
creating a matrix of elements to process and the templates to apply to them.

● variables (Section 11)
Variables, like parameters, let you control a template's behavior. But they are not as valuable as you might think.
The value of a variable is only known within the scope of the current template or <xsl:if> clause (for example) in
which it is defined. You can't pass a value from one template to another, or even from an enclosed part of a
template to another part of the same template.

These statements are true even for a "global" variable. You can change its value in a template, but the change only
applies to that template. And when the expression used to define the global variable is evaluated, that evaluation
takes place in the context of the structure's root node. In other words, global variables are essentially runtime
constants. Those constants can be useful to change the behavior of a template, especially when coupled with
include and import statements. But variables are not a general-purpose data-management mechanism.

Next...

The final page of the XSLT tutorial will show you how to concatenate multiple transformations together in a filter chain..

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/4_transform.html (19 of 19) [8/22/2001 12:52:46 PM]

5. Chaining Transformations

Top Contents Index Glossary

5. Concatenating XSLT Transformations with a Filter Chain

Link Summary

Exercise Links

● FilterChain.java
● small-docbook-article.xml
● small-docbook-article-xml.html
● docbookToArticle.xsl
● docbookToArticle-xsl.html
● article1c.xsl / article1c-xsl.html
● filterout.txt / filterout.html

API Links

● Transformer

External Links

● DocBook article format

It is sometimes useful to create a "filter chain" of XSLT transformations, so that
the output of one transformation becomes the input of the next. This section of
the tutorial shows you how to do that.

Writing the Program

Start by writing a program to do the filtering. This example will show the full
source code, but you can use one of the programs you've been working on as a
basis, to make things easier.

Note:
The code described here is contained in FilterChain.java.

The sample program includes the import statements that identify the package
locations for each class:

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.XMLFilter;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

The program also includes the standard error handlers you're used to. They're listed here, just so they are all gathered together in one
place:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (1 of 6) [8/22/2001 12:52:47 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/docbookToArticle.xsl
http://java.sun.com/xml/jaxp-1.1/docs/api/javax/xml/transform/Transformer.html
http://www.oreilly.com/homepages/dtdparse/docbook/3.0/elements/article.htm

5. Chaining Transformations

 }
 catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();
 }
 catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();
 }
 catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();
 }
 catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();
 }
 catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

In between the import statements and the error handling, the core of the program consists of the code shown below.

public static void main (String argv[])
{
 if (argv.length != 3) {
 System.err.println ("Usage: java FilterChain stylesheet1 stylesheet2 xmlfile");
 System.exit (1);
 }

 try {
 // Read the arguments
 File stylesheet1 = new File(argv[0]);
 File stylesheet2 = new File(argv[1]);
 File datafile = new File(argv[2]);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (2 of 6) [8/22/2001 12:52:47 PM]

5. Chaining Transformations

 // Set up the input stream
 BufferedInputStream bis = new BufferedInputStream(new FileInputStream(datafile));
 InputSource input = new InputSource(bis);

 // Set up to read the input file
 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser parser = spf.newSAXParser();
 XMLReader reader = parser.getXMLReader();

 // Create the filters (see Note #1)
 SAXTransformerFactory stf =
 (SAXTransformerFactory) TransformerFactory.newInstance();
 XMLFilter filter1 = stf.newXMLFilter(new StreamSource(stylesheet1));
 XMLFilter filter2 = stf.newXMLFilter(new StreamSource(stylesheet2));

 // Wire the output of the reader to filter1 (see Note #2)
 // and the output of filter1 to filter2
 filter1.setParent(reader);
 filter2.setParent(filter1);

 // Set up the output stream
 StreamResult result = new StreamResult(System.out);

 // Set up the transformer to process the SAX events generated
 // by the last filter in the chain
 Transformer transformer = stf.newTransformer();
 SAXSource transformSource = new SAXSource(filter2, input);
 transformer.transform(transformSource, result);
 } catch (...) {
 ...

Notes

1. This weird bit of code is explained by the fact that SAXTransformerFactory extends TransformerFactory, adding
methods to obtain filter objects. The newInstance() method is a static method defined in
TransformerFactory, which (naturally enough) returns a TransformerFactory object. In reality, though, it returns
a SAXTransformerFactory. So, to get at the extra methods defined by SAXTransformerFactory, the return value
must be cast to the actual type.

2. An XMLFilter object is both a SAX reader and a SAX content handler. As a SAX reader, it generates SAX
events to whatever object has registered to receive them. As a content handler, it consumes SAX events
generated by it's "parent" object -- which is, of necessity, a SAX reader, as well. (Calling the event generator a
"parent" must make sense when looking at the internal architecture. From the external perspective, the name
doesn't appear to be particularly fitting.) The fact that filters both generate and consume SAX events allows them
to be chained together.

Understanding How it Works

The code listed above shows you how to set up the transformation. The diagram below should help you get a better feel for what's
happening when it executes.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (3 of 6) [8/22/2001 12:52:47 PM]

5. Chaining Transformations

When you create the transformer, you pass it at a SAXSource object, which encapsulates a reader (in this case, filter2) and an
input stream. You also pass it a pointer to the result stream, where it directs its output. The diagram shows what happens when you
invoke transform() on the transformer. Here is an explanation of the steps:

1. The transformer sets up an internal object as the content handler for filter2, and tells it to parse the input source.
2. filter2, in turn, sets itself up as the content handler for filter1, and tells it to parse the input source.
3. Continuing to pass the buck, filter1 asks the parser object to please parse the input source.
4. The parser does so, generating SAX events which it passes to filter1.
5. filter1, acting in its capacity as a content handler, processes the events and does its transformations. Then, acting in its

capacity as a SAX reader (XMLReader), it sends SAX events to filter2.
6. filter2 does the same, sending its events to the transformer's content handler, which generates the output stream.

Testing the Program

To try out the program, you'll create an XML file based on a tiny fraction of the XML DocBook format, and convert it to the
ARTICLE format defined here. Then you'll apply the ARTICLE stylesheet to generate an HTML version.

Note:
This example processes small-docbook-article.xml using docbookToArticle.xsl, and article1c.xsl. The result is the
HTML code shown in filterout.txt. (The browser-displayable versions are small-docbook-article-xml.html,
docbookToArticle-xsl.html, article1c-xsl.html, and filterout.html.) See the O'Reilly web pages for a good description of
the DocBook article format.

Start by creating a small article that uses a minute subset of the XML DocBook format:

<?xml version="1.0"?>
<Article>
 <ArtHeader>
 <Title>Title of my (Docbook) article</Title>
 </ArtHeader>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (4 of 6) [8/22/2001 12:52:47 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/docbookToArticle.xsl
http://www.oreilly.com/homepages/dtdparse/docbook/3.0/elements/article.htm

5. Chaining Transformations

 <Sect1>
 <Title>Title of Section 1.</Title>
 <Para>This is a paragraph.</Para>
 </Sect1>
</Article>

Next, create a stylesheet to convert it into the ARTICLE format:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="xml"/> (see Note #1)

 <xsl:template match="/">
 <ARTICLE>
 <xsl:apply-templates/>
 </ARTICLE>
 </xsl:template>

 <!-- Lower level titles strip out the element tag --> (see Note #2)

 <!-- Top-level title -->
 <xsl:template match="/Article/ArtHeader/Title"> (see Note #3)
 <TITLE> <xsl:apply-templates/> </TITLE>
 </xsl:template>

 <xsl:template match="//Sect1"> (see Note #4)
 <SECT><xsl:apply-templates/></SECT>
 </xsl:template>

 <xsl:template match="Para">
 <PARA><xsl:apply-templates/></PARA> (see Note #5)
 </xsl:template>

</xsl:stylesheet>

Notes:

1. This time, the stylesheet is generating XML output.
2. The element below matches the main title. For section titles, the tag gets stripped. (Since no template conversion

governs those title elements, they are ignored. The text nodes they contain, however, are still echoed as a result
of XSLT's built in template rules (more on that below).

3. The title from the DocBook article header becomes the ARTICLE title.
4. Numbered section tags are converted to plain SECT tags.
5. Carries out a case conversion, so Para becomes PARA.

Although it hasn't been mentioned explicitly, XSLT defines a number of built-in (default) template rules. The complete set is listed in
Section 5.8 of the spec. Mainly, they provide for the automatic copying of text and attribute nodes, and for skipping comments and
processing instructions. They also dictate that inner elements are processed, even when their containing tags that don't have templates.
That is the reason that the text node in the section title is processed, even though the section title is not covered by any template.

Now, run the FilterChain program, passing it the stylesheet above, the ARTICLE stylesheet, and the small DocBook file, in that order.
The result should like this:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (5 of 6) [8/22/2001 12:52:47 PM]

5. Chaining Transformations

<html>
<body>
<h1 align="center">Title of my (Docbook) article</h1>
<h1>Title of Section 1.</h1>
<p>This is a paragraph.</p>
</body>
</html>

Conclusion

Congratulations! You have completed the XSLT tutorial! There is a lot you do with XML and XSLT, and you are now prepared to
explore the many exciting possibilities that await.

 Top Contents Index Glossary

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/5_chain.html (6 of 6) [8/22/2001 12:52:47 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1a-dtd.html

<?xml version='1.0' encoding='us-ascii'?>

<!--
 DTD for a simple "slide show".
-->

<!ELEMENT slideshow (slide+)>
<!ELEMENT slide (title, item*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1a-dtd.html [8/22/2001 12:52:49 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets Market Size < predicted! Anticipated
Penetration Expected Revenues Profit Margin First we fozzle the frobmorten Then we framboze the
staten Finally, we frenzle the fuznaten ^ | <1> | <1> = fozzle V | <2> = framboze staten--------------------+
<3> = frenzle <2>]]>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample05.xml [8/22/2001 12:52:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample05-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow1a.dtd">

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

 <slide type="exec">
 <title>Financial Forecast</title>
 <item>Market Size < predicted!</item>
 <item>Anticipated Penetration</item>
 <item>Expected Revenues</item>
 <item>Profit Margin </item>
 </slide>

 <slide type="tech">
 <title>How it Works</title>
 <item>First we fozzle the frobmorten</item>
 <item>Then we framboze the staten</item>
 <item>Finally, we frenzle the fuznaten</item>
 <item><![CDATA[Diagram:

 frobmorten <------------ fuznaten
 | <3> ^

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample05-xml.html (1 of 2) [8/22/2001 12:52:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample05-xml.html

 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>
]]></item>
 </slide>
</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample05-xml.html (2 of 2) [8/22/2001 12:52:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1b-dtd.html

<?xml version='1.0' encoding='us-ascii'?>

<!--
 DTD for a simple "slide show".
-->

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow
 title CDATA #REQUIRED
 date CDATA #IMPLIED
 author CDATA "unknown"
>
<!ELEMENT slide (image?, title, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>
<!ELEMENT title (#PCDATA)>
<!ELEMENT item (#PCDATA | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image
 alt CDATA #IMPLIED
 src CDATA #REQUIRED
 type CDATA "image/gif"
>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow1b-dtd.html [8/22/2001 12:52:52 PM]

Wake up to &products;!

]> Why &products; are great Who buys &products;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample06.xml [8/22/2001 12:52:52 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample06-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow1b.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets">
]>

<!-- SUBSTITUTIONS WORK IN ATTRIBUTES, TOO -->
<slideshow
 title="&product; Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to &products;!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why &products; are great</item>
 <item/>
 <item>Who buys &products;</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample06-xml.html [8/22/2001 12:52:53 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-06.html

Running Echo09 ../samples/slideSample06.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample06.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS:
 CHARS: WonderWidgets
 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-06.html [8/22/2001 12:52:54 PM]

Wake up to &products;!

]> ©right; Why &products; are great Who buys &products;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample07.xml [8/22/2001 12:52:55 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample07-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow1b.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets">
 <!ENTITY copyright SYSTEM "copyright.xml">
]>

<!-- SUBSTITUTIONS WORK IN ATTRIBUTES, TOO -->
<slideshow
 title="&product; Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to &products;!</title>
 </slide>

 <!-- COPYRIGHT SLIDE -->
 <slide type="all">
 <item>©right;</item>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why &products; are great</item>
 <item/>
 <item>Who buys &products;</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample07-xml.html [8/22/2001 12:52:56 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/copyright.xml

This is the standard copyright message that our lawyers make us put everywhere so we don't have to shell
out a million bucks every time someone spills hot coffee in their lap...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/copyright.xml [8/22/2001 12:52:56 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/copyright-xml.html

<!-- A SAMPLE copyright -->
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/copyright-xml.html [8/22/2001 12:52:57 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-07.html

Running Echo09 ../samples/slideSample07.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample07.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <item>
 CHARS:
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-07.html (1 of 2) [8/22/2001 12:52:58 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-07.html

 END_ELM:
 CHARS:
 CHARS: WonderWidgets
 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09-07.html (2 of 2) [8/22/2001 12:52:58 PM]

This Is a Work in Progress!

Work in Progress!!

This tutorial is a work in progress. Please send us your feedback to help make it better!

Note:
To be informed of the latest releases, subscribe to the xml-announce mailing list by
sending an email to listserv@java.sun.com with "subscribe xml-interest" and
<yourlastname> <yourfirstname> in the body of the message. To unsubscribe, send email
with "unsubscribe xml-interest" and <yourlastname> <yourfirstname> in the
body of the message.

If any section of the published tutorial seems incomplete or buggy, or contains bad links, please give us
feedback to help us determine what's confusing in these lessons, what seems unnecessary, and whether
the lessons helped you at all. Write to us at . . .

WAIT! STOP! Before you send us an e-mail . . . you should be aware that we do not
provide technical support at this address! This address is provided so that you can give us
your feedback and let us know of any problems you may be having with the tutorial's
content.

Here's where to turn for help with other problems:

● If you have a Java programming or setup question, try the The Java Developer
Connection. It's the best resource we know of, and it's free! You can download
early access versions of new software, scan the known bugs in the JDK, search the
large database of questions and answers, and much more.

● If you had trouble downloading or unarchiving the online tutorial, or if you're
having trouble browsing the tutorial on java.sun.com, please go to the
java.sun.com FEEDBACK page and ask the webmaster for help.

● For more information on Java and XML in the open source community, try this
link: http://xml.apache.org/

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/info/inProgress.html (1 of 2) [8/22/2001 12:52:59 PM]

mailto:listserv@java.sun.com
http://java.sun.com/jdc
http://java.sun.com/jdc
http://java.sun.com/cgi-bin/feedback.pl
http://xml.apache.org/

This Is a Work in Progress!

OK. Now, if you still want to send us email use this address: xml-feedback@java.sun.com. We may not
be able to respond in person (we get a lot of mail!) but we thank you in advance for your help.

When sending us email, please tell us which version of the tutorial you're using. For the online tutorial,
tell us the "last updated" date that's at the top of the first page. Also, please indicate which browser
(include version number or date) you are using to view the tutorial, if that seems relevant.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/info/inProgress.html (2 of 2) [8/22/2001 12:52:59 PM]

mailto:
 xml-feedback@java.sun.com

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow2.dtd

%xhtml;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow2.dtd [8/22/2001 12:52:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow2-dtd.html

<?xml version='1.0' encoding='us-ascii'?>

<!--
 DTD for a simple "slide show".
-->

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow
 title CDATA #REQUIRED
 date CDATA #IMPLIED
 author CDATA "unknown"
>
<!ELEMENT slide (image?, title?, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT title (%inline;)*>
<!ELEMENT item (%inline; | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image
 alt CDATA #IMPLIED
 src CDATA #REQUIRED
 type CDATA "image/gif"
>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow2-dtd.html [8/22/2001 12:53:00 PM]

Wake up to &products;!

]> ©right; Why &products; are great Who buys &products;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample08.xml [8/22/2001 12:53:01 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample08-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow2.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets"> <!-- FOR WALLY / WALLIES -->
 <!ENTITY copyright SYSTEM "copyright.xml">
]>

<!-- SUBSTITUTIONS WORK IN ATTRIBUTES, TOO -->
<slideshow
 title="&product; Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to &products;!</title>
 </slide>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <item>©right;</item>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why &products; are great</item>
 <item/>
 <item>Who buys &products;</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample08-xml.html [8/22/2001 12:53:02 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample01.xml [8/22/2001 12:53:03 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample01-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample01-xml.html [8/22/2001 12:53:04 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets Market Size < predicted Anticipated
Penetration Expected Revenues Profit Margin

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample03.xml [8/22/2001 12:53:05 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample03-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

 <slide type="exec">
 <title>Financial Forecast</title>
 <item>Market Size < predicted</item>
 <item>Anticipated Penetration</item>
 <item>Expected Revenues</item>
 <item>Profit Margin </item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample03-xml.html [8/22/2001 12:53:06 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-03.html

Running Echo07 ../samples/slideSample03.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample03.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-03.html (1 of 2) [8/22/2001 12:53:07 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-03.html

 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 ELEMENT: <slide
 ATTR: type "exec"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Financial Forecast
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Market Size
 CHARS: <
 CHARS: predicted
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Anticipated Penetration
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Expected Revenues
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Profit Margin
 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-03.html (2 of 2) [8/22/2001 12:53:07 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets Market Size < predicted! Anticipated
Penetration Expected Revenues Profit Margin First we fozzle the frobmorten Then we framboze the
staten Finally, we frenzle the fuznaten ^ | <1> | <1> = fozzle V | <2> = framboze staten--------------------+
<3> = frenzle <2>]]>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample04.xml [8/22/2001 12:53:07 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample04-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

 <slide type="exec">
 <title>Financial Forecast</title>
 <item>Market Size < predicted!</item>
 <item>Anticipated Penetration</item>
 <item>Expected Revenues</item>
 <item>Profit Margin </item>
 </slide>

 <slide type="tech">
 <title>How it Works</title>
 <item>First we fozzle the frobmorten</item>
 <item>Then we framboze the staten</item>
 <item>Finally, we frenzle the fuznaten</item>
 <item><![CDATA[Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample04-xml.html (1 of 2) [8/22/2001 12:53:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample04-xml.html

 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>
]]></item>
 </slide>
</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample04-xml.html (2 of 2) [8/22/2001 12:53:08 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html

Running Echo07 ../samples/slideSample04.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample04.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html (1 of 3) [8/22/2001 12:53:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html

 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 ELEMENT: <slide
 ATTR: type "exec"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Financial Forecast
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Market Size
 CHARS: <
 CHARS: predicted!
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Anticipated Penetration
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Expected Revenues
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Profit Margin
 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 ELEMENT: <slide
 ATTR: type "tech"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: How it Works
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: First we fozzle the frobmorten
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Then we framboze the staten
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Finally, we frenzle the fuznaten
 END_ELM: </item>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html (2 of 3) [8/22/2001 12:53:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html

 CHARS:
 ELEMENT: <item>
 CHARS: Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>

 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-04.html (3 of 3) [8/22/2001 12:53:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java

/*
 * @(#)Echo11.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.LexicalHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo11 extends DefaultHandler
 implements LexicalHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 Echo11 handler = new Echo11();
 // Use the validating parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java (1 of 5) [8/22/2001 12:53:11 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java

 XMLReader xmlReader = saxParser.getXMLReader();
 xmlReader.setProperty(
 "http://xml.org/sax/properties/lexical-handler",
 handler
);
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser
 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java (2 of 5) [8/22/2001 12:53:11 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java

 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java (3 of 5) [8/22/2001 12:53:11 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java

 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void ignorableWhitespace(char buf[], int offset, int len)
 throws SAXException
 {
 // Ignore it
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // LexicalEventListener methods
 //===

 public void comment(char[] ch, int start, int length)
 throws SAXException
 {
 String text = new String(ch, start, length);
 nl(); emit("COMMENT: "+text);
 }

 public void startCDATA()
 throws SAXException
 {
 }

 public void endCDATA()
 throws SAXException
 {
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java (4 of 5) [8/22/2001 12:53:11 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java

 public void startEntity(java.lang.String name)
 throws SAXException
 {
 }

 public void endEntity(java.lang.String name)
 throws SAXException
 {
 }

 public void startDTD(String name, String publicId, String systemId)
 throws SAXException
 {
 }

 public void endDTD()
 throws SAXException
 {
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11.java (5 of 5) [8/22/2001 12:53:11 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11-09.html

Running Echo11 ../samples/slideSample09.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample09.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
COMMENT: A SAMPLE set of slides
COMMENT: FOR WALLY / WALLIES
COMMENT:
 DTD for a simple "slide show".

COMMENT: Defines the %inline; declaration
COMMENT:
 This DTD does some of what the W3C is getting ready to do with its
 "XHTML" work (nee "Voyager"). It differs from the current WG draft
 because it uses namespaces correctly (!), and it isn't as complete
 even for HTML 3.2 support (much less 4.0) or, probably, correct.

 Note that what XHTML needs to do is become modular enough that XHTML
 can be used as a mixin with other document types, including either
 "the whole megillah" or just selected modules (e.g. omitting tables).
 That must work both ways ... other things as mixins to XHTML, and
 XHTML as a mixin to other things.

 THIS WILL BE REPLACED WITH A BETTER DTD AT SOME POINT.

COMMENT: SUBSTITUTIONS WORK IN ATTRIBUTES, TOO
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 COMMENT: PROCESSING INSTRUCTION
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 COMMENT: TITLE SLIDE
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </slide-title>
 END_ELM: </slide>
 COMMENT: TITLE SLIDE
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <item>
 COMMENT: A SAMPLE copyright
 CHARS:
This is the standard copyright message that our lawyers

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11-09.html (1 of 2) [8/22/2001 12:53:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11-09.html

make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

 END_ELM: </item>
 END_ELM: </slide>
 COMMENT: OVERVIEW
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Overview
 END_ELM: </slide-title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS:
 CHARS: WonderWidgets
 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo11-09.html (2 of 2) [8/22/2001 12:53:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java

/*
 * @(#)Echo12.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;
import org.xml.sax.ext.LexicalHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo12 extends DefaultHandler
 implements LexicalHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 Echo12 handler = new Echo12();
 // Use the validating parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java (1 of 5) [8/22/2001 12:53:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java

 XMLReader xmlReader = saxParser.getXMLReader();
 xmlReader.setProperty(
 "http://xml.org/sax/properties/lexical-handler",
 handler
);
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser
 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java (2 of 5) [8/22/2001 12:53:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java

 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java (3 of 5) [8/22/2001 12:53:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java

 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void ignorableWhitespace(char buf[], int offset, int len)
 throws SAXException
 {
 // Ignore it
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // LexicalEventListener methods
 //===

 public void comment(char[] ch, int start, int length)
 throws SAXException
 {
 }

 public void startCDATA()
 throws SAXException
 {
 nl(); emit("START CDATA SECTION");
 }

 public void endCDATA()
 throws SAXException
 {
 nl(); emit("END CDATA SECTION");
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java (4 of 5) [8/22/2001 12:53:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java

 public void startEntity(java.lang.String name)
 throws SAXException
 {
 nl(); emit("START ENTITY: "+name);
 }

 public void endEntity(java.lang.String name)
 throws SAXException
 {
 nl(); emit("END ENTITY: "+name);
 }

 public void startDTD(String name, String publicId, String systemId)
 throws SAXException
 {
 nl(); emit("START DTD: "+name
 +"\n publicId=" + publicId
 +"\n systemId=" + systemId);
 }

 public void endDTD()
 throws SAXException
 {
 nl(); emit("END DTD");
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12.java (5 of 5) [8/22/2001 12:53:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10.xml

]> Wake up to &products;! ©right; Overview Why &products; are great Who buys &products; How it
Works First we fozzle the frobmorten Then we framboze the staten Finally, we frenzle the fuznaten ^ |
<1> | <1> = fozzle V | <2> = framboze staten--------------------+ <3> = frenzle <2>]]>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10.xml [8/22/2001 12:53:14 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow3.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets"> <!-- FOR WALLY / WALLIES -->
 <!ENTITY copyright SYSTEM "copyright.xml">
]>

<!-- SUBSTITUTIONS WORK IN ATTRIBUTES, TOO -->
<slideshow
 title="&product; Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <slide-title>Wake up to &products;!</slide-title>
 </slide>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <item>©right;</item>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <slide-title>Overview</slide-title>
 <item>Why &products; are great</item>
 <item/>
 <item>Who buys &products;</item>
 </slide>

 <slide type="tech">
 <slide-title>How it Works</slide-title>
 <item>First we fozzle the frobmorten</item>
 <item>Then we framboze the staten</item>
 <item>Finally, we frenzle the fuznaten</item>
 <item><![CDATA[Diagram:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10-xml.html (1 of 2) [8/22/2001 12:53:15 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10-xml.html

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>
]]></item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample10-xml.html (2 of 2) [8/22/2001 12:53:15 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12-10.html

Running Echo12 ../samples/slideSample10.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample10.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
START DTD: slideshow
 publicId=null

systemId=file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideshow3.dtd
END DTD
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Wake up to
 START ENTITY: products
 CHARS: WonderWidgets
 END ENTITY: products
 CHARS: !
 END_ELM: </slide-title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <item>
 START ENTITY: copyright
 CHARS:
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

 END ENTITY: copyright
 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Overview
 END_ELM: </slide-title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 START ENTITY: products

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12-10.html (1 of 2) [8/22/2001 12:53:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12-10.html

 CHARS: WonderWidgets
 END ENTITY: products
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS:
 START ENTITY: products
 CHARS: WonderWidgets
 END ENTITY: products
 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "tech"
 >
 ELEMENT: <slide-title>
 CHARS: How it Works
 END_ELM: </slide-title>
 ELEMENT: <item>
 CHARS: First we fozzle the frobmorten
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Then we framboze the staten
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Finally, we frenzle the fuznaten
 END_ELM: </item>
 ELEMENT: <item>
 START CDATA SECTION
 CHARS: Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>

 END CDATA SECTION
 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo12-10.html (2 of 2) [8/22/2001 12:53:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-05.html

Running Echo07 ../samples/slideSample05.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample05.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "exec"
 >
 ELEMENT: <title>
 CHARS: Financial Forecast
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Market Size
 CHARS: <
 CHARS: predicted!

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-05.html (1 of 2) [8/22/2001 12:53:17 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-05.html

 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Anticipated Penetration
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Expected Revenues
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Profit Margin
 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "tech"
 >
 ELEMENT: <title>
 CHARS: How it Works
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: First we fozzle the frobmorten
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Then we framboze the staten
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Finally, we frenzle the fuznaten
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>

 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-05.html (2 of 2) [8/22/2001 12:53:17 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java

/*
 * @(#)Echo08.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo08 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo08();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java (1 of 5) [8/22/2001 12:53:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java

 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java (2 of 5) [8/22/2001 12:53:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java

 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void ignorableWhitespace(char buf[], int offset, int len)
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java (3 of 5) [8/22/2001 12:53:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java

 nl(); emit("IGNORABLE");
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java (4 of 5) [8/22/2001 12:53:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08.java (5 of 5) [8/22/2001 12:53:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html

Running Echo08 ../samples/slideSample05.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample05.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 IGNORABLE
 IGNORABLE
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 IGNORABLE
 IGNORABLE
 ELEMENT: <slide
 ATTR: type "all"
 >
 IGNORABLE
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 IGNORABLE
 END_ELM: </slide>
 IGNORABLE
 IGNORABLE
 ELEMENT: <slide
 ATTR: type "all"
 >
 IGNORABLE
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html (1 of 3) [8/22/2001 12:53:19 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html

 END_ELM: </item>
 IGNORABLE
 END_ELM: </slide>
 IGNORABLE
 ELEMENT: <slide
 ATTR: type "exec"
 >
 IGNORABLE
 ELEMENT: <title>
 CHARS: Financial Forecast
 END_ELM: </title>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Market Size
 CHARS: <
 CHARS: predicted!
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Anticipated Penetration
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Expected Revenues
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Profit Margin
 END_ELM: </item>
 IGNORABLE
 END_ELM: </slide>
 IGNORABLE
 ELEMENT: <slide
 ATTR: type "tech"
 >
 IGNORABLE
 ELEMENT: <title>
 CHARS: How it Works
 END_ELM: </title>
 IGNORABLE
 ELEMENT: <item>
 CHARS: First we fozzle the frobmorten
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Then we framboze the staten
 END_ELM: </item>
 IGNORABLE
 ELEMENT: <item>
 CHARS: Finally, we frenzle the fuznaten
 END_ELM: </item>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html (2 of 3) [8/22/2001 12:53:19 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html

 IGNORABLE
 ELEMENT: <item>
 CHARS: Diagram:

 frobmorten <------------ fuznaten
 | <3> ^
 | <1> | <1> = fozzle
 V | <2> = framboze
 staten--------------------+ <3> = frenzle
 <2>

 END_ELM: </item>
 IGNORABLE
 END_ELM: </slide>
 IGNORABLE
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo08-05.html (3 of 3) [8/22/2001 12:53:19 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java

/*
 * @(#)Echo09.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo09 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo09();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java (1 of 5) [8/22/2001 12:53:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java

 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java (2 of 5) [8/22/2001 12:53:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java

 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void ignorableWhitespace(char buf[], int offset, int len)
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java (3 of 5) [8/22/2001 12:53:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java

 // Ignore it
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java (4 of 5) [8/22/2001 12:53:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo09.java (5 of 5) [8/22/2001 12:53:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java

/*
 * @(#)Echo10.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo10 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo10();
 // Use the validating parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java (1 of 5) [8/22/2001 12:53:22 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java

 } catch (SAXParseException spe) {
 // Error generated by the parser
 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java (2 of 5) [8/22/2001 12:53:22 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void ignorableWhitespace(char buf[], int offset, int len)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java (3 of 5) [8/22/2001 12:53:22 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java

 throws SAXException
 {
 // Ignore it
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java (4 of 5) [8/22/2001 12:53:22 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java

 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10.java (5 of 5) [8/22/2001 12:53:22 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-01.html

Running Echo10 ../samples/slideSample01.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>** Warning, line 5, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample01.xml
 Valid documents must have a <!DOCTYPE declaration.

** Parsing error, line 5, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample01.xml
 Element type "slideshow" is not declared.
org.xml.sax.SAXParseException: Element type "slideshow" is not declared.
 at org.apache.crimson.parser.Parser2.error(Parser2.java:3013)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1308)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo10.main(Echo10.java:62)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-01.html [8/22/2001 12:53:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-06.html

Running Echo10 ../samples/slideSample06.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample06.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 ELEMENT: <item>
 CHARS: Why
** Parsing error, line 28, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample06.xml
 Element "item" does not allow "em" -- (#PCDATA|item)
org.xml.sax.SAXParseException: Element "item" does not allow "em" -- (#PCDATA|item)
 at org.apache.crimson.parser.Parser2.error(Parser2.java:3013)
 at
org.apache.crimson.parser.ValidatingParser$MixedValidator.consume(ValidatingParser.java:327)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1303)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo10.main(Echo10.java:62)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-06.html [8/22/2001 12:53:24 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-07.html

Running Echo10 ../samples/slideSample07.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample07.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
** Parsing error, line 28, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample07.xml
 Element "slide" does not allow "item" here.
org.xml.sax.SAXParseException: Element "slide" does not allow "item" here.
 at org.apache.crimson.parser.Parser2.error(Parser2.java:3013)
 at
org.apache.crimson.parser.ValidatingParser$ChildrenValidator.consume(ValidatingParser.java:349)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1303)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo10.main(Echo10.java:62)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-07.html [8/22/2001 12:53:27 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/compile

#!/bin/csh
echo Compiling $*

if ("$?JAXP" == "0") set JAXP="" # If not defined, define it.
if ("$JAXP" == "") then
 # JAXP was not defined or has no value
 echo Using JAXP bundles installed as standard extensions.
 javac $*
else
 echo Using JAXP variable to access bundles at $JAXP
 set CP = .:${JAXP}/jaxp.jar:${JAXP}/crimson.jar:${JAXP}/xalan.jar
 javac -classpath $CP $*
endif

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/compile [8/22/2001 12:53:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/run

#!/bin/csh

echo Running $*
if (! $?JAXP) then
 # Using JAXP bundles installed as standard extensions.
 set CP = "."
else
 # Using JAXP variable to access bundles at $JAXP
 set CP = ".:${JAXP}/jaxp.jar:${JAXP}/crimson.jar:${JAXP}/xalan.jar"
endif
java -classpath $CP $*

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/run [8/22/2001 12:53:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/compile.bat

echo Compiling %*%

if "%JAXP%" == "" goto DEFAULT

echo Using JAXP variable to access bundles at %JAXP%
set CP=.;%JAXP%\jaxp.jar;%JAXP%\crimson.jar;%JAXP%\xalan.jar
javac -classpath %CP% %*%
goto EXIT

:DEFAULT
echo Using JAXP bundles installed as standard extensions.
javac %*%

:EXIT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/compile.bat [8/22/2001 12:53:29 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/run.bat

echo Running %1%.java

if "%JAXP%" == "" goto DEFAULT

echo Using JAXP variable to access bundles at %JAXP%
set CP=.;%JAXP%\jaxp.jar;%JAXP%\crimson.jar;%JAXP%\xalan.jar
goto RUN

:DEFAULT
echo Using JAXP bundles installed as standard extensions.
set CP="."

:RUN
java -classpath %CP% %*%

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/bin/run.bat [8/22/2001 12:53:30 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java

/*
 * @(#)Echo01.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo01 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo01();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java (1 of 3) [8/22/2001 12:53:31 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java

 }
 System.exit(0);
 }

 static private Writer out;

 //===
 // SAX DocumentHandler methods
 //===

 public void startDocument()
 throws SAXException
 {
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 nl();
 }

 public void endDocument()
 throws SAXException
 {
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 emit(" ");
 emit(aName+"=\""+attrs.getValue(i)+"\"");
 }
 }
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 emit("</"+sName+">");
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 String s = new String(buf, offset, len);
 emit(s);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java (2 of 3) [8/22/2001 12:53:31 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java

 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01.java (3 of 3) [8/22/2001 12:53:31 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01-01.html

Running Echo01 ../samples/slideSample01.xml
<?xml version='1.0' encoding='UTF-8'?>
<slideshow title="Sample Slide Show" date="Date of publication" author="Yours Truly">

 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item></item>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo01-01.html [8/22/2001 12:53:32 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java

/*
 * @(#)Echo02.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo02 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo02();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java (1 of 3) [8/22/2001 12:53:32 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java

 }
 System.exit(0);
 }

 static private Writer out;

 //===
 // SAX DocumentHandler methods
 //===

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java (2 of 3) [8/22/2001 12:53:32 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java

 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: |");
 String s = new String(buf, offset, len);
 emit(s);
 emit("|");
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02.java (3 of 3) [8/22/2001 12:53:32 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02-01.html

Running Echo02 ../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
>
CHARS: |

 |
CHARS: |
 |
ELEMENT: <slide
 ATTR: type "all"
>
CHARS: |
 |
ELEMENT: <title>
CHARS: |Wake up to WonderWidgets!|
END_ELM: </title>
CHARS: |
 |
END_ELM: </slide>
CHARS: |

 |
CHARS: |
 |
ELEMENT: <slide
 ATTR: type "all"
>
CHARS: |
 |
ELEMENT: <title>
CHARS: |Overview|
END_ELM: </title>
CHARS: |
 |
ELEMENT: <item>
CHARS: |Why |
ELEMENT:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02-01.html (1 of 2) [8/22/2001 12:53:33 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02-01.html

CHARS: |WonderWidgets|
END_ELM:
CHARS: | are great|
END_ELM: </item>
CHARS: |
 |
ELEMENT: <item>
END_ELM: </item>
CHARS: |
 |
ELEMENT: <item>
CHARS: |Who |
ELEMENT:
CHARS: |buys|
END_ELM:
CHARS: | WonderWidgets|
END_ELM: </item>
CHARS: |
 |
END_ELM: </slide>
CHARS: |

|
END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo02-01.html (2 of 2) [8/22/2001 12:53:33 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java

/*
 * @(#)Echo03.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo03 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo03();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java (1 of 3) [8/22/2001 12:53:34 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java

 }
 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java (2 of 3) [8/22/2001 12:53:34 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java

 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03.java (3 of 3) [8/22/2001 12:53:34 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03-01.html

Running Echo03 ../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03-01.html (1 of 2) [8/22/2001 12:53:35 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03-01.html

 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo03-01.html (2 of 2) [8/22/2001 12:53:35 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java

/*
 * @(#)Echo04.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo04 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo04();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java (1 of 4) [8/22/2001 12:53:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java

 }
 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java (2 of 4) [8/22/2001 12:53:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java

 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java (3 of 4) [8/22/2001 12:53:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04.java (4 of 4) [8/22/2001 12:53:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04-01.html

Running Echo04 ../samples/slideSample01.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample01.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>
 CHARS:
 END_ELM: </slide>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04-01.html (1 of 2) [8/22/2001 12:53:37 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04-01.html

 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo04-01.html (2 of 2) [8/22/2001 12:53:37 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample02.xml [8/22/2001 12:53:38 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample02-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>
</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample02-xml.html [8/22/2001 12:53:39 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java

/*
 * @(#)Echo05.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo05 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo05();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (Throwable t) {
 t.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java (1 of 4) [8/22/2001 12:53:40 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java

 }
 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()
 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java (2 of 4) [8/22/2001 12:53:40 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java

 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {
 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java (3 of 4) [8/22/2001 12:53:40 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java

 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05.java (4 of 4) [8/22/2001 12:53:40 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-02.html

Running Echo05 ../samples/slideSample02.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample02.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-02.html (1 of 2) [8/22/2001 12:53:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-02.html

 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-02.html (2 of 2) [8/22/2001 12:53:41 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad1.xml [8/22/2001 12:53:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad1-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- Slides with a fatal error -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad1-xml.html [8/22/2001 12:53:42 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-Bad1.html

Running Echo05 ../samples/slideSampleBad1.xml
LOCATOR
 SYS ID:
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad1.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>
 CHARS: org.xml.sax.SAXParseException: Expected "</item>" to terminate

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-Bad1.html (1 of 2) [8/22/2001 12:53:43 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-Bad1.html

element starting on line 20.
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3035)
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3029)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1474)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo05.main(Echo05.java:60)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo05-Bad1.html (2 of 2) [8/22/2001 12:53:43 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java

/*
 * @(#)Echo06.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo06 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo06();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java (1 of 4) [8/22/2001 12:53:44 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java

 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java (2 of 4) [8/22/2001 12:53:44 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java

 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java (3 of 4) [8/22/2001 12:53:44 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java

 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06.java (4 of 4) [8/22/2001 12:53:44 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad1.html

Running Echo06 ../samples/slideSampleBad1.xml
LOCATOR
 SYS ID:
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad1.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad1.html (1 of 2) [8/22/2001 12:53:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad1.html

 CHARS:
** Parsing error, line 22, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad1.xml
 Expected "</item>" to terminate element starting on line 20.
org.xml.sax.SAXParseException: Expected "</item>" to terminate element starting on
line 20.
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3035)
 at org.apache.crimson.parser.Parser2.fatal(Parser2.java:3029)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1474)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.content(Parser2.java:1700)
 at org.apache.crimson.parser.Parser2.maybeElement(Parser2.java:1468)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:499)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo06.main(Echo06.java:60)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad1.html (2 of 2) [8/22/2001 12:53:45 PM]

Wake up to WonderWidgets!

Why WonderWidgets are great Who buys WonderWidgets

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad2.xml [8/22/2001 12:53:46 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad2-xml.html

<?xml version='1.2' encoding='utf-8'?>

<!-- Slides with a non-fatal error -->

<slideshow
 title="Sample Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSampleBad2-xml.html [8/22/2001 12:53:47 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad2.html

Running Echo06 ../samples/slideSampleBad2.xml
LOCATOR
 SYS ID:
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad2.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "Sample Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Wake up to WonderWidgets!
 END_ELM: </title>
 CHARS:
 END_ELM: </slide>
 CHARS:
 CHARS:
 ELEMENT: <slide
 ATTR: type "all"
 >
 CHARS:
 ELEMENT: <title>
 CHARS: Overview
 END_ELM: </title>
 CHARS:
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 END_ELM: </item>
 CHARS:
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad2.html (1 of 2) [8/22/2001 12:53:48 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad2.html

 CHARS: buys
 END_ELM:
 CHARS: WonderWidgets
 END_ELM: </item>
 CHARS:
 END_ELM: </slide>
 CHARS:
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo06-Bad2.html (2 of 2) [8/22/2001 12:53:48 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java

/*
 * @(#)Echo07.java 1.5 99/02/09
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.DefaultHandler;

import javax.xml.parsers.SAXParserFactory;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;

public class Echo07 extends DefaultHandler
{
 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: cmd filename");
 System.exit(1);
 }

 // Use an instance of ourselves as the SAX event handler
 DefaultHandler handler = new Echo07();
 // Use the default (non-validating) parser
 SAXParserFactory factory = SAXParserFactory.newInstance();
 try {
 // Set up output stream
 out = new OutputStreamWriter(System.out, "UTF8");

 // Parse the input
 SAXParser saxParser = factory.newSAXParser();
 saxParser.parse(new File(argv[0]), handler);

 } catch (SAXParseException spe) {
 // Error generated by the parser

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java (1 of 4) [8/22/2001 12:53:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java

 System.out.println("\n** Parsing error"
 + ", line " + spe.getLineNumber()
 + ", uri " + spe.getSystemId());
 System.out.println(" " + spe.getMessage());

 // Use the contained exception, if any
 Exception x = spe;
 if (spe.getException() != null)
 x = spe.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 System.exit(0);
 }

 static private Writer out;
 private String indentString = " "; // Amount to indent
 private int indentLevel = 0;

 //===
 // SAX DocumentHandler methods
 //===

 public void setDocumentLocator(Locator l)
 {
 // Save this to resolve relative URIs or to give diagnostics.
 try {
 out.write("LOCATOR");
 out.write("\n SYS ID: " + l.getSystemId());
 out.flush();
 } catch (IOException e) {
 // Ignore errors
 }
 }

 public void startDocument()
 throws SAXException
 {
 nl();
 nl();
 emit("START DOCUMENT");
 nl();
 emit("<?xml version='1.0' encoding='UTF-8'?>");
 }

 public void endDocument()

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java (2 of 4) [8/22/2001 12:53:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java

 throws SAXException
 {
 nl(); emit("END DOCUMENT");
 try {
 nl();
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 public void startElement(String namespaceURI,
 String lName, // local name
 String qName, // qualified name
 Attributes attrs)
 throws SAXException
 {
 indentLevel++;
 nl(); emit("ELEMENT: ");
 String eName = lName; // element name
 if ("".equals(eName)) eName = qName; // namespaceAware = false
 emit("<"+eName);
 if (attrs != null) {
 for (int i = 0; i < attrs.getLength(); i++) {
 String aName = attrs.getLocalName(i); // Attr name
 if ("".equals(aName)) aName = attrs.getQName(i);
 nl();
 emit(" ATTR: ");
 emit(aName);
 emit("\t\"");
 emit(attrs.getValue(i));
 emit("\"");
 }
 }
 if (attrs.getLength() > 0) nl();
 emit(">");
 }

 public void endElement(String namespaceURI,
 String sName, // simple name
 String qName // qualified name
)
 throws SAXException
 {
 nl();
 emit("END_ELM: ");
 emit("</"+sName+">");
 indentLevel--;
 }

 public void characters(char buf[], int offset, int len)
 throws SAXException
 {
 nl(); emit("CHARS: ");
 String s = new String(buf, offset, len);
 if (!s.trim().equals("")) emit(s);
 }

 public void processingInstruction(String target, String data)
 throws SAXException
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java (3 of 4) [8/22/2001 12:53:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java

 nl();
 emit("PROCESS: ");
 emit("<?"+target+" "+data+"?>");
 }

 //===
 // SAX ErrorHandler methods
 //===

 // treat validation errors as fatal
 public void error(SAXParseException e)
 throws SAXParseException
 {
 throw e;
 }

 // dump warnings too
 public void warning(SAXParseException err)
 throws SAXParseException
 {
 System.out.println("** Warning"
 + ", line " + err.getLineNumber()
 + ", uri " + err.getSystemId());
 System.out.println(" " + err.getMessage());
 }

 //===
 // Utility Methods ...
 //===

 // Wrap I/O exceptions in SAX exceptions, to
 // suit handler signature requirements
 private void emit(String s)
 throws SAXException
 {
 try {
 out.write(s);
 out.flush();
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }

 // Start a new line
 // and indent the next line appropriately
 private void nl()
 throws SAXException
 {
 String lineEnd = System.getProperty("line.separator");
 try {
 out.write(lineEnd);
 for (int i=0; i < indentLevel; i++) out.write(indentString);
 } catch (IOException e) {
 throw new SAXException("I/O error", e);
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07.java (4 of 4) [8/22/2001 12:53:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-Bad2.html

Running Echo07 ../samples/slideSampleBad2.xml
LOCATOR
 SYS ID:
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad2.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 1, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSampleBad2.xml
 XML version "1.0" is recognized, but not "1.2".
org.xml.sax.SAXParseException: XML version "1.0" is recognized, but not "1.2".
 at org.apache.crimson.parser.Parser2.error(Parser2.java:3013)
 at org.apache.crimson.parser.Parser2.readVersion(Parser2.java:1070)
 at org.apache.crimson.parser.Parser2.maybeXmlDecl(Parser2.java:1002)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:485)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo07.main(Echo07.java:60)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo07-Bad2.html [8/22/2001 12:53:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-08.html

Running Echo10 ../samples/slideSample08.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample08.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
** Parsing error, line 22, uri
file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideshow2.dtd
 Element "title" was already declared.
org.xml.sax.SAXParseException: Element "title" was already declared.
 at org.apache.crimson.parser.Parser2.error(Parser2.java:3013)
 at org.apache.crimson.parser.Parser2.maybeElementDecl(Parser2.java:1781)
 at org.apache.crimson.parser.Parser2.maybeMarkupDecl(Parser2.java:1196)
 at
org.apache.crimson.parser.Parser2.externalParameterEntity(Parser2.java:2751)
 at org.apache.crimson.parser.Parser2.maybeDoctypeDecl(Parser2.java:1154)
 at org.apache.crimson.parser.Parser2.parseInternal(Parser2.java:488)
 at org.apache.crimson.parser.Parser2.parse(Parser2.java:304)
 at org.apache.crimson.parser.XMLReaderImpl.parse(XMLReaderImpl.java:433)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:346)
 at javax.xml.parsers.SAXParser.parse(SAXParser.java:286)
 at Echo10.main(Echo10.java:62)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-08.html [8/22/2001 12:53:51 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow3.dtd

%xhtml;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow3.dtd [8/22/2001 12:53:51 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow3-dtd.html

<?xml version='1.0' encoding='us-ascii'?>

<!--
 DTD for a simple "slide show".
-->

<!ELEMENT slideshow (slide+)>
<!ATTLIST slideshow
 title CDATA #REQUIRED
 date CDATA #IMPLIED
 author CDATA "unknown"
>
<!ELEMENT slide (image?, slide-title?, item*)>
<!ATTLIST slide
 type (tech | exec | all) #IMPLIED
>

<!-- Defines the %inline; declaration -->
<!ENTITY % xhtml SYSTEM "xhtml.dtd">
%xhtml;

<!ELEMENT slide-title (%inline;)*>
<!ELEMENT item (%inline; | item)* >
<!ELEMENT image EMPTY>
<!ATTLIST image
 alt CDATA #IMPLIED
 src CDATA #REQUIRED
 type CDATA "image/gif"
>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideshow3-dtd.html [8/22/2001 12:53:52 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample09.xml

]> Wake up to &products;! ©right; Overview Why &products; are great Who buys &products;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample09.xml [8/22/2001 12:53:53 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample09-xml.html

<?xml version='1.0' encoding='utf-8'?>

<!-- A SAMPLE set of slides -->

<!DOCTYPE slideshow SYSTEM "slideshow3.dtd" [
 <!ENTITY product "WonderWidget">
 <!ENTITY products "WonderWidgets"> <!-- FOR WALLY / WALLIES -->
 <!ENTITY copyright SYSTEM "copyright.xml">
]>

<!-- SUBSTITUTIONS WORK IN ATTRIBUTES, TOO -->
<slideshow
 title="&product; Slide Show"
 date="Date of publication"
 author="Yours Truly"
 >

 <!-- PROCESSING INSTRUCTION -->
 <?my.presentation.Program QUERY="exec, tech, all"?>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <slide-title>Wake up to &products;!</slide-title>
 </slide>

 <!-- TITLE SLIDE -->
 <slide type="all">
 <item>©right;</item>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <slide-title>Overview</slide-title>
 <item>Why &products; are great</item>
 <item/>
 <item>Who buys &products;</item>
 </slide>

</slideshow>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/slideSample09-xml.html [8/22/2001 12:53:54 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml-dtd.html

<?xml version='1.0' encoding='us-ascii'?>

<!--
 This DTD does some of what the W3C is getting ready to do with its
 "XHTML" work (nee "Voyager"). It differs from the current WG draft
 because it uses namespaces correctly (!), and it isn't as complete
 even for HTML 3.2 support (much less 4.0) or, probably, correct.

 Note that what XHTML needs to do is become modular enough that XHTML
 can be used as a mixin with other document types, including either
 "the whole megillah" or just selected modules (e.g. omitting tables).
 That must work both ways ... other things as mixins to XHTML, and
 XHTML as a mixin to other things.

 THIS WILL BE REPLACED WITH A BETTER DTD AT SOME POINT.
-->

<!ELEMENT html (head, body)>
<!ATTLIST html
 xmlns CDATA #FIXED "http://www.example.com/xhtml"
 >

<!ELEMENT head (title,style*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT style (#PCDATA)>
<!ATTLIST style
 type CDATA #IMPLIED
 >

<!ENTITY % content "p|h1|h2|h3|h4|h5|h6|ul|ol|table|center">

<!ENTITY % inline "#PCDATA|em|b|a|img|br">
<!ELEMENT em (#PCDATA|a|b|img|br)*>
<!ELEMENT b (#PCDATA|a|em|img|br)*>
<!ELEMENT a (#PCDATA|b|em|img|br)*>
<!ATTLIST a
 href CDATA #IMPLIED
 name CDATA #IMPLIED
 >
<!ELEMENT br EMPTY>
<!ELEMENT img EMPTY>
<!ATTLIST img
 alt CDATA #IMPLIED
 border CDATA #IMPLIED
 height CDATA #IMPLIED
 src CDATA #REQUIRED

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml-dtd.html (1 of 2) [8/22/2001 12:53:55 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml-dtd.html

 width CDATA #IMPLIED
 >

<!ELEMENT body (%content;)+>
<!ATTLIST body
 bgcolor CDATA #IMPLIED
 >

<!ELEMENT p (%inline;)*>
<!ELEMENT h1 (%inline;)*>
<!ELEMENT h2 (%inline;)*>
<!ELEMENT h3 (%inline;)*>
<!ELEMENT h4 (%inline;)*>
<!ELEMENT h5 (%inline;)*>
<!ELEMENT h6 (%inline;)*>

<!ELEMENT ul (li+)>
<!ELEMENT ol (li+)>
<!ELEMENT li (%inline;)*>

<!ELEMENT table (tr+)>
<!ATTLIST table
 height CDATA #IMPLIED
 width CDATA #IMPLIED
 align (left|center|right) #IMPLIED
 cellspacing CDATA #IMPLIED
 >
<!ELEMENT tr (td+)>
<!ATTLIST tr
 align (left|center|right) #IMPLIED
 valign (top|center|bottom|baseline) #IMPLIED
 >
<!ELEMENT td (%inline;|%content;)*>
<!ATTLIST td
 height CDATA #IMPLIED
 width CDATA #IMPLIED
 align (left|center|right) #IMPLIED
 valign (top|center|bottom|baseline) #IMPLIED
 rowspan CDATA #IMPLIED
 colspan CDATA #IMPLIED
 >

<!ELEMENT center (%inline;|%content;)*>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/samples/xhtml-dtd.html (2 of 2) [8/22/2001 12:53:55 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-09.html

Running Echo10 ../samples/slideSample09.xml
LOCATOR
 SYS ID: file:/java/pubs/dev/xml/docs/tutorial/sax/work/../samples/slideSample09.xml

START DOCUMENT
<?xml version='1.0' encoding='UTF-8'?>
 ELEMENT: <slideshow
 ATTR: title "WonderWidget Slide Show"
 ATTR: date "Date of publication"
 ATTR: author "Yours Truly"
 >
 PROCESS: <?my.presentation.Program QUERY="exec, tech, all"?>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Wake up to
 CHARS: WonderWidgets
 CHARS: !
 END_ELM: </slide-title>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <item>
 CHARS:
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

 END_ELM: </item>
 END_ELM: </slide>
 ELEMENT: <slide
 ATTR: type "all"
 >
 ELEMENT: <slide-title>
 CHARS: Overview
 END_ELM: </slide-title>
 ELEMENT: <item>
 CHARS: Why
 ELEMENT:
 CHARS: WonderWidgets
 END_ELM:
 CHARS: are great
 END_ELM: </item>
 ELEMENT: <item>
 END_ELM: </item>
 ELEMENT: <item>
 CHARS: Who
 ELEMENT:
 CHARS: buys

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-09.html (1 of 2) [8/22/2001 12:53:56 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-09.html

 END_ELM:
 CHARS:
 CHARS: WonderWidgets
 END_ELM: </item>
 END_ELM: </slide>
 END_ELM: </slideshow>
END DOCUMENT

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/sax/work/Echo10-09.html (2 of 2) [8/22/2001 12:53:56 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp01.java

/*
 * @(#)DomEcho01.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import java.io.*;

public class TransformationApp01
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main (String argv [])
 {
 if (argv.length != 1) {
 System.err.println ("Usage: java TransformationApp filename");
 System.exit (1);
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File f = new File(argv[0]);

 DocumentBuilder builder = factory.newDocumentBuilder();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp01.java (1 of 2) [8/22/2001 12:53:57 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp01.java

 document = builder.parse(f);
 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp01.java (2 of 2) [8/22/2001 12:53:57 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp02.java

/*
 * @(#)TransformationApp02.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

public class TransformationApp02
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main (String argv [])
 {
 if (argv.length != 1) {
 System.err.println ("Usage: java TransformationApp filename");
 System.exit (1);
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp02.java (1 of 2) [8/22/2001 12:53:58 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp02.java

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File f = new File(argv[0]);

 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

 // Use a Transformer for output
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 DOMSource source = new DOMSource(document);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();

 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp02.java (2 of 2) [8/22/2001 12:53:58 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java

/*
 * @(#)DomEcho03.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Node;
import org.w3c.dom.NodeList;

// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

public class TransformationApp03
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main (String argv [])
 {
 if (argv.length != 1) {
 System.err.println ("Usage: java TransformationApp filename");
 System.exit (1);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java (1 of 3) [8/22/2001 12:53:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java

 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File f = new File(argv[0]);

 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(f);

 // Get the first <slide> element in the DOM
 NodeList list = document.getElementsByTagName("slide");
 Node node = list.item(0);

 // Use a Transformer for output
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();
 DOMSource source = new DOMSource(node);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();

 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java (2 of 3) [8/22/2001 12:53:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java

 }

 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp03.java (3 of 3) [8/22/2001 12:53:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog02.html

Running TransformationApp02 ../samples/slideSample01.xml
<?xml version="1.0" encoding="UTF-8"?>
<!-- A SAMPLE set of slides --><slideshow title="Sample Slide Show" date="Date of
publication" author="Yours Truly">

 <!-- TITLE SLIDE -->
 <slide type="all">
 <title>Wake up to WonderWidgets!</title>
 </slide>

 <!-- OVERVIEW -->
 <slide type="all">
 <title>Overview</title>
 <item>Why WonderWidgets are great</item>
 <item/>
 <item>Who buys WonderWidgets</item>
 </slide>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog02.html [8/22/2001 12:54:00 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog03.html

Running TransformationApp03 ../samples/slideSample01.xml
<?xml version="1.0" encoding="UTF-8"?>
<slide type="all">
 <title>Wake up to WonderWidgets!</title>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog03.html [8/22/2001 12:54:01 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp04.java

/*
 * @(#)DomEcho04.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.ContentHandler;
import org.xml.sax.InputSource;

// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

public class TransformationApp04
{

 public static void main (String argv [])
 {
 if (argv.length != 1) {
 System.err.println ("Usage: java TransformationApp filename");
 System.exit (1);
 }

 // Create the sax "parser".

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp04.java (1 of 2) [8/22/2001 12:54:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp04.java

 AddressBookReader02 saxReader = new AddressBookReader02();

 try {
 File f = new File(argv[0]);

 // Use a Transformer for output
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 Transformer transformer = tFactory.newTransformer();

 // Use the parser as a SAX source for input
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);
 InputSource inputSource = new InputSource(fr);
 SAXSource source = new SAXSource(saxReader, inputSource);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();

 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationApp04.java (2 of 2) [8/22/2001 12:54:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho01.java

/*
 * @(#)DomEcho01.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

public class DomEcho01{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho01.java (1 of 2) [8/22/2001 12:54:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho01.java

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho01.java (2 of 2) [8/22/2001 12:54:02 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

/*
 * @(#)DomEcho02.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

// Basic GUI components
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

// GUI components for right-hand side
import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

// For creating borders

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (1 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho02 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho02()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(cb,eb));

 // Set up the tree
 JTree tree = new JTree(new DomToTreeModelAdapter());

 // Iterate over the tree and make nodes visible
 // (Otherwise, the tree shows up fully collapsed)
 //TreePath nodePath = ???;
 // tree.expandPath(nodePath);

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Build split-pane view
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // constructor

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (2 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 makeFrame();

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

 public static void makeFrame() {
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 }
);

 // Set up the tree, the views, and display it all
 final DomEcho02 echoPanel =
 new DomEcho02();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2,
 screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
 } // makeFrame

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {
 "none",

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (3 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",
 "DocFragment",
 "Notation",
 };

 // This class wraps a DOM node and returns the text we want to
 // display in the tree. It also returns children, index values,
 // and child counts.
 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;
 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";
 // Trim the value to get rid of NL's at the front
 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += t;
 }
 return s;
 }

 /*
 * Return children, index, and count values
 */
 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child.domNode == n.domNode) return i;
 }
 return -1; // Should never get here.
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (4 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node =
 domNode.getChildNodes().item(searchIndex);
 return new AdapterNode(node);
 }

 public int childCount() {
 return domNode.getChildNodes().getLength();
 }
 }

 // This adapter converts the current Document (a DOM) into
 // a JTree model.
 public class DomToTreeModelAdapter
 implements javax.swing.tree.TreeModel
 {
 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) aNode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }
 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new,
 // adjust the model, and then fire a TreeNodesChanged event.
 }

 /*
 * Use these methods to add and remove event listeners.
 * (Needed to satisfy TreeModel interface, but not used.)
 */
 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null
 && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (5 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java

 listenerList.removeElement(listener);
 }
 }

 // Note: Since XML works with 1.1, this example uses Vector.
 // If coding for 1.2 or later, though, I'd use this instead:
 // private List listenerList = new LinkedList();
 // The operations on the List are then add(), remove() and
 // iteration, via:
 // Iterator it = listenerList.iterator();
 // while (it.hasNext()) {
 // TreeModelListener listener = (TreeModelListener) it.next();
 // ...
 // }

 /*
 * Invoke these methods to inform listeners of changes.
 * (Not needed for this example.)
 * Methods taken from TreeModelSupport class described at
 * http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
 * That architecture (produced by Tom Santos and Steve Wilson)
 * is more elegant. I just hacked 'em in here so they are
 * immediately at hand.
 */
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho02.java (6 of 6) [8/22/2001 12:54:09 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/copyright.xml

This is the standard copyright message that our lawyers make us put everywhere so we don't have to shell
out a million bucks every time someone spills hot coffee in their lap...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/copyright.xml [8/22/2001 12:54:12 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/copyright-xml.html

<!-- A SAMPLE copyright -->
This is the standard copyright message that our lawyers
make us put everywhere so we don't have to shell out a
million bucks every time someone spills hot coffee in their
lap...

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/samples/copyright-xml.html [8/22/2001 12:54:13 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

/*
 * @(#)DomEcho03.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

// Basic GUI components
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

// GUI components for right-hand side
import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

// For creating borders

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (1 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho03 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 boolean compress = true;
 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho03()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(cb,eb));

 // Set up the tree
 JTree tree = new JTree(new DomToTreeModelAdapter());

 // Iterate over the tree and make nodes visible
 // (Otherwise, the tree shows up fully collapsed)
 //TreePath nodePath = ???;
 // tree.expandPath(nodePath);

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Build split-pane view
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // constructor

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (2 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 makeFrame();

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

 public static void makeFrame() {
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 }
);

 // Set up the tree, the views, and display it all
 final DomEcho03 echoPanel =
 new DomEcho03();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2,
 screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
 } // makeFrame

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (3 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

 "none",
 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",
 "DocFragment",
 "Notation",
 };
 static final int ELEMENT_TYPE = 1;
 // The list of elements to display in the tree
 // Could set this with a command-line argument, but
 // not much point -- the list of tree elements still
 // has to be defined internally.
 // Extra credit: Read the list from a file
 // Super-extra credit: Process a DTD and build the list.
 static String[] treeElementNames = {
 "slideshow",
 "slide",
 "title", // For slideshow #1
 "slide-title", // For slideshow #10
 "item",
 };
 boolean treeElement(String elementName) {
 for (int i=0; i<treeElementNames.length; i++) {
 if (elementName.equals(treeElementNames[i])) return true;
 }
 return false;
 }

 // This class wraps a DOM node and returns the text we want to
 // display in the tree. It also returns children, index values,
 // and child counts.
 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;
 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";
 // Trim the value to get rid of NL's at the front

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (4 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += t;
 }
 return s;
 }

 /*
 * Return children, index, and count values
 */
 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child.domNode == n.domNode) return i;
 }
 return -1; // Should never get here.
 }

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node =
 domNode.getChildNodes().item(searchIndex);
 if (compress) {
 // Return Nth displayable node
 int elementNodeIndex = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName())
 && elementNodeIndex++ == searchIndex) {
 break;
 }
 }
 }
 return new AdapterNode(node);
 }

 public int childCount() {
 if (!compress) {
 // Indent this
 return domNode.getChildNodes().getLength();
 }
 int count = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 org.w3c.dom.Node node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName()))
 {
 // Note:
 // Have to check for proper type.
 // The DOCTYPE element also has the right name
 ++count;
 }
 }
 return count;
 }
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (5 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

 // This adapter converts the current Document (a DOM) into
 // a JTree model.
 public class DomToTreeModelAdapter
 implements javax.swing.tree.TreeModel
 {
 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) aNode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }
 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new,
 // adjust the model, and then fire a TreeNodesChanged event.
 }

 /*
 * Use these methods to add and remove event listeners.
 * (Needed to satisfy TreeModel interface, but not used.)
 */
 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null
 && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {
 listenerList.removeElement(listener);
 }
 }

 // Note: Since XML works with 1.1, this example uses Vector.
 // If coding for 1.2 or later, though, I'd use this instead:
 // private List listenerList = new LinkedList();
 // The operations on the List are then add(), remove() and
 // iteration, via:
 // Iterator it = listenerList.iterator();
 // while (it.hasNext()) {
 // TreeModelListener listener = (TreeModelListener) it.next();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (6 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java

 // ...
 // }

 /*
 * Invoke these methods to inform listeners of changes.
 * (Not needed for this example.)
 * Methods taken from TreeModelSupport class described at
 * http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
 * That architecture (produced by Tom Santos and Steve Wilson)
 * is more elegant. I just hacked 'em in here so they are
 * immediately at hand.
 */
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho03.java (7 of 7) [8/22/2001 12:54:16 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

/*
 * @(#)DomEcho04.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

// Basic GUI components
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

// GUI components for right-hand side
import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

// For creating borders

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (1 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho04 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 boolean compress = true;
 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho04()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(cb,eb));

 // Set up the tree
 JTree tree = new JTree(new DomToTreeModelAdapter());

 // Iterate over the tree and make nodes visible
 // (Otherwise, the tree shows up fully collapsed)
 //TreePath nodePath = ???;
 // tree.expandPath(nodePath);

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 // (must be final to be referenced in inner class)
 final
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Wire the two views together. Use a selection listener
 // created with an anonymous inner-class adapter.
 tree.addTreeSelectionListener(
 new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath p = e.getNewLeadSelectionPath();
 if (p != null) {
 AdapterNode adpNode =
 (AdapterNode) p.getLastPathComponent();
 htmlPane.setText(adpNode.content());
 }
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (2 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 }
);

 // Build split-pane view
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // constructor

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 System.err.println("Usage: java DomEcho filename");
 System.exit(1);
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 makeFrame();

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

 public static void makeFrame() {
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 }
);

 // Set up the tree, the views, and display it all
 final DomEcho04 echoPanel =

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (3 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 new DomEcho04();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2,
 screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
 } // makeFrame

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {
 "none",
 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",
 "DocFragment",
 "Notation",
 };
 static final int ELEMENT_TYPE = 1;
 static final int ATTR_TYPE = 2;
 static final int TEXT_TYPE = 3;
 static final int CDATA_TYPE = 4;
 static final int ENTITYREF_TYPE = 5;
 static final int ENTITY_TYPE = 6;
 static final int PROCINSTR_TYPE = 7;
 static final int COMMENT_TYPE = 8;
 static final int DOCUMENT_TYPE = 9;
 static final int DOCTYPE_TYPE = 10;
 static final int DOCFRAG_TYPE = 11;
 static final int NOTATION_TYPE = 12;
 // The list of elements to display in the tree
 // Could set this with a command-line argument, but
 // not much point -- the list of tree elements still
 // has to be defined internally.
 // Extra credit: Read the list from a file
 // Super-extra credit: Process a DTD and build the list.
 static String[] treeElementNames = {
 "slideshow",
 "slide",
 "title", // For slideshow #1
 "slide-title", // For slideshow #10
 "item",
 };
 boolean treeElement(String elementName) {
 for (int i=0; i<treeElementNames.length; i++) {
 if (elementName.equals(treeElementNames[i])) return true;
 }
 return false;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (4 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 }

 // This class wraps a DOM node and returns the text we want to
 // display in the tree. It also returns children, index values,
 // and child counts.
 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;
 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (compress) {
 String t = content().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += " " + t;
 return s;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";
 // Trim the value to get rid of NL's at the front
 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += t;
 }
 return s;
 }

 public String content() {
 String s = "";
 org.w3c.dom.NodeList nodeList = domNode.getChildNodes();
 for (int i=0; i<nodeList.getLength(); i++) {
 org.w3c.dom.Node node = nodeList.item(i);
 int type = node.getNodeType();
 AdapterNode adpNode = new AdapterNode(node); //inefficient, but works
 if (type == ELEMENT_TYPE) {
 // Skip subelements that are displayed in the tree.
 if (treeElement(node.getNodeName())) continue;

 // EXTRA-CREDIT HOMEWORK:
 // Special case the SLIDE element to use the TITLE text
 // and ignore TITLE element when constructing the tree.

 // EXTRA-CREDIT
 // Convert ITEM elements to html lists using
 // , , tags

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (5 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 s += "<" + node.getNodeName() + ">";
 s += adpNode.content();
 s += "</" + node.getNodeName() + ">";
 } else if (type == TEXT_TYPE) {
 s += node.getNodeValue();
 } else if (type == ENTITYREF_TYPE) {
 // The content is in the TEXT node under it
 s += adpNode.content();
 } else if (type == CDATA_TYPE) {
 // The "value" has the text, same as a text node.
 // while EntityRef has it in a text node underneath.
 // (because EntityRef can contain multiple subelements)
 // Convert angle brackets and ampersands for display
 StringBuffer sb = new StringBuffer(node.getNodeValue());
 for (int j=0; j<sb.length(); j++) {
 if (sb.charAt(j) == '<') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "lt;");
 j += 3;
 } else if (sb.charAt(j) == '&') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "amp;");
 j += 4;
 }
 }
 s += "<pre>" + sb + "\n</pre>";
 }
 // Ignoring these:
 // ATTR_TYPE -- not in the DOM tree
 // ENTITY_TYPE -- does not appear in the DOM
 // PROCINSTR_TYPE -- not "data"
 // COMMENT_TYPE -- not "data"
 // DOCUMENT_TYPE -- Root node only. No data to display.
 // DOCTYPE_TYPE -- Appears under the root only
 // DOCFRAG_TYPE -- equiv. to "document" for fragments
 // NOTATION_TYPE -- nothing but binary data in here
 }
 return s;
 }

 /*
 * Return children, index, and count values
 */
 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child.domNode == n.domNode) return i;
 }
 return -1; // Should never get here.
 }

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node =
 domNode.getChildNodes().item(searchIndex);
 if (compress) {
 // Return Nth displayable node
 int elementNodeIndex = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (6 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName())
 && elementNodeIndex++ == searchIndex) {
 break;
 }
 }
 }
 return new AdapterNode(node);
 }

 public int childCount() {
 if (!compress) {
 // Indent this
 return domNode.getChildNodes().getLength();
 }
 int count = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 org.w3c.dom.Node node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName()))
 {
 // Note:
 // Have to check for proper type.
 // The DOCTYPE element also has the right name
 ++count;
 }
 }
 return count;
 }
 }

 // This adapter converts the current Document (a DOM) into
 // a JTree model.
 public class DomToTreeModelAdapter
 implements javax.swing.tree.TreeModel
 {
 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) aNode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (7 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new,
 // adjust the model, and then fire a TreeNodesChanged event.
 }

 /*
 * Use these methods to add and remove event listeners.
 * (Needed to satisfy TreeModel interface, but not used.)
 */
 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null
 && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {
 listenerList.removeElement(listener);
 }
 }

 // Note: Since XML works with 1.1, this example uses Vector.
 // If coding for 1.2 or later, though, I'd use this instead:
 // private List listenerList = new LinkedList();
 // The operations on the List are then add(), remove() and
 // iteration, via:
 // Iterator it = listenerList.iterator();
 // while (it.hasNext()) {
 // TreeModelListener listener = (TreeModelListener) it.next();
 // ...
 // }

 /*
 * Invoke these methods to inform listeners of changes.
 * (Not needed for this example.)
 * Methods taken from TreeModelSupport class described at
 * http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
 * That architecture (produced by Tom Santos and Steve Wilson)
 * is more elegant. I just hacked 'em in here so they are
 * immediately at hand.
 */
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (8 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java

 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho04.java (9 of 9) [8/22/2001 12:54:18 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

/*
 * @(#)DomEcho05.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

// Basic GUI components
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

// GUI components for right-hand side
import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (1 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

// For creating borders
import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho05 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 boolean compress = false;
 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho05()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(cb,eb));

 // Set up the tree
 JTree tree = new JTree(new DomToTreeModelAdapter());

 // Iterate over the tree and make nodes visible
 // (Otherwise, the tree shows up fully collapsed)
 //TreePath nodePath = ???;
 // tree.expandPath(nodePath);

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 // (must be final to be referenced in inner class)
 final
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Wire the two views together. Use a selection listener
 // created with an anonymous inner-class adapter.
 tree.addTreeSelectionListener(
 new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath p = e.getNewLeadSelectionPath();
 if (p != null) {
 AdapterNode adpNode =
 (AdapterNode) p.getLastPathComponent();
 htmlPane.setText(adpNode.content());
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (2 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 }
 }
);

 // Build split-pane view
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // constructor

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 buildDom();
 makeFrame();
 return;
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 makeFrame();

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

 public static void makeFrame() {
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 }
);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (3 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 // Set up the tree, the views, and display it all
 final DomEcho05 echoPanel =
 new DomEcho05();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2,
 screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
 } // makeFrame

 public static void buildDom()
 {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.newDocument(); // Create from whole cloth

 Element root =
 (Element) document.createElement("rootElement");
 document.appendChild(root);
 root.appendChild(document.createTextNode("Some"));
 root.appendChild(document.createTextNode(" "));
 root.appendChild(document.createTextNode("text"));

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 }
 } // buildDom

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {
 "none",
 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",
 "DocFragment",
 "Notation",
 };
 static final int ELEMENT_TYPE = 1;
 static final int ATTR_TYPE = 2;
 static final int TEXT_TYPE = 3;
 static final int CDATA_TYPE = 4;
 static final int ENTITYREF_TYPE = 5;
 static final int ENTITY_TYPE = 6;
 static final int PROCINSTR_TYPE = 7;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (4 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 static final int COMMENT_TYPE = 8;
 static final int DOCUMENT_TYPE = 9;
 static final int DOCTYPE_TYPE = 10;
 static final int DOCFRAG_TYPE = 11;
 static final int NOTATION_TYPE = 12;
 // The list of elements to display in the tree
 // Could set this with a command-line argument, but
 // not much point -- the list of tree elements still
 // has to be defined internally.
 // Extra credit: Read the list from a file
 // Super-extra credit: Process a DTD and build the list.
 static String[] treeElementNames = {
 "slideshow",
 "slide",
 "title", // For slideshow #1
 "slide-title", // For slideshow #10
 "item",
 };
 boolean treeElement(String elementName) {
 for (int i=0; i<treeElementNames.length; i++) {
 if (elementName.equals(treeElementNames[i])) return true;
 }
 return false;
 }

 // This class wraps a DOM node and returns the text we want to
 // display in the tree. It also returns children, index values,
 // and child counts.
 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;
 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (compress) {
 String t = content().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += " " + t;
 return s;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";
 // Trim the value to get rid of NL's at the front
 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (5 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 s += t;
 }
 return s;
 }

 public String content() {
 String s = "";
 org.w3c.dom.NodeList nodeList = domNode.getChildNodes();
 for (int i=0; i<nodeList.getLength(); i++) {
 org.w3c.dom.Node node = nodeList.item(i);
 int type = node.getNodeType();
 AdapterNode adpNode = new AdapterNode(node); //inefficient, but works
 if (type == ELEMENT_TYPE) {
 // Skip subelements that are displayed in the tree.
 if (treeElement(node.getNodeName())) continue;

 // EXTRA-CREDIT HOMEWORK:
 // Special case the SLIDE element to use the TITLE text
 // and ignore TITLE element when constructing the tree.

 // EXTRA-CREDIT
 // Convert ITEM elements to html lists using
 // , , tags

 s += "<" + node.getNodeName() + ">";
 s += adpNode.content();
 s += "</" + node.getNodeName() + ">";
 } else if (type == TEXT_TYPE) {
 s += node.getNodeValue();
 } else if (type == ENTITYREF_TYPE) {
 // The content is in the TEXT node under it
 s += adpNode.content();
 } else if (type == CDATA_TYPE) {
 // The "value" has the text, same as a text node.
 // while EntityRef has it in a text node underneath.
 // (because EntityRef can contain multiple subelements)
 // Convert angle brackets and ampersands for display
 StringBuffer sb = new StringBuffer(node.getNodeValue());
 for (int j=0; j<sb.length(); j++) {
 if (sb.charAt(j) == '<') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "lt;");
 j += 3;
 } else if (sb.charAt(j) == '&') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "amp;");
 j += 4;
 }
 }
 s += "<pre>" + sb + "\n</pre>";
 }
 // Ignoring these:
 // ATTR_TYPE -- not in the DOM tree
 // ENTITY_TYPE -- does not appear in the DOM
 // PROCINSTR_TYPE -- not "data"
 // COMMENT_TYPE -- not "data"
 // DOCUMENT_TYPE -- Root node only. No data to display.
 // DOCTYPE_TYPE -- Appears under the root only
 // DOCFRAG_TYPE -- equiv. to "document" for fragments
 // NOTATION_TYPE -- nothing but binary data in here
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (6 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 return s;
 }

 /*
 * Return children, index, and count values
 */
 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child.domNode == n.domNode) return i;
 }
 return -1; // Should never get here.
 }

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node =
 domNode.getChildNodes().item(searchIndex);
 if (compress) {
 // Return Nth displayable node
 int elementNodeIndex = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName())
 && elementNodeIndex++ == searchIndex) {
 break;
 }
 }
 }
 return new AdapterNode(node);
 }

 public int childCount() {
 if (!compress) {
 // Indent this
 return domNode.getChildNodes().getLength();
 }
 int count = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 org.w3c.dom.Node node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName()))
 {
 // Note:
 // Have to check for proper type.
 // The DOCTYPE element also has the right name
 ++count;
 }
 }
 return count;
 }
 }

 // This adapter converts the current Document (a DOM) into
 // a JTree model.
 public class DomToTreeModelAdapter
 implements javax.swing.tree.TreeModel
 {

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (7 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) aNode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }
 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new,
 // adjust the model, and then fire a TreeNodesChanged event.
 }

 /*
 * Use these methods to add and remove event listeners.
 * (Needed to satisfy TreeModel interface, but not used.)
 */
 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null
 && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {
 listenerList.removeElement(listener);
 }
 }

 // Note: Since XML works with 1.1, this example uses Vector.
 // If coding for 1.2 or later, though, I'd use this instead:
 // private List listenerList = new LinkedList();
 // The operations on the List are then add(), remove() and
 // iteration, via:
 // Iterator it = listenerList.iterator();
 // while (it.hasNext()) {
 // TreeModelListener listener = (TreeModelListener) it.next();
 // ...
 // }

 /*
 * Invoke these methods to inform listeners of changes.
 * (Not needed for this example.)

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (8 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java

 * Methods taken from TreeModelSupport class described at
 * http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
 * That architecture (produced by Tom Santos and Steve Wilson)
 * is more elegant. I just hacked 'em in here so they are
 * immediately at hand.
 */
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho05.java (9 of 9) [8/22/2001 12:54:20 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

/*
 * @(#)DomEcho06.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;

import java.io.File;
import java.io.IOException;

import org.w3c.dom.Document;
import org.w3c.dom.DOMException;
import org.w3c.dom.Element;

// Basic GUI components
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTree;

// GUI components for right-hand side
import javax.swing.JSplitPane;
import javax.swing.JEditorPane;

// GUI support classes
import java.awt.BorderLayout;
import java.awt.Dimension;
import java.awt.Toolkit;
import java.awt.event.WindowEvent;
import java.awt.event.WindowAdapter;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (1 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

// For creating borders
import javax.swing.border.EmptyBorder;
import javax.swing.border.BevelBorder;
import javax.swing.border.CompoundBorder;

// For creating a TreeModel
import javax.swing.tree.*;
import javax.swing.event.*;
import java.util.*;

public class DomEcho06 extends JPanel
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 boolean compress = false;
 static final int windowHeight = 460;
 static final int leftWidth = 300;
 static final int rightWidth = 340;
 static final int windowWidth = leftWidth + rightWidth;

 public DomEcho06()
 {
 // Make a nice border
 EmptyBorder eb = new EmptyBorder(5,5,5,5);
 BevelBorder bb = new BevelBorder(BevelBorder.LOWERED);
 CompoundBorder cb = new CompoundBorder(eb,bb);
 this.setBorder(new CompoundBorder(cb,eb));

 // Set up the tree
 JTree tree = new JTree(new DomToTreeModelAdapter());

 // Iterate over the tree and make nodes visible
 // (Otherwise, the tree shows up fully collapsed)
 //TreePath nodePath = ???;
 // tree.expandPath(nodePath);

 // Build left-side view
 JScrollPane treeView = new JScrollPane(tree);
 treeView.setPreferredSize(
 new Dimension(leftWidth, windowHeight));

 // Build right-side view
 // (must be final to be referenced in inner class)
 final
 JEditorPane htmlPane = new JEditorPane("text/html","");
 htmlPane.setEditable(false);
 JScrollPane htmlView = new JScrollPane(htmlPane);
 htmlView.setPreferredSize(
 new Dimension(rightWidth, windowHeight));

 // Wire the two views together. Use a selection listener
 // created with an anonymous inner-class adapter.
 tree.addTreeSelectionListener(
 new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath p = e.getNewLeadSelectionPath();
 if (p != null) {
 AdapterNode adpNode =
 (AdapterNode) p.getLastPathComponent();
 htmlPane.setText(adpNode.content());
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (2 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 }
 }
);

 // Build split-pane view
 JSplitPane splitPane =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT,
 treeView,
 htmlView);
 splitPane.setContinuousLayout(true);
 splitPane.setDividerLocation(leftWidth);
 splitPane.setPreferredSize(
 new Dimension(windowWidth + 10, windowHeight+10));

 // Add GUI components
 this.setLayout(new BorderLayout());
 this.add("Center", splitPane);
 } // constructor

 public static void main(String argv[])
 {
 if (argv.length != 1) {
 buildDom();
 makeFrame();
 return;
 }

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setValidating(true);
 //factory.setNamespaceAware(true);
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(new File(argv[0]));
 makeFrame();

 } catch (SAXException sxe) {
 // Error generated during parsing)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }
 } // main

 public static void makeFrame() {
 // Set up a GUI framework
 JFrame frame = new JFrame("DOM Echo");
 frame.addWindowListener(
 new WindowAdapter() {
 public void windowClosing(WindowEvent e) {System.exit(0);}
 }
);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (3 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 // Set up the tree, the views, and display it all
 final DomEcho06 echoPanel =
 new DomEcho06();
 frame.getContentPane().add("Center", echoPanel);
 frame.pack();
 Dimension screenSize =
 Toolkit.getDefaultToolkit().getScreenSize();
 int w = windowWidth + 10;
 int h = windowHeight + 10;
 frame.setLocation(screenSize.width/3 - w/2,
 screenSize.height/2 - h/2);
 frame.setSize(w, h);
 frame.setVisible(true);
 } // makeFrame

 public static void buildDom()
 {
 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 try {
 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.newDocument(); // Create from whole cloth

 Element root =
 (Element) document.createElement("rootElement");
 document.appendChild(root);
 root.appendChild(document.createTextNode("Some"));
 root.appendChild(document.createTextNode(" "));
 root.appendChild(document.createTextNode("text"));

 // normalize text representation
 // getDocumentElement() returns the document's root node
 document.getDocumentElement().normalize();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 }
 } // buildDom

 // An array of names for DOM node-types
 // (Array indexes = nodeType() values.)
 static final String[] typeName = {
 "none",
 "Element",
 "Attr",
 "Text",
 "CDATA",
 "EntityRef",
 "Entity",
 "ProcInstr",
 "Comment",
 "Document",
 "DocType",
 "DocFragment",
 "Notation",
 };
 static final int ELEMENT_TYPE = 1;
 static final int ATTR_TYPE = 2;
 static final int TEXT_TYPE = 3;

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (4 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 static final int CDATA_TYPE = 4;
 static final int ENTITYREF_TYPE = 5;
 static final int ENTITY_TYPE = 6;
 static final int PROCINSTR_TYPE = 7;
 static final int COMMENT_TYPE = 8;
 static final int DOCUMENT_TYPE = 9;
 static final int DOCTYPE_TYPE = 10;
 static final int DOCFRAG_TYPE = 11;
 static final int NOTATION_TYPE = 12;
 // The list of elements to display in the tree
 // Could set this with a command-line argument, but
 // not much point -- the list of tree elements still
 // has to be defined internally.
 // Extra credit: Read the list from a file
 // Super-extra credit: Process a DTD and build the list.
 static String[] treeElementNames = {
 "slideshow",
 "slide",
 "title", // For slideshow #1
 "slide-title", // For slideshow #10
 "item",
 };
 boolean treeElement(String elementName) {
 for (int i=0; i<treeElementNames.length; i++) {
 if (elementName.equals(treeElementNames[i])) return true;
 }
 return false;
 }

 // This class wraps a DOM node and returns the text we want to
 // display in the tree. It also returns children, index values,
 // and child counts.
 public class AdapterNode
 {
 org.w3c.dom.Node domNode;

 // Construct an Adapter node from a DOM node
 public AdapterNode(org.w3c.dom.Node node) {
 domNode = node;
 }

 // Return a string that identifies this node in the tree
 // *** Refer to table at top of org.w3c.dom.Node ***
 public String toString() {
 String s = typeName[domNode.getNodeType()];
 String nodeName = domNode.getNodeName();
 if (! nodeName.startsWith("#")) {
 s += ": " + nodeName;
 }
 if (compress) {
 String t = content().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += " " + t;
 return s;
 }
 if (domNode.getNodeValue() != null) {
 if (s.startsWith("ProcInstr"))
 s += ", ";
 else
 s += ": ";

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (5 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 // Trim the value to get rid of NL's at the front
 String t = domNode.getNodeValue().trim();
 int x = t.indexOf("\n");
 if (x >= 0) t = t.substring(0, x);
 s += t;
 }
 return s;
 }

 public String content() {
 String s = "";
 org.w3c.dom.NodeList nodeList = domNode.getChildNodes();
 for (int i=0; i<nodeList.getLength(); i++) {
 org.w3c.dom.Node node = nodeList.item(i);
 int type = node.getNodeType();
 AdapterNode adpNode = new AdapterNode(node); //inefficient, but works
 if (type == ELEMENT_TYPE) {
 // Skip subelements that are displayed in the tree.
 if (treeElement(node.getNodeName())) continue;

 // EXTRA-CREDIT HOMEWORK:
 // Special case the SLIDE element to use the TITLE text
 // and ignore TITLE element when constructing the tree.

 // EXTRA-CREDIT
 // Convert ITEM elements to html lists using
 // , , tags

 s += "<" + node.getNodeName() + ">";
 s += adpNode.content();
 s += "</" + node.getNodeName() + ">";
 } else if (type == TEXT_TYPE) {
 s += node.getNodeValue();
 } else if (type == ENTITYREF_TYPE) {
 // The content is in the TEXT node under it
 s += adpNode.content();
 } else if (type == CDATA_TYPE) {
 // The "value" has the text, same as a text node.
 // while EntityRef has it in a text node underneath.
 // (because EntityRef can contain multiple subelements)
 // Convert angle brackets and ampersands for display
 StringBuffer sb = new StringBuffer(node.getNodeValue());
 for (int j=0; j<sb.length(); j++) {
 if (sb.charAt(j) == '<') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "lt;");
 j += 3;
 } else if (sb.charAt(j) == '&') {
 sb.setCharAt(j, '&');
 sb.insert(j+1, "amp;");
 j += 4;
 }
 }
 s += "<pre>" + sb + "\n</pre>";
 }
 // Ignoring these:
 // ATTR_TYPE -- not in the DOM tree
 // ENTITY_TYPE -- does not appear in the DOM
 // PROCINSTR_TYPE -- not "data"
 // COMMENT_TYPE -- not "data"
 // DOCUMENT_TYPE -- Root node only. No data to display.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (6 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 // DOCTYPE_TYPE -- Appears under the root only
 // DOCFRAG_TYPE -- equiv. to "document" for fragments
 // NOTATION_TYPE -- nothing but binary data in here
 }
 return s;
 }

 /*
 * Return children, index, and count values
 */
 public int index(AdapterNode child) {
 //System.err.println("Looking for index of " + child);
 int count = childCount();
 for (int i=0; i<count; i++) {
 AdapterNode n = this.child(i);
 if (child.domNode == n.domNode) return i;
 }
 return -1; // Should never get here.
 }

 public AdapterNode child(int searchIndex) {
 //Note: JTree index is zero-based.
 org.w3c.dom.Node node =
 domNode.getChildNodes().item(searchIndex);
 if (compress) {
 // Return Nth displayable node
 int elementNodeIndex = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName())
 && elementNodeIndex++ == searchIndex) {
 break;
 }
 }
 }
 return new AdapterNode(node);
 }

 public int childCount() {
 if (!compress) {
 // Indent this
 return domNode.getChildNodes().getLength();
 }
 int count = 0;
 for (int i=0; i<domNode.getChildNodes().getLength(); i++) {
 org.w3c.dom.Node node = domNode.getChildNodes().item(i);
 if (node.getNodeType() == ELEMENT_TYPE
 && treeElement(node.getNodeName()))
 {
 // Note:
 // Have to check for proper type.
 // The DOCTYPE element also has the right name
 ++count;
 }
 }
 return count;
 }
 }

 // This adapter converts the current Document (a DOM) into

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (7 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 // a JTree model.
 public class DomToTreeModelAdapter
 implements javax.swing.tree.TreeModel
 {
 // Basic TreeModel operations
 public Object getRoot() {
 //System.err.println("Returning root: " +document);
 return new AdapterNode(document);
 }
 public boolean isLeaf(Object aNode) {
 // Determines whether the icon shows up to the left.
 // Return true for any node with no children
 AdapterNode node = (AdapterNode) aNode;
 if (node.childCount() > 0) return false;
 return true;
 }
 public int getChildCount(Object parent) {
 AdapterNode node = (AdapterNode) parent;
 return node.childCount();
 }
 public Object getChild(Object parent, int index) {
 AdapterNode node = (AdapterNode) parent;
 return node.child(index);
 }
 public int getIndexOfChild(Object parent, Object child) {
 AdapterNode node = (AdapterNode) parent;
 return node.index((AdapterNode) child);
 }
 public void valueForPathChanged(TreePath path, Object newValue) {
 // Null. We won't be making changes in the GUI
 // If we did, we would ensure the new value was really new,
 // adjust the model, and then fire a TreeNodesChanged event.
 }

 /*
 * Use these methods to add and remove event listeners.
 * (Needed to satisfy TreeModel interface, but not used.)
 */
 private Vector listenerList = new Vector();
 public void addTreeModelListener(TreeModelListener listener) {
 if (listener != null
 && ! listenerList.contains(listener)) {
 listenerList.addElement(listener);
 }
 }
 public void removeTreeModelListener(TreeModelListener listener) {
 if (listener != null) {
 listenerList.removeElement(listener);
 }
 }

 // Note: Since XML works with 1.1, this example uses Vector.
 // If coding for 1.2 or later, though, I'd use this instead:
 // private List listenerList = new LinkedList();
 // The operations on the List are then add(), remove() and
 // iteration, via:
 // Iterator it = listenerList.iterator();
 // while (it.hasNext()) {
 // TreeModelListener listener = (TreeModelListener) it.next();
 // ...
 // }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (8 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java

 /*
 * Invoke these methods to inform listeners of changes.
 * (Not needed for this example.)
 * Methods taken from TreeModelSupport class described at
 * http://java.sun.com/products/jfc/tsc/articles/jtree/index.html
 * That architecture (produced by Tom Santos and Steve Wilson)
 * is more elegant. I just hacked 'em in here so they are
 * immediately at hand.
 */
 public void fireTreeNodesChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesChanged(e);
 }
 }
 public void fireTreeNodesInserted(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesInserted(e);
 }
 }
 public void fireTreeNodesRemoved(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeNodesRemoved(e);
 }
 }
 public void fireTreeStructureChanged(TreeModelEvent e) {
 Enumeration listeners = listenerList.elements();
 while (listeners.hasMoreElements()) {
 TreeModelListener listener =
 (TreeModelListener) listeners.nextElement();
 listener.treeStructureChanged(e);
 }
 }
 }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/dom/work/DomEcho06.java (9 of 9) [8/22/2001 12:54:23 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/PersonalAddressBook.ldif

dn: cn=Fred Flinstone,mail=fred@barneys.house
modifytimestamp: 20010409210816Z
cn: Fred Flinstone
xmozillanickname: Fred
mail: fred@barneys.house
xmozillausehtmlmail: TRUE
givenname: Fred
sn: Flinstone
telephonenumber: 999-Quarry
homephone: 999-BedrockLane
facsimiletelephonenumber: 888-Squawk
pagerphone: 777-pager
cellphone: 555-cell
xmozillaanyphone: 999-Quarry
objectclass: top
objectclass: person

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/PersonalAddressBook.ldif [8/22/2001 12:54:24 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java

/*
 * @(#)AddressBookReader.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

/**
 * AddressBookReader -- an application that reads an address book file
 * exported from Netscape Messenger using the Line Delimited Interchange
 * Format (LDIF).
 * <p>
 * LDIF address book files have this format:<pre>
 * dn: cn=FirstName LastName,mail=emailAddress
 * modifytimestamp: 20010328014700Z
 * cn: FirstName LastName --display name (concatenation of givenname+sn)
 * xmozillanickname: Fred --------+
 * mail: fred |
 * xmozillausehtmlmail: TRUE +-- We care about these
 * givenname: Fred |
 * sn: Flintstone --(surname) |
 * telephonenumber: 999-Quarry |
 * homephone: 999-BedrockLane |
 * facsimiletelephonenumber: 888-Squawk |
 * pagerphone: 777-pager |
 * cellphone: 666-cell --------+
 * xmozillaanyphone: Work#
 * objectclass: top
 * objectclass: person
 * </pre>
 *
 * @author Eric Armstrong
 */
public class AddressBookReader01
{

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java (1 of 3) [8/22/2001 12:54:25 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java

 public static void main (String argv [])
 {
 // Check the arguments
 if (argv.length != 1) {
 System.err.println ("Usage: java AddressBookReader filename");
 System.exit (1);
 }
 String filename = argv[0];
 File f = new File(filename);
 AddressBookReader01 reader = new AddressBookReader01();
 reader.parse(f);
 }

 /** Parse the input */
 public void parse(File f)
 {
 try {
 // Get an efficient reader for the file

 FileReader r = new FileReader(f);

 BufferedReader br = new BufferedReader(r);

 // Read the file and display it's contents.
 String line = br.readLine();
 while (null != (line = br.readLine())) {
 if (line.startsWith("xmozillanickname: ")) break;
 }

 output("nickname", "xmozillanickname", line);
 line = br.readLine();
 output("email", "mail", line);
 line = br.readLine();
 output("html", "xmozillausehtmlmail", line);
 line = br.readLine();
 output("firstname","givenname", line);
 line = br.readLine();
 output("lastname", "sn", line);
 line = br.readLine();
 output("work", "telephonenumber", line);
 line = br.readLine();
 output("home", "homephone", line);
 line = br.readLine();
 output("fax", "facsimiletelephonenumber", line);
 line = br.readLine();
 output("pager", "pagerphone", line);
 line = br.readLine();
 output("cell", "cellphone", line);

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 void output(String name, String prefix, String line)

 {
 int startIndex = prefix.length() + 2; // 2=length of ": " after the name
 String text = line.substring(startIndex);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java (2 of 3) [8/22/2001 12:54:25 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java

 System.out.println(name + ": " + text);

 }

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader01.java (3 of 3) [8/22/2001 12:54:25 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReaderLog01.html

Running AddressBookReader01 ../samples/PersonalAddressBook.ldif
nickname: Fred
email: fred@barneys.house
html: TRUE
firstname: Fred
lastname: Flinstone
work: 999-Quarry
home: 999-BedrockLane
fax: 888-Squawk
pager: 777-pager
cell: 555-cell

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReaderLog01.html [8/22/2001 12:54:26 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog04.html

Running TransformationApp04 ../samples/PersonalAddressBook.ldif
<?xml version="1.0" encoding="UTF-8"?>
<addressbook>
 <nickname>Fred</nickname>
 <email>fred@barneys.house</email>
 <html>TRUE</html>
 <firstname>Fred</firstname>
 <lastname>Flinstone</lastname>
 <work>999-Quarry</work>
 <home>999-BedrockLane</home>
 <fax>888-Squawk</fax>
 <pager>777-pager</pager>
 <cell>555-cell</cell>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/TransformationLog04.html [8/22/2001 12:54:27 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java

/*
 * @(#)AddressBookReader.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import java.io.*;

import org.xml.sax.*;
import org.xml.sax.helpers.AttributesImpl;

/**
 * AddressBookReader -- an application that reads an address book file
 * exported from Netscape Messenger using the Line Delimited Interchange
 * Format (LDIF).
 * <p>
 * LDIF address book files have this format:<pre>
 * dn: cn=FirstName LastName,mail=emailAddress
 * modifytimestamp: 20010328014700Z
 * cn: FirstName LastName --display name (concatenation of givenname+sn)
 * xmozillanickname: Fred --------+
 * mail: fred |
 * xmozillausehtmlmail: TRUE +-- We care about these
 * givenname: Fred |
 * sn: Flintstone --(surname) |
 * telephonenumber: 999-Quarry |
 * homephone: 999-BedrockLane |
 * facsimiletelephonenumber: 888-Squawk |
 * pagerphone: 777-pager |
 * cellphone: 666-cell --------+
 * xmozillaanyphone: Work#
 * objectclass: top
 * objectclass: person
 * </pre>
 *
 * @author Eric Armstrong
 */

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java (1 of 4) [8/22/2001 12:54:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java

public class AddressBookReader02
 implements XMLReader

{

 ContentHandler handler;

 // We're not doing namespaces, and we have no
 // attributes on our elements.
 String nsu = ""; // NamespaceURI
 Attributes atts = new AttributesImpl();
 String rootElement = "addressbook";

 String indent = "\n "; // for readability!

 /** Parse the input */
 public void parse(InputSource input)
 throws IOException, SAXException

 {
 try {
 // Get an efficient reader for the file

 java.io.Reader r = input.getCharacterStream();

 BufferedReader br = new BufferedReader(r);

 // Read the file and display it's contents.
 String line = br.readLine();
 while (null != (line = br.readLine())) {
 if (line.startsWith("xmozillanickname: ")) break;
 }

 if (handler==null) {
 throw new SAXException("No content handler");
 }
 // Note:
 // We're ignoring setDocumentLocator(), as well
 handler.startDocument();
 handler.startElement(nsu, rootElement, rootElement, atts);

 output("nickname", "xmozillanickname", line);
 line = br.readLine();
 output("email", "mail", line);
 line = br.readLine();
 output("html", "xmozillausehtmlmail", line);
 line = br.readLine();
 output("firstname","givenname", line);
 line = br.readLine();
 output("lastname", "sn", line);
 line = br.readLine();
 output("work", "telephonenumber", line);
 line = br.readLine();
 output("home", "homephone", line);
 line = br.readLine();
 output("fax", "facsimiletelephonenumber", line);
 line = br.readLine();
 output("pager", "pagerphone", line);
 line = br.readLine();
 output("cell", "cellphone", line);

 handler.ignorableWhitespace("\n".toCharArray(),

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java (2 of 4) [8/22/2001 12:54:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java

 0, // start index
 1 // length
);
 handler.endElement(nsu, rootElement, rootElement);
 handler.endDocument();

 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }

 void output(String name, String prefix, String line)

 throws SAXException

 {
 int startIndex = prefix.length() + 2; // 2=length of ": " after the name
 String text = line.substring(startIndex);

 int textLength = line.length() - startIndex;
 handler.ignorableWhitespace(indent.toCharArray(),
 0, // start index
 indent.length()
);
 handler.startElement(nsu, name, name /*"qName"*/, atts);
 handler.characters(line.toCharArray(),
 startIndex,
 textLength);
 handler.endElement(nsu, name, name);

 }

 /** Allow an application to register a content event handler. */
 public void setContentHandler(ContentHandler handler) {
 this.handler = handler;
 }

 /** Return the current content handler. */
 public ContentHandler getContentHandler() {
 return this.handler;
 }

 //===
 // IMPLEMENT THESE FOR A ROBUST APP
 //===
 /** Allow an application to register an error event handler. */
 public void setErrorHandler(ErrorHandler handler)
 { }

 /** Return the current error handler. */
 public ErrorHandler getErrorHandler()
 { return null; }

 //===
 // IGNORE THESE
 //===
 /** Parse an XML document from a system identifier (URI). */
 public void parse(String systemId)
 throws IOException, SAXException
 { }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java (3 of 4) [8/22/2001 12:54:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java

 /** Return the current DTD handler. */
 public DTDHandler getDTDHandler()
 { return null; }

 /** Return the current entity resolver. */
 public EntityResolver getEntityResolver()
 { return null; }

 /** Allow an application to register an entity resolver. */
 public void setEntityResolver(EntityResolver resolver)
 { }

 /** Allow an application to register a DTD event handler. */
 public void setDTDHandler(DTDHandler handler)
 { }

 /** Look up the value of a property. */
 public Object getProperty(java.lang.String name)
 { return null; }

 /** Set the value of a property. */
 public void setProperty(java.lang.String name, java.lang.Object value)
 { }

 /** Set the state of a feature. */
 public void setFeature(java.lang.String name, boolean value)
 { }

 /** Look up the value of a feature. */
 public boolean getFeature(java.lang.String name)
 { return false; }
}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/AddressBookReader02.java (4 of 4) [8/22/2001 12:54:28 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java

/*
 * @(#)Stylizer.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;
import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.w3c.dom.Document;
import org.w3c.dom.DOMException;

// For write operation
import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

public class Stylizer
{
 // Global value so it can be ref'd by the tree-adapter
 static Document document;

 public static void main (String argv [])
 {
 if (argv.length != 2) {
 System.err.println ("Usage: java Stylizer stylesheet xmlfile");
 System.exit (1);
 }

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java (1 of 3) [8/22/2001 12:54:29 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java

 DocumentBuilderFactory factory =
 DocumentBuilderFactory.newInstance();
 //factory.setNamespaceAware(true);
 //factory.setValidating(true);

 try {
 File stylesheet = new File(argv[0]);
 File datafile = new File(argv[1]);

 DocumentBuilder builder = factory.newDocumentBuilder();
 document = builder.parse(datafile);

 // Use a Transformer for output
 TransformerFactory tFactory =
 TransformerFactory.newInstance();
 StreamSource stylesource = new StreamSource(stylesheet);
 Transformer transformer = tFactory.newTransformer(stylesource);

 DOMSource source = new DOMSource(document);
 StreamResult result = new StreamResult(System.out);
 transformer.transform(source, result);

 } catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();

 } catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any
 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();

 } catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();

 } catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();

 } catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java (2 of 3) [8/22/2001 12:54:29 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/Stylizer.java (3 of 3) [8/22/2001 12:54:29 PM]

A Sample Article

The First Major Section This section will introduce a subsection. The Subsection Heading This is the text
of the subsection.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1.xml [8/22/2001 12:54:29 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1-xml.html

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 <PARA>This section will introduce a subsection.</PARA>
 <SECT>The Subsection Heading
 <PARA>This is the text of the subsection.
 </PARA>
 </SECT>
 </SECT>
</ARTICLE>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1-xml.html [8/22/2001 12:54:30 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1a.xsl

Error: Sections can only be nested 2 deep.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1a.xsl [8/22/2001 12:54:31 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1a-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="html"/>

 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

 <!-- Top Level Heading -->
 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Second-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Third-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

 <!-- Paragraph -->
 <xsl:template match="PARA">
 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1a-xsl.html [8/22/2001 12:54:32 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1a.txt

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section

 </h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading

 </h2>
<p>This is the text of the subsection.
 </p>

</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1a.txt [8/22/2001 12:54:34 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1a.html

A Sample Article

The First Major Section
This section will introduce a subsection.

The Subsection Heading

This is the text of the subsection.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1a.html [8/22/2001 12:54:34 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1b.xsl

Error: Sections can only be nested 2 deep.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1b.xsl [8/22/2001 12:54:35 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1b-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="html"/>
 <xsl:strip-space elements="SECT"/>

 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

 <!-- Top Level Heading -->
 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Second-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Third-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

 <!-- Paragraph -->
 <xsl:template match="PARA">
 <p><xsl:apply-templates/></p>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1b-xsl.html [8/22/2001 12:54:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1b.txt

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section
 </h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading
 </h2>
<p>This is the text of the subsection.
 </p>

</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1b.txt [8/22/2001 12:54:36 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1b.html

A Sample Article

The First Major Section
This section will introduce a subsection.

The Subsection Heading

This is the text of the subsection.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1b.html [8/22/2001 12:54:37 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c.xsl

Error: Sections can only be nested 2 deep.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c.xsl [8/22/2001 12:54:40 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="html"/>
 <xsl:strip-space elements="SECT"/>

 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

 <!-- Top Level Heading -->
 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Second-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Third-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

 <!-- Paragraph -->
 <xsl:template match="PARA">
 <p><xsl:apply-templates/></p>
 </xsl:template>

 <!-- Text -->
 <xsl:template match="text()">

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c-xsl.html (1 of 2) [8/22/2001 12:54:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c-xsl.html

 <xsl:value-of select="normalize-space()"/>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article1c-xsl.html (2 of 2) [8/22/2001 12:54:41 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1c.txt

<html>
<body>
<h1 align="center">A Sample Article</h1>
<h1>The First Major Section</h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading</h2>
<p>This is the text of the subsection.</p>
</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1c.txt [8/22/2001 12:54:42 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1c.html

A Sample Article

The First Major Section
This section will introduce a subsection.

The Subsection Heading

This is the text of the subsection.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer1c.html [8/22/2001 12:54:43 PM]

A Sample Article

The First Major Section This section will introduce a subsection. The Subsection Heading This is the text
of the subsection. The Second Major Section This section adds a LIST and a NOTE. Here is the LIST:
Pears Grapes And here is the NOTE: Don't forget to go to the hardware store on your way to the grocery!

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2.xml [8/22/2001 12:54:43 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xml.html

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 <PARA>This section will introduce a subsection.</PARA>
 <SECT>The Subsection Heading
 <PARA>This is the text of the subsection.
 </PARA>
 </SECT>
 </SECT>
 <SECT>The Second Major Section
 <PARA>This section adds a LIST and a NOTE.
 </PARA>
 <PARA>Here is the LIST:
 <LIST type="ordered">
 <ITEM>Pears</ITEM>
 <ITEM>Grapes</ITEM>
 </LIST>
 </PARA>
 <PARA>And here is the NOTE:
 <NOTE>Don't forget to go to the hardware store on your
 way to the grocery!
 </NOTE>
 </PARA>
 </SECT>
</ARTICLE>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xml.html [8/22/2001 12:54:44 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2.xsl

Error: Sections can only be nested 2 deep.

●

Note:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2.xsl [8/22/2001 12:54:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="html"/>
 <xsl:strip-space elements="SECT"/>

 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

 <!-- Top Level Heading -->
 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Second-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Third-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

 <!-- Paragraph -->
 <xsl:template match="PARA">
 <!-- MODIFIED -->
 <!-- OLD: <p><xsl:apply-templates/></p> -->
 <p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </p>
 <xsl:apply-templates select="PARA|LIST|NOTE"/>
 </xsl:template>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xsl.html (1 of 2) [8/22/2001 12:54:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xsl.html

 <!-- Text -->
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space()"/>
 </xsl:template>

 <!-- LIST -->
 <xsl:template match="LIST">
 <xsl:if test="@type='ordered'">

 <xsl:apply-templates/>

 </xsl:if>
 <xsl:if test="@type='unordered'">

 <xsl:apply-templates/>

 </xsl:if>
 </xsl:template>

 <!-- list ITEM -->
 <xsl:template match="ITEM">
 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="NOTE">
 <blockquote>Note:

 <xsl:apply-templates/>
 </blockquote>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article2-xsl.html (2 of 2) [8/22/2001 12:54:45 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer2.txt

<html>
<body>
<h1 align="center">A Sample Article</h1>
<h1>The First Major Section</h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading</h2>
<p>This is the text of the subsection.</p>
<h1>The Second Major Section</h1>
<p>This section adds a LIST and a NOTE.</p>
<p>Here is the LIST:</p>

Pears
Grapes

<p>And here is the NOTE:</p>
<blockquote>
Note:

Don't forget to go to the hardware store on your way to the grocery!</blockquote>
</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer2.txt [8/22/2001 12:54:46 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer2.html

A Sample Article

The First Major Section
This section will introduce a subsection.

The Subsection Heading

This is the text of the subsection.

The Second Major Section
This section adds a LIST and a NOTE.

Here is the LIST:

1. Pears
2. Grapes

And here is the NOTE:

Note:
Don't forget to go to the hardware store on your way to the grocery!

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer2.html [8/22/2001 12:54:47 PM]

A Sample Article

The First Major Section This section will introduce a subsection. The Subsection Heading This is the text
of the subsection. The Second Major Section This section adds a LIST and a NOTE. Here is the LIST:
Pears Grapes And here is the NOTE: Don't forget to go to the hardware store on your way to the grocery!
The Third Major Section In addition to the inline tag in the heading, this section defines the term inline,
which literally means "no line break". It also adds a simple link to the main page for the Java platform
(http://java.sun.com), as well as a link to the XML page.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3.xml [8/22/2001 12:54:48 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xml.html

<?xml version="1.0"?>
<ARTICLE>
 <TITLE>A Sample Article</TITLE>
 <SECT>The First Major Section
 <PARA>This section will introduce a subsection.</PARA>
 <SECT>The Subsection Heading
 <PARA>This is the text of the subsection.
 </PARA>
 </SECT>
 </SECT>
 <SECT>The Second Major Section
 <PARA>This section adds a LIST and a NOTE.
 </PARA>
 <PARA>Here is the LIST:
 <LIST type="ordered">
 <ITEM>Pears</ITEM>
 <ITEM>Grapes</ITEM>
 </LIST>
 </PARA>
 <PARA>And here is the NOTE:
 <NOTE>Don't forget to go to the hardware store on your
 way to the grocery!
 </NOTE>
 </PARA>
 </SECT>
 <SECT>The <I>Third</I> Major Section
 <PARA>In addition to the inline tag in the heading, this section
 defines the term <DEF>inline</DEF>, which literally means
 "no line break". It also adds a simple link to the main page
 for the Java platform (<LINK>http://java.sun.com</LINK>),
 as well as a link to the
 <LINK target="http://java.sun.com/xml">XML</LINK> page.
 </PARA>
 </SECT>
</ARTICLE>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xml.html [8/22/2001 12:54:48 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3.xsl

Error: Sections can only be nested 2 deep.

●

Note:

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3.xsl [8/22/2001 12:54:49 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <xsl:output method="html"/>
 <xsl:strip-space elements="SECT"/>

 <xsl:template match="/">
 <html><body>
 <xsl:apply-templates/>
 </body></html>
 </xsl:template>

 <xsl:template match="/ARTICLE/TITLE">
 <h1 align="center"> <xsl:apply-templates/> </h1>
 </xsl:template>

 <!-- Top Level Heading -->
 <xsl:template match="/ARTICLE/SECT">
 <h1> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h1>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Second-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT">
 <h2> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </h2>
 <xsl:apply-templates select="SECT|PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Third-Level Heading -->
 <xsl:template match="/ARTICLE/SECT/SECT/SECT">
 <xsl:message terminate="yes">Error: Sections can only be nested 2
deep.</xsl:message>
 </xsl:template>

 <!-- Paragraph -->
 <xsl:template match="PARA">
 <p> <xsl:apply-templates select="text()|B|I|U|DEF|LINK"/> </p>
 <xsl:apply-templates select="PARA|LIST|NOTE"/>
 </xsl:template>

 <!-- Text -->
<!--
 <xsl:template match="text()">
 <xsl:value-of select="normalize-space()"/>
 </xsl:template>
-->

 <!-- LIST -->
 <xsl:template match="LIST">

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html (1 of 3) [8/22/2001 12:54:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html

 <xsl:if test="@type='ordered'">

 <xsl:apply-templates/>

 </xsl:if>
 <xsl:if test="@type='unordered'">

 <xsl:apply-templates/>

 </xsl:if>
 </xsl:template>

 <!-- list ITEM -->
 <xsl:template match="ITEM">
 <xsl:apply-templates/>

 </xsl:template>

 <xsl:template match="NOTE">
 <blockquote>Note:

 <xsl:apply-templates/>
 </blockquote>
 </xsl:template>

 <xsl:template match="DEF">
 <i> <xsl:apply-templates/> </i>
 </xsl:template>

 <xsl:template match="B|I|U">
 <xsl:element name="{name()}">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>

 <xsl:template match="LINK">
 <xsl:if test="@target">
 <!--Target attribute specified.-->
 <xsl:call-template name="htmLink">
 <xsl:with-param name="dest" select="@target"/> <!--Destination = attribute
value-->
 </xsl:call-template>
 </xsl:if>

 <xsl:if test="not(@target)">
 <!--Target attribute not specified.-->
 <xsl:call-template name="htmLink">
 <xsl:with-param name="dest">
 <xsl:apply-templates/> <!--Destination value = text of node-->
 </xsl:with-param>
 </xsl:call-template>
 </xsl:if>
 </xsl:template>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html (2 of 3) [8/22/2001 12:54:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html

 <!-- A named template that constructs an HTML link -->
 <xsl:template name="htmLink">
 <xsl:param name="dest" select="UNDEFINED"/> <!--default value-->
 <xsl:element name="a">
 <xsl:attribute name="href">
 <xsl:value-of select="$dest"/> <!--link target-->
 </xsl:attribute>
 <xsl:apply-templates/> <!--name of the link from text of node-->
 </xsl:element>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/article3-xsl.html (3 of 3) [8/22/2001 12:54:50 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer3.txt

<html>
<body>

<h1 align="center">A Sample Article</h1>

<h1>The First Major Section
 </h1>
<p>This section will introduce a subsection.</p>
<h2>The Subsection Heading
 </h2>
<p>This is the text of the subsection.
 </p>

<h1>The Second Major Section
 </h1>
<p>This section adds a LIST and a NOTE.
 </p>
<p>Here is the LIST:
 </p>

Pears
Grapes

<p>And here is the NOTE:
 </p>
<blockquote>
Note:

Don't forget to go to the hardware store on your
 way to the grocery!
 </blockquote>

<h1>The <I>Third</I> Major Section
 </h1>
<p>In addition to the inline tag in the heading, this section
 defines the term <i>inline</i>, which literally means
 "no line break". It also adds a simple link to the main page
 for the Java platform (http://java.sun.com),
 as well as a link to the
 XML page.
 </p>

</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer3.txt [8/22/2001 12:54:51 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer3.html

A Sample Article

The First Major Section
This section will introduce a subsection.

The Subsection Heading

This is the text of the subsection.

The Second Major Section
This section adds a LIST and a NOTE.

Here is the LIST:

1. Pears
2. Grapes

And here is the NOTE:

Note:
Don't forget to go to the hardware store on your way to the grocery!

The Third Major Section
In addition to the inline tag in the heading, this section defines the term inline, which literally means "no
line break". It also adds a simple link to the main page for the Java platform (http://java.sun.com), as well
as a link to the XML page.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/stylizer3.html [8/22/2001 12:54:52 PM]

http://java.sun.com/
http://java.sun.com/xml

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java

/*
 * @(#)FilterChain.java 1.9 98/11/10
 *
 * Copyright (c) 1998 Sun Microsystems, Inc. All Rights Reserved.
 *
 * Sun grants you ("Licensee") a non-exclusive, royalty free, license to use,
 * modify and redistribute this software in source and binary code form,
 * provided that i) this copyright notice and license appear on all copies of
 * the software; and ii) Licensee does not utilize the software in a manner
 * which is disparaging to Sun.
 *
 * This software is provided "AS IS," without a warranty of any kind. ALL
 * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
 * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
 * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. SUN AND ITS LICENSORS SHALL NOT BE
 * LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
 * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL SUN OR ITS
 * LICENSORS BE LIABLE FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
 * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
 * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
 * OR INABILITY TO USE SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGES.
 *
 * This software is not designed or intended for use in on-line control of
 * aircraft, air traffic, aircraft navigation or aircraft communications; or in
 * the design, construction, operation or maintenance of any nuclear
 * facility. Licensee represents and warrants that it will not use or
 * redistribute the Software for such purposes.
 */

import javax.xml.parsers.FactoryConfigurationError;
import javax.xml.parsers.ParserConfigurationException;
import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.SAXException;
import org.xml.sax.SAXParseException;
import org.xml.sax.InputSource;
import org.xml.sax.XMLReader;
import org.xml.sax.XMLFilter;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerException;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.TransformerConfigurationException;

import javax.xml.transform.sax.SAXTransformerFactory;
import javax.xml.transform.sax.SAXSource;
import javax.xml.transform.sax.SAXResult;

import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

public class FilterChain
{
 public static void main (String argv [])
 {
 if (argv.length != 3) {
 System.err.println ("Usage: java FilterChain stylesheet1 stylesheet2 xmlfile");
 System.exit (1);

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java (1 of 3) [8/22/2001 12:54:53 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java

 }

 try {
 // Read the arguments
 File stylesheet1 = new File(argv[0]);
 File stylesheet2 = new File(argv[1]);
 File datafile = new File(argv[2]);

 // Set up the input stream
 BufferedInputStream bis = new BufferedInputStream(new FileInputStream(datafile));
 InputSource input = new InputSource(bis);

 // Set up to read the input file
 SAXParserFactory spf = SAXParserFactory.newInstance();
 SAXParser parser = spf.newSAXParser();
 XMLReader reader = parser.getXMLReader();

 // Create the filters
 // --SAXTransformerFactory is an interface
 // --TransformerFactory is a concrete class
 // --TransformerFactory actually returns a SAXTransformerFactory instance
 // --We didn't care about that before, because we didn't use the
 // --SAXTransformerFactory extensions. But now we do, so we cast the result.
 SAXTransformerFactory stf =
 (SAXTransformerFactory) TransformerFactory.newInstance();
 XMLFilter filter1 = stf.newXMLFilter(new StreamSource(stylesheet1));
 XMLFilter filter2 = stf.newXMLFilter(new StreamSource(stylesheet2));

 // Wire the output of the reader to filter1
 // and the output of filter1 to filter2
 // --A filter is a kind of reader
 // --Setting the parent sets the input reader
 // --Since a filter is a reader, the "parent" could be another filter
 filter1.setParent(reader);
 filter2.setParent(filter1);

 // Set up the output stream
 StreamResult result = new StreamResult(System.out);

 // Set up the transformer to process the SAX events generated
 // by the last filter in the chain
 Transformer transformer = stf.newTransformer();
 SAXSource transformSource = new SAXSource(filter2, input);
 transformer.transform(transformSource, result);
 }
 catch (TransformerConfigurationException tce) {
 // Error generated by the parser
 System.out.println ("\n** Transformer Factory error");
 System.out.println(" " + tce.getMessage());

 // Use the contained exception, if any
 Throwable x = tce;
 if (tce.getException() != null)
 x = tce.getException();
 x.printStackTrace();
 }
 catch (TransformerException te) {
 // Error generated by the parser
 System.out.println ("\n** Transformation error");
 System.out.println(" " + te.getMessage());

 // Use the contained exception, if any

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java (2 of 3) [8/22/2001 12:54:53 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java

 Throwable x = te;
 if (te.getException() != null)
 x = te.getException();
 x.printStackTrace();
 }
 catch (SAXException sxe) {
 // Error generated by this application
 // (or a parser-initialization error)
 Exception x = sxe;
 if (sxe.getException() != null)
 x = sxe.getException();
 x.printStackTrace();
 }
 catch (ParserConfigurationException pce) {
 // Parser with specified options can't be built
 pce.printStackTrace();
 }
 catch (IOException ioe) {
 // I/O error
 ioe.printStackTrace();
 }

 } // main

}

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/FilterChain.java (3 of 3) [8/22/2001 12:54:53 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/small-docbook-article.xml

<?xml version="1.0"?>
<Article>
 <ArtHeader>
 <Title>Title of my (Docbook) article</Title>
 </ArtHeader>
 <Sect1>
 <Title>Title of Section 1.</Title>
 <Para>This is a paragraph.</Para>
 </Sect1>
</Article>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/small-docbook-article.xml [8/22/2001 12:54:54 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/small-docbook-article-xml.html

<?xml version="1.0"?>
<Article>
 <ArtHeader>
 <Title>Title of my (Docbook) article</Title>
 </ArtHeader>
 <Sect1>
 <Title>Title of Section 1.</Title>
 <Para>This is a paragraph.</Para>
 </Sect1>
</Article>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/small-docbook-article-xml.html [8/22/2001 12:54:54 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/docbookToArticle-xsl.html

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="1.0"
 >
 <!-- XML output! -->
 <xsl:output method="xml"/>

 <xsl:template match="/">
 <ARTICLE>
 <xsl:apply-templates/>
 </ARTICLE>
 </xsl:template>

 <!-- Lower level titles strip out the element tag -->

 <!-- Top-level title -->
 <xsl:template match="/Article/ArtHeader/Title">
 <TITLE> <xsl:apply-templates/> </TITLE>
 </xsl:template>

 <xsl:template match="//Sect1">
 <SECT><xsl:apply-templates/></SECT>
 </xsl:template>

 <!-- Case-change -->
 <xsl:template match="Para">
 <PARA><xsl:apply-templates/></PARA>
 </xsl:template>

</xsl:stylesheet>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/samples/docbookToArticle-xsl.html [8/22/2001 12:54:59 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/filterout.txt

<html>
<body>
<h1 align="center">Title of my (Docbook) article</h1>
<h1>Title of Section 1.</h1>
<p>This is a paragraph.</p>
</body>
</html>

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/filterout.txt [8/22/2001 12:55:00 PM]

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/filterout.html

Title of my (Docbook) article

Title of Section 1.
This is a paragraph.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/xslt/work/filterout.html [8/22/2001 12:55:01 PM]

Bios for Contributing Authors

Bios for Contributing Authors

Eric Armstrong

Links to
Author's
Work

Bio Acknowledgments

XML Eric Armstrong contracts at Sun
Microsystems to help spread Java and
XML technology. He has been
programming and writing
professionally since before there were
personal computers. He has written for
JavaWorld and is the author of The
JBuilder 2 Bible.

The XML tutorial could not have been written
without the excellent explanations provided by
David Brownell, the original team lead. Rajiv
Mordani, Edwin Goei, and current project lead
James Duncan Davidson also proved
enormously valuable, guiding me through the
APIs while providing both technical advice
and design feedback.

http://java.sun.com/xml/jaxp-1.1/docs/tutorial/info/bios.html [8/22/2001 12:55:03 PM]

http://www.javaworld.com/
http://www.amazon.com/exec/obidos/ASIN/076453114X/qid%3D914287074/002-3490453-0137206
http://www.amazon.com/exec/obidos/ASIN/076453114X/qid%3D914287074/002-3490453-0137206

	sun.com
	Table of Contents
	Working with XML
	The XML Thread

	I. Understanding XML and the Java XML APIs
	1. A Quick Introduction to XML
	2. XML and Related Specs
	3. API Overview
	4. Designing an XML Data Structure

	II. Serial Access with SAX
	1. Writing a Simple XML File
	2a. Echoing an XML File with the SAX Parser
	2b. Additional Event Handlers
	3. Handling Errors with the Non-Validating Parser
	4. Substituting and Inserting Text
	5a. Creating a DTD
	5b. DTD & Nonvalidating Parser
	5c. Attributes and Entities in a DTD
	5d. Referencing Binary Entities
	6. Validating Parser
	7a. Parameter Entities and Conditional Sections
	7b. Parsing the Parameterized DTD
	8. Handling Lexical Events
	9. DTDHandler and EntityResolver

	III. Manipulating Contents with DOM
	1. Reading Data into a DOM
	2a. Displaying a DOM Hierarchy
	2b. Examining DOM Structure
	3. JTree from DOM
	4. Create & Manipulate a DOM
	5. Namespaces

	IV. Using XSLT
	1. Intro to XSLT
	2. Writing a DOM
	3. Generating XML from data
	4. Transforming XML
	5. Chaining Transformations

	Info
	This Is a Work in Progress!
	Bios for Contributing Authors

	Encoding Schemes
	Glossary
	Alpha Index

