
Text-Related
Objects

The Netscape document object model for forms includes
four text-related input objects — text, password,

textarea, and hidden. All four of these objects are used for
entry, display, or temporary storage of text data. While all of
these objects can have text placed in them by default as the
page loads, scripts can also modify the contents of these
objects. Importantly, all but the hidden objects retain their
user- or script-modified content during a soft reload (for
example, clicking the Reload button), except in Internet
Explorer 3. Hidden objects revert to their default values on all
reloads in all browsers.

A more obvious difference between the hidden object and
the rest is that its invisibility removes it from the realm of
user events and actions. Therefore, only the text-style object
properties apply to the hidden object.

The persistence of text and textarea object data through
reloads (and window resizes) makes these objects prime
targets for off-screen storage of data that might otherwise be
stored temporarily in a cookie. If you create a frame with no
size (for example, you set the COLS or ROWS values of a
<FRAMESET> tag to let all visible frames occupy 100% of the
space and assign the rest — * — to the hidden frame), you
can populate it with fields that act as shopping cart
information or other data holders. Therefore, if users have
cookies turned off or don’t usually respond affirmatively to
cookie requests, your application can still make use of
temporary client storage. The field contents may survive
unloading of the page, but whether this happens and for how
many navigations away from the page the contents last
depends on the visitor’s cache settings (or if the browser is
Internet Explorer 3, in which case no values preserve the
unloading of a document). If the user quits Navigator, the
field entry is lost.

2222C H A P T E R

✦ ✦ ✦ ✦

In This Chapter

Capturing and
modifying text
field contents

Triggering action
by entering text

Capturing individual
keystroke events

✦ ✦ ✦ ✦

434 Part III ✦ JavaScript Object and Language Reference

Text Object
Properties Methods Event Handlers

defaultValue blur() onBlur=

form focus() onChange=

name handleEvent() onFocus=

type select() onKeyDown=

value onKeyPress=

onKeyUp=

onSelect=

Syntax
Creating a text object:

<FORM>
<INPUT

TYPE=”text”
NAME=”fieldName”
[VALUE=”contents”]
[SIZE=”characterCount”]
[MAXLENGTH=”maxCharactersAllowed”]
[onBlur=”handlerTextOrFunction”]
[onChange=”handlerTextOrFunction”]
[onFocus=”handlerTextOrFunction”]
[onKeyDown=”handlerTextOrFunction”]
[onKeyPress=”handlerTextOrFunction”]
[onKeyUp=”handlerTextOrFunction”]
[onSelect=”handlerTextOrFunction”]>

</FORM>

Accessing text object properties or methods:

[window.] document.formName.fieldName.property |
method([parameters])

[window.] document.formName.elements[index].property |
method([parameters])

[window.] document.forms[index].fieldName.property |
method([parameters])

[window.]document.forms[index].elements[index].property |
method([parameters])

435Chapter 22 ✦ Text-Related Objects

About this object
The text object is the primary medium for capturing user-entered text. Browsers

tend to display entered text in a monospaced font (usually Courier or a derivative),
so you can easily specify the width (SIZE) of a field based on the anticipated
number of characters that a user may put into the field. The font is a fixed size and
always is left-aligned in the field. If your design requires multiple lines of text, use
the textarea object that follows.

Due to the limitations scripts have in updating information on an existing HTML
page (without assembling and rewriting an entire page in JavaScript), a common
practice is to use text objects to display results of a script calculation or other
processing. Such fields may stand alone on a page or be part of a table.

Unfortunately, these fields are not write-protected, so it’s easy to understand
how a novice user may become confused when he or she causes the text pointer
or selection to activate a field used exclusively for output, simply by tabbing
through a page. Of course, if such a script does not have an event handler attached
to it, no harm can come in manually changing the contents of a results field — but
the user may get mighty confused. A better choice for the scripter may be to
attach an onChange= event handler to output fields so that if a user attempts to
change the contents of a field, the calculation runs again or the previous result (if
stored in the script as a global variable) is automatically reinserted when the user
tabs or clicks out of that changed field.

Text object methods and event handlers use terminology that may be known to
Windows users but not to Macintosh users. A field is said to have focus when the
user clicks on or tabs into the field. When a field has focus, either the text insertion
pointer flashes, or any text in the field may be selected. Only one text object on a
page can have focus at a time. The inverse user action — clicking or tabbing away
from a text object — is called a blur. Clicking another object, whether it is another
field or a button of any kind, causes a field that currently has focus to blur.

If you don’t want the contents of a field to be changed by the user, you can force
the field to lose focus when a user tabs to or clicks on a field. Use the following
event handler in such a field:

onFocus=”this.blur()”

Focus and blur also interact with other possible user actions to a text object:
selecting and changing. Selecting occurs when the user clicks and drags across any
text in the field; changing occurs when the user makes any alteration to the content
of the field and then either tabs or clicks away from that field.

When you design event handlers for fields, be aware that a user’s interaction
with a field may trigger more than one event with a single action. For instance,
clicking a field to select text may trigger both a focus and select event. If you have
conflicting actions in the onFocus= and onSelect= event handlers, your scripts
can do some weird things to the user’s experience with your page. Displaying alert
dialog boxes, for instance, also triggers blur events, so a field that has both an
onSelect= handler (which displays the alert) and an onBlur= handler will get a
nasty interaction from the two.

As a result, you should be very judicious with the number of event handlers you
specify in any text object definition. If possible, pick one user action you want to
use to initiate some JavaScript code execution and deploy it consistently on the

436 Part III ✦ JavaScript Object and Language Reference

page. Not all fields require event handlers — only those you want to perform some
action as the result of user activity in that field.

Many newcomers also become confused by the behavior of the change event.
To prevent this event from being sent to the field for every character the user
types, any change to a field is determined only after the field loses focus by the
user’s clicking or tabbing away from it. At that point, instead of a blur event being
sent to the field, only a change event is sent, triggering an onChange= event
handler if one is defined for the field. This extra burden of having to click or tab
away from a field may entice you to shift any onChange= event handler tasks to a
separate button that the user must click to initiate action on the field contents.

Many scripters dream of possibilities for text objects that, alas, are simply not
possible in the current implementation, including the capabilities to dim the text
box to prevent entry, select a portion of the text, and change font and color
attributes.

Some of these items may be scriptable in the future, but we will have to wait
and see. In the meantime, some new functionality was added to the object in
Navigator 4. The biggest news was the addition of keystroke events, making it
possible to monitor keystrokes before they register their characters in the field.

Text objects (including the related textarea object) have one unique behavior
that can be very important to some document and script designs. Even if a default
value is specified for the content of a field (in the VALUE attribute), any text
entered into a field by a user or script persists in that field as long as the
document is cached in the browser’s memory cache (but Internet Explorer 3 has
no such persistence). Therefore, if users of your page enter values into some fields,
or your scripts display results in a field, all that data will be there later, even if the
user performs a soft reload of the page or navigates to dozens of other Web pages
or sites. Navigating back via the Go or Bookmarks menu entries causes the
browser to retrieve the cached version (with its field entries). To force the page to
appear with its default text object values, use the Open Location or Open File
selections in the File menu, or script the location.reload() method. These
actions cause the browser to load the desired page from scratch, regardless of the
content of the cache. When you quit and relaunch the browser, the first time it
goes to the desired page, the browser loads the page from scratch — with its
default values.

This level of persistence is not as reliable as the document.cookie property
because a user can reopen a URL at any time, thus erasing whatever was
temporarily stored in a text or textarea object. Still, this method of temporary data
storage may suffice for some designs. Unfortunately, you cannot completely hide a
text object in case the data you want to store is for use only by your scripts. The
TYPE=”hidden” form element is not an alternative here because script-induced
changes to its value do not persist across soft reloads.

If you prefer to use a text or textarea object as a storage medium but don’t want
users to see it, design the page to display in a nonresizable frame of height or
width zero. Use proper frame references to store or retrieve values from the fields.
Carrying out this task requires a great deal of work. The document.cookie may
not seem so complicated after all that.

To extract the current content of a text object, summon the
document.formName. fieldName.value property. Once you have the string value,
you can use JavaScript’s string object methods to parse or otherwise massage that

437Chapter 22 ✦ Text-Related Objects

text as needed for your script. If the field entry is a number and you need to pass
that value to methods requiring numbers, you have to convert the text to a
number with the help of the parseInt() or parseFloat() global functions.

Properties
defaultValue

Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Though your users and your scripts are free to muck with the contents of a text
object by assigning strings to the value property, you can always extract (and thus
restore, if necessary) the string assigned to the text object in its <INPUT> definition.
The defaultValue property yields the string parameter of the VALUE= attribute.

Example
Listing 22-1 has a simple form with a single field that has a default value set in

its tag. A function (resetField()) restores the contents of the page’s lone field to
the value assigned to it in the <INPUT> definition. For a single-field page such as
this, defining a TYPE=”reset” button or calling form.reset() works the same
way because such buttons reestablish default values of all elements of a form. But
if you want to reset only a subset of fields in a form, follow the example button and
function in Listing 22-1.

Listing 22-1: Resetting a Text Object to Default Value

<HTML>
<HEAD>
<TITLE>Text Object DefaultValue</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function upperMe(field) {

field.value = field.value.toUpperCase()
}
function resetField(form) {

form.converter.value = form.converter.defaultValue
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this)">
<INPUT TYPE="button" VALUE="Reset Field"

(continued)

438 Part III ✦ JavaScript Object and Language Reference

Listing 22-1 (continued)

onClick="resetField(this.form)">
</FORM>
</BODY>
</HTML>

Related Items: value property.

name
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Text object names are important for two reasons. First, if your HTML page is
used to submit information to CGI scripts, the input device passes the name of the
text object along with the data to help the server program identify the data being
supplied by the form. Second, you can use a text object’s name in its reference
within JavaScript coding. If you assign distinctive, meaningful names to your fields,
these names will help you read and debug your JavaScript listings (and will help
others follow your scripting tactics).

Be as descriptive about your text object names as you can. Borrowing text from
the field’s on-page label also helps you mentally map a scripted reference to a
physical field on the page. Like all JavaScript object names, text object names must
begin with a letter and be followed by any number of letters or numbers. Avoid
punctuation symbols with the exception of the very safe underscore character.

Although I urge you to use distinctive names for all objects you define in a
document, you can make a case for assigning the same name to a series of
interrelated fields — and JavaScript is ready to help. Within a single form, any
reused name for the same object type is placed in an indexed array for that name.
For example, if you define three fields with the name entry, the following
statements retrieve the value property for each field:

data = document.forms[0].entry[0].value
data = document.forms[0].entry[1].value
data = document.forms[0].entry[2].value

This construction may be useful if you want to cycle through all of a form’s
related fields to determine which ones are blank. Elsewhere, your script probably
needs to know what kind of information each field is supposed to receive, so it can
process the data intelligently. I don’t often recommend reusing object names, but
you should be aware of how JavaScript handles them in case you need this
construction. Unfortunately, Internet Explorer 3 does not turn like-named text input
objects into arrays. See “Form Element Arrays” in Chapter 21 for more details.

439Chapter 22 ✦ Text-Related Objects

Example
Consult Listing 22-2, where I use the text object’s name, convertor, as part of

the reference when assigning a value to the field. To extract the name of a text
object, you can use the property reference. Therefore, assuming that your script
doesn’t know the name of the first object in the first form of a document, the
statement is

objectName = document.forms[0].elements[0].name

Related Items: form.elements property; all other form element objects’ name
property.

type
Value: String Gettable: Yes Settable: No

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔

Use the type property to help you identify a text object from an unknown group
of form elements. For a text input object, the value is text.

Related Items: form.elements property.

value
Value: String Gettable: Yes Settable: Yes

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

A text object’s value property is the two-way gateway to the content of the
field. A reference to an object’s value property returns the string currently
showing in the field. Note that all values coming from a text object are string
values. If your field prompts a user to enter a number, your script may have to
perform data conversion to the number-as-string value (“42” instead of plain old
42) before a user can perform any math operations on it. JavaScript tries to be as
automatic about this data conversion as possible and follows some rules about it
(Chapter 27). If you see an error message that says a value is not a number (for a
math operation), the value is still a string.

Your script places text of its own into a field for display to the user by assigning
a string to the value property of a text object. Use the simple assignment
operator. For example

document.forms[0].ZIP.value = “90210”

440 Part III ✦ JavaScript Object and Language Reference

JavaScript is more forgiving about data types when assigning values to a text
object. JavaScript automatically converts any value to a string on its way to a text
object display. Even Boolean values get converted to their string equivalents “true”
or “false.” Scripts can place numeric values into fields without a hitch. But
remember that if a script later retrieves these values from the text object, they will
come back as strings.

Storing arrays in a field does require special processing. You need to use the
array.join() method to convert an array into a string. Each array entry is
delimited by a character you establish in the array.join() method. Later you
can use the string.split() method to turn this delimited string into an array.

Example
Important: Listings 22-2 and 22-3 feature a form with only one text input object.

The rules of HTML forms say that such a form will submit itself if the user presses
the Enter key whenever the field has focus. Such a submission to a form whose
action is undefined causes the page to perform a hard reload. Moreover, the form’s
onSubmit= event handler is not triggered with this kind of submission, so you
cannot set an event handler to prevent the submission. To see the results of either
listing, enter a value and then either press the Tab key or click anywhere outside of
the field.

As a demonstration of how to retrieve and assign values to a text object, Listing
22-2 shows how the action in an onChange= event handler is triggered. Enter any
lowercase letters into the field and click out of the field. I pass a reference to the
entire form object as a parameter to the event handler. The function extracts the
value, converts it to uppercase (using one of the JavaScript string object methods),
and assigns it back to the same field in that form.

Listing 22-2: Getting and Setting a Text Object’s Value

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function upperMe(form) {

inputStr = form.converter.value
form.converter.value = inputStr.toUpperCase()

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this.form)">
</FORM>
</BODY>
</HTML>

441Chapter 22 ✦ Text-Related Objects

I also show two other ways to accomplish the same task, each one more
efficient than the previous example. Both utilize the shortcut object reference to
get at the heart of the text object. Listing 22-3 passes the field object — contained
in the this reference — to the function handler. Because that field object contains
a complete reference to it (out of sight, but there just the same), you can access
the value property of that object and assign a string to that object’s value
property in a simple assignment statement.

Listing 22-3: Passing a Text Object (as this) to the Function

<HTML>
<HEAD>
<TITLE>Text Object Value</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function upperMe(field) {

field.value = field.value.toUpperCase()
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter lowercase letters for conversion to uppercase: <INPUT TYPE="text"
NAME="converter" VALUE="sample" onChange="upperMe(this)">
</FORM>
</BODY>
</HTML>

A more efficient way is to deal with the field values directly in an embedded
event handler — instead of calling an external function (which might still be useful
if other objects need this functionality). With the function removed from the
document, the event handler attribute of the <INPUT> definition changes to do all
the work:

<INPUT TYPE=”text” NAME=”converter” VALUE=”sample”
onChange=”this.value = this.value.toUpperCase()”>

The right-hand side of the assignment expression extracts the current contents
of the field and (with the help of the toUpperCase() method of the string object)
converts the original string to all uppercase letters. The result of this operation is
assigned to the value property of the field.

The application of the this keyword in the previous examples may be confusing
at first, but these examples represent the range of ways in which you can use such
references effectively. Using this by itself as a parameter to an object’s event
handler refers only to that single object — a text object in Listing 22-3. If you want
to pass along a broader scope of objects that contain the current object, use the
this keyword along with the outer object layer you want. In Listing 22-2, I sent the
entire form along by specifying this.form — meaning the form that contains
“this” object, which is being defined in the line of HTML code.

442 Part III ✦ JavaScript Object and Language Reference

At the other end of the scale, you can use similar-looking syntax to specify a
particular property of the “this” object. Thus, in the last example, I zeroed in on
just the value property of the current object being defined — this.value.
Although the formats of this.form and this.value appear the same, they
encompass entirely different ends of the range of focus — simply by virtue of the
meaning of the keywords to the right of the period. As long as you know that a
form is an object of larger scope than the currently defined object, you will know
that this.form includes an entire form object (and all its elements); conversely, if
you know that a text object has a property named “value,” you will know that a
reference to this.value focuses only on the value property of the currently
defined object. This is why it’s so important for JavaScript authors to be
completely familiar with both the object hierarchy and the range of property and
method names for those objects.

Related Items: form.defaultValue property.

Methods
blur()

Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Just as a camera lens blurs when it goes out of focus, a text object blurs when it
loses focus — when someone clicks or tabs out of the field. Under script control,
blur() deselects whatever may be selected in the field, and the text insertion
pointer leaves the field. The pointer does not proceed to the next field in tabbing
order, as it does if you perform a blur by tabbing out of the field manually.

Example
document.forms[0].vanishText.blur()

Related Items: focus() method; onBlur= event handler.

focus()
Returns: Nothing.

443Chapter 22 ✦ Text-Related Objects

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

For a text object, having focus means that the text insertion pointer is flashing
in that text object’s field (it means something different for buttons in a Windows
environment). Giving a field focus is like opening it up for human editing.

Setting the focus of a field containing text does not let you place the cursor at
any specified location in the field. The cursor usually appears at the beginning of
the text. To prepare a field for entry to remove the existing text, use both the
focus() and select() methods.

The focus() method does not work reliably in Navigator 3 for UNIX clients.
While the select() method selects the text in the designated field, focus is not
handed to the field.

Example
See Listing 22-4 for an example of an application of the focus() method in

concert with the select() method.

Related Items: select() method; onFocus= event handler.

handleEvent(event)
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔

See the discussion of the window.handleEvent() method in Chapter 14 and
the event object in Chapter 33 for details on this ubiquitous form element method.

select()
Returns: Nothing.

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Selecting a field under script control means selecting all text within the text
object. A typical application is one in which an entry validation script detects a
mistake on the part of the user. After alerting the user to the mistake (via a
window.alert() dialog box), the script finishes its task by selecting the text of the
field in question. Not only does this action draw the user’s eye to the field needing
attention (especially important if the validation code is checking multiple fields),

Note

444 Part III ✦ JavaScript Object and Language Reference

but it also keeps the old text there for the user to examine for potential problems.
With the text selected, the next key the user presses erases the former entry.

Trying to select a text object’s contents with a click of a button is problematic.
One problem is that a click of the button brings the document’s focus to the
button, which disrupts the selection process. For more ensured selection, the
script should invoke both the focus() and the select() methods for the field, in
that order. No penalty exists for issuing both methods, and the extra insurance of
the second method provides a more consistent user experience with the page.

Selecting a text object via script does not trigger the same onSelect= event
handler for that object as the one that triggers if a user manually selects text in the
field. Therefore, no event handler script is executed when a user invokes the
select() method.

Example
A click of the Verify button in Listing 22-4 sends the text object’s contents for

validation as all numbers. If the validation returns false, the script preselects the
field entry for the user. To make sure the selection takes place, you first set the
document’s focus to the field and then select its contents. If the focus was on the
field immediately before clicking the button, the selection may work without
requiring you to set the focus. But you cannot be sure of what the user will do
between entering text and clicking the button. Try commenting out (//) the
form.numeric.focus() statement, and then reload the document and see how
well the selection works by itself under a variety of circumstances. You will find
that setting the focus is a surefire method.

Listing 22-4: Selecting a Field

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// general purpose function to see if a suspected numeric input is a
number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.charAt(i)
if (oneChar < "0" || oneChar > "9") {

alert("Please make sure entries are numbers only.")
return false

}
}
return true

}
function checkIt(form) {

inputStr = form.numeric.value
if (isNumber(inputStr)) {

// statements if true
} else {

form.numeric.focus()
form.numeric.select()

445Chapter 22 ✦ Text-Related Objects

}
}

</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter any positive integer: <INPUT TYPE="text" NAME="numeric"><P>
<INPUT TYPE="button" VALUE="Verify" onClick="checkIt(this.form)">
</FORM>
</BODY>
</HTML>

Related Items: focus() method; onSelect= event handler.

Event handlers
onBlur=

onFocus=

onSelect=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

All three of these event handlers should be used only after you have a firm
understanding of the interrelationships of the events that reach text objects. You
must use extreme care and conduct lots of user testing before including more than
one of these three event handlers in a text object. Because some events cannot
occur without triggering others either immediately before or after (for example, an
onFocus= occurs immediately before an onSelect= if the field did not have focus
before), whatever actions you script for these events should be as distinct as
possible to avoid interference or overlap.

In particular, be careful about displaying modal dialog boxes (for example,
window.alert() dialog boxes) in response to the onFocus= event handler.
Because the text field loses focus when the alert displays and then regains focus
when the alert is closed, you can get yourself into a loop that is difficult to break
out of. If you should get trapped in this manner, try the keyboard shortcut for
reloading the page (Ctrl+R or C-R) repeatedly as you keep closing the dialog
window.

A question arises about whether data-entry validation should be triggered by
the onBlur= or onChange= event handler. An onBlur= validation cannot be fooled,
whereas an onChange= one can be (the user simply doesn’t change the bad entry

446 Part III ✦ JavaScript Object and Language Reference

as he or she tabs out of the field). What I don’t like about the onBlur= way is it can
cause a frustrating experience for a user who wants to tab through a field now and
come back to it later (assuming your validation requires data be entered into the
field before submission). As in Chapter 37’s discussion about form data validation,
I recommend using onChange= event handlers to trigger immediate data checking
and then using another last-minute check in a function called by the form’s
onSubmit= event handler.

Example
To demonstrate one of these event handlers, Listing 22-5 shows how you might

use the window’s status bar as a prompt message area when a user activates any
field of a form. When the user tabs to or clicks on a field, the prompt message
associated with that field appears in the status bar.

Listing 22-5: The onFocus= Event Handler

<HTML>
<HEAD>
<TITLE>Elements Array</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function prompt(msg) {

window.status = "Please enter your " + msg + "."
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter your first name:<INPUT TYPE="text" NAME="firstName"
onFocus="prompt('first name')"><P>
Enter your last name:<INPUT TYPE="text" NAME="lastName"
onFocus="prompt('last name')"><P>
Enter your address:<INPUT TYPE="text" NAME="address"
onFocus="prompt('address')"><P>
Enter your city:<INPUT TYPE="text" NAME="city"
onFocus="prompt('city')"><P>
</FORM>
</BODY>
</HTML>

447Chapter 22 ✦ Text-Related Objects

onChange=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔ ✔ ✔ ✔ ✔

Of all the event handlers for a text object, you will probably use the onChange=
handler the most in your forms (see Listing 22-6). This event is the one I prefer for
triggering the validation of whatever entry the user just typed in the field. The
potential hazard of trying to do only a batch-mode data validation of all entries
before submitting an entire form is that the user’s mental focus is away from the
entry of a given field as well. When you immediately validate an entry, the user is
already thinking about the information category in question. See Chapter 37 for
more about data-entry validation.

In Navigator 4, if you have both onChange= and any keyboard event handlers
defined for the same text field tag, the onChange= event handlers are ignored. This
is not true for Internet Explorer 4, where all events fire.

Example
Whenever a user makes a change to the text in a field in Listing 22-6 and then

either tabs or clicks out of the field, the change event is sent to that field,
triggering the onChange= event handler.

Because the form in Listing 22-6 has only one field, the same warning about the
effect of pressing the Enter key applies here as to Listings 22-1 and 22-2 earlier in
this chapter. Press Tab or click outside the field to trigger the onChange= event
handler without submitting the form.

Listing 22-6: Data Validation via an onChange= Event Handler

<HTML>
<HEAD>
<TITLE>Text Object Select/Focus</TITLE>
<SCRIPT LANGUAGE="JavaScript">
// general purpose function to see if a suspected numeric input is a
number
function isNumber(inputStr) {

for (var i = 0; i < inputStr.length; i++) {
var oneChar = inputStr.substring(i, i + 1)
if (oneChar < "0" || oneChar > "9") {

alert("Please make sure entries are numbers only.")
return false

}
}
return true

}
function checkIt(form) {

inputStr = form.numeric.value

(continued)

Note

448 Part III ✦ JavaScript Object and Language Reference

Listing 22-6 (continued)

if (isNumber(inputStr)) {
// statements if true

} else {
form.numeric.focus()
form.numeric.select()

}
}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter any positive integer: <INPUT TYPE="text" NAME="numeric"
onChange="checkIt(this.form)"><P>
</FORM>
</BODY>
</HTML>

onKeyDown=

onKeyPress=

onKeyUp=

Nav2 Nav3 Nav4 IE3/J1 IE3/J2 IE4/J3

Compatibility ✔ ✔

New text field events for Navigator 4 and Internet Explorer 4 let your scripts
capture user activity from the keyboard while the field has focus. The keyDown
event occurs the instant the user presses the key far enough to make contact; the
keyUp event occurs when electrical contact with the key breaks; and a keyPress
event occurs after the keyUp event, signaling the completion of a matched pair of
keyDown and keyUp events. No event exists to let you know when a key starts
repeating itself.

Whichever event(s) you trap for, you can also extract the ASCII (or UniCode in
Internet Explorer 4) value of the key. All of this event activity occurs before the
typed character ever appears in the field. This allows your scripts a chance to
filter out unwanted characters or even convert characters to different ones (for
example, turning all letters into their uppercase equivalents for storage in a
database).

449Chapter 22 ✦ Text-Related Objects

Navigator and Internet Explorer have different ways of revealing the typed
character to a script. But, as you can see in Listing 22-7, they are close enough that
you can accommodate both browsers in simple key capture event handlers.

For an event handler to inspect a key character, the event handler must pass
the event object that automatically accompanies such an event. The way you do
this is to pass the keyword event as one of the parameters to the function called
by the event handler:

onKeyPress=”filterKeys(event)”

Notice that the event keyword is not a string, but rather a reference to the
event object generated by the press of the key. You can also assign this kind of
event handler in a script statement in the following manner:

document.formName.fieldName.onkeypress = filterKeys

In this latter format, the event object is automatically passed to the function
whose reference is assigned to the event for the field object. Be aware, however,
that assignments like the previous one must be lower in the document than the
object for which the event hander is being assigned. Otherwise, the field won’t yet
be defined in the browser’s object model for the document, and the statement
generates an error during page loading.

You can control whether the keyboard action ever reaches the display area of
the text object. Like many of the objects in the document model, if an event
handler evaluates to return false, the event goes no further than the function
invoked by the event handler; but if the handler evaluates to return true, then
the natural behavior of the event carries on.

In Navigator 4, if you have both onChange= and any keyboard event handlers
defined for the same text field tag, the onChange= event handlers are ignored. This
is not true for Internet Explorer 4, where all events fire.

Example
Listing 22-7 is a simple script that inspects the key presses in a field expecting

only numbers. By checking the value of each key before it reaches the value of the
field, the event handler function can alert the user about the correct kind of
characters to enter. The checkIt() function receives the event object passed by
the event handler. To work with both Navigator and Internet Explorer, the function
does one differentiation about how to extract the value of the typed character,
depending on the browser version. After that, the value is in the charCode
variable, and the rest of the function works the same for both platforms.

Notice the construction of the event handler such that it evaluates to return
true or return false, depending on the results of the function. When the
handler evaluates to return false, the typed character does not appear in the
field, since in this case, I don’t want nonnumbers to show themselves in the field.

Note

450 Part III ✦ JavaScript Object and Language Reference

Listing 22-7: Keyboard Filtering for Numbers Only

<HTML>
<HEAD>
<TITLE>Keyboard Capture</TITLE>
<SCRIPT LANGUAGE="JavaScript">
function checkIt(e) {

var charCode = (navigator.appName == "Netscape") ? e.which :
e.keyCode

status = charCode // see ASCII character value!
if (charCode > 31 && (charCode < 48 || charCode > 57)) {

alert("Please make sure entries are numbers only.")
return false

}
return true

}
</SCRIPT>
</HEAD>

<BODY>
<FORM>
Enter any positive integer: <INPUT TYPE="text" NAME="numeric"
onKeyPress="return checkIt(event)"><P>
</FORM>
</BODY>
</HTML>

Learn more about handling events for Navigator 4 and cross-compatibility in
Chapter 39.

Related Items: event object.

Password Object
Properties Methods Event Handlers

defaultValue blur() onBlur=

form focus() onChange=

name handleEvent() onFocus=

type select() onKeyDown=

value onKeyPress=

onKeyUp=

onSelect=

451Chapter 22 ✦ Text-Related Objects

Syntax
Creating a password object:

<FORM>
<INPUT

TYPE=”password”
NAME=”fieldName”
[VALUE=”contents”]
[SIZE=”characterCount”]
[MAXLENGTH=”maxCharactersAllowed”]
[onBlur=”handlerTextOrFunction”]
[onChange=”handlerTextOrFunction”]
[onFocus=”handlerTextOrFunction”]
[onKeyDown=”handlerTextOrFunction”]
[onKeyPress=”handlerTextOrFunction”]
[onKeyUp=”handlerTextOrFunction”]
[onSelect=”handlerTextOrFunction”]>

</FORM>

About this object
A password-style field looks like a text object, but when the user types

something into the field, only asterisks or bullets (depending on your operating
system) appear in the field. For the sake of security, any password exchanges
should be handled by a server-side CGI program.

Many properties of the password object were blocked from scripted access until
Navigator 3. Scripts now can treat a password object exactly like a text object. This
might lead a scripter to capture a user’s Web site password for storage in the
document.cookie of the client machine. A password object value property is
returned in plain language, so such a captured password would be stored in the
cookie file the same way. Because a client machine’s cookie file can be examined
on the local computer (perhaps by a snoop during lunch hour), plain-language
storage of passwords is a potential security risk. Instead, develop a scripted
encryption algorithm for your page for reading and writing the password in the
cookie. Most password-protected sites, however, usually have a CGI program on
the server encrypt the password prior to sending it back to the cookie.

See the text object discussion for the behavior of password object’s properties,
methods, and event handlers. The type property for this object returns
“password”.

Textarea Object
Properties Methods Event Handlers

defaultValue blur() onBlur=

form focus() onChange=

name handleEvent() onFocus=

(continued)

452 Part III ✦ JavaScript Object and Language Reference

Properties Methods Event Handlers

type select() onKeyDown=

value onKeyPress=

onKeyUp=

onSelect=

Syntax
Creating a textarea object:

<TEXTAREA
NAME=”fieldName”
[ROWS=”rowCount”]
[COLS=”columnCount”]
[WRAP=”off” | “virtual” | “physical”]
[onBlur=”handlerTextOrFunction”]
[onChange=”handlerTextOrFunction”]
[onFocus=”handlerTextOrFunction”]
[onKeyDown=”handlerTextOrFunction”]
[onKeyPress=”handlerTextOrFunction”]
[onKeyUp=”handlerTextOrFunction”]
[onSelect=”handlerTextOrFunction”]>
defaultText

</TEXTAREA>
</FORM>

Accessing textarea object properties or methods:

[window.] document.formName.fieldName.property |
method([parameters])

[window.] document.formName.elements[index].property |

method([parameters])

[window.] document.forms[index].fieldName.property |

method([parameters])

[window.] document.forms[index].elements[index].property |

method([parameters])

About this object
Although not in the same syntax family as other <INPUT> elements of a form, a

textarea object is indeed a form input element. Any definition for a textarea
object must be written within the confines of a <FORM>...</FORM> tag pair.

A textarea object closely resembles a text object, except for attributes that
define its physical appearance on the page. Because the intended use of a textarea
object is for multiple-line text input, the attributes include specifications for height

453Chapter 22 ✦ Text-Related Objects

(number of rows) and width (number of columns in the monospaced font). No
matter what size you specify, the browser displays a textarea with horizontal and
vertical scrollbars. Neither the user nor a script can resize the field, nor does text
wrap within the visible rectangle of the field unless you set the WRAP attribute to
“virtual” or “physical”. Instead, the user is encouraged to press Enter to make
manual carriage returns. If the user fails to do so, the text scrolls for a significant
distance horizontally (the horizontal scrollbar appears when wrapping has the
default off setting). This field is, indeed, a primitive text field by GUI computing
standards.

All properties, methods, and event handlers of text objects apply to the textarea
object. They all behave exactly the same way (except, of course, for the type
property, which is “textarea”). Therefore, refer to the previous listings for the
text object for scripting details.

Carriage returns inside textareas
The three classes of operating systems supported by Netscape Navigator —

Windows, Macintosh, and UNIX — do not agree about what constitutes a carriage
return character in a text string. This discrepancy carries over to the textarea
object and its contents on these platforms.

When a user enters text and uses Enter/Return on the keyboard, one or more
unseen characters are inserted into the string. In the parlance of JavaScript’s literal
string characters, the carriage return consists of some combination of the new line
(\n) and return (\r) character. The following list shows the characters inserted
into the string for each operating system category.

Operating System Character String

Windows \r\n

Macintosh \r

Unix \n

This tidbit is valuable if you need to remove carriage returns from a textarea for
processing in a CGI or local script. The problem is that you obviously need to
perform platform-specific operations on each. For the situation in which you must
preserve the carriage return locations, but your server-side database cannot
accept the carriage return values, I suggest you use the string.escape() method
to URL-encode the string. The return character is converted to %0D and the
newline character is converted to %0A. Of course these characters occupy extra
character spaces in your database, so these additions must be accounted for in
your database design.

As far as writing carriage returns into textareas, the situation is a bit easier.
From Navigator 3 onward, if you specify any one of the combinations in the
preceding list, all platforms know how to automatically convert the data to the
form native to the operating system. Therefore, you can set the value of a textarea
object to “1\r\n2\r\n3” in all platforms, and a columnar list of the numbers 1, 2,
and 3 will appear in those fields. Or, if you URL-encoded the text for saving to a

454 Part III ✦ JavaScript Object and Language Reference

database, you can unescape that character string before setting the textarea value,
and no matter what platform the visitor has, the carriage returns are rendered
correctly. Upon reading those values again by script, you can see that the carriage
returns are in the form of the platform (as shown in the previous table).

Hidden Object
Properties Methods Event Handlers

defaultValue (None) (None)

form

name

type

value

Syntax
Creating a hidden object:

<FORM>
<INPUT

TYPE=”hidden”
NAME=”fieldName”
[VALUE=”contents”]>

</FORM>

Accessing hidden object properties:

[window.] document.formName.fieldName.property
[window.] document.formName.elements[index].property

[window.] document.forms[index].fieldName.property

[window.] document.forms[index].elements[index].property

About this object
A hidden object is a simple string holder within a form object whose contents

are not visible to the user of your Web page. With no methods or event handlers,
the hidden object’s value to your scripting is as a delivery vehicle for strings that
your scripts need for reference values or other hard-wired data.

The hidden object plays a vital role in applications that rely on CGI programs on
the server. Very often, the server has data that it needs to convey to itself the next
time the client makes a submission (for example, a user ID captured at the
application’s login page). A CGI program can generate an HTML page with the
necessary data hidden from the user but located in a field transmitted to the
server at submit time.

455Chapter 22 ✦ Text-Related Objects

Along the same lines, a page for a server application may present a user-friendly
interface that makes data entry easy for the user. But on the server end, the
database or other application requires that the data be in a more esoteric format.
A script located in the page generated for the user can perform the last minute
assemblage of user-friendly data into database-friendly data in a hidden field. When
the CGI program receives the request from the client, it passes along the hidden
field value to the database.

I am not a fan of the hidden object for use on client-side-only JavaScript
applications. If I want to deliver with my JavaScript-enabled pages some default data
collections or values, I do so in JavaScript variables and arrays as part of the script.

Because scripted changes to the contents of a hidden field are fragile (for
example, a soft reload erases the changes), the only place you should consider
making such changes is in the same script that submits a form to a CGI program or
in a function triggered by an onSubmit= event handler. In effect, you’re just using
the hidden fields as holding pens for the scripted data to be submitted. For more
persistent storage, use the document.cookie property or genuine text fields in
hidden frames, even if just for the duration of the visit to the page.

For information about the properties of the hidden object, consult the earlier
listing for the text object.

✦ ✦ ✦

