
P2/VB/swg1 TY JBuilder 2 in 21 Weeks 31318-9 dietsch Intro Lp#2

Introduction
Learn the Java language and how to use JBuilder to create exciting and useful applets,
applications, and software components with Teach Yourself JBuilder 2 in 21 Days. Java is
now the language of choice for creating applications, applets, and software components
for computers and the entire computing enterprise. JBuilder is a powerful inte-
grated development environment that brings every level of Java software development
within easy reach, including visual programming or RAD (Rapid Application Develop-
ment). With Java and JBuilder there is no limit placed on your imagination and creativ-
ity. The Internet, the World Wide Web, in fact, the entire computing enterprise, are yours
to create the Java programs for today and the future. Teach Yourself JBuilder 2 in 21
Dayswill teach you all you need to know to start you on your path.

How This Book Is Structured
Teach Yourself JBuilder 2 in 21 Daysis intended to be read and absorbed over the course
of three weeks. Nevertheless, the pace you keep is up to you. During each week you’ll
read seven chapters that present concepts related to Java and JBuilder and the creation of
Java software. Each week covers a different general area of Java software development.
The following is an outline of what to expect.

Week 1
During Week 1, you’re introduced to the Java language and the JBuilder integrated devel-
opment environment. You create Java applications and applets using JBuilder and use
JBuilder’s rapid application development (RAD) capabilities including visual program-
ming.

Day 1
Day 1, “Introduction to JBuilder,” explains what Java is, how it relates to JBuilder, and
how to install JBuilder properly.

Day 2
Day 2, “Java Basics,” shows you the building blocks of your Java programs, such as vari-
ables, types, expressions, operators, arrays, strings, conditionals, and loops.

Day 3
Day 3, “Java Intermediate,” discusses classes and objects and how they relate to each
other. You also explore behaviors and attributes.

01.31318-9 Intro 9/23/98 9:45 AM Page 1

P2/VB/swg1 TY JBuilder 2 in 21 Weeks 31318-9 dietsch Intro Lp#2

2 Sams Teach Yourself JBuilder 2 in 21 Days

Day 4
Day 4, “Java Advanced,” discusses protection for class variables and methods,constant
variables,classes that can’t be subclassed, and methods that can’t be overridden.

Day 5
Day 5, “JBuilder IDE,” examines JBuilder’s extensive menu system and shows you how
to customize the JBuilder integrated development environment.

Day 6
Day 6, “User Interface Design,” shows you the UI Designer, the Component Palette, and
the Java Abstract Windowing Toolkit (AWT).

Day 7
Day 7, “JavaBeans Component Library,” concludes Week 1 with an exploration of the
Component Palette, which presents tabbed pages containing a wide range of JavaBeans
software components that you can use in your JBuilder visual programming, or RAD,
projects.

Week 2
During Week 2 you dig into building solid Java software, whether it be applets,applica-
tions,or software components. All of the elements you learned about Java and JBuilder
in Week 1 come together in Week 2,enabling you to create Java programs.

Day 8
Day 8, “Applets,Applications,and Wizards,” begins Week 2 by showing you how to cre-
ate Java applications,including how to pass arguments to a Java program from a com-
mand line.

Day 9
Day 9, “Graphics,Fonts,and Multimedia,” discusses how the graphics system works in
Java. You explore the Graphics class and Java coordinate system used to draw to the
screen. You also see how applets paint and repaint to a window.

Day 10
Day 10,“Streams and I/O,” explains how you create, use, and detect the end of input
streams. You learn how to use and nest filtered input streams. And you learn how to cre-
ate, use, and close output streams.

01.31318-9 Intro 9/23/98 9:45 AM Page 2

Day 11
Day 11,“Compiling and Debugging,” explores using the Make and Rebuild commands
to compile your Java programs in the JBuilder integrated development environment. You
also learn how to get context-sensitive help to correct errors in your code.

Day 12
Day 12,“Handling Events,” shows you how your Java application responds to messages
sent to it by the system. You learn how to handle event messages in your Java applica-
tions.

Day 13
Day 13,“Exception Handling,” shows you how to allow your program to cope with
exceptions easily and to occasionally execute alternative code rather than simply shutting
down.

Day 14
Day 14,“JBuilder Database Architecture,” teaches you JDBC and how it affects applet
and application development.

Week 3
During Week 3 you learn about advanced Java and JBuilder topics including how to
create JavaBeans software components,building database applications,and creating
network-aware Java applications.

Day 15
Day 15,“Building Database Applications,” shows you how to set up Local InterBase,
along with data sources. Create, update, and delete database tables. Design database
application user interfaces.

Day 16
Day 16,“Multithr eading,” explains what threads are and how they can make your pro-
grams work better.

Day 17
Day 17,“Persistence,” explores serializable and externalizable objects and teaches you
about persistence security issues.

Introduction 3

P2/VB/swg1 TY JBuilder 2 in 21 Weeks 31318-9 dietsch Intro Lp#2

01.31318-9 Intro 9/23/98 9:45 AM Page 3

Day 18
Day 18,“Building JavaBeans,” shows you the JavaBeans software component model and
how to create these reusable software components known as beans. You also learn how to
distribute the functionality of your code without distributing the source code itself.

Day 19
Day 19,“Deploying Java Programs,” teaches you how to prepare and place program files
making sure that the program works properly in its intended environment.

Day 20
Day 20,“Java Network Communications,” teaches you how to create networking links
in applets using the URLConnection, Socket, and SocketServer classes and handle
network-related exceptions.

Day 21
Day 21,“Inside Java,” explores the inner workings of the Java system,including the Java
Virtual Machine, bytecodes,garbage collection,and security.

Conventions Used in This Book
Text that you type and text that you see on-screen appears in monospace type:

It will look like this.

to mimic the way text looks on your screen.

Variables and placeholders (words that stand for what you will actually type) appear in
italic monospace.

Each chapter ends with questions pertaining to that day’s subject matter, with answers
from the author. Most chapters also include an exercise section and a quiz designed to
reinforce that day’s concept. (The answers appear in Appendix A.)

4 Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder 2 in 21 Weeks 31318-9 dietsch Intro Lp#2

A Note presents interesting information related to the discussion.Note

A Tip offers advice or shows you an easier way of doing something.Tip

01.31318-9 Intro 9/23/98 9:45 AM Page 4

New terms are introduced using the New Term icon.

The Type icon identifies code that you can type in yourself. It usually appears
next to a listing.

The Output icon highlights the output produced by running the Java application
or applet.

The Analysis icon designates the author’s line-by-line analysis.

When a line of code is too long to fit on one line of this book, it is broken at a conve-
nient place and continued to the next line. The continuation is preceded by a special code
continuation character (➥).

Web Sites for Further Information
Two Web sites are particularly useful to the Java programmer who uses JBuilder. The
offical Java Web site is provided by JavaSoft, a subsidiary of Sun Microsystems Inc.,
at http://www.javasoft.com. The official JBuilder Web site is provided by Inprise
Corporation at http://www.inprise.com/jbuilder/.

Introduction 5

P2/VB/swg1 TY JBuilder 2 in 21 Weeks 31318-9 dietsch Intro Lp#2

A Caution alerts you to a possible problem and gives you advice on how to
avoid it.

Caution

NEW TERM

TYPE

OUTPUT

ANALYSIS

01.31318-9 Intro 9/23/98 9:45 AM Page 5

http://www.javasoft.com
http://www.inprise.com/jbuilder/

01.31318-9 Intro 9/23/98 9:45 AM Page 6

At a Glance
Day 1 Introduction to JBuilder

2 Java Basics

3 Java Intermediate

4 Java Advanced

5 JBuilder IDE

6 User Interface Design

7 JavaBeans Component Library

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Wk1AAG Lp#1

WEEK 1 1

2

3

4

5

6

7

02.31318-9 Wk1AAG 9/23/98 9:45 AM Page 7

P/V TY Generic in 14/21/Week ISBN# Name Part Lp#

02.31318-9 Wk1AAG 9/23/98 9:45 AM Page 8

DAY 1

WEEK 1

Introduction to JBuilder
Welcome to Teach Yourself JBuilder in 21 Days. During the next few weeks,
you’ll learn all about Borland’s JBuilder visual development environment and
the underlying language—Java. You’ll discover how to program standalone Java
applications and how to create Java applets that will run over the Internet and
the World Wide Web.

An appletis an interactive program that runs inside a Web page when
that page is displayed by a Java-capable browser, such as Netscape’s

Navigator, Microsoft’s Internet Explorer, or Sun’s HotJava browser.

You’ll also learn how to debug, test, and deploy your applications and applets.
This will be critical, due to the nature of Java programming and the fact that
Java programs can be run on any number of platforms.

Those are the overall goals for this book. Today, you’ll begin your journey by
learning about the following:

• What Java is and how it relates to JBuilder

• How to install JBuilder properly

• Where to look for help in the disk files and documentation

NEW TERM

03.31318-9 CH01 9/23/98 9:46 AM Page 9

• Where to look online for additional resources

• How to create your first applet and application program

What Is Java?
Java is an object-oriented programming language developed by Sun Microsystems,a
company best known for its high-end UNIX workstations. Originally modeled after C++,
the Java language was designed to be small,portable, robust,and object-oriented. These
features make it the “language of choice” for the World Wide Web, which can be
accessed from many different platforms and operating systems.

Java applets are dynamic and interactive, so they expand the types of transactions that
users can accomplish on the Web. After you’ve created and compiled a Java applet,you
embed it in an HTML (Hypertext Markup Language) Web page and then publish the
Web page on a Web site. If the user is accessing the Web site with a Java-enabled
browser, the browser will download the embedded applet’s binary code to the user’s
computer system and execute it.

Technically, you won’t need to have a browser available on your system to test your
applets because JBuilder has its own integrated debugger (Day 11,“Compiling and
Debugging”) and also includes Sun’s appletviewer. However, it is recommended that you
do your final testing under commercially available browsers.

Not all browsers are created equal,so you will want to have several of them handy to test
your applets. Currently, the most popular browsers are Netscape Navigator and Microsoft
Internet Explorer, which you can download from the Netscape or Microsoft Web sitesat
http://www.netscape.com or http://www.microsoft.com, respectively. Sun’s HotJava
browser is also available for downloading from the HotJava Web page at
http://java.sun.com/products/hotjava.

In addition to creating applets that can be run from browsers, you can create full-fledged
application programs to solve the same programming problems as you can in other pro-
gramming languages,such as C,C++, Pascal,or Visual Basic. In fact,Sun’s HotJava
browser is itself written in Java,as is much of JBuilder.

Java’s Past and Present
The Java language was originally created to solve the problems surrounding personal
digital assistants (PDAs) and consumer electronic products,such as microwaves and
toaster ovens. The language had to be robust,small,and portable. None of the program-
ming languages available at the time (circa 1990) would fill the bill. Some were too com-
plex to write really robust code, and none of them was portable. Code had to be recom-

10 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

03.31318-9 CH01 9/23/98 9:46 AM Page 10

Introduction to JBuilder 11

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

piled for each target chip, and consumer electronics chips were proprietary and fre-
quently updated.

The language that met all those requirements didn’t exist, so the folks at Sun decided to
create a new language that would. PDAs fizzled (although they are threatening to make a
comeback), and the consumer electronics market never really made use of the new lan-
guage. However, the Java team discovered that Java’s design made it ideal for another
purpose:programming on the Internet. In 1993,the World Wide Web was just becoming
popular, with its myriad platforms and operating systems,and it desperately needed a
platform-independent language—so Java found a new home.

Java Is Platform-Independent
The Java language was designed specifically to be platform-independent. This means that
programs written in Java can be compiled once and run on any machine that supports
Java. So,what exactly does platform-independence mean,and how does it differ from
what was available before Java?

Platform-independencerefers to a program’s capability to run on various com-
puter systems without the necessity of being recompiled. A platform means a

particular processor, like the Intel 80x86,the Intel Pentium,the Motorola 68xxx, or the
PowerPC.

Traditional compiled programming languages are compiled to machine-level binary code
that is, of course, specific to the machine or platform on which it is compiled. The
advantage is that the compiled binary runs quickly because it is running in the machine’s
native language. The disadvantage is that a program written in a traditional language has
to be recompiled to binary code for each different hardware platform before it can be run
on that machine. On the other hand, whereas traditional interpreted programming lan-
guages are machine-neutral and can be run without recompilation on various platforms,
they generally run much slower than compiled applications.

Java has incorporated the best of both worlds. The Java team created a platform-specific
layer, called the Java Virtual Machine (Java VM), which interfaces between the hardware
and the Java program. When you install a Java-capable browser on your computer, for
example, a copy of the Java interpreter is also installed, which is what enables your
browser to execute Java applets and your system to run standalone Java programs.

NEW TERM

A virtual machine is a software implementation of the heart of a computing
machine, the central processing unit, along with an operating system. The
Java VM provides an operating system with threading, input, output, and
display capabilities.

Note

03.31318-9 CH01 9/23/98 9:46 AM Page 11

Java interpreterandJava runtimeare alternative terms for the Java Virtual
Machine (VM).

The Java VM presents the same interface to any applets that attempt to run on the sys-
tem,so to applets,all machines look the same. The applet itself is compiled into a form
of interpretable code called Java bytecodes. This special form of code can be run on any
platform that has the Java VM installed.

Bytecodesare a set of instructions that are similar to machine code but are not
processor-specific. They are interpreted by the Java VM.

Sun’s trademark phrase “wr ite once, run anywhere” is the promise that is fulfilled by
Java. This,above all other features of the language, is what makes it so essential for
interactive Web programming.

Java Is Object-Oriented
Java is a real object-oriented language, which enables you to create flexible, modular
programs. It includes a set of class libraries that provide basic data types,system input
and output capabilities, and other utility functions. It also provides networking, common
Internet protocol,image handling, and user-interface toolkit functions. Java’s object
classes provide a rich set of functionality, and they can be extended and modified to cre-
ate new classes specific to your programming needs.

Java Is Easy to Learn
Among the original designgoals of the Java team members was to create a language that
was small and robust. Because they started from scratch, they were able to avoid some of
the pitfalls of other more complex languages. By eliminating things such as pointers,
pointer arithmetic, and the need to manage memory explicitly, the Java development
team made Java one of the easier languages to learn. However, you still can do anything
in Java that you can do in traditional languages. If you have previously used a high-level
object-oriented programming language, such as C++,much of Java will look familiar to
you.

What Is JBuilder?
JBuilder is Borland’s visual development environment for Java. It includes a project
browser, a code editor, a visual designer, a Component palette, a property inspector, an
integrated debugger, and a compiler. Each of these elements will be introduced on Day 5,
“JBuilder IDE.” JBuilder also includes Sun’s latest Java Development Kit (JDK),and
together they form a complete programming environment that enables you to be instantly
productive with Java.

12 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

NEW TERM

NEW TERM

03.31318-9 CH01 9/23/98 9:46 AM Page 12

Introduction to JBuilder 13

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

JBuilder Makes Java Even Easier
JBuilder has incorporated Borland’s “Two-Way Tools” (originally introduced by Borland
in the Delphi product),which keep your visual design and the source code synchronized.
Any changes you make to the visual design are added automatically to the source code
for you. Any changes made to the source code that affect the visual interface are also
reflected in the visual design. This synchronization enables you to build your program in
whichever mode is the most appropriate for the program element on which you’re work-
ing, making development faster and easier.

JBuilder Extends Functionality
JBuilder encapsulates and extends much of Java’s functionality in components that are
also known as JavaBeans.

JavaBeansis a specification for reusable software components containing proper-
ties (attributes),methods (behaviors), and events (messages). One of these com-

ponents,known as a Java bean,can be as simple as a text label or as complex as a real-
time Internet communications program.

JavaBeans gives you a way to visually design your Java programs with drag-and-drop
components. JavaBeans components extend Sun’s Java classes to enhance the visual and
nonvisual design elements of your programs. The programs you design using JBuilder’s
components follow Sun’s standards.

JBuilder’s Component palette contains a rich set of ready-made JavaBeans for you to use
in your Java applets and applications. Based on the JavaBeans Component Library
(JBCL), these components are covered in more detail on Day 7, “JavaBeans Component
Library.”

Installing JBuilder
JBuilder’s install program takes care of most of the details of installation, but there are
still a few things you should do to make sure things go smoothly. Preparation is the key.
This section discusses how to install JBuilder 2.0 for Windows from the CD, what to
back up after installation, and how to uninstall.

Before you install JBuilder, you should read a few things:

• The CD-ROM sleeve

• The SETUP\JBUILDER\INSTALL.TXT file

• The SETUP\JBUILDER\README.TXT file

NEW TERM

03.31318-9 CH01 9/23/98 9:46 AM Page 13

It’s very important that you read these before invoking the install program so that you
can be prepared in case anything goes wrong. You might also want to print INSTALL.TXT
so that you’ll have the troubleshooting information handy—just in case.

14 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

When installing large software packages, it’s best to take the time to do a
full system backup before proceeding. Also, it’s typically a good idea to dis-
able any virus-detection software running on your computer during the
install process.

Tip

JBuilder is distributed in three editions:Standard, Professional (Pro), and Client/Server
(C/S). Most of the installation instructions apply to all three versions,and any differences
are appropriately noted.

Requirements
JBuilder’s installprogram (InstallShield) requires at least 15MB of available disk space
in your Windows TEMP directory to hold its temporary files during installation, no matter
what drive you choose for your JBuilder installation. JBuilder itself requires approxi-
mately 100MB of disk space for a compact install.

Installation
JBuilder 2.0 for Windows is distributed on CD. Before beginning, be sure to save your
work and close all other applications. You can invoke the InstallShield installation pro-
gram in several ways. The following is a very common method of starting the installa-
tion:

1. Load the CD-ROM into your CD-ROM drive.

2. From the Start menu, select Programs | Windows Explorer.

3. Locate your CD-ROM drive in the left pane, and double-click to expand the node.

4. In the right pane, double-click on INSTALL.EXE to launch the install program.

After the install program starts, it launches the setup programs associated with each
application you want to install. The InstallShield setup program starts, and you are given
an opportunity to read the INSTALL.TXT file. If you haven’t read it yet, be sure to do so
now, and then click the Next button. The install program is initialized, and in the next
dialog you are asked to choose which type of installation you want to perform: Typical,
Compact,or Custom. Fill out the requested information in each dialog box, and click the
Next button to proceed. If you need assistance with any of the options,click the Help
button.

03.31318-9 CH01 9/23/98 9:46 AM Page 14

Introduction to JBuilder 15

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

After you’ve answered all its questions,InstallShield begins uncompressing and writing
files to your hard disk. On a 200MHz Pentium MMX, the Typical install takes less than
five minutes. At the end of the installation, you are given the opportunity to view the
README.TXT file. If you didn’t read it prior to installation, you should read it now. It con-
tains important information that will save you time and trouble later.

If you have a modem, take advantage of the online registration offered by
the JBuilder installation program. If not, be sure to fill out the registration
card to qualify for Installation Hotline technical support and notification of
upgrades and new product offers.

Tip

After Installing
During the installation, changes are made to the Windows Registry. Nevertheless,
JBuilder doesn’t automatically set the environmental variables that the Java command-
line tools depend on. A batch file is provided in the JBuilder package to set the environ-
mental variables used when running JDK and Borland command-line tools from your
console window or DOS prompt.

Don’t unzip files such as classes.zip. These are not regular zip archives.
These are special compressed Java archives that Java and JBuilder require in
order to work properly. If you’ve already unzipped them, you’ll need to rein-
stall to recover those files.

Caution

Setting Windows Environmental Variables
The bestway to ensure that the environmental variables necessary to run command-line
Java tools in Windows are set every time you spawn a DOS session is to insert the fol-
lowing line in your AUTOEXEC.BAT file:

c:\jbuilder2\bin\setvars.bat c:\jbuilder2

To do this,select Shut Down from the Start menu, click the Restart the computer in MS-
DOS mode? radio button,and then click the Yes button. When at the DOS prompt,edit
your AUTOEXEC.BAT file, save it to disk,and then type exit and press Enter to return to
Windows. Now, you’ll be able to use any of the Java command-line tools from a DOS
session window.

03.31318-9 CH01 9/23/98 9:46 AM Page 15

Setting Windows NT Environmental Variables
Under Windows NT, use the setvars.bat file to set environmental variables for a partic-
ular console window session. Type the following at the command prompt,and you’re
ready to use the Java command-line tools:

c:\jbuilder2\bin\setvars.bat c:\jbuilder2

Your console windows can be ready to run command-line Java tools anytime they’re
opened if you set the environmental settings manually. First, be sure that you are logged
in using an Administrator account. Contact your computer administrator if you don’t
have administrative permissions. Point to the My Computer icon on your desktop and
click your right mouse button. A shortcut menu appears. Select the Properties command
from the menu, and the System Properties dialog box appears. Click on the Environment
tab to switch to the dialog box’s Environment page, shown in Figure 1.1.

16 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

FIGURE 1.1.
Change environment
variable settings on
the System Properties
dialog box
Environment page.

You need to do two things:modify the Path variable in the System Variables list and add
a CLASSPATH variable in the User Variables for Administrator list.

Select the Path variable from the System Variables list. The variable name and value
appear in text boxes at the bottom of the dialog box page. At the end of the existing val-
ues,add a semicolon followed by the path to the Java Development Kit programs,typi-
cally C:\jbuilder2\java\bin\. Your System Properties dialog box Environment page
should look as shown in Figure 1.2. Click the Set button when you’re done.

03.31318-9 CH01 9/23/98 9:46 AM Page 16

Introduction to JBuilder 17

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

Next, type CLASSPATH into the Variable text box at the bottom of the dialog box page,
deleting any variable name that was previously there. In the Value text box, type the path
to the Java Development Kit classes,typically C:\jbuilder2\java\lib\classes.zip,
followed by a semicolon and the path to the root of your personal class library, typically
C:\jbuilder2\myclasses\. Your System Properties dialog box Environment page
should look as shown Figure 1.3. Click the Set button when you’re done.

FIGURE 1.2.
Your Path variable
values should look
similar to these.

FIGURE 1.3.
Your CLASSPATH vari-
able values should
look similar to these.

Close the System Properties dialog box by clicking the OK button. You should now be
able to run command-line Java tools.

03.31318-9 CH01 9/23/98 9:46 AM Page 17

Uninstalling
The UnInstallShield utility is copied to your Windows directory during installation. In
addition, an InstallShield Uninstall (ISU) file containing information about your JBuilder
installation is created:

C:\JBuilder\DelsL1.ISU

The ISU file contains information that the uninstall utility needs in order to complete its
work, so be sure not to inadvertently delete this file.

18 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

You should always use Add/Remove Programs in the Windows Control Panel
when you uninstall programs from your computer.

Note

If the Local InterBase Server was installed (Pro and C/S Editions),you must shut it
down to prepare for uninstallation. In the Windows taskbar, right-click on the Local
InterBase Server glyph (the CPU with the green globe),and select Shutdown from the
pop-up menu.

To uninstall,follow these steps:

1. From the Start menu, select Settings | Control Panel.

2. Double-click the Add/Remove Programs icon.

3. In the Add/Remove Programs Properties dialog’s Install/Uninstall page, select
Borland JBuilder in the list box, and then click the Add/Remove button.
Add/Remove Programs calls the UnInstallShield utility provided by JBuilder
(UNINST.EXE), which removes the numerous Registry entries made by JBuilder’s
installation program,along with all the JBuilder files.

4. In the Confirm File Deletion dialog, click the Yes button. You will be asked to con-
firm deletions of any shared files that the uninstall program determines are no
longer used by any other programs (per Registry entries).

5. When the uninstallation is complete, in the Add/Remove Programs Properties dia-
log’s Install/Uninstall page, click the OK button.

There might be files that are created during use of JBuilder that the uninstall program is
unaware of. In particular, any project files that you’ve created and left in the JBuilder
directory tree will not be deleted, so you might want to check for such files after unin-
stalling and before deleting the directory tree.

03.31318-9 CH01 9/23/98 9:46 AM Page 18

Introduction to JBuilder 19

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

Where to Get Help
JBuilder is very intuitive and easy to use. However, at times you will need suggestions
on how to complete a task or aid in understanding how to use the product. JBuilder’s
Help menu gives you access to online HTML help files with full search capabilities.
There are also several electronic documents,such as README.TXT, that contain last-
minute revisions and updates to the product. In addition, extensive documentation in the
form of paper manuals (User’s Guide, Component Writer’s Guide, and so on) are pro-
vided in the Pro and C/S Editions of JBuilder.

Help Files and E-Docs
Select Help | Help Topics to see how JBuilder’s help files are organized. JBuilder pre-
sents its HTML help files in a browser-style window with a contents tree in the left pane
and the relevant help text in the right pane.

You can also open these files independently of JBuilder by loading the HTML file into
your Internet browser. Opening help files this way can be particularly useful when you
want to examine multiple help files simultaneously. This procedure also makes it possi-
ble to Alt+Tab between the help file and the IDE.

Instructions on how to use the online help in a browser can be found in the
Online help under the topic “Using a Web browser to view JBuilder docu-
mentation” in the “Welcome to JBuilder” book under the section titled
“Using the Help Viewer.”

Tip

Paper Documentation
JBuilder’s printed documentation consists of the following:

• User’s Guide(Pro and C/S):Covers fundamental skills,programming topics,and
sample applications. The demo files discussed in this manual are in the
JBuilder\samples\borland subdirectories.

• Programmer’s Guide(Pro and C/S):Is made up of the “Component Writer’s
Guide” and the “Database Application Developer’s Guide.” The “Component
Writer’s Guide”covers the JavaBeans component model and the tasks associated
with creating JavaBeans components from scratch. The “Database Application
Developer’s Guide”covers the DataBroker architecture and database functionality
for developing database applications.

03.31318-9 CH01 9/23/98 9:46 AM Page 19

• Component Library Reference: (C/S only) Covers the definitions for the JavaBean
Class Library’s objects,components,variables,constants,types,properties,meth-
ods,and events.

Online Resources
In addition to the documentation provided with the product,Borland provides JBuilder
support on the Web at http://www.borland.com/jbuilder/. There is also a set of
forum newsgroups that you can reach by setting your newsreader to access forums.

borland.com. These official Borland forum newsgroups are supported by TeamB volun-
teers,who are developers chosen for their expertise and desire to help. And don’t forget
the premier Java resource at http://www.javasoft.com, Sun’s Java Web site.

JBuilder’s Integrated Development
Environment

Borland pioneered the idea of an Integrated Development Environment (IDE),where the
developer could create, compile, debug, and run a program all from the same interface.
When Borland first introduced the IDE in its DOS compilers, the concept was revolu-
tionary. Today, we take this type of interconnected functionality for granted, but Borland
has continued to improve and refine its IDE. Certainly, the JBuilder IDE is another step
forward in programming environments.

Although you won’t be formally introduced to the JBuilder environment until later this
week (Day 5, “JBuilder IDE”), here’s a quick overview that will help you when you
begin entering code later today in the “Applets and Applications” section. Launch
JBuilder, and when it has finished loading, click on the node WelcomeApp.java in the
upper-left pane of the project window so that it looks as shown in Figure 1.4.

The main window contains the main menu bar, tool bar, Component palette, and status
bar. The main menu bar, of course, presents the JBuilder command set in text form. The
toolbar displays a subset of those commands in iconic form and is configurable, so you
can display your most commonly used commands for easier access. The Component
palette comprises drag-and-drop JavaBeans components for building programs using
rapid application development (RAD) techniques. The status bar is used for displaying
various status messages (such as file-saving information and compiler status) in the IDE.

The AppBrowser has three panes:the Navigation pane (upper left),the Structure pane
(lower left),and the Content pane (on the right). The Navigation pane shows the various
files that compose the current project. For example, in Figure 1.4,you can easily see that
Welcome.jpr contains an .html file and two .java files. With the WelcomeApp.java

20 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

03.31318-9 CH01 9/23/98 9:46 AM Page 20

Introduction to JBuilder 21

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

node selected in the Navigation pane, the Structure pane displays a hierarchy of the
members that compose that file, both internal (such as methods) and external (such as
imports). In the Content pane, the file itself is displayed. When an editable file is dis-
played, the Content pane becomes the Editor. The AppBrowser status bar is used to
display the Line:Column,Modified, and Insert/Overwrite indicators for the Editor and
various other AppBrowser-specific status messages.

FIGURE 1.4.
JBuilder’s Integrated
Development
Environment.

There are other windows and panes in the IDE,but these basic elements will get you
through your first few projects. Next, you’ll use the main menu bar and the AppBrowser
to create your first Java programs.

Applets and Applications
There are two types of Java programs:applets and applications. To finish up the day,
you’ll create one of each type. What if you want your program to run as a standalone
application and also be able to run as an applet across the Web? Java enables you to
combine these into a single program that can be run either way. In this book,you con-
centrate on creating separate applets and applications.

JBuilder’s main window

Main menu bar

AppBrowser status bar

Content pane

Structure pane

Navigation pane

AppBrowser window

Status bar

Component PaletteTool bar

03.31318-9 CH01 9/23/98 9:46 AM Page 21

Applets are Java programs that are usually embedded in an HTML Web page and down-
loaded from the Web to be run by a browser on the user’s computer system. The browser
must be Java-capable for the user to get the full effect of applets that contain animation
and other advanced Java features. Applets can also be viewed using Sun’s appletviewer
utility.

22 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

You can turn any Web browser into a Java-capable Web browser by using
the Java Plug-in. The Java Plug-in provides 100% Java compatibility, it’s free,
and you can download it from the JavaSoft Web site at
http://java.sun.com/products/plugin/. Some Java-capable browsers such
as the Microsoft Internet Explorer are not 100% Java compliant. Use the
Java Plug-in to make the browser 100% Java compliant.

Tip

Applications are full-fledged programs written in Java. They don’t require a Web browser
to run,but they do require the Java VM to be installed on the target platform. The best-
known example of a Java application program is Sun’s HotJava browser, which is written
entirely in Java. Run Java applications by invoking the Java interpreter.

Java is case-sensitive, so be careful that you type uppercase and lowercase
where necessary when entering code. This applies to filenames too. For
many novice Java programmers, this proves to be the most common stum-
bling block.

Caution

Go ahead and try the steps in the following sections in the IDE. If you get stuck, select
File | Close All fr om the JBuilder menu bar and a Save Modified Files dialog box will
appear, as shown in Figure 1.5.

FIGURE 1.5.
The Save Modified
Files dialog box
appears if the file
you’re closing contains
unsaved changes.

03.31318-9 CH01 9/23/98 9:46 AM Page 22

Introduction to JBuilder 23

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

Click the Select None button so that none of the modified files is selected to be saved,
and then click the OK button to close the file. Now you’re ready to begin again. (If you
have already saved files and want to delete them before starting over, you can find your
source-code files in JBuilder’s myprojects subdirectory and your compiled class files in
the myclasses subdirectory.)

Before you begin, if the Welcome.jpr project is being displayed in JBuilder (or any other
project,for that matter), select File | Close All so that you can start fresh.

Creating an Application
In JBuilder, select File | New Project from the main menu bar. The Project Wizard: Step
1 of 1 dialog box appears,as shown in Figure 1.6.

FIGURE 1.6.
Enter your project’s
name and information
into the Project
Wizard: Step 1 of 1
dialog box.

In the File: field, change the project filename to c:\JBuilder\myprojects\Intro.jpr
and click the Finish button. An AppBrowser window appears,as shown in Figure 1.7.

Click the Add to Project icon (plus symbol on the folder) in the Navigation pane to dis-
play the File Open / Create dialog box, shown in Figure 1.8.

On the File page of the File Open / Create dialog box, type HelloWorld.java in the File
name:field, and then click the Open button. The HelloWorld.java file should be added
to and currently selected in the Intro project’s Navigation pane list.

In the Content pane, enter the Java program shown in Listing 1.1. Type this program
exactly as shown (except for line numbers), being careful that all parentheses,braces,
and quotation marks are entered properly. When typing the code from the listings that
follow, do not type the line number and colon at the beginning of each line. They are
there only as reference points for the ensuing discussion of the code itself. As you type
each line, watch what happens in the Structure pane.

03.31318-9 CH01 9/23/98 9:46 AM Page 23

LISTING 1.1. HelloWorld.java.

1: class HelloWorld {
2: public static void main (String args[]) {
3: System.out.println(“Hello World!”);
4: }
5: }

After you’re finished typing the program,select File | Save All to preserve your work.
You should see a confirmation message in the main window’s status bar. Now your Intro
project should look as shown in Figure 1.9.

24 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

FIGURE 1.7.
A new AppBrowser
window opens for your
Intro project.

FIGURE 1.8.
Create a new Java
source file in the File
Open / Create dialog
box.

TYPE

03.31318-9 CH01 9/23/98 9:46 AM Page 24

Introduction to JBuilder 25

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

This program has three parts:

• A class definition that encloses the program—in this case, it’s named HelloWorld.
It begins on line 1 and ends on line 5. All classes in Java automatically descend
from the top-level Object class,and you’ll notice that there is an Object node in
the Structure pane.

• The body of the program,the main() method—for this application, lines 2 through
4. The main() method is the subroutine that is executed when your application is
run. There is also a node for this method in the Structure pane.

• The code that produces the actual output of the program—line 3. In this line of
code, the application tells the system to print the words “Hello World!” to the
screen. This line is part and parcel of the main() method, so there is no separate
entry for it in the Structure pane.

Note that the name of the class and the filename are the same. In Java,source-code files
must always be named the same as the class they define, with the .java extension added
at the end. Your source files are stored in JBuilder’s myprojects subdirectory tree by
default.

Now that you have written your first Java application, you’ll want to compile and run it.
HelloWorld is a command-line Java application. That means that, like DOS applications,
HelloWorld writes directly to the screen without using the Windows graphical user inter-
face. JBuilder sends command-line program output to a Consolewindow, another name

FIGURE 1.9.
The Intro project now
includes a Java source
file named
HelloWorld.java.

ANALYSIS

03.31318-9 CH01 9/23/98 9:46 AM Page 25

for a DOS window, by default. The default isn’t usually very handy, however, because
the Console window typically opens and closes too quickly for you to read what the out-
put actually was. JBuilder provides a useful alternative.

You can tell JBuilder to display command-lineJava program output in a special window
called the Execution Log. Select File | Project Properties from the JBuilder main menu
bar to open the Intro.jpr Properties dialog box. Click on the Run/Debug tab to display the
dialog box’s Run/Debug page, shown in Figure 1.10.

26 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

FIGURE 1.10.
Open the Intro.jpr
Properties dialog box
to the Run/Debug
page.

Find the Console I/O area toward the bottom of the Intro.jpr Properties dialog box.
Select the Send run output to Execution Log radio button so that JBuilder automatically
sends command-line Java program output to the Execution Log. Then click the OK
button.

Now you’re ready to compile and run the HelloWorld program. Make sure that the
HelloWorld.java file is selected in the Navigation pane of the AppBrowser. Then com-
pile and run your program in a single step by clicking on the Run icon in the toolbar—
the one that looks like a lightning bolt.

When working with the toolbar, hold the mouse cursor over an icon for a
moment to learn what it’s used for. A ToolTip appears with the icon’s com-
mand name.

Tip

03.31318-9 CH01 9/23/98 9:47 AM Page 26

Introduction to JBuilder 27

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

The compiler should complete the compilation without error. If you get errors, they will
be displayed in the lower portion of the Editor window in the Content pane. Make any
necessary corrections so that the program appears exactly as it is in Listing 1.1 (includ-
ing uppercase and lowercase),and try again.

When the program is successfully compiled, a new file named HelloWorld.class
appears in JBuilder’s myclasses subdirectory. This is the Java bytecode file that can now
be run from any Java VM installation.

After you run the HelloWorld program,look at its output by opening the Execution Log
window. Select View | Execution Log from the JBuilder main menu bar, and the
Execution Log window appears with the program’s output,as shown in Figure 1.11.

FIGURE 1.11.
Your first Java appli-
cation says,“Hello
World!”

Creating an Applet
You will, of course, want to say hello to all your friends out there on the World Wide
Web, so you’ll need to create a HelloWorld applet as well. Because applets are displayed
from an HTML Web page, they typically require more complex programming to do the
same thing as an application. For example, you can’t simply print “Hello World!” to the
standard output because a Web page doesn’t include that concept. You need to define
coordinate space on the Web page within which your applet runs,and then use graphics
functions to paint the message in that coordinate space.

If you attempt to print to the standard output in an HTML Web page, the
output appears in a special log file or window—depending on how your
browser handles standard output messages. In Netscape Navigator, this is
the Console window.

Note

To create the applet,click the Add to Project icon to once again display the File Open /
Create dialog. On its File page, type HelloWorldApplet.java in the File name:field,
and then click the Open button.

03.31318-9 CH01 9/23/98 9:47 AM Page 27

In the Content pane, enter the Java program shown in Listing 1.2.

LISTING 1.2. HelloWorldApplet.java.

1: import java.awt.Graphics;
2: public class HelloWorldApplet extends java.applet.Applet {
3: public void paint(Graphics g) {
4: g.drawString(“Hello World!”, 20, 50);
5: }
6: }

This program has four parts:

• The first line imports the java.awt.Graphics library code into your program,
which enables you to use the drawString() method later. (The import statement is
similar to the #include statement in C/C++.)

• The class definition is named HelloWorldApplet. It begins on line 2 and ends on
line 6.

• The body of the applet is the paint() method—lines 3 through 5. There is no
main() method because the applet is run as a subprogram by the browser.

• The code that produces the actual output of the applet is in line 4. In this line of
code, the application tells the system to paint the words “Hello World!” beginning
at the graphic coordinate (25,50) as the lower-left anchor for the text string within
the applet’s coordinate space.

Compiling this program creates a new file named HelloWorldApplet.class. This is the
Java bytecode file, which you can then run by embedding it into a Web page, called an
HTML (Hypertext Markup Language) page.

To create the HTML page, click the Add to Project icon. In the File Open / Create dia-
log’s File page, type HelloWorldWideWeb.html in the File name:field, and then click the
Open button.

Click on the Source tab just below the Content pane, click on the Content pane itself,
and press Ctrl+Home. Enter the text shown in Listing 1.3. This text is just a simple
HTML page that enables you to run your applet in a Java-enabled browser.

LISTING 1.3. HelloWorldWideWeb.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hello to the World Wide Web!</TITLE>
4: </HEAD>

28 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

TYPE

ANALYSIS

TYPE

03.31318-9 CH01 9/23/98 9:47 AM Page 28

Introduction to JBuilder 29

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

5: <BODY>
6: <APPLET CODE=”HelloWorldApplet.class” WIDTH=150 HEIGHT=50></APPLET>
7: </BODY>
8: </HTML>

Be sure to save your work when you’re finished.

The part of this HTML file that is of interest here is line 6,where you reference
your HelloWorldApplet.class file. This is done with the <APPLET></APPLET>

tag pair. You’ll learn more about this tag pair later, but for now, just remember these
things:

• The CODE attribute is used to name your .class file. This is what causes the applet
to be executed when the HTML Web page is viewed in the browser.

• The WIDTH and HEIGHT attributes reserve the graphical space within which the
applet runs on the HTML Web page. In this example, a box that is 150 pixels wide
and 50 pixels high is set aside for the applet’s use.

• The <APPLET> tag must always be followed by the </APPLET> tag.

Although you might find it useful to name your .html file the same as your applet
.class file, it’s not a requirement. If you have a Java-enabled browser installed on your
system,use it to open the HelloWorldWideWeb.html file. If you don’t yet have a browser
available, you can use Sun’s appletviewer utility to view your applet. It is located in the
JBuilder\java\bin subdirectory.

The appletviewer is used quite often in this book to illustrate applet behavior because it
is the one viewer you are assured to have available. It can be run from within the IDE,
but first you have to accept Sun’s license.

To do this using the HelloWorldWideWeb.html file you’ve just created, right-click on that
file’s node in the Navigation pane, and select the Run menu item. This causes Sun’s
Copyright Notice window to appear; click the Accept button. Now, the appletviewer is
displayed, as shown in Figure 1.12. (Typically, you’ll need to resize the appletviewer
window to see the applet displayed property.) From now on,you’ll be able to launch the
appletviewer anytime you run an HTML file from within the JBuilder IDE.

ANALYSIS

Using appletviewer, you won’t be able to see the entire HTML Web page,
but it does show you what the applet part of the page looks like.

Note

03.31318-9 CH01 9/23/98 9:47 AM Page 29

You’ve created your first Java application and Java applet and viewed the results. Be sure
to save all your work and select File | Close All to close the Intro project.

Summary
Today, you’ve been introduced to the Java language and how it came into being. You’ve
also learned a bit about JBuilder and how it makes developing your Java programs easier.

You’ve learned how to install JBuilder, what to do after installation, and how to uninstall
JBuilder. You also know where to look for help in the disk files and paper documenta-
tion, and you’re aware of some of the online resources that are available to you.

Most important,you’ve created your first applet and application programs in Java,using
JBuilder’s Integrated Development Environment (IDE). Tomorrow, you’ll get your first
look at the basics of the Java language itself.

Q&A
Q Do I need to buy an Internet browser to use JBuilder?

A Earlier today, you used the appletviewer utility to check out your first applet. Later,
you’ll also use JBuilder’s integrated debugger to test your programs. So it isn’t
really necessary for you to have an Internet browser to build your programs.
However, it is recommended that you have several different browsers available for
testing your applets so that you can see what users of your applets will actually see
when they run your programs in their local environments. These are the major ones
to obtain:

• Sun HotJava (http://java.sun.com/products/hotjava)

• Netscape Communicator (http://www.netscape.com/try/download)

• Microsoft Internet Explorer (http://www.microsoft.com/ie/download)

Q You said that applets have to be run from inside an HTML Web page. How do

30 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

FIGURE 1.12.
Java applets can be
viewed in the
appletviewer.

03.31318-9 CH01 9/23/98 9:47 AM Page 30

Introduction to JBuilder 31

1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

I learn more about HTML coding?

A Although HTML coding is not part of the scope of this book,you’ll be using it
enough that you’ll be able to run your applets. But,to answer your question,sev-
eral good books on HTML coding are available, including Teach Yourself Web
Publishing with HTML in 14 Days,Premier Edition, by Laura Lemay (Sams.net).

Q According to today’s lesson,Java applets are downloaded using a Java-
enabled browser, such as Navigator, Inter net Explorer, or HotJava. Isn’t that a
huge security hole? What stops someone from writing an applet that compro-
mises the security of my system—or damages my system?

A Sun’s Java team thought a great deal about the security of applets within Java-
enabled browsers and implemented the following restrictions:

• Java applets cannot read or write to the local system’s hard disk.

• Java applets cannot execute any programs on the local system.

• Java applets cannot connect to any machines on the Web except for the
server from which they originated. Except in two cases.

Some browsers allow the user to turn off restrictions as an advanced option.
However, as an applet designer, you cannot expect any of these capabilities to be
available. In addition, the Java compiler and interpreter check both the Java source
code and bytecodes to make sure that the programmer has not tried any sneaky
tricks (for example, overrunning buffers or stack frames). Obviously, these checks
cannot stop every potential security hole (no system can promise that), but they
significantly reduce the potential for hostile applets.

You can acquire a digital certif icate and digitally sign an applet. The applet can
perform the preceding tasks as long as the user accepts the signature.

Q Why use Borland’s JBuilder to create Java programs?

A Day 5, “JBuilder’s IDE,” gives you an in-depth look at the many advantages
JBuilder offers over using just command-line utilities. But as a quick summary,
here are the highlights. Borland’s IDE was the first integrated development envi-
ronment,and JBuilder’s IDE takes full advantage of Borland’s experience in the
field of creating premier development products. JBuilder inherits “Two-Way Tools”
from Borland’s award-winning Delphi. These tools enable you to design the parts
of your program in the way that’s most intuitive for you—to drag-and-drop when
visual designing is best,to type code when that’s the best approach—and then syn-
chronize your code and visual design so that you get the best of both worlds.
JBuilder’s AppBrowser, integrated debugger, and online help files give you all the

03.31318-9 CH01 9/23/98 9:47 AM Page 31

tools you need to develop your Java programs with less typing, less redundancy,
and fewer errors. Also, JBuilder is the first visual development environment to sup-
port rapid application design (RAD) using JavaBeans components.

32 Day 1

P2/VB/swg1 STY JBuilder 2 in 21 Days 31318-9 dietsch CH01 Lp#3

03.31318-9 CH01 9/23/98 9:47 AM Page 32

DAY 2

WEEK 1

Java Basics
Yesterday, you wrote your first Java application and applet. Today, you’ll begin
to examine the language in some depth so that you’ll understand each of its
basic constructs and know how to use them when programming with Java.

There are enough differences among Java, C, C++, and Pascal that
it will be well worth reviewing today’s information even if you’ve
been programming for some time. For example, C or C++ pro-
grammers might be surprised to find that Java does not include
typedef, whereas Pascal programmers will be shocked to discover
that a semicolon is required before an else statement.

Note

These constructs represent the basic building blocks of your Java programs,
such as variables, types, expressions, operators, arrays, strings, conditionals,
and loops. Today, you’ll learn about these topics:

• Program statements and comments

• Variables, literals, and data types

• Expressions and operators

04.31318-9 CH02 9/23/98 9:52 AM Page 33

• Creating and accessing arrays and strings

• Declaring and using multidimensional arrays

• Manipulation techniques for instances of the String and StringBuffer classes

• if-else and switch, for conditional tests

• for, while, and do-while loops,for iteration or repeating a statement or block
multiple times

Program Statements
A program statement is where all the action takes place. There are three categories of
statements:

• Simple

• Compound

• Comments

Simple and compound statements are compiled and become part of your application’s
binary image; all compiled statements must end with a semicolon (;). Comments are not
compiled and are visible only in the source code, but they can be invaluable several
months later when you (or someone maintaining your code) is trying to determine the
original purpose of that code.

Simple Statements
Simple statements can assign values,perform an action,or call a method.

A methodis the term used in Java to indicate any subprogram (subroutine, func-
tion, or procedure).

Here are some examples of simple statements:

currpoint = new Point(x,y);
if (i==8) j = 4;
g.drawString(“Hello world!”, 10, 30);
repaint();

Java supports various statement types,including assignment,block, conditional,declara-
tion, looping, and method calls. All except method calls will be covered today; method
calls will be covered tomorrow.

Block Statements
You generally can use a block anywhere that a single statement is valid, and the block
creates a new local scope for the statements within it. This means that you can declare

34 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 34

Java Basics 35

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

and use local variables within a block, and those variables will cease to exist after the
block is finished executing.

A block statement(or simply, a block) is a group of other program statements
surrounded by braces ({}). This is the same way braces are used in C and C++

and is analogous to the begin..end pair in Pascal. It is also sometimes known as a com-
pound statement.

Here’s an example that highlights the differences in scope. In the following method defi-
nition, x is declared for the method as a whole, and y is declared within the block:

void testblock() {
int x = 10;
{ // block begin

int y = 50;
System.out.println(“inside the block:”);
System.out.println(“x:” + x); // prints 10
System.out.println(“y:” + y); // prints 50

} // block end
System.out.println(“outside the block:”);
System.out.println(“x:” + x); // prints 10
System.out.println(“y:” + y); // error, outside the scope

}

NEW TERM

The preceding example code does not compile because the y variable is
undeclared outside of the block where it is defined.

Note

When the value assigned to x is printed from inside the block, a 10 is sent to the console
window. Likewise, when the value assigned to the y variable is printed, there is no prob-
lem because the scope of the y variable is within the block. There’s also no problem with
printing the value assigned to the x variable outside the block and in the method as a
whole, because its scope is throughout the method. However, the second attempt at print-
ing the value associated with the y variable fails because the y variable is defined only
within the block, not outside it.

Blocks usually are not used alone like this in a method definition. A very common use of
block statements is in the control-flow constructs you’ll learn about later today.

Comment Statements
Comments are noncompiled statements that can contain any textual information you
want to add to the code for later reference. Java provides you with three kinds of com-
ments:single-line, multiline, and documentation comments.

04.31318-9 CH02 9/23/98 9:52 AM Page 35

Comments are useful as internal documentation for your program. You might want to use
comments to add information about how a particular part of the program was designed,
why a particular data structure was chosen,or what dependencies are inherent in the
code. If you have an external specifications document,comments are a good place to ref-
erence that document and tie the internal and external documentation together.

Single-Line Comments
A single-line comment can be placed on a line by itself. It is indicated by placing two
slashes (//) at the beginning of the line:

// A single-line comment looks like this.

A single-line comment can also be placed at the end of a line of code after the semi-
colon. This is sometimes called an inline comment:

x = y; // An inline comment goes here.

Multiline Comments
You can designate a multiline comment by typing a slash-asterisk (/*) at the beginning
and an asterisk-slash (*/) at the end of the comment:

/* For purposes of this calculation, the number of
days per cycle will be assumed to be 30. */

Here is an alternative way to style multiline comments:

/* The AvgDailyBal procedure calculates the Average
* Daily Balance, which is the sum of each day’s
* unpaid balance of any Purchases itemized on
* statements prior to the current month’s statement
* divided by the number of days in the current
* billing cycle.
*/

Note that the asterisks at the beginning of the middle lines in this example are for visual
effect only. You can use any style of multiline comments you desire, as long as they
begin with /* and end with */. The compiler will simply disregard anything between
these special character pairs.

36 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Nested multiline comments are not allowed in Java. In other words, you can-
not place one multiline comment within another multiline comment.

Caution

Documentation Comments
Documentation comments are specially designed to generate public class documentation
in HTML format. In fact,the HTML pages that document the Java language were

04.31318-9 CH02 9/23/98 9:52 AM Page 36

Java Basics 37

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

generated using this technique, by placing documentation comments in the Java language
source code. Everything between the slash-asterisk-asterisk (/**) and asterisk-slash (*/)
is regarded as part of this special kind of comment. The comments are extracted from the
source code by a utility called javadoc, which also recognizes certain keyword variables
within the comment that start with the “at” (@) symbol,such as @author and @version:

/** This public class is designed to extend
* the functionality of the awt.Graphics
* class to display corporate logos.
* @author mmm
* @version 3.51
*/

public class mySpecialClass extends java.awt.Graphics {
...
};

Documentation comments usually are placed directly before the class declaration, as in
this example.

Variables, Literals, and Data Types
Variables are named placeholders where values are stored during program execution.
Before you can use a variable, you need to decide what kind of value it needs to hold.
The kind of value determines which data type you will use to declare the variable. After
the variable is declared, it can be initialized by being assigned a value and can be used in
expressions. The value assigned can be a literal value (a specific number, letter, or string)
or the result of an expression evaluation.

There are three categories of variables in Java: class variables,instance variables,and
local variables. All three are declared the same way; however, class and instance vari-
ables are accessed somewhat differently than local variables. Class and instance variables
are covered tomorrow. Today, you’ll learn about local variables,which are declared and
used in methods.

Java does not support the concept of global variables, which would be avail-
able to all parts of your program. Rather, instance and class variables are
used to communicate information among objects.

Note

Data Types
By declaring a variable to be of a specific data type, you define the kinds of values that
can be stored in that variable. For example, a variable declared to be of type byte can

04.31318-9 CH02 9/23/98 9:52 AM Page 37

hold a numeric value from -128 to 127 inclusive. There are eight value data types and
two reference data types.

The eight value types include integral, floating-point,Boolean,and character data types,
as shown in Table 2.1. These are also sometimes called primitive types. All data types in
Java have default values and consistent properties across all platforms.

TABLE 2.1. JAVA’S VALUE DATA TYPES.

Data Type Size Default Values

byte 8 bits 0 -128 to +127

short 16 bits 0 -32768 to +32767

int 32 bits 0 -2,147,483,648 to +2,147,483,647

long 64 bits 0 -9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807

float 32 bits 0.0 ±3.40282347E+38 (min)

±1.40239846E-45 (max)

double 64 bits 0.0 ±1.79769313486231570E+308 (min)

±4.94065645841246544E-324 (max)

boolean 1 bit false false, true

char 16 bits \u0000 \u0000 to \uFFFF

Integral types (byte, short, int, long) are all signed. Floating-point values (float,
double) follow the IEEE 754 floating-point standard for single- and double-precision
numbers. In addition to the normal numeric values,floating-point operations can return
four special values,defined as constants:POSITIVE_INFINITY, NEGATIVE_INFINITY, NEG-
ATIVE_ZERO, and NaN (not a number). The boolean values will not evaluate to integers,as
they will in other languages; they can represent only the values true or false.

If the char character values look a bit odd, it’s because Java supports the two-byte
Unicode character standard. However, for purposes of this book,you’ll be using only the
ASCII or Latin-1 subset of Unicode characters.

38 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

The Unicode character set is 16 bits and includes 34,168 characters. The
Unicode subset that represents ASCII characters is \u0020 to \u007E, and for
Latin-1 the range is \u0020 to \u00FF. Because ASCII and Latin-1 are 8 bits,
they are both simply subsets of Unicode. Unicode is quickly becoming the
world standard because it can represent the symbols and characters from
most natural languages. To learn more about Unicode, visit the Unicode
Consortium site on the World Wide Web at http://www.unicode.org.

Note

04.31318-9 CH02 9/23/98 9:52 AM Page 38

Java Basics 39

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

The two referencedata types hold objects (discussed tomorrow) and arrays. The object
reference type can hold a class instance and defaults to null. The array reference type
can hold elements of either value or reference type, and it defaults to the elements’type
default value. In other words,a byte array’s elements default to 0, and an object array’s
elements default to null.

In Java, there is no typedef statement, as there is in C and C++. To declare
new types, you must first declare a new class, and then variables can be
declared to be of that class’s type.

Note

Variable Naming
A variable identifier can begin with a letter, an underscore (_), or a dollar sign ($) and
can be followed by a combination of letters and digits. Symbols are problematic because
so many of them are used in Java operators. Also, it is recommended, although not
mandatory, that you not use the underscore (_) or dollar sign ($) as the first character to
avoid conflicts when linking in C/C++ libraries.

The de facto standard is to name variables with letters and numbers only, with the first
word all lowercase, and with the second and subsequent words initially capitalized. For
example, a variable that will hold retirement ages might be named retireAge, whereas
one to represent an insurance value limit could be named insValueLimit.

Java keywords cannot be used as identifiers. There are two keywords listed in Table 2.2
that, although not in use, are still reserved by Java. They are designated by the dagger (†)
symbol.

TABLE 2.2. JAVA KEYWORDS.

abstract boolean break byte case

catch char class const† continue

default do double else extends

final finally float for goto†

if implements import instanceof int

interface long native new package

private protected public return short

static super switch synchronized this

throw throws transient try void

volatile while

04.31318-9 CH02 9/23/98 9:52 AM Page 39

Declaring Variables
Now that you know what type you want the variable to be and have chosen a name for it,
it’s time to declare the variable. There are several ways to declare a variable in Java,and
the declaration can be placed anywhere in the method. A variable will have effect from
the block in which it’s declared and throughout blocks nested inside that block.

The group of program statements during which a variable exists is called the
variable’s scope. When a program is run, the variable is created during execution

of the variable’s declaration statement. All statements following the variable declaration
can access and manipulate the variable until the right brace (}) at the level of the block
or method in which the variable was declared is encountered. At that point, the variable
ceases to exist in memory and is now out of scope.

The simplest form of variable declaration contains just the type and variable name. For
example, the following declaration statements create variables named retireAge and
birthYear of type short and a variable named insValueLimit of type float:

short retireAge;
short birthYear;
float insValueLimit;

When declaring variables of the same type, you can declare them together on the same
line by separating them with commas. All three variables in this declaration are of type
short:

short retireAge, birthYear, stdRetireAge;

Initializing
To assign an initial value when the variable is declared, you use the equal sign (=), which
is Java’s assignment operator, followed by the desired value. The following declaration
statement initializes insValueLimit to 10000.00:

float insValueLimit = 10000.00;

You can initialize multiple variables by giving each a value and declaring them on sepa-
rate lines. In this declaration, isInsured and isCurrent are both initialized to true:

boolean isInsured = true;
boolean isCurrent = true;

40 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Don’t forget that Java is case sensitive. In other words, variables named
watchOut, WatchOut, and WATCHOUT are not the same. So be careful to be con-
sistent in typing identifiers when creating code.

Caution

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 40

Java Basics 41

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Alternatively, you can initialize several variables of the same type by putting them on the
same line and separating them with commas. Either way is fine, and it is mainly a matter
of personal preference and visual style. Here’s an example:

boolean isInsured = true, isCurrent = true;

In the next example, retireAge and birthYear are not initialized, but the last variable
stdRetireAge is assigned the value of 65:

short retireAge, birthYear, stdRetireAge = 65;

Although variables take on the default values of their declared type, the
Java compiler gives you a warning if you attempt to use a local variable
without initializing it first.

Note

Literals
Literals are used to indicate values in your Java programs. In the preceding section on
assigning values to variables,the values assigned (10000.00, true, and 65) were all liter-
als.

A literal is a value that can be assigned to a value data type variable, as when ini-
tializing a variable in a declaration. A literal can also be used directly by your pro-

gram,such as the literal value 8 in the expression i==8.

There are Boolean,numeric, character, and string literals. Each kind has some special
information that you will need in order to make decisions about how to represent these
values.

Boolean Literals
The Boolean literals in Java cannot take on integral values. They will not evaluate to
anything other than the values true or false, and they are of type boolean.

Numeric Literals
A numeric literal is any number that can be assigned to an integral or a floating-point
type. You can specify a literal’s type by using special type designators,which can be in
either lowercase or uppercase.

By default, an integral literal such as 8 is assumed to be of type int. However, if an inte-
gral literal is too large to fit into an int, such as 3000000000 (3 billion), it automatically
becomes a long. Also, you can specifically designate the literal to be a long by adding
an l or L type designator to the end of the number:8L becomes a long literal. All

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 41

integral types can be used as negative numbers by preceding the number with a minus
sign:-78 is a negative int literal.

Integrals can also be expressed as octal or hexadecimal. Prefixing a number with 0 desig-
nates the number as an octal (base 8) literal: 0347. Prefixing a number with a 0x or 0X
indicates that the number is a hexadecimal (base 16) literal: 0x2FA3. Although you can
use the octal or hexadecimal number system to represent the literal, it is still stored in
memory as one of the integral data types,according to the rules explained in the preced-
ing paragraph.

Floating-point literals are always assumed to be of type double, no matter what their
stated value:5.67 is a double literal. You can make the literal a float by adding an f or
F to the end of the number:5.67f becomes a float literal. You can also use scientific
notation to express floating-point literals by adding an e or E, followed by the exponent,
to the end of the number:5.964e-4 is the representation of 0.0005964 in scientific nota-
tion and is stored as a double.

42 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

To store a number expressed in scientific notation as a float, add an f or F
to the end of the literal, such as 5.964e-4F.

Note

Character Literals
Character literals in Java, represented by Unicode characters of the char data type, are
surrounded by single-quote (‘) symbols:‘a’, ‘*’, and ‘8’ are all character literals.
Nonprinting characters, such as the Tab and the Backspace, can also be represented as
character literals by using what are known as character escape codes.

A character escape codeis created by prefacing the nonprinting or special sym-
bol with the backslash (\). This allows the nonprinting or special symbol to be

used as a character literal.

In addition, because certain symbols are used by the Java language, such as single-quote
symbols (‘), they are also represented as character literals by using the backslash (\), as
indicated in Table 2.3.

TABLE 2.3. CHARACTER ESCAPE CODES.

Escape Code Nonprinting Character or Symbol

\b Backspace

\f Formfeed

\n Newline

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 42

Java Basics 43

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

\r Return

\t Tab

\\ Backslash

\” Double quote

\’ Single quote

\ddd Octal (for example, \347)

\xdd Hexadecimal (for example, \x2FA3)

\udddd Unicode character (for example, \u0C00)

For octal codes,the d character represents an octal digit (0–7). For hexadecimal and
Unicode character codes,the d character represents a hexadecimal digit (0–9, a–f, A–F).

String Literals
A string simply is a combination of character literals and is delimited by double-quote
(“) (double-quotes)> symbols:“Hello world!” is a string literal. To an empty string—
that is, one without any characters—just type the double-quote (“) symbol twice:“” is an
empty string.

Following is a code snippet with statements that each contain a string literal:

System.out.println(“This string prints\nmultiple lines.”);
System.out.println(“\”I want to be alone,\” she said.”);
System.out.println(“Most 4th-graders are \11 years old.”);

In the first line, a \n literal indicates that a newline character should be printed after the
word prints. In the second, double-quotes are printed by using the \” literal. The third
line uses an octal literal, \11 to produce the number 9 in the output. Here’s what the
actual printed output looks like:

This string prints
multiple lines.
“I want to be alone,” she said.
Most 4th-graders are 9 years old.

In Java,strings are instances of the class String and are true objects,not arrays as in
other languages. When you use a string literal, you are implicitly creating an instance of
the class String and initializing it with the value of the string literal. The other literals
don’t do this because they are all primitive value data types,not objects like strings.
You’ll learn more about strings later today.

Escape Code Nonprinting Character or Symbol

OUTPUT

04.31318-9 CH02 9/23/98 9:52 AM Page 43

Expressions and Operators
Expressions and operators combine to let you perform evaluations with data.

An expressionis a statement or part of a statement with variable and literal terms
that resolve to a specific value, such as i==8, which evaluates to either true or

false.

An operator is a symbol used to control how the terms of an expression are to be
evaluated or manipulated. In the example i==8, the operator == tells the compiler

to compare the values of the variable i and the literal 8, which are called operands.

You can think of operators as minifunctions that take parameters (the operands) and
return a result. The data type of the result depends on the operator used. For example, a
logical operator can take int values as operands,but it returns a boolean result. The
operator and its operands are the smallest form of an expression.

Each operator has a precedence that governs the order in which it and its operands are
evaluated within the expression. You have several other aspects to consider when dealing
with operators. There are three kinds:unary operators take one operand; binary operators
take two operands; ternary operators take three operands. Unary operators can also be
prefix or postfix, causing quite different results. Binary and ternary operators are all
infix.

A unary prefix operator is placed before its operand:

op b

A unary postfix operator is placed after its operand:

a op

A binary infix operator is placed between its two operands:

a op b

A ternary infix operator is actually a pair of operator symbols and it takes three
operands. The first symbol of the pair is placed between operands one and two,

and the second is placed between operands two and three:

a op1 b op2 c

Java has a large set of assignment operators,which you’ll learn about later today. For the
moment,you need to know only that the assignment operator (=) assigns the value of the
expression on the right side of the operator to the variable on the left side.

44 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 44

Java Basics 45

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

In Java, the = assignment operator does the same operation as the Pascal :=
assignment operator.

Note

In the following sections,you’ll be exposed to all these aspects of evaluating expressions
and using operators. Don’t worry about memorizing them at this point. You just need to
get a good idea of the principles involved.

Arithmetic Operations
Operations that deal with numeric operands and produce numeric results are called
arithmetic operations. The unary operations include incrementing, decrementing, plus,
and minus. The binary operations include addition, subtraction,multiplication, division,
and modulus. There’s even an arithmetic binary operation for strings called concatena-
tion.

Incrementing and Decrementing
The increment (++) and decrement (--) operators are both unary prefix and unary post-
fix. If the operator appears before the operand (prefix), the operation takes place before
your program uses the resulting value. If the operator appears after the operand (postfix),
your program uses the value and then completes the operation. Incrementing a value
adds 1; decrementing subtracts 1 from the value. In other words,the expressions in the
two statements

myAge = myAge + 1;
daysLeftUntilVacation = daysLeftUntilVacation - 1;

represent the same values as these two expressions:

myAge++;
daysLeftUntilVacation--;

The value can be either any integral or floating-point value or any expression that evalu-
ates to one of these numeric types.

For example, consider the following program fragment:

int x, y, z = 7;
x = ++z; // In this example, x is assigned the value 8.
y = z; // The variable y is also assigned the value 8.

The variable z is first incremented. The result,8, is then assigned to x. Because z is now
8, y is also assigned that value. Now consider this program fragment:

04.31318-9 CH02 9/23/98 9:52 AM Page 45

int x, y, z = 7;
x = z++; // In this example, x is assigned the value 7.
y = z; // The variable y is assigned the value 8.

The value in variable z (7) is assigned to x. Then z is incremented and now contains the
value 8. Because z is 8, y is assigned that value.

Signs
To sign a numeric value or expression,simply prefix it with either the unary plus (+) for
positive numbers or the unary minus (-) for negative numbers. Here is an example:

int x, y = +4, z = -7;
x = y; // Here, x is assigned the value of 4.
x = -y; // Here, x is assigned the value of -4.
x = -z; // Here, x is assigned the value of 7.
x = z; // Here, x is assigned the value of -7.

Basic Math
This group of binary infix operators accomplishes basic math operations,such as addi-
tion (+), subtraction (-), multiplication (*), division (/), and modulus (%). These opera-
tions are all demonstrated here:

int x, y = 28, z = 8;
x = y + z; // Variable x is assigned the value 36.
x = y - z; // Variable x is assigned the value 20.
x = y * z; // Variable x is assigned the value 224.
x = y / z; // Variable x is assigned the value 3.
w = y % z; // Variable x is assigned the value 4.

The division (/) operator drops the remainder of the division and uses only the integral
part for the result,and the modulus (%) operator uses only the remainder of the division
for its result.

String Math
How do you add strings together? By using the concatenation (+) binary infix operator:

String helloWorld, hello = “Hello”, space = “ “, world = “World”;
helloWorld = hello + space + world + “!”;

This has the same effect as the following line:

String helloWorld = “Hello World!”;

With the concatenation (+) operator, you can use any strings or character literals for
operands.

46 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 46

Java Basics 47

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Relational Operations
All r elational operators return a boolean result. The expression formed by the operator
and its operands is either true or false. These operators are also known as comparison
operators. In addition to comparisons of arithmetic values,you can compare objects and
types.

In Java, the == is-equal-to operator does the same operation as the Pascal =
is-equal-to operator for arithmetic comparisons.

Note

The arithmetic relational operators are less than (<), less than or equal to (<=), greater
than (>), greater than or equal to (>=), is equal to (==), and is not equal to (!=). Here are
some examples of how they work:

int w = -8, x = -9, y = 28, z = 8;
boolean isThatSo;
isThatSo = y < z; // isThatSo is assigned the value false.
isThatSo = x <= w; // isThatSo is assigned the value true.
isThatSo = y > z; // isThatSo is assigned the value true.
isThatSo = x >= w; // isThatSo is assigned the value false.
isThatSo = y == z; // isThatSo is assigned the value false.
isThatSo = w != z; // isThatSo is assigned the value true.

Several relational operators are also available for object comparisons:type comparison
(instanceof), refers-to-same-object (==), and refers-to-different-object (!=). These last
two operators look the same as the is-equal-to (==) and is-not-equal-to (!=) operators
shown previously, but they take objects as operands rather than arithmetic values.

The type comparison (instanceof) operator determines whether the object in the left
operand is an instance of the type (or implements the interface) in the right operand. If it
is, the result is true; if it isn’t or if the object is null, the result is false.

The refers-to-same-object (==) operator evaluates whether the object in the left operand
points to the same instance as the object in the right operand. If it does,the result is
true; if it doesn’t, the result is false.

The refers-to-different-object (!=) operator evaluates whether the object in the left
operand points to a different instance than the object in the right operand. If it does,the
result is true; if not, the result is false.

04.31318-9 CH02 9/23/98 9:52 AM Page 47

Logical Operations
Logical operators take boolean operands and return a boolean result. There is one unary
prefix logical operator: logical NOT (!). Almost all the rest are binary infix operators:
logical AND (&), logical OR (|), logical XOR (̂), conditional AND (&&), and conditional
OR (||). Last,but not least,is the ternary infix operator: conditional if-else (?:).

The logical NOT (!) operator simply toggles the boolean value it prefixes. If its operand
is true, the result is false; if its operand is false, it returns true.

The logical AND (&) operator evaluates both operands,and if both are true, the result is
true; if either operand is false, the result is false. The logical OR (|) operator deter-
mines whether either operand is true, and if so,the result is true; if both are false, the
result is false. The logical XOR (̂) operator ascertains whether the operands are differ-
ent (one must be true, and one must be false). If so, the result is true; if both are true
or both are false, the result is false. Table 2.4 outlines these results.

TABLE 2.4. LOGICAL BOOLEAN OPERATIONS AND RESULTS.

Left Right AND (&) OR (|)
Operand Operand AND (&&) OR (||) XOR (^)

true true true true false

true false false true true

false true false true true

false false false false false

The conditional AND (&&) operator and the conditional OR (||) operator are short-circuit
Booleans. The results are the same as the logical AND (&) and logical OR (|) operators,
but the evaluations of the expressions happen a bit differently.

The conditional AND (&&) operator first determines whether the left operand is false; if
so,the result is false, and the evaluation stops right there. However, if it evaluates the
left operand as true, it then evaluates the right operand. If the right operand is also true,
the result is true; if it’ s false, the result is false.

The conditional OR (||) operator first determines whether the left operand is true; if so,
the result is true, and the evaluation stops at that point. But if it evaluates the left
operand as false, it then evaluates the right operand. If the right operand is true, the
result is true; if it’ s false, the result is false.

The ternary-infix conditional (?:) operator is a kind of shorthand for the familiar
if-else statement. If the first operand is determined to be true, the second operand is
evaluated/performed, or else the third operand is evaluated/performed:

48 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 48

Java Basics 49

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

isInsured ? payClaim() : doNothing();

In this example, if isInsured is true, the method payClaim() is called; if isInsured is
false, the method doNothing() is called. You’ll learn more about method calls tomor-
row.

Bitwise Operations
Bitwise operations manipulate the bits in the variable’s memory space. Bitwise operators
take integral operands and return an integral result. There is one unary-prefix bitwise
operator: bitwise NOT (~). The rest are binary infix operators: bitwise AND (&), bitwise
OR (|), bitwise XOR (̂), bitwise left shift (<<), signed right shift (>>), and zero-fill r ight
shift (>>>).

The bitwise NOT (~) operator simply toggles the bits of the integral value it prefixes. For
example, if the integral value is 00101001, applying the bitwise NOT (~) operator would
result in the integral value 11010110.

In an actual program statement,the two integral values would be to the left and the right
of the bitwise operator. But for ease of comparison,it is best to show them in a columnar
format. For the bitwise AND (&), bitwise OR (|), and bitwise XOR (̂), you will be com-
paring bits paired by their positions in the integral value. For example, consider the fol-
lowing two numbers:

00101001
11101110

The first pair is (0,1),the second pair is (0,1),and the third pair is (1,1). Remember to
pair them vertically in columns so that you’re using the same position for each pair. In
this example, the number 00101001 represents the left operand, and the number
11101110 represents the right operand. Table 2.5 outlines the results of each possible bit
pairing in bitwise operations.

TABLE 2.5. BITWISE OPERATIONS AND RESULTS.

Paired Bit in Paired Bit in
Left Operand Right Operand AND (&) OR (|) XOR (^)

1 1 1 1 0

1 0 0 1 1

0 1 0 1 1

0 0 0 0 0

04.31318-9 CH02 9/23/98 9:52 AM Page 49

The bitwise shift operators are bitwise left shift (<<), signed right shift (>>), and zero-fill
right shift (>>>). These operators take an integral value as the left operand and a numeric
literal as the right operand, which specifies how many positions to shift.

The bitwise left shift (<<) operator moves each digit in the integral value in its left
operand to the left by as many places as the numeric literal in the right operand indicates.
As the numbers shift left,the digits on the left “f all off,” and zeros are added to the right
to fill out the new number.

50 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

When you’re using the left shift operator (<<), the sign drops off as you shift
left.

Caution

The signed right shift (>>) operator moves each digit in the integral value in its left
operand to the right by as many places as the numeric literal in the right operand indi-
cates. In this case, however, the sign is not lost. The leftmost digit remains unchanged,
and the number is padded on the left with the value of the leftmost digit.

If you want to explicitly left-fill with zeros,use the zero-fill r ight shift (>>>) operator.
Because this operation always fills with zeros,it does not preserve the sign of the num-
ber.

Assignments
Java has a rich collection of assignment operators. The basic assignment (=) operator is
supplemented by a set of operators that enable you to do an operation and an assignment
at the same time. They take the form op=, where op is an operator belonging to the fol-
lowing set:

{ *, /, %, +, -, <<, >>, >>>, &, ^, | }

For example, rather than using the statements

totalCharges = totalCharges + newItemPrice;
isInsured = isInsured & hasRenewed;

you could use these statements to accomplish the same operations:

totalCharges += newItemPrice;
isInsured &= hasRenewed;

These assignment operators can be real time-savers when using long identifiers and can
make your code more readable.

04.31318-9 CH02 9/23/98 9:52 AM Page 50

Java Basics 51

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Operator Precedence
You’ve examined each of the Java operators,but one last consideration remains. The
precedence of the operators determines in what order the expression’s arguments are
evaluated. In Table 2.6,each operator is listed in order of precedence with the type of
operands it takes,the operation it performs,and the placement of the operator in the
expression. For example, in the program fragment

int g, x = 6, y = 7, z = 8;
g = x + y * z;

the multiplication of y and z is done first, resulting in the value 56; then the result is
added to x, giving a value of 62. Finally, that result is assigned to g. But what if you
wanted to add x and y first and then multiply by z? You can accomplish this by using
parentheses to change the order of evaluation:

int g, x = 6, y = 7, z = 8;
g = (x + y) * z;

In this case, x and y are first added together, resulting in 13, and that value is then multi-
plied by z, giving 104. Finally, 104 is assigned to g. Operators in the same precedence
level are evaluated left to right, except nested unary and ternary operators,which are
evaluated right to left.

04.31318-9 CH02 9/23/98 9:52 AM Page 51

TABLE 2.6. PRECEDENCE OF OPERATIONS.

Precedence Operator Operands Operation Placement

1 ++ arithmetic increment unary prefix/postfix

-- arithmetic decrement unary prefix/postfix

+ arithmetic plus (positive) unary prefix

- arithmetic minus (negative) unary prefix

! Boolean logical NOT unary prefix

~ integral bitwise NOT unary prefix

2 * arithmetic multiply binary infix

/ arithmetic divide binary infix

% arithmetic modulus binary infix

3 + string concatenate binary infix

+ arithmetic add binary infix

- arithmetic subtract binary infix

4 << integral bitwise left shift binary infix

>> integral signed right shift binary infix

>>> integral zero-fill r ight shift binary infix

5 < arithmetic less than binary infix

<= arithmetic less than or equal to binary infix

> arithmetic greater than binary infix

>= arithmetic greater than or equal to binary infix

instanceof object,type type comparison binary infix

6 == arithmetic is equal to binary infix

!= arithmetic is not equal to binary infix

== object refers to same object binary infix

!= object refers to different object binary infix

7 & integral bitwise AND binary infix

& Boolean logical AND binary infix

8 ^ integral bitwise XOR binary infix

^ Boolean logical XOR binary infix

9 | integral bitwise OR binary infix

| Boolean logical OR binary infix

10 && Boolean conditional AND binary infix

11 || Boolean conditional OR binary infix

12 ?: Boolean,any, any conditional if-else ternary infix

13 = variable, any assignment

op= variable, any assignment with operation

52 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 52

Java Basics 53

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

In addition to these operations,a package of mathematical constants and operations is
defined in the java.math.lang class. Explanations of how these functions are used are
beyond the scope of this book. However, if you should need them,they include constant
values for e and pi,trig functions (sine, cosine, tangent,arc sine, arc cosine, arc tangent),
exponential e, natural logarithm, square root, IEEE remainder, ceiling, floor, rectangular
to polar coordinates,exponent,round, random,absolute, max,and min functions.

Arrays and Strings
Arrays are some of the most useful constructs in Java. They enable you to collect objects
or primitive types into easy-to-manage structures. Strings are a special type of array, and
so also are full-fledged objects in Java. In this section,you’ll learn how to create and
manipulate these objects.

In the following discussion,the term constructors is used. You’ll learn more about con-
structors tomorrow (Day 3, “Java Intermediate”). But for now, just keep in mind that
constructors are special methods that enable you to create an object in memory, option-
ally giving some value to the object at the same time.

Array Objects
In Java,arrays are implemented as full-fledged objects,so they can be compared and
manipulated as objects. Because arrays are true objects,they have constructors,methods,
and variables especially designed for use with arrays.

An array is a way to store a list of items. Each slot in the array holds an individ-
ual item or element. You can place elements into slots or change the contents of

those slots as needed.

Array elements can contain any type of value (primitives or objects),but you can’t mix
types in an array. That is, an array’s elements must all be the same data type. For exam-
ple, you can have an array of integers or an array of String objects,but you cannot have
an array that contains both integer and String elements.

Creating an array in Java involves three steps:

1. Declare a variable to hold the array.

2. Create a new array object,and assign it to the array variable.

3. Store things in the array object by accessing its elements.

Declaring Array Variables
The first step in creating an array is to create a variable that will hold the array. Array
variable declarations can take one of two equally valid formats. Both formats include the

NEW TERM

04.31318-9 CH02 9/23/98 9:52 AM Page 53

name of the array, indicate the type of object the array will hold, and have empty brack-
ets ([]) to indicate that the new variable is an array. Here are some typical array variable
declarations:

int[] theTenBestGameScores;
Date games[];
int averageRBI[];

The first declaration denotes that you are declaring an array of type int named
theTenBestGameScores. The second declares an array of type Date named games. The
third declares an int array named averageRBI.

As you can see, the brackets ([]) can be after the type or after the variable identifier.
Either way is accepted by the Java compiler, and the two declaration styles can be mixed.
By putting the brackets directly after the type, you can easily see that you are declaring
an array of that type. However, the Java source code uses the format shown in the last
two examples,so this book follows that standard and places the brackets directly after
the variable identifier.

Creating Array Objects
The second step is to create an array object and assign it to that variable. You can do this
in two ways:

• Use new to explicitly create the array and then initialize the elements separately.

• Directly initialize the contents to create the array implicitly.

When you create an array object using new, you must explicitly indicate how many slots
or elements that array will hold:

int games[] = new int[10];

This creates a new array of integers with 10 elements. In this case, each of the 10 ele-
ments in the integer array is initialized with the value 0. The initialized value depends on
the type of array you have created, as shown in Table 2.7.

TABLE 2.7. DEFAULT VALUES FOR ARRAY INITIALIZATION.

Array Type Default Initial Value

boolean false

char ‘\0’

byte, short, int, long float, double 0

Object, String null

54 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 54

Java Basics 55

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

You can also create and initialize an array at the same time, just as you can for other
variables. Instead of using new to create the array object,enclose the elements of the
array inside braces,separated by commas,to denote the set of initial elements:

float rates[] = { 12.9, 14.5, 16.5, 18.95, 23.0 };

The elements inside the braces must be of the same type as the variable that holds the
array. The array is created with the number of slots matching the number of elements
you’ve specified. So in this example, an array of five float elements is created and
named rates. The first element in the array contains the value 12.9, the second contains
14.5, and so on.

Attempting to store the wrong type of data in an array will cause a compiler error. For
example, this line of code will cause the compiler to complain about type mismatch:

float rates[] = { ‘M’, ‘i’, ‘a’, ‘m’, ‘i’ };

An attempt to assign the wrong type at runtime will cause an ArrayStoreException
object to be thrown.

An exception is an error that occurs at runtime. The Java Exception class is
divided into various categories so that when an exception is thrown, you will

have some idea of what caused the error.

To properly declare the array for the preceding values,you would need to declare an
array of type char:

char chArr[] = { ‘M’, ‘i’, ‘a’, ‘m’, ‘i’ };

Accessing and Changing Array Elements
After you have an initialized array, you can test and change the values in each slot of that
array. To access a value stored within an array, use the array subscript expression:

arrayName[subscript];

The arrayName is the variable holding the array object. The subscript is an integer or
an integer expression that specifies the slot to access within the array.

NEW TERM

Subscripts in Java always begin with zero (0).Caution

Let’s take another look at this example:

float rates[] = { 12.9, 14.5, 16.5, 18.95, 23.0 };

04.31318-9 CH02 9/23/98 9:52 AM Page 55

Here is a code snippet that illustrates how these elements might be assigned to other vari-
ables:

float platinumRate == rates[0]; // value is 12.9
float goldRate == rates[1]; // value is 14.5
float preferredRate == rates[2]; // value is 16.5
float regularRate == rates[3]; // value is 18.95
float probationRate == rates[4]; // value is 23.0

All array subscripts are checked to make sure that they are inside the boundaries of the
array. That is, they must be greater than or equal to zero but less that the array’s length.
This check occurs when your Java program is compiled or when it is executed. It is
impossible in Java to access or assign a value to an array slot outside the boundaries of
the array. Examine the following two statements:

int myArr[] = new int[10];
myArr[10] = 73;

A program with these statements in it produces a compiler error at the second line when
you try to compile it. The array stored in myArr has only 10 slots,numbered from 0
through 9. The element at subscript 10 would be in slot number 11,which doesn’t exist,
so the Java compiler complains about it.

If the array subscript is calculated at runtime (for example, as part of a loop) and ends up
outside the boundaries of the array, the Java interpreter will produce an
ArrayIndexOutOfBoundsException object. If at runtime you attempt to allocate an array
with fewer than zero elements (for example, by using a subscript expression that resolves
to a negative number),you will receive a NegativeArraySizeException object.

To avoid throwing an exception caused by exceeding the bounds of an array accidentally
in your own programs,you can find out the number of elements in the array by checking
its length instance variable. This variable is defined for all array objects,regardless of
type:

int len = arr.length; // returns 10

To modify the value of an array element,simply put an assignment statement after the
array access expression. Here are two examples:

myArr[1] = 15;
sentence[0] = “The”;

Arrays of primitive types such as int or float can copy values from one slot to another.
However, an array of objects in Java is an array of references to those objects (similar in
some ways to pointers). When you assign a value to a slot in an array, you’re creating a
reference to that object,just as you do for a plain object variable. When you assign one
array object to another, as in the line

56 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 56

Java Basics 57

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

sentence[10] = sentence[0];

you just reassign the reference. You don’t copy the value from one slot to another. After
this line of code is executed, both sentence[10] and sentence[0] would point to the
same memory allocation.

Arrays of references to objects,as opposed to arrays of the objects themselves,are par-
ticularly useful because they enable you to have multiple references to the same objects
both inside and outside arrays. For example, you can assign an object contained in an
array to a variable and refer to that same object by using either the variable or its array
position.

There is also a method in java.lang.System called arraycopy(), which enables you to
copy data from one array to another. The syntax of this method is

arraycopy(srcArr, srcOffset, dstArr, dstOffset, copyLength)

The arguments are defined as shown here:

srcArr The identifier of the source array

srcOffset The position where you want to begin copying

dstArr The identifier of the destination array

dstOffset The position where you want the copied data to be written

copyLength The number of array elements to be copied.

This method does not allocate any memory, so the destination array must already exist.

Multidimensional Arrays
Java supports multidimensional arrays. A very easy way to think of a multidimensional
array is to picture it as an array of arrays. In Java,you declare and create an array of
arrays (and those arrays can contain arrays,and so on) and access their elements by
using subscripts for each dimension. Here’s an example of a two-dimensional array of
coordinates:

int coords[][] = new int[12][12];
coords[0][0] = 1;
coords[0][1] = 2;

Multidimensional arrays can have as many dimensions as you want—just keep adding
brackets ([]) for each dimension. Here’s an example of a six-dimensional array declara-
tion:

int sixDimArr[][][][][][] = new int [2][4][8][3][][];

,
SY

N
TA

X

,

04.31318-9 CH02 9/23/98 9:52 AM Page 57

In this example, the first four dimensions are explicitly sized, whereas the last two are
not. Memory is allocated for the first four dimensions; the last two dimensions are not
allocated until they are later initialized. You can specify as many explicitly sized dimen-
sions as you like, followed by as many unsized dimensions as you like, but they must be
in that order. For example, the following is not allowed in Java:

int threeDimArr[][][] = new int [3][][3]; // invalid

Another thing to notice about multidimensional arrays is that it is not necessary for each
subarray to be the same size. Consider this example:

byte threeDimByteArr[][][] = new byte [2][4][3];

This array contains eight subarrays,each containing three byte elements. The
threeDimByteArr array contains 2 elements that are subarrays. Each of those two subar-
rays has four elements that are also subarrays. Each of those four subarrays has three
byte elements. You can also declare nonrectangular multidimensional arrays by specify-
ing literal values,such as the following:

String encryptStrArr[][] = new String {
{“ab”, “cd”, “ef”, “gh”, “ij”},
{“kl”, “mn”},
{“op”, “qr”, “st”, “uv”},
{“wx”, “yz”}

};

This example creates a multidimensional String array allocating four subarrays with 5,
2, 4, and 2 String elements,respectively.

String and StringBuffer Objects
In this section,you’ll take a look at how to declare and create strings,how to access
string elements,and how to use methods to manipulate strings. In addition, you’ll take a
look at how to use the StringBuffer class.

The String class is used to represent strings that are constant. The String class does
provide a few basic manipulation methods,but the result must always be assigned to a
second String object. Any significant change in a string value requires an interim
assignment to a StringBuffer object. The StringBuffer class enables you to manipu-
late strings directly inside the original StringBuffer object. This generally requires
more memory to be allocated, however, so it is recommended that you use String
objects whenever possible.

Declaring String and StringBuffer Objects
Declaring a variable of the String or StringBuffer data type is simple:

58 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 58

Java Basics 59

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

String myString;
StringBuffer myStringBuff;

However, declaring the variable only sets aside the identifier; it doesn’t allocate any
memory for the StringBuffer or String object. To do that, you must either initialize
using a string literal or call a constructor.

Creating String Objects
Because strings are used so often,the String class in Java defines several shortcuts to
create strings without explicitly calling a constructor. The most common way of allocat-
ing a String object is to assign a string literal to the declared variable:

myString = “I’ll see you on Saturday.”;

The resulting allocation is based on the number of characters contained in the literal.
Another way to create a new string is to use one of the valueOf() methods to convert a
value of another type, such as an integer, to its text equivalent:

myString = String.valueOf(17);

This creates a String containing two characters,1 and 7. The valueOf() method can
convert primitive types (boolean, char, int, long, float, double), the Object type, and
char arrays. For char arrays, the valueOf() method provides two method signatures:
one that takes the entire array as its parameter and another that takes a char array, an off-
set, and a countas parameters. Here’s an example of the latter:

char chArr[] = { ‘s’, ‘p’, ‘o’, ‘r’, ‘t’, ‘s’ };
String chString = String.valueOf(chArr, 1, 4);

This creates a String named chString containing the characters defined in chArr, start-
ing at position 1 (the offset) for 4 characters (the count) and resulting in the value port.

Note that these techniques for creating String objects do not require the explicit use of a
constructor. In addition, the String class defines several constructors from which to
choose. Here are some of the more common examples.

The following constructor takes no parameters and is the default constructor:

String str1 = new String();

It creates a String object named str1 with a length of 0.

This constructor takes a string literal as its parameter:

String str2 = new String(“Good Afternoon”);

It creates a String object named str2 containing the value Good Afternoon with a
length of 14.

04.31318-9 CH02 9/23/98 9:52 AM Page 59

This one takes a chArr as its parameter:

char chArr[] = { ‘S’, ‘a’, ‘m’, ‘s’ };
String str3 = new String(chArr);

It creates a String object named str3 containing the value Sams with a length of 4.
(This method is identical in result to the valueOf() method, which takes a char array as
its parameter.)

And this one takes a char array, an offset,and a count as its parameters:

char chArr[] = { ‘I’, ‘n’, ‘t’, ‘e’, ‘r’, ‘n’, ‘e’, ‘t’ };
String str4 = new String(chArr, 5, 3);

It creates a String object named str4 containing the value net and a length of 3, which
is obtained by starting at offset 5 in chArr and taking a count of 3 characters. (This
method is identical in result to the valueOf() method, which takes a char array, an off-
set,and a count as its parameters.)

This last constructor takes a StringBuffer object as its parameter:

String str5 = new(myStringBuff);

It creates a String object named str5 containing the contents of the myStringBuff vari-
able.

Accessing String Elements
The elements of a String object can be accessed the same way you access array ele-
ments,and you can use integer or integer expression subscripts to identify individual
String array elements. If a String subscript ends up outside the boundaries of the array
at runtime, the Java interpreter will produce a StringIndexOutOfBoundsException
object.

Here’s an example of a for loop that initializes all the values of a String object to the
char A by accessing its individual array elements:

String aString[] = new String[3];
for (int i = 0; i < aString.length; i++)
aString[i] = ‘A’;

In addition to accessing the characters as array elements,the String class defines numer-
ous methods to facilitate access to values within strings. Create an application using the
AccessString class in Listing 2.1,which illustrates some of these methods.

60 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 60

Java Basics 61

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

LISTING 2.1. AccessString.java.

1: class AccessString {
2: public static void main(String args[]) {
3: String str = “Time is too slow for those who wait.”;
4: System.out.println();
5:
6: System.out.println(“The string is: “ + str);
7:
8: System.out.println(“Length of string: “
9: + str.length());
10:
11: System.out.println(“Character at position 17: “
12: + str.charAt(17));
13:
14: System.out.println(“String begins with \”those\”: “
15: + str.startsWith(“those”));
16:
17: System.out.println(“String ends with \”wait.\”: “
18: + str.endsWith(“wait.”));
19:
20: System.out.println(“Index of the first \”w\” character: “
21: + str.indexOf(‘w’));
22:
23: System.out.println(“Index of the last \”w\” character: “
24: + str.lastIndexOf(‘w’));
25:
26: System.out.println(“Substring from 0 to 2: “
27: + str.substring(0, 3));
28:
29: }
30: }

After you compile and run the program,you should see this output in the Execution Log
window, which you open by selecting the Execution Log command from the View menu:

The string is: Time is too slow for those who wait.
Length of string: 36
Character at position 17: f
String begins with “those”: false
String ends with “wait.”: true
Index of the first “w” character: 15
Index of the last “w” character: 31
Substring from 0 to 2: Tim

In this example, you create an instance of String and then print various values
returned by methods defined in the String class:

TYPE

OUTPUT

ANALYSIS

04.31318-9 CH02 9/23/98 9:52 AM Page 61

• Line 3 creates an instance of String called str with the literal Time is too slow
for those who wait. as its initial value.

• Line 6 prints the current value of the str variable.

• Line 9 calls the length() method and returns the value 36. (Don’t forget to count
the period at the end of the sentence in the string.)

• Line 12 calls the charAt() method and returns the character at the given index
position in the string. Note that string indexes start at 0, so the character at position
17 is f.

• Line 15 calls the startsWith()method, which looks for the substring those at the
beginning of str. This is a boolean method, and the result is false.

• Line 18 calls the endsWith()method, which looks for the substring wait. at the
end of str. This is also a boolean method whose result is true.

• Line 21 calls the indexOf() method with a char argument,which returns the index
position of the first observation of the given character. The first w in the string is at
position 15 in the word slow.

• Line 24 calls the lastIndexOf() method with a char argument,which returns the
index position of the last observation of the given character. The last w is at posi-
tion 31 in the word wait.

• Line 27 calls the substring()method and begins at index position 0 (inclusive)
and ends before index position 3 (exclusive) in the string. This results in the sub-
string Tim (the 0th,1st,and 2nd characters).

The substring() method warrants a bit more explanation. The character at the begin-
ning index position is included in the substring, but the character at the ending index is
not included in the substring. For this reason,the substring() method can take a second
form that enables you to get the substring from a specified index position to the end of
the String. For example, to get the last two characters of the String containing the
value Hello, you could use this second form:

String str = “Hello”;
String loStr = str.substring(3)); // using correct method

If you attempt to use the first form to accomplish this same task,you will get a runtime
StringIndexOutOfBounds exception object:

String str = “Hello”;
String loStr = str.substring(3, 5)); // throws an exception

To get those last two characters, you would have to specify a beginning inclusive index
of 3 but an exclusive ending index of 5. This causes the exception to be thrown because
the valid indices for str are 0 through 4.

62 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 62

Java Basics 63

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Several other methods have more than one form (such as the indexOf() and
lastIndexOf() methods),but for purposes of this example, only one form was shown
for each method. For more details,be sure to refer to the online documentation for the
String class in the online Java Reference help file.

Comparing and Manipulating Strings
The String class also provides methods for comparison and manipulation. When objects
are compared, the comparison returns a boolean value telling you whether two object
variables point to the very same object in memory. Also, don’t forget that if you define
two string literals with the same value, they will actually point to the same memory allo-
cation.

String literals are optimized in Java. This means that if you store a string
value and then attempt to assign another string value by using the same lit-
eral, the Java compiler will realize that it has that literal already stored and
will very helpfully return the existing object rather than creating a new
object. Therefore, you must explicitly use new to create two distinct String
object instances with the same string value.

Caution

So assuming you’ve used new to create two separate and distinct strings,how do you
compare the two strings? The String class defines three comparison methods for this
purpose. The first method, which is called equals()and is case sensitive, tests the corre-
sponding characters in both strings and returns true if they have identical values. In
addition, the String class defines a version that’s not case sensitive called
equalsIgnoreCase(), which, as you would expect,compares the corresponding charac-
ters without regard to whether they are uppercase or lowercase.

A third comparison method, compareTo(), compares two strings and returns an integer
value representing the numeric difference between them:

String firstStr = new String(“JBuilder”);
String secondStr = new String(“C++Builder”);
System.out.println(firstStr.compareTo(secondStr));

The integer Unicode values of each pair of characters are compared until two are
encountered that don’t match (and the remaining characters are ignored). In this exam-
ple, the first character pair, J and C, don’t match, and because the method is called by
firstStr, the compareTo() method subtracts the integer value for C (99) from J (106).
The result is 7, a positive integer, which indicates that JBuilder is greater than
C++Builder (at least from a String point of view). A negative integer result indicates

04.31318-9 CH02 9/23/98 9:52 AM Page 63

that the calling string is less than the passed string; a zero result indicates that the two
strings are the same.

Although StringBuffer objects are recommended to hold strings that you know in
advance will need to be manipulated, the String class does define a few techniques for
changing String object values. However, you cannot assign the result to the original
String object; you must define another String object to receive the result of these meth-
ods. They include concat(), replace(), trim(), toLowerCase(), and toUpperCase().

Create a program using the ChangeString class in Listing 2.2,which shows the use of
some of these methods.

LISTING 2.2. ChangeString.java.

1: class ChangeString {
2: public static void main(String args[]) {
3: System.out.println();
4:
5: String aStr = “ Geed “;
6: String bStr = “Merning!”;
7: String cStr = aStr.concat(bStr);
8: System.out.println(cStr);
9:
10: String dStr = cStr.replace(‘e’, ‘o’);
11: System.out.println(dStr);
12:
13: String eStr = dStr.toLowerCase();
14: System.out.println(eStr);
15:
16: String fStr = eStr.toUpperCase();
17: System.out.println(fStr);
18:
19: String gStr = fStr.trim();
20: System.out.println(gStr);
21:
22: }
23: }

After you compile and run the program,you should see this output:

Geed Merning!
Good Morning!
good morning!
GOOD MORNING!

GOOD MORNING!

In this example, you use the various manipulation methods defined in the String
class:

64 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

TYPE

OUTPUT

ANALYSIS

04.31318-9 CH02 9/23/98 9:52 AM Page 64

Java Basics 65

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

• Line 5 creates a String object with the literal
<space><space><space>Geed<space> as its initial value and assigns it to the aStr

variable. Line 6 creates a String object with the literal Merning! as its initial value
and assigns it to the bStr variable. Line 7 concatenates the objects assigned to the
aStr and bStr variables and assigns the resulting String object to the cStr vari-
able. Line 8 produces the first line of output:

Geed Merning!

• Line 10 replaces every instance of the e character in the String object assigned to
the cStr variable with an o character. A new String object is created, encapsulat-
ing the new array of characters,and is assigned to the dStr variable. Line 11 prints
the resulting value encapsulated by the String object assigned to the dStr vari-
able:

Good Morning!

• Line 13 changes every character encapsulated by the String object assigned to the
dStr variable to lowercase (if necessary). In this example, the G and M characters
are changed to the lowercase g and m characters. The resulting new String object
is assigned to the eStr variable. Line 14 prints the resulting value encapsulated by
the String object assigned to the eStr variable:

good morning!

• Line 16 changes every character encapsulated by the String object assigned to the
eStr variable to uppercase (if necessary). In this example, the method changes
every character in the string to uppercase. The resulting new String object is
assigned to the fStr variable. Line 17 prints the resulting value encapsulated by
the String object assigned to the fStr variable:

GOOD MORNING!

• Line 19 removes any leading or trailing spaces in the array of characters encapsu-
lated by the String object assigned to the fStr variable. In this example, the three
leading spaces are trimmed. The resulting new String object is assigned to the
gStr variable. Line 20 prints the resulting value encapsulated by the String object
assigned to the gStr variable:

GOOD MORNING!

Also, you’ll want to remember that Java defines the concatenation operator (+) for con-
catenating strings.

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

04.31318-9 CH02 9/23/98 9:52 AM Page 65

As you can see, doing this much manipulation of a string value requires many allocations
of memory, due to the fact that you cannot assign the result back to the calling String
object. If you actually had to do this much manipulation of the string value, it would be
much more efficient to use string buffers. In fact,you’ll revisit this same listing in the
section “Manipulating StringBuffers,” later in this chapter.

There are still other methods defined in java.lang.String that are not illustrated in this
section,including copyValueOf(), getBytes(), hashCode(), intern(), and
regionMatches(). Once again, refer to the online Java Reference included in JBuilder
for further information on these more advanced methods for dealing with String object
values.

Creating StringBuffer Objects
For a StringBuffer object,in addition to the length, which tells how many characters
are actually contained within,it also has a capacity method, which returns the number
of characters that were allocated to the buffer. To create a StringBuffer object,you can
use one of its three class constructors. For example,

StringBuffer myStrBuff = new StringBuffer(myString);

has just one parameter, myString, which takes a String object. It creates a
StringBuffer object,which contains the contents of a String object passed to the
myString parameter, and assigns it to the myStrBuff variable. The length of the string
assigned to the myStrBuff variable is set equal to the length of the string passed to the
myString parameter. The capacity is dynamically allocated. You can also pass a string
literal to the myString parameter.

This constructor takes no parameters and is the default constructor:

StringBuffer myStringBuff = new StringBuffer();

It creates a StringBuffer object,with a length of zero, and assigns it to the
myStringBuff parameter. Once again, the capacity is dynamically allocated.

This one takes an integer parameter, which represents both the length and the capacity
of the StringBuffer object that is created:

StringBuffer aBuff = new StringBuffer(25);

This example creates a StringBuffer object,with an initial static allocation capacity of
25 filled with spaces and a length of 0, and assigns it to the aBuff variable.

Accessing StringBuffer Elements
Once again,accessing individual elements encapsulated in StringBuffer objects can be
done by using subscripts, just as with any other array access. However, because string

66 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 66

Java Basics 67

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

buffers are indeed objects,the StringBuffer class defines its own methods for determin-
ing the number of characters actually in the buffer, the number of characters that the
buffer can contain,and the character at a particular position. Create a program using the
AccessBuffer class shown in Listing 2.3,which displays these methods.

LISTING 2.3. AccessBuffer.java.

1: class AccessBuffer {
2: public static void main(String args[]) {
3:
4: System.out.println();
5: StringBuffer aBuff = new StringBuffer(“Time flies!”);
6: System.out.println(“The contents of aBuff: “ + aBuff);
7: System.out.println(“Capacity: “ + aBuff.capacity());
8: System.out.println(“Length: “ + aBuff.length());
9: System.out.println(“Character at position 7: “
10: + aBuff.charAt(7));
11:
12: System.out.println();
13: StringBuffer bBuff = new StringBuffer();
14: System.out.println(“The contents of bBuff: “ + bBuff);
15: System.out.println(“Capacity: “ + bBuff.capacity());
16: System.out.println(“Length: “ + bBuff.length());
17:
18: System.out.println();
19: StringBuffer cBuff = new StringBuffer(25);
20: System.out.println(“The contents of cBuff: “ + cBuff);
21: System.out.println(“Capacity: “ + cBuff.capacity());
22: System.out.println(“Length: “ + cBuff.length());
23: }
24: }

When you compile and run the program,you should see this output:

The contents of aBuff: Time flies!
Capacity: 27
Length: 11
Character at position 7: i
The contents of bBuff:
Capacity: 16
Length: 0
The contents of cBuff:
Capacity: 25
Length: 0

In this example, you create several instances of StringBuffer and then print the
values returned by methods defined in the StringBuffer class:

TYPE

OUTPUT

ANALYSIS

04.31318-9 CH02 9/23/98 9:52 AM Page 67

• Line 5 creates an instance of the StringBuffer class,with the literal Time flies!
as its initial value, and assigns the object to the aBuff variable. Line 6 prints the
initial value of the object assigned to the aBuff variable.

• Line 7 prints the capacity, which was dynamically allocated for the object
assigned to the aBuff variable, returning 27. Line 8 calls the length() method,
which returns the value 11.

• Line 9 calls the charAt() method, which returns the character at the given index
position in the buffer. The StringBuffer object indexes are array subscripts and
start at 0, so the character at position 7 is i.

• Line 13 creates an instance of the StringBuffer class with no initial value speci-
fied and assigns the resulting object to the bBuff variable. Line 14 shows that the
object assigned to bBuff is indeed empty.

• Line 15 prints the capacity dynamically allocated to the object assigned to bBuff,
returning 16. Line 16 calls the length() method on the same object,which returns
the value 0.

• Line 19 creates an instance of the StringBuffer class,specifying its capacity,
and assigns the resulting object to the cBuff variable. Line 20 shows that the object
assigned to cBuff is empty.

• Line 21 prints the capacity statically allocated to the object assigned to cBuff,
returning 25. Line 22 calls length() on the same object,which returns the value 0.

You’ll notice that when capacity is dynamically allocated, it is sometimes double the
length of the actual contents assigned to the buffer. This is the extra overhead required
for string buffers to be able to manipulate their contents and is why you should use
String objects unless you really need a StringBuffer. Next, you’ll learn how to use the
StringBuffer manipulation methods.

Manipulating StringBuffers
The StringBuffer class provides various methods for manipulating the contents of
buffers. They include setLength(), setCharAt(), append(), insert(), reverse(), and
toString(). In contrast to String objects,in which the result of a String object manip-
ulation must be assigned to a second String object,a StringBuffer object can assign
the method result directly to the calling StringBuffer object. The ChangeBuffer class in
Listing 2.4 illustrates these buffer manipulation methods defined in the StringBuffer
class. Create a new program using Listing 2.4.

68 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:52 AM Page 68

Java Basics 69

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

LISTING 2.4. ChangeBuffer.java.

1: class ChangeBuffer {
2: public static void main(String args[]) {
3: System.out.println();
4:
5: StringBuffer aBuff = new StringBuffer(“Time plies!”);
6: System.out.println(“aBuff contents: “ + aBuff);
7: System.out.println(“Capacity, length: “
8: + aBuff.capacity() + “, “
9: + aBuff.length());
10: aBuff.setLength(10);
11: System.out.println(“aBuff contents: “ + aBuff);
12: System.out.println(“Capacity, length: “
13: + aBuff.capacity() + “, “
14: + aBuff.length());
15: aBuff.setCharAt(5, ‘f’);
16: System.out.println(“aBuff contents: “ + aBuff);
17: System.out.println(“Capacity, length: “
18: + aBuff.capacity() + “, “
19: + aBuff.length());
20: aBuff.append(“ having fun!”);
21: System.out.println(“aBuff contents: “ + aBuff);
22: System.out.println(“Capacity, length: “
23: + aBuff.capacity() + “, “
24: + aBuff.length());
25: aBuff.insert(11, “when you’re “);
26: System.out.println(“aBuff contents: “ + aBuff);
27: System.out.println(“Capacity, length: “
28: + aBuff.capacity() + “, “
29: + aBuff.length());
30: String aStr = aBuff.toString();
31: System.out.println(“The string is: “ + aStr);
32: System.out.println(“Length: “ + aStr.length());
33:
34: StringBuffer bBuff = new StringBuffer(“Bob//”);
35: System.out.println(“Original contents of bBuff: “ + bBuff);
36: bBuff.reverse();
37: System.out.println(“Reversed contents of bBuff: “ + bBuff);
38: }
39: }

After you compile and run the program,you should see this output:

aBuff contents: Time plies!
Capacity, length: 27, 11
aBuff contents: Time plies
Capacity, length: 27, 10
aBuff contents: Time flies
Capacity, length: 27, 10
aBuff contents: Time flies having fun!

TYPE

OUTPUT

04.31318-9 CH02 9/23/98 9:52 AM Page 69

Capacity, length: 27, 22
aBuff contents: Time flies when you’re having fun!
Capacity, length: 56, 34
The string is: Time flies when you’re having fun!
Length: 34
Original contents of bBuff: Bob//
Reversed contents of bBuff: //boB

In this example, you use some of the manipulation methods defined in the
StringBuffer class:

• Line 5 creates a StringBuffer object,with the Time plies! literal passed as its
initial value, and assigns the object to the aBuff variable. Line 6 prints the encap-
sulated value.

• Lines 7 through 9 print the current values of capacity and length for the
StringBuffer object assigned to the aBuff variable, which are 27 and 11, respec-
tively.

• Line 10 uses the setLength() method to truncate the value encapsulated in the
object assigned to aBuff to 10 characters. Line 11 prints Time plies, which is the
new value.

• Lines 12 through 14 print the current values of capacity and length for the
StringBuffer object assigned to aBuff, which are 27 and 10, respectively.

• Line 15 uses the setCharAt() method to change the character at offset 5 to f. Line
16 prints Time flies, which is the new value.

• Lines 17 through 19 print the current values of capacity and length for the
StringBuffer object assigned to the aBuff variable, which are again 27 and 10,
respectively.

• Line 20 uses one of the append() methods to add the string literal <space>having
fun! at the end of the string encapsulated in the object assigned to aBuff. Line 21
prints Time flies having fun!, which is the new value.

• Lines 22 through 24 print the current values of capacity and length for the
StringBuffer object assigned to aBuff, which are now 27 and 22, respectively.

• Line 25 uses one of theinsert() methods to insert the string literal when
you’re<space> at offset 11 in the string encapsulated in the object assigned to the
aBuff variable. Line 26 prints Time flies when you’re having fun!, which is
the new value.

• Lines 27 through 29 print the current values of capacity and length for the
StringBuffer object assigned to aBuff, which are 56 and 34, respectively.

• Line 30 uses the StringBuffer class’s toString() method to assign the current
value encapsulated by the StringBuffer object assigned to aBuff to the aStr

70 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

ANALYSIS

04.31318-9 CH02 9/23/98 9:52 AM Page 70

Java Basics 71

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

variable. Line 31 prints Time flies when you’re having fun!, which is now the
value encapsulated by the String object assigned to aStr.

• Line 32 prints the current value of length for the String object assigned to the
aStr variable, which is 34.

• Line 34 creates a new StringBuffer object,using Bob// as its initial value, and
assigns it to the bBuff variable. Line 35 prints this initial value.

• Line 36 calls the StringBuffer class’s reverse() method to reverse the order of
the character array encapsulated by the StringBuffer object assigned to bBuff to
//boB, which is printed by line 37.

As hinted at in this analysis,both the append() and the insert() methods are over-
loaded. That is, each has numerous method signatures. The append() method can take
primitive values (boolean, char, double, float, int, and long), object values (such as
Object and String), and char array values. There are two char array signatures; the first
takes the char array as its parameter, and the second takes a char array, an offset,and a
count. The insert() method takes an integer offset as its first parameter, and for its sec-
ond parameter it can take the same primitive or object values as the append() method.

Not every method defined in java.lang.StringBuffer was demonstrated here. Some
not mentioned are ensureCapacity() and getChars(). For more details on these meth-
ods,refer to the online Java Reference included in JBuilder.

Conditionals and Loops
Although you could write Java programs using what you’ve learned so far, those pro-
grams would be pretty dull. Much of the good stuff in Java or in any programming lan-
guage results when you have flow control constructs (loops and conditionals) to execute
different bits of a program based on logical tests.

if-else Conditionals
The if-else conditional,which enables you to execute different lines of code based on a
simple test in Java, is nearly identical to if-else statements in other languages.

Here is its syntax:

if condition
statement(s);

else statement(s);

The keyword if is followed by the condition, which is a Boolean test. The condition
is immediately followed by statement(s) (either a single statement or a block of state-
ments) to execute if the condition returns true. An optional else keyword provides the

,
SY

N
TA

X
,

04.31318-9 CH02 9/23/98 9:52 AM Page 71

statement(s) to execute if the condition is false:

if (x < y)

72 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

,

,

System.out.println(“x is smaller than y”);
else System.out.println(“x is larger than or equal to y”);

There are three common syntax errors that novice Java programmers make
when using if-else statements:

1. In Java, if-else conditionals must return a boolean value (that is,
either true or false) unlike most other languages, in which if-else
conditionals can return an integer value.

2. There is no then keyword in Java’s if-else conditional statement as
there is in other languages. You simply put the statement to be exe-
cuted directly after the test.

Caution

3. Don’t forget to put a semicolon (;) at the end of the if statement as
well as before the else. In some other languages, a semicolon before
an else would cause a compiler error; in Java it is required.

Here is an example of an if-else conditional using a block in the else part of the state-
ment:

if (engineState == true)
System.out.println(“Engine is already on.”);

else {
System.out.println(“Now attempting to start engine.”);
if (gasLevel >= 1)

engineState = true;
else System.out.println(“Low on gas -- cannot start engine!”);

}

This example uses the test (engineState == true) in the first if statement,which is
actually redundant and causes an unnecessary comparison. Because engineState is a
boolean variable, you can simply use the value of the variable itself rather than compar-
ing its value to true:

if (engineState)
System.out.println(“Engine is on.”);

else System.out.println(“Engine is off.”);

Sometimes,when nesting if-else statements,you need to distinguish which if the else
belongs to. Here’s an example:

if (condition1)

04.31318-9 CH02 9/23/98 9:52 AM Page 72

Java Basics 73

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

if (condition2)
statement;

else statement;

In this example, the indentation indicates to the reader that the else belongs with the
first if statement and should execute when condition1 is false. Unfortunately, the Java
compiler isn’t as astute. It will assume that the else goes with the if statement that
immediately precedes it. Therefore, in the preceding example, it will assume that the
else goes with the second if and will execute when condition2 is false. Here’s how to
keep Java in line:

if (condition1) {
if (condition2)
statement;

}
else statement;

Even though the second if statement is not a block, you can use the curly braces ({}) to
force the issue and indicate its scope as if it were a block. This will prevent the else
from associating itself with the second if because scoping makes this new block invisi-
ble to any statements outside the block.

The Conditional ?: Operator
An alternative to using the if-else statement in a conditional statement is to use the
conditional operator, which is a ternary operator.

The conditional operator is an expression,meaning that it returns a value (unlike the
if-else statement,which simply controls execution). The conditional operator is most
useful for very short or simple conditionals.

The syntax for the conditional operator is as follows:

condition ? trueresult : falseresult;

The condition is a boolean expression that returns true or false, just like the

,
SY

N
TA

X

,

condition in the if-else statement. If the condition is true, the conditional operator
expression returns the value of trueresult; if the condition is false, the conditional
operator expression returns the value of falseresult.

Caution

Both trueresult and falseresult must be expressions that resolve to a sin-
gle value. In other words, you cannot use assignment or block statements for
these operands.

Here is an example of a conditional that tests the values of x and y, returns the smaller of

04.31318-9 CH02 9/23/98 9:52 AM Page 73

the two, and assigns that value to the variable smaller:

int smaller = x < y ? x : y;

The conditional operator has a very low precedence. The only operators lower in prece-
dence are the assignment operators. So the conditional operator is generally evaluated
only after all its subexpressions are evaluated. For more information on operator prece-
dence, refer to Table 2.6.

In the preceding example, here is the order of evaluation:

1. The value of x is compared to the value of y.

2. If the comparison is true (that is, x is less than y), the value of x is returned; or
else the comparison is false, and the value of y is returned.

3. The value returned is then assigned to the int variable smaller.

Here is the same comparison using the if-else statement:

int smaller;
if x < y
smaller = x;
else smaller = y;

74 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

As you can see from these examples,you can accomplish a lot with just a single line of
code by using the conditional operator.

You cannot use assignment or block statements as one of the operands with

Note

the ternary operator. If you want to use these more complex statements,
you will need to use the if-else statement instead.

switch Conditionals
A common programming practice in all languages is to test a variable against each value
in a set of values and then perform different actions based on which value the variable
matches. Using only if-else statements,this can become unwieldy, depending on how
it’s formatted and how many different values are in the set of possible matches. For
example, you might end up with a set of if-else statements like this:

if (oper == ‘+’)
addargs(arg1, arg2);

else if (oper == ‘-’)
subargs(arg1, arg2);

else if (oper == ‘*’)
multargs(arg1, arg2);

04.31318-9 CH02 9/23/98 9:53 AM Page 74

Java Basics 75

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

else if (oper == ‘/’)
divargs(arg1, arg2);

This form of if-else statement is called a nestedif-else because each statement in
turn contains yet another if-else, and so on. In this example, four possibilities are
accounted for, so the code isn’t too unreadable. But what if you had 20 possibilities to
deal with? Because this situation is so common,there is a special conditional to handle
it: the switch conditional,also sometimes called the “case”statement.

Here is the syntax for the switch conditional:

switch (expression) {
case constant_1;
statement(s);
break;

case constant_2;
statement(s);
break;

...
default:

statement(s);
}

The switch structure consists of a series of case values (constant_1, constant_2, and
so on) and an optional default statement. The expression (which must result in a prim-
itive type of byte, char, short, or int) is compared with each of the case values in turn.
If a match is found, the statement(s) after the case value execute until a break state-
ment or the end of the switch statement is reached. If after checking all the case values
no match is found, the default statement is executed. The default is optional,so if it is

,
SY

N
TA

X

,

not used and there is no match with any of the case values,the switch statement com-
pletes without doing anything.

Because the default statement is optional when the switch conditional is
used, it’s easy to leave it out by mistake. If you really don’t want to do any-
thing in the event of no case-value matches, it is recommended that you put
in a comment statement for the default, such as this:

default: /* do nothing */ ;

Tip

This way, when someone looks at your code several weeks (or months) later,
it will be obvious that the no-op for the default was intentional.

Here’s the nested if-else statement shown earlier, rewritten as a switch statement:

switch (oper)
case ‘+’;

04.31318-9 CH02 9/23/98 9:53 AM Page 75

addargs(arg1, arg2);
break;

case ‘-’;
subargs(arg1, arg2);
break;

case ‘*’;
multargs(arg1, arg2);
break;

case ‘/’;
divargs(arg1, arg2);

76 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

break;
default: /* do nothing */ ;

}

Note

Within switch statements, it is not necessary to group statements as blocks
by using brackets ({}). Any statements between a case statement and its
break statement will automatically be treated as an implicit block, creating a
local scope.

Note the break statement at the end of each case. Without the explicit break, when a
match is found, the statements for that match and all the statements further down within
the switch are executed until either a break or the end of the switch is found (whichever
occurs first). Normally, this is not the behavior desired, so you’ll want to be sure to
include the break to delimit which statements should be executed upon finding a match.

On the other hand, this characteristic can be useful. Consider the instance in which you
want a set of statements to be executed for more than one case value. Specifying the
same statements for each case value would be redundant,so Java provides a way for
multiple case values to execute the same statement(s). When you leave out the result
statement for a case value, execution will “f all through” to the next case value, and the
next, until a result statement is found. Here’s an example of this kind of construct:

switch (x) {
case 2:
case 4:
case 6:
case 8:

System.out.println(“x is an even single-digit number”);
break;

default:
System.out.print(“x is not an even single-digit number”);

}

04.31318-9 CH02 9/23/98 9:53 AM Page 76

Java Basics 77

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

The significant limitation of the switch in Java is that the tests and values can be only
simple primitive types (and then only those primitive types that are castable to int). You
cannot use larger primitive types (long, float, double), strings,or other objects within a
switch statement,nor can you test for any relationship other than equality. This limits
the usefulness of switch to all but the simplest comparisons. However, nested if-else
statements can be used for any kind of test on any type of value.

for Loops
The for loop tests a condition and, if the condition is true, executes a statement or
block of statements repeatedly until the condition is false. This type of loop is fre-
quently used for simple iteration in which you repeat a block of statements a certain
number of times and then stop,but you can use for loops for just about any kind of
loop.

Here is the syntax for the for loop:

for (initialization; test; increment) statement(s);

The start of the for loop has three parts:

• initialization is an expression that initializes the starting counter of the for
loop. This expression is evaluated only once, when the for statement is first
encountered. If you have a loop index, this expression might declare and initialize
it; for example, int i = 0. Variables that you declare in this part of the for loop
are local to the loop itself; they cease to exist after the loop has finished executing.

• test is the condition that must be met before each pass of the loop. The test must
be a boolean expression or function that returns a boolean value; for example,
i < 10. If the test returns true, the loop executes. As soon as the test returns
false, the loop stops executing. If test returns false the first time it is tested, the
loop won’t be executed at all.

• increment is any expression or function call. Commonly, the increment is used to
change the value of the loop index to bring the state of the loop closer to returning
false and completing, such as i++.

The statement(s) part of the for loop represents the statement or block of statements
that is executed each time the test returns true and the loop executes. Here’s an exam-
ple of a for loop that initializes all the values of a String array to null strings:

String strArray[] = new String[10];
for (int i = 0; i < strArray.length; i++)

,
SY

N
TA

X

,

04.31318-9 CH02 9/23/98 9:53 AM Page 77

Any of the parts of the for loop can be empty statements. That is, you can simply
include a semicolon without an expression or statement,and that part of the for loop
will be ignored.

If you use an empty statement in your for loop, you might have to initialize
or increment loop variables or loop indices yourself elsewhere.

You can also have an empty statement for the body of your for loop, if everything you
want to do is accomplished in the start of the loop. For example, here’s one that finds the
first prime number higher than 4,000. Again, it is recommended that you put a comment
statement anywhere you want to put an empty statement so that it is obvious that the
empty statement was intentional:

for (i = 4001; notPrime(i); i += 2)
/* do nothing */ ;

Be careful about placing a semicolon (;) after the first line in the for loop,however.
Consider the following code snippet:

for (int i = 0; i < 10; i++);
System.out.println(“Loop!”);

What was intended was for the string “Loop!” to be printed 10 times,but what actually
would occur is that the loop would iterate 10 times doing nothing but testing and incre-
menting, and then print “Loop!” just once. Why? It’s the misplaced semicolon (;) at the
end of the for loop’s first line.

while Loops
The while loop is used to repeat a statement or block of statements as long as a particu-
lar condition is true.

Here is the syntax of the while loop:

while (condition) statement(s);

The condition is a boolean expression,which returns a boolean result. If it returns
true, the while loop executes the statement(s) and then tests the condition again,
repeating until the condition returns false. If the condition is false the first time the
condition is tested, the while loop’s statement(s) will not execute.

Here’s an example of a while loop that copies the elements of an array of integers (in

78 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

strArray[i] = “”;Note
,

SY
N

TA
X

,

04.31318-9 CH02 9/23/98 9:53 AM Page 78

Java Basics 79

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

arrInt) to an array of floats (in arrFloat), casting each element to a float as it goes.
To make things more interesting, there are two conditions that must return true for the
loop to execute:

• The count must be less than the array’s length.

• The current integer element must not be 0.

To accomplish this task,the loop features a compound test,which checks for more than
one condition. When you use the && operator, both must be true for the condition to
return true. This loop also uses the postfix increment operator (++) to increment the
count each time the loop is executed:

int count = 0;
while ((count < arrInt.length) && (arrInt[count] != 0)) {
arrFloat[count] = (float) arrInt[count];
count++;

}

Suppose that arrInt had a length of 20. If none of arrInt’s values was 0, this while
loop would execute 20 times because the test would be true while the count variable
iterated though the values 0 to 19. On the other hand, if any one of arrInt’s values was
0, the loop might execute anywhere from 0 to 19 times,depending on the position of the
first 0 value in arrInt.

Note

do-while Loops
In the discussion of the while loop, it was noted that it might not execute even once, if
the condition returns false on the first try. If you want to execute the loop at least
once, a do-while loop is what you need. It does essentially the same thing as a while

loop,with the exception that it executes the statement(s) first, and then it performs the
test on the condition.

The do-while loop in Java corresponds to the repeat-until loop in Pascal.

Here is the syntax for the do-while loop:

do statement(s) while condition;

Here, the statement(s) execute first, and then the condition is tested. If the condition
returns true, the statement(s) execute again; if the condition returns false, the loop

,
SY

N
TA

X

,

04.31318-9 CH02 9/23/98 9:53 AM Page 79

ends. Here’s an example that prints 20 lines of output:

int x = 1;
do {
System.out.println(“Looping, round “ + x);
x++;

} while (x <= 20);

Remember, do-while loops always execute at least once and test at the end, whereas
while loops test at the beginning and might not execute even once.

Breaking Out of Loops
In all the loops (for, while, do-while), the loop ends when the condition you’re testing
for returns false. What happens if something odd occurs within the body of the loop

80 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

and you want to exit the loop early? For that, you can use the break and continue key-
words.

Tip

You’ve already seen break as part of the switch statement; it stops execution of the
switch, and the program continues with the next statement following the end of the
switch. The break keyword, when used with a loop,does the same thing—it imme-
diately halts execution of the current loop. If you have loops nested within loops,execu-
tion picks up in the next outer loop. Otherwise, the program merely continues executing
the next statement after the loop.

Although using nested loops can help you handle complex data-flow man-
agement, using more than two or three levels can make your code very dif-
ficult to read and understand. So use nesting of loops sparingly.

For example, take that while loop that copies elements from an integer array into an
array of floats until the end of the array or until a 0 is reached. You can test for the lat-
ter case inside the body of the while and then use a break to exit the loop. Here’s the
example rewritten to accomplish the job:

int count = 0;
while (count < arrInt.length) {

if (arrInt[count] == 0)
break;

arrFloat[count] = (float) arrInt[count];
count++;

}

The break statement causes the loop to cease as soon as the condition is met; in this

04.31318-9 CH02 9/23/98 9:53 AM Page 80

Java Basics 81

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

case, the loop ceases as soon as one of the arrInt values is equal to 0. In contrast,the
continue keyword ceases to execute the current iteration of the loop but then continues
with the next iteration of the loop. For do-while loops,this means that the loop begins
execution at the top again; for while and for loops,the loop is executed again starting
with the evaluation of the condition.

The continue keyword is useful when you want to restart the loop without finishing all
its statement(s). Consider the earlier example of copying one array to another. You can
test whether the current integer element is 0. If it is, you can restart the loop so that the
resulting array of floats will never contain a zero value. Note that because you’re
skipping some elements in the first array, you will now have to track and increment two
array counters:

int iCount = 0;
int fCount = 0;
while (iCount < arrInt.length) {
if (arrInt[iCount] == 0) {

iCount++;
continue;

}
arrFloat[fCount++] = (float) arrInt[iCount++];

}

This example will now iterate through both arrays, copying the integer values from
arrInt to arrFloat only if the element in arrInt is not equal to zero.

Labeled Loops
Both break and continue can have an optional label that tells Java which specific pro-
gram statement it should continue with. Without a label,break continues execution with
the next program statement following its enclosing loop,and continue restarts its
enclosing loop. Using labeled break and continue statements enables you to continue a
loop outside the current loop or to break completely out of several layers of nested loops
at once.

To use a labeled loop,add the label before the initial part of the loop with a colon (:)
rather than a semicolon (;) at the end of the label. Then,when you use a break or
continue statement,add the name of the label after the keyword itself:

out:
for (int i = 0; i < 10; i++) {

while (x < 50) {
if (i * x == 400)

break out;
...

} // end of while loop
...

} // end of for loop
... // execution continues here after break out

04.31318-9 CH02 9/23/98 9:53 AM Page 81

In this code snippet,out: labels the outermost block. Then,inside both the for
and the while loops,when a particular condition is met,the break statement causes the
execution to break out of both loops and continue program execution with the line of
code after the end of the for loop.

The Breakers program in Listing 2.5 is an example that contains nested for loops and a
labeled break. Within the innermost loop,if the summed values of the two counters is
greater than four, both for loops exit at once. Create a new program using the code in
Listing 2.5.

LISTING 2.5. Breakers.java.

1: class Breakers {
2: public static void main(String args[]) {
3:
4: ers:
5: for (int i = 1; i <= 5; i++) {

6: for (int k = 1; k <= 3; k++) {
7: System.out.println(“i is “ + i + “, k is “ + k);
8: if ((i + k) > 4)

9: break ers;
10: }
11: }
12: System.out.println(“end of both loops”);
13: }

14: }

When you run the program,you should see the following output:

i is 1, k is 1
i is 1, k is 2
i is 1, k is 3
i is 2, k is 1
i is 2, k is 2
i is 2, k is 3
end of both loops

In this example, the label is ers: (line 4). The loops execute (lines 5 through 11) and
continue to iterate as long as i + k is not greater than 4 (line 8). When the sum of i and
k is greater than 4, the break statement (line 9) causes both loops to exit back to the
outer block, and the last line is printed (line 12).

Summary
Today, you learned about many aspects of JBuilder’s underlying language, Java. You

82 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

TYPE

OUTPUT

ANALYSIS

04.31318-9 CH02 9/23/98 9:53 AM Page 82

Java Basics 83

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

learned about program statements,including Java’s special documentation comments.
You also examined data types,variables,and literals. In addition, you reviewed the oper-
ators available in Java and how they are used in expressions,including precedence rules.
You also were made aware of the availability of advanced mathematical functions in
Java.

You also learned quite a lot about arrays, strings,and string buffers. You learned how to
declare array, String, and StringBuffer variables and create their objects. You exer-
cised most of the methods that access the data contained in these structures and now
know where to look for additional information on some of the more obscure methods.
You can declare and use multidimensional arrays. You now know when to use
StringBuffer objects rather than String objects.

Two topics also covered that you’ll probably use quite often in your own Java programs
were conditionals and loops. Conditionals include the if-else and switch statements,
with which you can branch to different lines of code depending on the result of a
boolean test. The loop statements include the for, while, and do-while loops,each of
which enables you to execute certain statements repeatedly until a specified condition is
met.

Now that you’ve learned these language constructs,the next thing to tackle is the larger
issues of declaring classes and creating methods within which instances of those classes
can communicate with each other by calling methods.

Q&A
Q I didn’ t notice any way to create local constants. Doesn’t Java have constants?

A Yes; however, you can’t create local constants in Java. You can create only instance
constants and class constants. You’ll learn how to do this tomorrow.

Q What happens if you assign a numeric value to a variable that is too high (or
too low) for that variable to hold?

A You might think that the variable would just be converted to the next larger type,
but that’s not what happens. Instead, if the value is a positive number, the variable
“overflows,” which means that the number wraps around and becomes the lowest
negative value for that type, and counts up from there. If the value is a negative
number, the variable “underflows” by becoming the highest value for that type and
counts down from there. This can cause wrong results,so make certain that you
declare the right type for your numeric values. When in doubt,assign the next

04.31318-9 CH02 9/23/98 9:53 AM Page 83

larger type.

Q If ar rays are objects and you have to use new to create them,where is the
Array class? I didn’t see it in the Java class libraries.

A Arrays are implemented rather strangely in Java. The Array class is constructed
automatically when your Java program runs and therefore cannot be subclassed.
Array provides the basic framework for arrays, including the length instance vari-
able. Additionally, each primitive type and object has an implicit subclass of Array
that represents an array of that class or object. When you create a new array object,
it might not have an actual class,but it behaves as if it does.

Q You say that you can use the arraycopy() method with arrays,but because
instances of the String and StringBuffer classes are implemented as arrays,
can I use the arraycopy() method with these too?

A Yes,with one exception. Because String values are not directly modifiable, you
cannot use a String as the destination array. Other than that, as long as the desti-
nation array or StringBuffer is already allocated in memory, you can use
arraycopy() to write data to it.

Q If an array can be any kind of pr imiti ve type or object,how do I figure out
exactly how much memory an array will be allocated?

A To calculate the amount of memory that will be allocated for an array, multiply the
number of elements by the number of bits for the elements’declared data type.
Then add 32 bits for the length field (which is always an int). Divide by 8 to
obtain the number of bytes that will be allocated for the array. For example, if you
declared an array of 6 double elements,which are 64 bits each, the memory allo-
cated would be

((6 * 64) + 32) / 8

for a total allocation of 52 bytes of memory.

Q I noticed that you didn’t use any import statements in today’s code listings.
Why is that?

A All the methods pertaining to arrays, strings,and string buffers are part of the
java.lang package, and the String and StringBuffer classes are defined in
java.lang.String and java.lang.StringBuffer, respectively. Because the
entire java.lang package is implicitly imported into all Java programs,it is not
necessary to add an explicit import statement.

Q Does Java have the goto statement?

A The Java language defines the keyword goto, but it is “reserved” and currently not
in use. Labeled breaks are as close as you’ll get.

84 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:53 AM Page 84

Java Basics 85

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

Q I declared a variable inside a block statement within an if-else statement.
When the if-else was done, that variable vanished. What happened?

A Block statements inside braces form a local scope. This means that if you declare a
variable inside a block, it’s visible and usable only from within that block. After
the block finishes executing, the variables you declared within the block are no
longer accessible.

Q Why can’t you use the switch statement with String values?

A Strings are objects,and switch in Java is defined only for the primitive types byte,
char, short, and int. To compare other types,you have to use nested if-else

statements,which enable more general expression tests,including String compar-
isons.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. True or False?

a. Boolean variables can be assigned numeric values.

b. The add operator has precedence over the multiply operator.

c. The elements of an array can contain different data types.

d. An if-else conditional can return either an integer or a boolean value.

e. As long as you can cast the resulting value to an int, you can use an expres-
sion as a switch statement’s condition.

2. What symbols are used to enclose statements that are to be treated as a group?

3. With what integer value do subscripts in Java begin, 0 or 1?

4. What’s wrong with the following snippet of code?
int scores[] = new int[10];
int a = 3;
int b = 5;
scores[a-b];

04.31318-9 CH02 9/23/98 9:53 AM Page 85

5. What is the value of wwwStrLength in the following code fragment?
char chArr[] = { ‘I’, ‘n’, ‘t’, ‘e’, ‘r’, ‘n’, ‘e’, ‘t’ };
String wwwStr = new String(chArr);
int wwwStrLength = wwwStr.length();

6. How many strings would the following code create?
String firstStr = “Here I am!”
String secondStr = “No, I’m over here!!”
String thirdStr = “Here I am!”

7. You’ve declared a variable inside a block of statements. After the block has fin-
ished executing, is the variable’s value the same, the opposite, or undefined?

8. How many iterations will the following for loop go through,and what will the
output look like?
for (i = 0; i <= 100; i += 15);
System.out.println(“Hidey, hidey, hidey, ho!”);

9. You want to execute the body of a loop,and then re-execute the loop body as long
as a specified condition is true. Which type of looping construct should you use?

Exercises
1. Write program statements for the following:

• Declare a floating-point variable named bodyTemp with 98.6 as its initial
value.

• Assign the word retired to a variable named status.

• Write a documentation comment that explains that the method following the
comment initializes the billing records for the month.

2. Given the declared integer array and strings
int nums[] = {2, 10};
String aStr = “doesn’t”;
String bStr = “will get you that chicken across the road.”;
String cStr = “make it”’
String dStr = “I say,”
String aSpace = “ “;

create a class called Splat; use array subscripts, the concatenation operator (+),
and the substring() and valueOf() methods to create a String that, when print-
ed to the screen,reads as follows:

86 Day 2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

OUTPUT

04.31318-9 CH02 9/23/98 9:53 AM Page 86

Java Basics 87

2

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

I say, two will get you ten that chicken doesn’t make it across the

road.

3. Using the program in Listing 2.5 as a base, make the following modifications:

• In the inner for loop,modify the code so that if the sum of i and k is greater
than 4, the loop will continue execution at the top of the inner for loop.

• Remove the break statement and its label ers: from the program.

• Move the println statement so that it occurs only when the sum of i and k
is less than 4.

• Change the class name to ContinueOn and save the modified file.

Run the program and verify that the sixth line of output from running
Breakers.java (Listing 2.5),which is

i is 2, k is 3

is replaced by the following output in the new program:

i is 3, k is 1

Verify that this is the only change in the output.

04.31318-9 CH02 9/23/98 9:53 AM Page 87

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH02 Lp#3

04.31318-9 CH02 9/23/98 9:53 AM Page 88

DAY 3

WEEK 1

Java Intermediate
Object-oriented programming (OOP) is one of the biggest programming break-
throughs in recent years. You might think that you must spend years learning all
about OOP methodologies and how they can make your life easier than tradi-
tional programming techniques. But the concepts are really not that difficult to
understand. It all comes down to organizing your programs in ways that echo
how things are put together in the real world.

Today, you will get an overview of object-oriented programming concepts in
Java and how they relate to structuring your Java programs. If you are already
acquainted with object-oriented programming, much of today’s lesson will be
familiar to you. You will still want to skim over the material and create the Java
examples, just as a review.

Because Java is an object-oriented language, you are obviously going to be
working with a lot of objects. You’ll create them, modify them, move them
around, change their variables, call their methods, combine them with other
objects, and, of course, develop classes and use your own objects as well. So,
today you’ll learn all about the care and feeding of a Java object and how and
why to create classes of your own.

05.31318-9 CH03 9/24/98 11:16 AM Page 89

Today’s topics include the following:

● What classes and objects are, and how they relate to each other

● The two major parts of a class:behaviors and attributes

● Class inheritance and the class packages in the Java Class Library

● The parts of a class definition

● Declaring and using class and instance variables

● Creating objects (instances of classes)

● Casting and converting objects and primitives

● Comparing objects and determining an object’s class

● Calling methods in the objects you create

● Defining, using, overloading, and overriding methods

● Creating constructors and finalizer methods

Thinking in Objects
You can walk into a computer store and assemble an entire PC system from various com-
ponents:a motherboard, a CPU chip, a video card, a hard disk,a keyboard, and so on.
Ideally, when you finish assembling all the various self-contained units,you have a sys-
tem in which all the units work together to create a larger system that enables you to
solve the problems you bought the computer for in the first place.

Internally, each of those components might be complicated and engineered by different
companies with different methods of design. But you don’t need to know how each com-
ponent works,what every chip on the board does,or how an “A” gets sent to your com-
puter screen when you press the A key. Each component you use is a self-contained unit,
and as the assembler of the system,you need only be interested in how the units interact.
After you know what the interactions are among the components and can match them,
putting together the overall system is easy.

Object-oriented programming (OOP) works in exactly this same way. When you use
OOP, your overall program is made up of lots of different self-contained components
(objects),each of which has a specific role in the program and all of which can commu-
nicate with each other in predefined ways.

Object-oriented programming is similar in many ways to creating programs using soft-
ware components,introduced later this week. The main difference is that OOP provides
objects for programmers to plug together into working applications,while users still deal
with monolithic applications. (Imagine that when your motorcycle gets a flat tire you

90 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:16 AM Page 90

Java Intermediate 91

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

must send the whole motorcycle back to the manufacturer to get it repaired.) With com-
ponent software, such as JavaBeans components,the end user has access to the software
components as working entities and can link them together into larger custom applica-
tions without the help of a programmer. (You can change your own tire without sending
the whole motorcycle back to the manufacturer.) OOP brought the object-oriented soft-
ware revolution to programmers; software components bring the object-oriented software
revolution to everyone.

Understanding Objects and Classes
OOP is modeled on how, in the real world, objects are made up of many kinds of smaller
objects. This capability of combining objects,however, is only one very general aspect of
object-oriented programming. OOP provides several other concepts and features that
make creating and using objects easier and more flexible. The most important of these
features is the class.

A classis a template from which objects with similar aspects can be created.
Classes embody all the features of a particular set of objects.

When you write a program in an object-oriented language, you don’t define actual
objects; you define classes. For example, you might have a Tree class that describes the
features of all trees (has branches and roots,grows,and gives off oxygen). The Tree
class serves as an abstract model for the concept of a tree. The Tree class is not a partic-
ular tree, but simply a model for creating tree objects. To interact with a tree, you have to
create a concrete instance of that tree. Of course, after you have a Tree class,you can
create lots of different instances of that tree (see Figure 3.1). Each tree instance can have
different features (has leaves or needles,produces flowers,bears fruit) while still behav-
ing and being immediately recognizable as a tree.

A class instanceis an actual object. The class is the generic representation of an
object; an instance is the concrete thing created from the instructions provided

by a class. Think of the class as the architectural plans and the class instance as the
actual building.

So what, precisely, is the difference between a class instance and an object? There is no
difference. Object is the more generic term, but instances and objects are both terms for
the concrete representation of a class. In fact,the terms instanceand objectare used
interchangeably in OOP terminology.

NEW TERM

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 91

When you write a Java program,you design and construct a set of classes. Then,when
your program runs,instances of those classes are created and discarded as needed. Your
task,as a Java developer, is to create the right set of classes to accomplish what your pro-
gram needs to accomplish.

A class library is a collection of classes. A class library can consist of any mix-
ture of classes that define applets,JavaBeans components,or support classes that

can’t be instantiated on their own.

Fortunately, you don’t have to start from scratch: the Java environment comes with a
library of classes that implement a lot of the basic behavior you need—not only for basic
programming tasks (basic math functions,arrays, strings,and so on),but also for graph-
ics and networking behavior. In some cases,the Java Class Library and JBuilder Class
Library classes might provide enough functionality so that all you have to do in your
Java program is create a single class that uses the standard class library. For more com-
plex Java programs,you might have to create a whole set of classes with defined interac-
tions between them.

92 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

FIGURE 3.1.
A Tree class and Tree
instances.

If you’ve programmed in C, you can think of a class as creating a new com-
posite data type by using struct and typedef. Classes, however, can provide
much more than just a collection of data, as you’ll discover later today.

Tip

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 92

Java Intermediate 93

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Every class you write in Java has two major parts: attributes and behaviors. In this sec-
tion, you’ll learn about each one as it applies to a hypothetical class called Motorcycle.

Using Attributes
Attributes are the individual aspects that differentiate one object from another and deter-
mine the appearance, state, or other qualities of that object. Let’s create a hypothetical
class called Motorcycle. The attributes of a motorcycle might include the following:

Color red, green,silver, brown

Style cruiser, sports bike, standard

Make Honda,BMW, Harley

Attributes of an object also can include information about its state. For example, you
could have features for engine condition (off or on) or current gear selected.

Attributes are defined by variables. Because each instance of a class can have different
values for its variables,each variable is called an instance variable.

An instance variable defines the attributes of an object. The class defines the
type of the attribute, and each instance stores its own value for that attribute in

the instance variable.

Each attribute, as the term is used here, has a single corresponding instance variable.
Changing the value of a variable changes the attribute of that object. Instance variables
can be set when an object is created and stay constant throughout the life of the object,
or they can be changed at any time during program execution.

In addition to instance variables,there are also class variables. Class variables are analo-
gous to global variables that apply to all instances of a class and to the class itself.
Unlike instance variables,whose values are stored in the instance, class variables’ values
are stored in the class.

Understanding Behaviors
A class’s behaviors determine what instances of that class do to change their internal
state or how that instance responds to messages from other classes or objects. Behaviors
define how a class or object can interact with the rest of the program. For example, some
behaviors that the hypothetical Motorcycle class might have are start the engine, stop the
engine, speed up,change gear, and stall.

To define an object’s behavior, you create methods,which look and behave just like
functions and procedures in other languages,but are defined inside the class. Java does
not allow subprograms to exist outside classes as do some other languages.

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 93

A methodis a function (subroutine or procedure) defined inside a class that oper-
ates on instances of that class.

Methods don’t always affect just a single object. Objects communicate with each other
using methods as well. A class or object can call methods in another class or object to
communicate changes in the environment or to request a state change in the object.

Just as there are instance variables and class variables,there are instance methods and
class methods. Instance methods (which are commonly just called methods) apply and
operate on an instance of a class. Class methods apply to and operate on the class itself.

Using Classes
Defining classes is pretty easy. You’ve seen how to do it numerous times in previous
lessons. To define a class,use the class keyword and the name of the class:

class MyClassName {
/* body of class */
}

A superclassis the class from which the current class is derived. A superclass is
above the current class in the class hierarchy.

A subclassis a class derived from the current class. A subclass of the current
class is lower in the class hierarchy.

If this class is a subclass of another class,use the extends keyword and the name of the
superclass:

class MyClassName extends mySuperClassName {
/* body of class */
}

If this class implements a specific interface, use the implements keyword and the name
of that interface:

class MyClassName implements Runnable {
/* body of class */
}

Both extends and implements are optional. The implements keyword pertains to inter-
faces,which you’ll learn more about tomorrow. For today, let’s dig into the details on all
the other things that comprise a class definition.

Creating a Class
Up to this point,today’s lesson has been mostly theoretical. In this section,you’ll create
a working example of the Motorcycle class so that you can see how instance variables

94 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

NEW TERM

NEW TERM

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 94

Java Intermediate 95

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

and methods are defined in a class. You also will design a Java application that creates a
new instance of the Motorcycle class and shows its instance variables. You’ll also build
the Java source code that implements your design and then run the Motorcycle applica-
tion.

You won’t learn the details here about the syntax of this example. Don’t be
too concerned if you’re not really sure what’s going on; it will become clear
to you later. What’s important about this example is that you understand
the parts of the class definition.

Note

Let’s start with a basic class definition:

class Motorcycle {
}

Congratulations,you have just created your first Java class. Of course, it doesn’t do
much at the moment,but it’s a Java class at its very simplest. To add functionality, you
need to define instance variables (which define attributes) and methods (which define
behaviors).

Using Instance Variables
To create some instance variables (attributes) for this class,immediately after the first
line of the class definition, add the following three lines:

String make;
String color;
boolean engineState;

Here, you’ve created three instance variables: two of them,make and color, can contain
String objects. (The String class is part of the standard class library mentioned earlier.)
The third, engineState, is a boolean that can be set to reflect whether the engine is off
or on.

Using Methods
Now you will add some behaviors (methods) to the class. There are all kinds of things a
motorcycle can do,but to keep things manageable for this example, let’s add just one
method that starts the engine. Add the following lines after the instance variables in your
class definition:

void startEngine() {
if (engineState)

System.out.println(“The engine is already on.”);
else {

05.31318-9 CH03 9/24/98 11:16 AM Page 95

engineState = true;
System.out.println(“The engine is now on.”);

}
}

The startEngine method tests to see whether the engine is running already (if true is
assigned to the engineState variable) and, if it is, merely prints a message to that effect.
If the engine isn’t running already, it changes the state of the engine to true and then
prints a message. At this point,you are constructing a class with specific behaviors and
attributes.

Before you actually implement this class in JBuilder, you need to add one more method.
The showAtts method prints the values of the instance variables in the current instance
of your Motorcycle class:

void showAtts() {
System.out.println(“This motorcycle is a “

+ color + “ “ + make);
if (engineState)

System.out.println(“The engine is on.”);
else System.out.println(“The engine is off.”);

}

The showAtts method prints two lines to the screen:the make and color of the motor-
cycle object,and the state of the engine—on or off.

Before continuing, let’s review one of the major differences between Java applications
and Java applets. A Java applet doesn’t require a main() method because it is run as a
subprogram of the Web browser from which it is viewed. However, in a Java application,
the body of the program is contained in the main() method, and it is the first method to
be run when the program is executed. You’ll add the main() method to the Motorcycle
class next.

Implementing Classes
Before you begin creating class files, let’s create a project in which to keep them.
Select File |New Project,and modify the File field so that it says
C:\JBuilder\myprojects\JIntermediate.jpr, and then click the Finish button.

Now, to implement the Motorcycle class in JBuilder, first create the source code file. In
the AppBrowser, click the Add to Project icon,type Motorcycle.java in the File name
field, and then click Open. In the AppBrowser, click on the Content pane, and enter the
code in Listing 3.1.

96 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:16 AM Page 96

Java Intermediate 97

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

LISTING 3.1. Motorcycle.java.

1: class Motorcycle {
2:
3: String make;
4: String color;
5: boolean engineState;
6:
7: void startEngine() {
8: if (engineState)
9: System.out.println(“The engine is already on.”);
10: else {
11: engineState = true;
12: System.out.println(“The engine is now on.”);
13: }
14: }
15:
16: void showAtts() {
17: System.out.println(“This motorcycle is a “
18: + color + “ “ + make + “.”);
19: if (engineState)
20: System.out.println(“The engine is on.”);
21: else System.out.println(“The engine is off.”);
22: }
23:
24: public static void main (String args[]) {
25: Motorcycle m = new Motorcycle();
26: m.make = “Yamaha RZ350”;
27: m.color = “yellow”;
28: System.out.println(“Calling showAtts...”);
29: m.showAtts();
30: System.out.println(“Starting engine...”);
31: m.startEngine();
32: System.out.println(“Calling showAtts...”);
33: m.showAtts();
34: System.out.println(“Starting engine...”);
35: m.startEngine();
36: }
37: }

Select File |Save All to save both the project and the source code. Because you’ve written
a program that prints to standard output,tell JBuilder to display command-line Java pro-

Remember, don’t type the line number or colon preceding each line of code.
They are included here so that you can easily locate lines mentioned in the
analysis, but they are not part of the code itself.

Note

TYPE

05.31318-9 CH03 9/24/98 11:16 AM Page 97

gram output in the Execution Log window, as described on Day 1, “Introduction to
JBuilder.” Right-click on the Motorcycle.java node in the Navigation pane, and then
select Run from the pop-up menu.

Select View |Execution Log from the JBuilder main menu to see the Motorcycle
program’s output:

Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is off.
Starting engine...
The engine is now on.
Calling showAtts...
This motorcycle is a yellow Yamaha RZ350
The engine is on.
Starting engine...
The engine is already on.

Though most of the other code in this sample has already been described, some of the
contents of the main() method in Listing 3.1 is going to be new to you. Let’s go through
it so that you have a basic idea of what it does.

Line 24 declares the main() method. This should look familiar to you from the
Java application you wrote on Day 1, “Introduction to JBuilder.”

Line 25,Motorcycle m = new Motorcycle(); creates a new instance of the
Motorcycle class and stores a reference to it in the variable m. In other words,a
Motorcycle object is assigned to the m variable. Remember, you don’t usually operate
directly on classes in your Java programs. Instead, you create objects from those classes
and then call methods in those objects.

Lines 26 and 27 set the instance variables for this motorcycle object:the make variable is
assigned Yamaha RZ350 (a very pretty motorcycle from the mid-1980s) and the color

variable is assignedyellow.

Line 29 prints the instance variables by invoking the showAtts() method, as defined in
your Motorcycle object,producing the rest of the second and third lines of output.

Line 31 calls the startEngine() method to start the engine, producing the fifth line of
output.

Line 33 prints the instance variables again,by invoking the showAtts() method, produc-
ing the sixth and seventh lines of output.

Line 35 calls the startEngine() method to attempt to start the engine again. Because it
was on when the method was called, it produces the last line of output.

98 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

OUTPUT

ANALYSIS

05.31318-9 CH03 9/24/98 11:16 AM Page 98

Java Intermediate 99

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Using Inheritance
Now that you have a basic grasp of classes,objects,methods,and instance variables and
how to use them in a Java program,it’s time to explore inheritance. Inheritance is one of
the features that makes object-oriented programming so powerful.

Inheritanceis the mechanism that allows a new class to receive (inherit) the basis
of its functionality from an existing class and build on that base by adding new

functionality.

This means that when you write a class,you have to specify only how that class is differ-
ent from some higher-level class,giving you automatic access to the information defined
in that higher-level class.

With inheritance, all classes—those you write, those from other class libraries that you
use, and those from the standard Java class library as well—are arranged in a strict hier-
archy (see Figure 3.2).

NEW TERM

FIGURE 3.2.
A class hierarchy.

Each class has a superclass (the class above it in the hierarchy), and each class can have
one or more subclasses (classes below it in the hierarchy).

In C++, a superclass is known as a base class, and a subclass is a derived class.
In Object Pascal (Delphi), a superclass is known as an ancestor, and a subclass
is a descendant.

Note

A subclass inherits all the methods and variables from its superclass. By creating a sub-
class,you don’t have to redefine attributes or behaviors or copy the code from the super-
class. Your class automatically inherits that behavior from its superclass,which inherits
behavior from its superclass,and so on all the way up the hierarchy. Your class becomes
a combination of all the features of the classes above it in the class hierarchy through
inheritance.

05.31318-9 CH03 9/24/98 11:16 AM Page 99

At the top of the Java class hierarchy is the Object class,the most general class in the
hierarchy. The Object superclass defines behavior inherited by all other classes in the
Java class hierarchy. Each subclass further down in the hierarchy adds more information
and becomes more tailored to a specific purpose. You can think of a class hierarchy as
defining very abstract concepts at the top with those concepts becoming more concrete as
you travel further down the chain of superclasses.

Most of the time, when you write new Java classes,you’ll want to create a class that has
all the information some other class has,plus some extra information. For example, you
might want a version of the Button class with its own built-in label.

100 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

The Button class is part of the Java Class Library, which is included in all
implementations of the Java language and Java VM. Specifically, you’ll find
the Button class in the java.awt package.

Note

To get all the Button information, all you have to do is define your class to inherit from
the Button class. Your class will automatically receive all the behavior and attributes
defined in Button (and in Button’s superclasses),so all you have to define are the things
that differentiate your class from the Button class itself. This technique for defining a
new class as the difference between it and its superclass is called subclassing.

Subclassingis creating a new class (the subclass) that inherits from some other
class (its superclass) in the class hierarchy. By using subclassing, you need only

to define the differences between the new subclass and its superclass,and the rest of its
behaviors and attributes are available to the new class through inheritance.

What if your class defines entirely new behavior and isn’t really a subclass of another
class? Your class can inherit directly from the Object class,which still allows it to fit
neatly into the Java class hierarchy. In fact,if you create a class definition that doesn’t
indicate its superclass in the declaration, Java automatically assigns Object as the default
superclass. For example, the Motorcycle class you created earlier today inherited directly
from Object as its superclass by default.

Creating a Class Hierarchy
If you’re creating a large set of classes,it makes sense for your classes not only to inherit
from the existing class hierarchy, but also to form a hierarchy themselves. This will take
some planning beforehand when you’re trying to figure out how to organize your Java
code, but the advantages are significant after it’s done.

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 100

Java Intermediate 101

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

● When you develop your classes in a hierarchy, you can factor out information com-
mon to multiple classes into superclasses. Then you can reuse that information
over and over through inheritance.

● Modifying (or inserting) a class further up in the hierarchy automatically changes
the behavior of the subclasses. There’s no need to modify or recompile any of the
subclasses because they get the new information through inheritance and not by
copying code. However, you must be sure to supply any methods in the new or
modified class that are expected by its subclasses.

● By following the object-oriented model that Java presents in its class library, your
classes have the same advantages of reuse in other projects,as well as the current
project.

For example, let’s revisit that Motorcycle class and suppose you’ve created a Java pro-
gram to implement all the features of a motorcycle. It’s done, it works,and everything is
fine. Now, you’ve been assigned a new task—to create a Java class called Car. Car and
Motorcycle have many similar features. Both are vehicles powered by engines. Both
have transmissions and headlamps and speedometers. So your first impulse might be to
open up your Motorcycle class file and copy over a lot of the information into the new
Car class.

A far better plan is to factor out the common information for Car and Motorcycle into a
more general class hierarchy. This might look like a lot of work for just the classes
Motorcycle and Car, but after you add bicycles,scooters,mopeds,trucks,and others,
having common behavior in a reusable superclass significantly reduces the amount of
work you must do overall.

Let’s design a class hierarchy that might serve this purpose. Starting at the top is the
class Object, which is the superclass of all Java classes. The most general class to which
a motorcycle and a car both belong might be called Vehicle. A vehicle is generally
defined as a thing that propels someone from one place to another. In the Vehicle class,
you define only the behavior that enables someone to be propelled from point A to point
B, and nothing more. These behaviors might include speed and directional control.

What should go below Vehicle? How about two classes:HumanPoweredVehicle and
EnginePoweredVehicle? EnginePoweredVehicle has a mechanical engine, exhibits
behaviors that might include stopping and starting the engine, and requires certain
amounts of gasoline and oil. HumanPoweredVehicle has a human engine and exhibits
behaviors that might include using pedals. Figure 3.3 shows what you have in the hierar-
chy so far.

05.31318-9 CH03 9/24/98 11:16 AM Page 101

Now, let’s get more specific. With EnginePoweredVehicle, you might have classes such
as Motorcycle, Car, and so on. Or you can factor out still more behavior and have inter-
mediate classes for two-wheeled and four-wheeled vehicles,with different behaviors for
each (see Figure 3.4).

102 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

FIGURE 3.3.
The basic vehicle hier-
archy.

FIGURE 3.4.
Vehicles with two
wheels and with four
wheels.

Finally, with a subclass for TwoWheeledEnginePoweredVehicle, you can have a subclass
for Motorcycle. You could also now define Scooter and Moped, both of which are two-
wheeled engine-powered vehicles but which have different qualities from motorcycles. In
addition, you can subclass Car under the FourWheeledEnginePoweredVehicle class.

Understanding How Inheritance Works
How does inheritance work? How is it that instances of one class can automatically have
access to variables and methods from the classes further up in the hierarchy?

For instance variables,when you create a new instance of a class at runtime, memory is
allocated for each variable defined in the current class and for each variable defined in all
its superclasses. In this way, all the classes combine to form a template for the current
object,and then each object fills in the information appropriate to its unique situation.

Methods operate similarly. New objects have access to all the methods named in its class
and its superclasses,but method definitions are chosen dynamically when the method is
called at runtime. That is, if you call a particular object’s method, the Java interpreter
first checks the object’s class for the method definition. If it’ s not defined in the object’s
class,it looks in that object’s superclass,and so on up the chain of the hierarchy until the
method is found (see Figure 3.5).

05.31318-9 CH03 9/24/98 11:16 AM Page 102

Java Intermediate 103

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

How does Java know when it has reached the correct method? When it locates a method
whose signature matches the called method’s signature.

A method’s signature is the way in which methods are identified. A signature
comprises the method’s name, the number of its arguments,and the type of each

of the arguments.

But what happens when a subclass defines a method that has the same signature as a
method defined in a superclass? In this case, the method definition that is found first
(starting with the object’s class and working upward in the hierarchy) is the one that
actually gets executed. Because of this,you can intentionally define a method in a sub-
class that has the same signature as a method in a superclass,which overrides the super-
class’s method.

Overriding a method is done by creating a method in a subclass with the same
signature as a method in a superclass. That new method is then used in prefer-

ence to the superclass’s method by instances of the subclass at runtime.

You’ll learn more about overriding methods later today.

Single and Multiple Inheritance
Java implements single inheritance, which means that a subclass can have only one
superclass (although any superclass can,of course, have many subclasses). Java does not
support multiple inheritance, as do some other object-oriented languages (such as C++).

Single inheritanceallows a subclass to inherit from one superclass only. Multiple
inheritanceallows a subclass to inherit from more than one superclass.

Multiple inheritance can provide enormous power, but it also can significantly compli-
cate class definitions, reduce maintainability, and adversely affect performance. For these
reasons,Java’s developers declined to implement multiple inheritance. Instead, most of
the same functionality is provided by interfaces,which are introduced tomorrow.

FIGURE 3.5.
How methods are
dynamically chosen.

NEW TERM

NEW TERM

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 103

Using Java Class Library
The Java class library provides the set of classes that are guaranteed to be available in
any commercial Java environment (for example, Netscape browsers). Those classes are in
the java package and include all the classes you’ve seen so far, plus a lot more classes
you’ll learn about later in this book.

The Java Development Kit (JDK) comes with documentation for all of the Java class
library, which includes descriptions of each class’s instance variables,methods,inter-
faces,and so on. Exploring the Java class library and its variables and methods is a great
way to figure out what Java can and cannot do.

Here are some of the class packages that are part of the Java class library:

java.lang Classes that apply to the language itself, which includes the
Object, Math, String, System, and Thread classes. Also
contains the special classes for primitive types (int, char,
boolean, and others).

java.util Utility classes,such as Date and Random, as well as simple
collection classes,such as Vector and HashTable.

java.io Input and output classes for writing to and reading from
streams (such as standard input and output) and for han-
dling files.

java.net Classes for networking support, including Socket and URL
(a class to represent references to Web pages).

java.awt Classes to implement a graphic user interface (GUI),
including classes for Window, Menu, Button, Font,
CheckBox, and image processing. Also known as the
Abstract Window Toolkit (AWT).

java.applet Classes to implement Java applets,including the Applet
class itself, as well as the AudioClip interface. This pack-
age is subclassed from the java.awt package and so inher-
its that package’s functionality as well.

In addition to the Java classes,your development environment might also include addi-
tional classes that provide other utilities or functionality. These classes might be useful,
but because they are not part of the standard Java library, they won’t be available to other
people trying to run your Java program unless you provide them with a licensed copy.
This is particularly important for applets because applets are expected to be able to run

104 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:16 AM Page 104

Java Intermediate 105

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

on any platform, using any Java-enabled browser. Only classes inside the java package
are guaranteed to be available on all Web browsers and in all Java environments,so it’s
best to use only the standard library classes when creating applets.

Creating a Subclass
Now that you know all about inheritance, you can create a subclass and override some
methods. Probably the most typical example of creating a subclass,at least when you
first start programming in Java, is in writing an applet. All applets are subclasses of the
class Applet which is part of the java.applet package. By creating a subclass of
Applet, you automatically inherit all the functionality from the AWT and the layout
classes that enable your applet to be drawn in the right place on the page and to interact
with system operations,such as keypresses and mouse clicks.

Let’s add to the JIntermediate.jpr project you created earlier today. To create an
HTML page for testing your new applet,complete the following steps:

1. Click the Add to Project icon.

2. Type HelloAgain.html.

3. Click Open.

4. Click on the AppBrowser’s Content pane, and then click on its Source tab.

5. Type the HTML code given in Listing 3.2.

LISTING 3.2. HelloAgain.html.

1: <HTML>
2: <TITLE>Hello to Everyone!</TITLE>
3: <BODY>
4: <APPLET CODE=HelloAgainApplet WIDTH = 250 HEIGHT = 100></APPLET>
5: </BODY>
6: </HTML>

This code is similar to the HTML code you wrote on Day 1, “Introduction to JBuilder.”
Now, to create the source code file for the applet,complete the following steps:

1. Click the Add to Project icon.

2. Type HelloAgainApplet.java

3. Click Open.

4. When the AppBrowser window appears, click on the Content pane, and enter the
code shown in Listing 3.3.

TYPE

05.31318-9 CH03 9/24/98 11:16 AM Page 105

LISTING 3.3. HelloAgainApplet.java.

1: import java.awt.Graphics;
2: import java.awt.Font;
3: import java.awt.Color;
4:
5: public class HelloAgainApplet extends java.applet.Applet {
6:
7: Font f = new Font(“TimesRoman”, Font.BOLD, 36);
8:
9: public void paint(Graphics g) {
10: g.setFont(f);
11: g.setColor(Color.red);
12: g.drawString(“Hello again!”, 5, 50);
13: }
14: }

As soon as you’ve finished typing the source code, select File |Save All to preserve your
work.

In lines 1 through 3,you are importing the classes that you need:Graphics,
Font, and Color. All three of these are part of the java.awt package. Lines con-

taining import statements go at the top of your program,before the actual class defini-
tion.

In line 5,you’re creating a class called HelloAgainApplet. Note the part that says
extends java.applet.Applet—this is what defines your applet class as a subclass of
the Applet class. Remember, because the Applet class is contained in the java.applet

package (and not the java.lang package), you don’t have automatic access,and you
have to refer to java.applet.Applet explicitly by package and class name.

Also in line 5 is the public keyword. This is an access modifier which means that your
class will be available to the Java system at large after it is loaded. Most of the time you
need to make a class public only if you want it to be visible to all the other classes in
your Java programs. But applets,in particular, must be declared to be public. (You’ll
learn more about the public keyword tomorrow.)

In line 7,the f instance variable is assigned a new instance of the Font class,which is
part of the java.awt package. This particular Font object is a Times Roman font, bold-
face, 36 points high (1⁄2 inch). In the previous HelloWorld applet,the font used for the
text was the default font: Times Roman,12 points. By using a Font object,you can
change the font of the text you draw in your applet. By creating an instance variable to
reference this Font object,you make it available to all the methods in your class. Now
you can create a method that uses it.

106 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

TYPE

ANALYSIS

05.31318-9 CH03 9/24/98 11:16 AM Page 106

Java Intermediate 107

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

When you write applets,there are several standard methods defined in the applet super-
classes that you will commonly override in your applet class. These include methods to
initialize the applet,to start it running, to handle operations such as mouse movements or
mouse clicks,or to clean up when the applet stops running. One of these standard meth-
ods is the paint() method, which actually displays your applet on the Web page. The
default definition of paint() doesn’t do anything—it’s an empty method. By overriding
(redefining) the paint() method, you tell the applet just what to draw on the screen
when it is run.

There are two things to remember about the paint() method. First, this method is
declared public, just like the applet itself. However, the paint() method is public for a
different reason—because it’s overriding a public method. You’ll see shortly why the
superclass’s method is public. In the meantime, just be aware that any time you override
a public method, the new method declaration must also be public or you’ll get a com-
piler error.

Second, the paint() method takes a single argument:an instance of the Graphics class.
The Graphics class provides platform-independent behavior for rendering fonts,colors,
and basic drawing operations. (You’ll learn a lot more about the Graphics class in Week
2, when you create more complex applets.)

Inside your paint() method, you’ve done three things:

● In line 10,you’ve told the Graphics object assigned to the g variable to set its
drawing font to the font specified in the Font object assigned to the instance vari-
able f.

● In line 11,you’ve told the Graphics object assigned to g to set its default color to
the instance of the Color class red.

● You’ve drawn Hello Again! onto the applet’s work area on the Web page, at the
screen x,y coordinates 5,25. The string will be rendered in the new font and color.

The AppBrowser graphically displays the different parts of your new applet in the
Structure pane, as shown in Figure 3.6.

One of the handiest features of the AppBrowser is that the imports are all shown in the
Structure pane, and by double-clicking on one of the nodes indented below the Imports
node, you can examine the JDK source code for that package. So if you want to see how
Java implements the Font object,you can easily do so by double-clicking the
java.awt.Font node.

05.31318-9 CH03 9/24/98 11:16 AM Page 107

Figure 3.7 shows the running applet displayed in appletviewer.

108 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

FIGURE 3.6.
The AppBrowser
Structure pane shows
the applet’s parts.

While viewing other code, click the Home icon at the top of the Navigation
pane to return to your applet’s source code.

Tip

FIGURE 3.7.
HelloAgainApplet in
appletviewer.

Remember that to run an applet,you must first point to its associated HTML file in the
Navigation pane, right-click, and then select the Run command from the pop-up menu.

Creating Instance and Class Variables
Usually, when you create a class,you have something you want to add to make that class
different from its superclasses. Inside each class definition are declarations and defini-
tions for variables,or methods,or both—for the class and for each instance of the class.
In this section,you’ll learn all about instance and class variables. The section after this
one discusses methods.

Defining Instance Variables
Yesterday, you learned how to declare and initialize local variables—that is, variables
inside of method definitions. Instance variables,fortunately, are declared and defined in

05.31318-9 CH03 9/24/98 11:16 AM Page 108

Java Intermediate 109

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

almost exactly the same way as local variables. The main difference is their location in
the class definition. Variables are considered instance variables if they are declared out-
side a method definition. Customarily, however, most instance variables are defined just
after the first line of the class definition. For example, here’s a simple class definition for
the Bicycle class,which inherits from the PersonPoweredVehicle class:

class Bicycle extends PersonPoweredVehicle {
String bikeType;
int chainGear;
int rearCogs;
int currentGearFront;
int currentGearRear;

}

This class definition contains five instance variables:

bikeType The kind of bicycle this particular bicycle is (for example,
Mountain or Street)

chainGear The number of gears in the front

rearCogs The number of minor gears on the rear axle

currentGearFront The front gear the bike is currently in

currentGearRear The rear gear the bike is currently in

Defining Class Variables
Class variables are global to a class and to all of that class’s instances. You can think of
class variables as being even more global than instance variables. Class variables are
good for communicating between different objects with the same class or for keeping
track of global states among a set of objects. Class variables are variables that are
defined and stored in the class itself. This gives the class and all objects instantiated from
that class access to the variable’s value.

When using instance variables,each new instance of the class gets a fresh copy of the
instance variables that the class defines. Each instance then can change the values of
those instance variables independently, without affecting the values in other instances.
However, with class variables,there is only one copy of the variable, and it can hold only
one value. The class and each instance of the class has access to that same variable.
Changing the value of a class variable changes it for all instances of that class at once.

You define class variables by including the static keyword before the variable declara-
tion. For example, in the partial class definition

05.31318-9 CH03 9/24/98 11:16 AM Page 109

class FamilyMember {
static String surname = “Matzenfrazzer”;
String name;
int age;
...

}

each instance of the class FamilyMember has its own values for name and age, but the
class variable surname has only one value for all objects created from the class. Change
surname, and all the instances of FamilyMember are affected.

To access class variables,use the same dot notation as you do with instance variables. To
examine or change the value of the class variable, you can use either the instance or the
name of the class on the left side of the dot and the variable name on the right. Both
lines of output in this example print the same information:

FamilyMember baby = new FamilyMember();
System.out.println(“Family’s surname is “ + FamilyMember.surname);
System.out.println(“Family’s surname is “ + baby.surname);

Because you can use an instance to change the value of a class variable, it’s easy to
become confused about class variables and where their values are coming from (remem-
ber, the value of a class variable affects all the instances). For this reason,it’s best to use
the name of the class when you refer to a class variable; FamilyMember.surname is pre-
ferred to baby.surname in the preceding example. This practice will make your code eas-
ier to debug and read later.

Defining Constants
Constants are useful for defining shared values for all the methods of an object and for
giving meaningful names to object-wide values that will never change. In Java,you can
create constants only for instance or class variables,not for local variables.

A constantis a variable whose value never changes (which probably seems a tad
strange given the meaning of the word “variable,” but there you are).

To declare a constant,use the final keyword before the variable declaration, and include
an initial value for that variable:

final float pi = 3.141592;
final boolean debug = false;
final int maxsize = 40000;

110 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

NEW TERM

05.31318-9 CH03 9/24/98 11:16 AM Page 110

Java Intermediate 111

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Constants can be useful for naming various states of an object and then testing for those
states. For example, suppose you have a test label that can be aligned left,right, or cen-
ter. You can define those values as constant integers:

final int LEFT = 0;
final int RIGHT = 1;
final int CENTER = 2;

The variable alignment also is declared as an int:

int alignment;

Then,later in the body of a method definition, you can either set the alignment,like

this.alignment = RIGHT;

or test for a given alignment:

switch (this.alignment) {
case LEFT: // deal with left alignment

...
break;

case RIGHT: // deal with right alignment
...
break;

}

Changing Values
To modify the value of a class or instance variable, just put an assignment operator on
the right side of the expression:

myObject.myVar.state = true;

The CheckPoint class in Listing 3.4 is an example that checks and modifies the instance
variables in a Point object. The Point class is part of the java.awt package and refers to
a coordinate point with an x and a y value.

By now, you know how to add a new source code file to a project and to name, save,
build, and run a Java program in JBuilder, so those instructions are omitted here. If
you’re unsure, just refer to the instructions for any of today’s earlier listings.

The only way to define constants in Java is by using the final keyword.
Neither #define (a keyword in C and C++) nor const (a keyword in C, C++,
and Pascal) is available for use in Java. The const keyword is reserved in
Java, however, to help prevent its accidental use.

Tip

05.31318-9 CH03 9/24/98 11:16 AM Page 111

LISTING 3.4. CheckPoint.java.

1: import java.awt.Point;
2: class CheckPoint {
3: public static void main(String args[]) {
4: Point aPoint = new Point(100,100);
5:
6: System.out.println(“Original Coordinate:”);
7: System.out.println(“X,Y is “ + aPoint.x + “,” + aPoint.y);
8:
9: aPoint.x = 50;
10: aPoint.y = 150;
11:
12: System.out.println(“New Coordinate:”);
13: System.out.println(“X,Y is “ + aPoint.x + “,” + aPoint.y);
14: }
15: }

When you run the program,you should see the following output:

Original Coordinate:
X,Y is 100,100
New Coordinate:
X,Y is 50,150

In this example, you create an instance of the Point class,with initial values of
100 for both x and y, and assign it to the aPoint variable (line 4). You then print

the values encapsulated in the Point object using dot notation to refer to aPoint.x and
aPoint.y (line 7). You change the variable values,again using dot notation (lines 9 and
10). Finally, you print out the changed values (line 13).

Using Objects
When you write a Java program,you define a set of classes. As you learned earlier today,
classes are templates for objects. For the most part, use the class to create object
instances and then work with those instances. In this section,therefore, you’ll learn how
to create and work with objects from any given class. Creating an object is also called
instantiating an object.

112 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

TYPE

OUTPUT

ANALYSIS

The words object and instance are interchangeable. An object is an instance
of a class; an instance is an object.

Note

05.31318-9 CH03 9/24/98 11:16 AM Page 112

Java Intermediate 113

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Instantiating Objects
Yesterday, you learned that using a string literal—a series of characters enclosed in dou-
ble quotes—creates a new instance of the class String with the value initialized to the
string literal. The String class is unique in that respect. Although it’s a class,there’s an
easy way to directly create instances of that class using a literal. The other classes don’t
have that shortcut. To create instances of those classes you have to do so explicitly, as
you’ll soon see.

Number literals and character literals are primitive data types and are not
implemented as objects for efficiency. However, you can use special class
methods to treat them like objects if it should become necessary. (You’ll
learn how to do this later today, in the section named “Converting Between
Primitives and Objects.”)

Note

Creating the Object
To create an object,you will use the new keyword, for example:

String str = new String();

This example shows how to explicitly create a String object. Notice that the class name,
String, is used twice. The first time it is used to declare the variable str to be of type
String (on the left of the equals sign). The second time, the String class name is fol-
lowed by a pair of parentheses indicating that it is a method call that creates an object
from the class. Don’t forget the parentheses at the end; they are essential to indicate that
you are calling a method.

When you use the new keyword, several things happen. First, an object of the specified
class is created and memory is allocated for it. This instantiates the object (creates an
instance). In addition, and more importantly, when the object is created, a special class
method defined in the specified class is called. This method is known as a constructor.

A constructor is a class method used to create instances of the class. Calling a
constructor initializes the object and its variables,creates any other objects that

the object needs,and generally performs any other operations the object needs in order
to initialize itself.

When you call the constructor, the parentheses can be empty, indicating that the object is
created using the class’s default values,or the parentheses can contain arguments that
determine the initial values of instance variables or other initial aspects of the object.

NEW TERM

05.31318-9 CH03 9/24/98 11:17 AM Page 113

The number and type of arguments you can use are defined by the class itself in the con-
structor’s class method definition. You’ll learn how to create constructors in your own
classes later today.

114 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Some classes might not allow you to create a new instance without any
arguments. When in doubt, be sure to check the documentation or examine
the class source code for the constructor(s) to find out what is required.

Caution

Classes might also have more than one constructor method for creating the same object,
each with a different set of arguments. The constructor that gets called is determined by
the method’s signature (type and number of arguments). For example, Listing 3.5 shows
the code for the CreateDates class,which illustrates two different ways to create a Date
object using the new keyword with the two constructors that are available in the
java.util.Date class. Click Add to Project,type CreateDates.java and click Open. In
the AppBrowser, enter the code in Listing 3.5.

LISTING 3.5. CreateDates.java.

1: import java.util.Date;
2: class CreateDates {
3: public static void main(String args[]) {
4: Date d1, d2;
5:
6: d1 = new Date();
7: System.out.println(“Date 1: “ + d1);
8:
9: d2 = new Date(26000);
10: System.out.println(“Date 2: “ + d2);
11: }
12: }

Select File |Save to preserve your changes,then right-click on the CreateDates.java
node in the Navigation pane and select Run from the pop-up menu.

Select View |Execution Log from the JBuilder main menu bar to display the Execution
Log window. You should see output similar to this:

Date 1: Tue Mar 17 00:09:54 EST 1998
Date 2: Wed Dec 31 19:00:26 EST 1969

TYPE

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 114

Java Intermediate 115

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

In this example, two different dates are created by using different arguments to
construct each of the instances of the Date class. The first instance (line 6) uses

no arguments,which creates a Date object that contains the current system date for the
computer on which the program is run.

The second Date object you created in this example (line 9) has one long integer argu-
ment. The argument represents the number of milliseconds since January 1, 1970. I ran-
domly picked 26,000 milliseconds,which happens to be 7:00 p.m. (and 26 seconds) on
December 31,1969,Eastern Standard Time.

To see what arguments the constructors for Date will accept, go to the Structure pane in
the AppBrowser and double-click on the node labeled java.util.Date in the Imports
section. This will display the source code for the class. Once again, in the Structure pane,
find the second-level node labeled Date and click on the plus (+) symbol to expand the
node. Now you can click on any of the Date constructors shown to see the source code
for that constructor and learn more about it. Figure 3.8 displays one of the constructors
you used in CreateDates.java (line 9).

Your output will look different depending on the date and time when you
run the application and the time zone that your computer is set to

Note

ANALYSIS

You might see more than two class constructors listed for the Date class.
Make sure that the constructor you’re interested in isn’t deprecated by
checking the documentation or by keeping your eyes open for the compiler
error message for deprecated elements. Deprecated constructors, methods,
and classes have been removed from the official implementation of the Java
language and temporarily remain for backward compatibility. Avoid using
any deprecated language elements because they might not exist in the
future.

Note

When you learn more about creating your own classes later today, you will also learn
that you can define as many constructors as you need to implement that class’s behavior.

05.31318-9 CH03 9/24/98 11:17 AM Page 115

Managing Memory
If you’ve programmed in other languages,you might be wondering how memory man-
agement is handled in Java. For example, in the program you just created, you didn’t
need to explicitly allocate memory; the new keyword took care of it for you. In Java,
memory management is dynamic and automatic. When you create an object using new,
Java automatically allocates the right amount of memory for that object type on the heap.

A heap is an area of memory reserved for a program to store temporary informa-
tion, and is allocated dynamically. In Java, the default initial heap size is 1MB

and the default maximum heap size is 16MB (both values can be specified explicitly, as
well, with a minimum of 1KB).

When your program is finished with the object,Java automatically deallocates the mem-
ory that the object uses. Java periodically looks for references to an object in other
objects and in the method calling stack. If it no longer finds any references to the object,
Java automatically deallocates the memory the object was using. This process of reclaim-
ing memory is called garbage collection.

Making References to Objects
As you work with objects,one important thing going on behind the scenes is the use of
references to those objects. When you assign objects to variables,or pass objects as argu-
ments to methods,you are passing references to those objects,not copies of those objects
or the objects themselves. Examine the ReferencesTest program in Listing 3.6 which
declares two variables of type Point, and assigns a new Point object to pt1, then assigns
the value of pt1 to pt2.

116 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

FIGURE 3.8.
AppBrowser displaying
class constructors for
the Date class.

NEW TERM

05.31318-9 CH03 9/24/98 11:17 AM Page 116

Java Intermediate 117

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

LISTING 3.6. ReferencesTest.java.

1: import java.awt.Point;
2: class ReferencesTest {
3: public static void main (String args[]) {
4: Point pt1, pt2;
5: pt1 = new Point(100, 100);
6: pt2 = pt1;
7:
8: pt1.x = 200;
9: pt1.y = 200;
10: System.out.println(“Point1: “ + pt1.x + “, “ + pt1.y);
11: System.out.println(“Point2: “ + pt2.x + “, “ + pt2.y);
12: }
13: }

Now, here’s the tricky part. After changing pt1’s x and y instance variables,what will
pt2 look like?

Here’s the program output:

Point1: 200, 200
Point2: 200, 200

This example shows that pt2 was also changed in lines 8 and 9. In line 6,when
you assign pt1 to pt2, you actually create a new reference from pt2 to the same

object to which pt1 refers.

Change the value of the object that pt1 refers to,and you also change the object that pt2
points to,because both are references to the same object instance. The fact that Java uses
references becomes particularly important when you pass arguments to methods,so keep
these references in mind.

TYPE

OUTPUT

ANALYSIS

There are no explicit pointers or pointer arithmetic in Java. However, with
references and with Java arrays, you have most of the capabilities that you
have with pointers without the confusion and lurking bugs that explicit
pointers can cause.

Note

Casting and Converting
There will be times in your Java programs when you will have a value stored in one
type, but you really need to use it as a different type. Maybe it’s an instance of a class
but you need to use it as an instance of some other class,or perhaps it’s a floating-point

05.31318-9 CH03 9/24/98 11:17 AM Page 117

value and what you really need is an integer value. To convert the value of one type to
another, you use a mechanism called casting.

Castingis a way to convert the value of one object type to another object type,
or of one primitive type into another primitive type. The result of a cast is a new

reference or value. Casting does not affect the original object or value being cast.

Although the concept of casting is a simple one, the rules for what types in Java can be
converted to what other types are complicated by the fact that Java has both primitive
types and object types. As the preceding definition implies,you can’t cast objects to
primitives,nor primitives to objects. However, there is a way to convert from one to the
other. There are three forms of explicit casts and conversions to talk about in this section:

● Casting between primitive types:int, long, float, and so on.

● Casting between object types:String, Point, Window, and so on.

● Converting primitives to objects,and objects to primitives.

In the following sections,the value to be converted is referred to as the source, and the
type it’s to be converted to is referred to as the destination.

Casting Primitives
Primitives can be converted either automatically or by explicit casting. In automatic type
conversion,if the destination type is larger (has more precision) than the source, the con-
version can take place by simply assigning the smaller to the larger. This is also known
as promoting the value. Table 3.1 summarizes what types can be promoted to what other
types.

TABLE 3.1. PROMOTIONS THAT DON’T RISK DATA LOSS.

Source Type Destination Type

byte char, short, int, long, float, double

char int, long, float, double

short int, long, float, double

int long, float, double

long float, double

float double

However, assigning a value of a larger type to a smaller type will generally result in a
loss of data. Of course, if the larger type’s value just happens to be small enough (for

118 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

NEW TERM

05.31318-9 CH03 9/24/98 11:17 AM Page 118

Java Intermediate 119

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

example, the value of a long is 10 and you assign it to an int), the value will be pre-
served. However, to convert a larger value to a smaller type, you should use an explicit
type cast to avoid the risk of data loss.

Casting between primitives enables you to convert the value of one primitive type to
another primitive type—for example, to assign an floating-point value to an integer.
Casting between primitive types most commonly involves the numeric types and chars;
booleans cannot be cast to other primitive types. Explicit type casts look like this:

(destination-typename) source-value

In this form, destination-typename is the name of the type you’re converting to (for
example, short, int, float), and source-value is an expression whose result you want
to convert. The following expression divides the value of x by the value of y and casts
the float result to an int:

(int) (x / y)

Because the evaluation precedence of casting is higher than that of arith-
metic, you have to use parentheses so that the result of the division is calcu-
lated first, and its floating-point result is what gets cast to an integer value.

Note

Casting Objects
Some objects might not need to be cast explicitly. In particular, because subclasses con-
tain all the information in the superclass at minimum,you can use an instance of a sub-
class anywhere the superclass is expected. Suppose you wanted to call a method that
takes two arguments:one of type Object, and one of type Number. You don’t have to pass
instances of those particular classes to that method. For the Object argument,you can
pass any subclass of Object (in other words,any object) and for the Number argument,
you can pass an instance of any subclass of Number (Integer, Double, Float, and so on).

Casting an object to one of that object’s superclasses loses the information pertaining
specifically to the original subclass and requires an explicit cast. Instances of classes can
be cast to instances of other classes,with one restriction: The class of the source object
and the class of the destination object must be related by inheritance. That is, you can
only cast an object to an instance of its class’subclass or superclass—not to any random
class. To cast an object to another class,you use the same casting operation that you use
for base types:

(destination-classname) source-object

05.31318-9 CH03 9/24/98 11:17 AM Page 119

In this form, destination-classname is the name of the class you’re converting to,and
source-object is a reference to the object you want to convert. Note that casting creates
a new reference to the source-object of the type destination-classname; the original
object continues to exist.

The following code fragment is an example of a cast of an instance of the class
GreenApple to an instance of the class Apple (where GreenApple is a subclass of Apple):

Apple anApple;
GreenApple aGreenApple;
aGreenApple = new GreenApple();
anApple = (Apple) aGreenApple;

Note that the special attributes that made the GreenApple green are now lost in anApple.
All the other behavior (methods) and attributes (variables) that GreenApple originally
inherited from Apple, however, survive the conversion.

In addition to casting objects to classes,you can also cast objects to interfaces—but only
if that object’s class or one of its superclasses actually implements that interface (in other
words,it belongs to the same inheritance tree). Casting an object to an interface then
enables you to call one of that interface’s methods even if that object’s class does not
directly implement that interface. You’ll learn more about interfaces tomorrow.

Converting Between Primitives and Objects
Now that you know how to cast a primitive type to another primitive type and how to
cast between classes,how can you cast one to the other? Well, as we mentioned at the
outset of this section,you can’t actually cast between primitives and objects in Java.
However, Java does provide another way to do these kinds of conversions.

There are several special classes in the java.lang package that correspond to each prim-
itive data type:Integer for int, Float for float, Boolean for boolean, and so on.
Using class methods defined in these classes,you can create an object-equivalent for all
the primitive types using the new keyword. The following line of code, for example, cre-
ates an instance of the Integer class with the value 35:

Integer intObject = new Integer(35);

After you have created this object,you can treat its value as an object. Then,when you
want the primitive value back again, there are also methods to do that. In this example,
the intValue() method extracts the int primitive value of 35 from the Integer object,
and assigns it to theInt:

int theInt = intObject.intValue();

To read the specifics on how to use these methods,select Help|Java Reference and refer
to the “package java.lang”topic in the JDK API Reference section.

120 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:17 AM Page 120

Java Intermediate 121

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Comparing Objects
Yesterday, you learned about operators for comparing values:is equal to (==), is not
equal to (!=), less than (<), greater than (>), and so on. Most of these operators take arith-
metic values as operands,and the Java compiler will display an error if you attempt to
use any other type of value as operands.

The exceptions to this rule are the two operators for equality:is equal to (==), is not
equal to (!=). When given objects as operands,these operators do not compare two sepa-
rate objects; they test whether the two objects refer to exactly the same object. In this
context, the operators become:refers to same object (==), refers to different object (!=).
So how can you compare two different object instances for equality? You have to imple-
ment custom methods in your class,and you have to call those methods using their
method names.

Java does not support the concept of operator overloading—that is, the
capability of redefining the behavior of built-in operators by defining meth-
ods in your own classes.

Note

A good example of this is the String class. It is possible to have two independent
String objects in memory with the same values. That is, you might have two strings
with the same characters in the same order. However, the results of the == operator will
be false, because although their contents are the same, the two strings are not the same
object.

The String class,therefore, defines a method called equals() that tests each character
in the string and returns true if the two strings have identical values. The
EqualString.java class in Listing 3.7 illustrates this functionality.

LISTING 3.7. EqualString.java.

1: class EqualString {
2: public static void main (String args[]) {
3: String str1, str2;
4: str1 = “Did you want me to repeat that?”;
5: str2 = str1;
6:
7: System.out.println();
8: System.out.println(“String1: “ + str1);
9: System.out.println(“String2: “ + str2);

TYPE

continues

05.31318-9 CH03 9/24/98 11:17 AM Page 121

LISTING 3.7. CONTINUED

10: System.out.println(“Same value?: “ + str1.equals(str2));
11: System.out.println(“Same object? “ + (str1 == str2));
12:
13: str2 = new String(str1);
14:
15: System.out.println();
16: System.out.println(“String1: “ + str1);
17: System.out.println(“String2: “ + str2);
18: System.out.println(“Same value? “ + str1.equals(str2));
19: System.out.println(“Same object? “ + (str1 == str2));
20: }
21: }

When you compile and run this program,you will see this output:

String1: Did you want me to repeat that?
String2: Did you want me to repeat that?
Same value? true
Same object? true
String1: Did you want me to repeat that?
String2: Did you want me to repeat that?
Same value? true
Same object? False

In the first part of this program,line 3 declares two String variables,str1 and
str2; line 4 assigns the literal value Did you want me to repeat that? to

str1; and line 5 assigns str1 to str2. As you know from the earlier discussion of object
references,both str1 and str2 now point to the same object,and the test at line 11
proves just that.

In the second part, line 13 creates a new String object with the value of str1. Line 18
shows that both str1 and str2 have the identical value; line 19 shows that they are two
separate and distinct String objects.

122 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

OUTPUT

ANALYSIS

Remember that string literals are optimized in Java. So you must explicitly
use new to create two distinct String object instances with the same string
value.

Caution

Determining an Object’s Class
If you want to know an object’s class,you can use the following line of code:

String myObjName = myObj.getClass().getName();

05.31318-9 CH03 9/24/98 11:17 AM Page 122

Java Intermediate 123

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

The getClass() method is defined in the Object class and so is available to all objects.
The result of that method is a Class object (which is itself a class) that defines the
getName() method. The getName() method returns a String object representing the
name of the class and therefore tells you of which class the object is an instance. Lastly,
this return value is assigned as myObjName’s initial string value.

If you want to test whether an object is an instance of a particular class,you can use the
instanceof operator. The instanceof operator takes two operands,an object on the left
and the name of a class on the right. This boolean expression returns true or false
based on whether the object is an instance of the named class or any of the named class’s
subclasses. For example:

“Meow!” instanceof String; // returns true
Point pt = new Point(10,10);
pt instanceof String; // returns false

The instanceof operator can also be used for interfaces. If an object implements an
interface, the instanceof operator with that interface name as the operand on the right
returns true. You’ll learn more about interfaces tomorrow.

Using Methods
Methods are arguably the most important part of any object-oriented language. Whereas
classes and objects provide the framework, and class and instance variables provide a
way of holding that class’s or object’s attributes and state, it is the methods that actually
provide an object’s behavior and define how that object interacts with other objects in the
system.

In this section,you’ll also learn about some of the more advanced features of methods
that make them really powerful and that make your objects and classes more efficient
and easier to understand. These additional features include:

● Overloading methods:creating methods with multiple signatures and definitions
but with the same name

● Overr iding methods:creating a different definition for a method from what was
defined in a superclass

● Constructor methods:methods that enable you to initialize objects to their initial
state when the instance is created

● Finalizer methods:a way for an object to clean up after itself before it is removed
from the system

05.31318-9 CH03 9/24/98 11:17 AM Page 123

Calling Methods
The format for calling a method in objects is similar to referring to its instance variables:
Method calls also use dot notation. The object whose method you’re calling is on the left
side of the dot; the name of the method and its arguments are on the right side of the dot:

myObject.methodOne(arg1, arg2, arg3);

Note that a method must always have a pair of parentheses after it,even if the method
takes no arguments:

myObject.methodNoArgs();

If the method you’ve called results in an object that itself has methods,you can nest
methods as you would variables. In this example, the getClass method results in an
object that contains the getName method:

myObject.getClass().getName();

You can nest variable references and method calls as well. In this example, the variable
xVar refers to an object instantiated from a class that defines the methodTwo method:

myObject.xVar.methodTwo(arg1);

System.out.println(), the method you’ve been using so far, is a good example of nest-
ing variables and methods. The System class (part of the java.lang package) describes
system-specific behavior. System.out is a class variable that refers to an instance of the
class PrintStream that points to the standard output of the system. PrintStream

instances have a println() method that prints a string to that output stream.

This code fragment shows an example of calling a method defined in the String class,
the length() method:

System.out.println(“Length of string: “ + str.length());

Strings include methods for string tests and modification, similar to what you would
expect in a string library in other languages.

The output produced for a string with 35 characters would be this:

Length of string: 35

Using Class Methods
Class methods apply to the class as a whole and not to its instances. Class methods com-
monly are used for general utility methods that might not operate directly on an instance
of that class but fit with that class conceptually. For example, the String class defines a

124 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 124

Java Intermediate 125

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

class method called valueOf(),which can take one of many different types of arguments
(integers,Booleans,other objects,and so on). The valueOf() method then returns a new
instance of String containing the string value of the argument it was given. This method
doesn’t operate directly on an existing instance of String, but getting a string from
another object or data type is definitely a string-like operation, and it makes sense to
define it in the String class.

Class methods can also be useful for gathering general methods together in one place
(the class). For example, the Math class,defined in the java.lang package, contains a
large set of mathematical operations as class methods—there are no instances of the class
Math, but you can still use its methods with numeric or Boolean arguments.

To call aclass method, use dot notation as you do with instance methods. As with class
variables,you can use either an instance of the class or the class itself on the left side of
the dot. However, for the same reasons noted in the discussion on class variables,using
the name of the class for class methods makes your code easier to read. The last two
lines in this code fragment produce the same results and highlight the reasons for prefer-
ring the use of the class name on the left of the dot:

String s1, s2, s3;
s1 = “Mandy”;
s2 = s1.valueOf(7);
s3 = String.valueOf(7);

The class method valueOf(), when given an integer, returns the string value associated
with the integer. In the preceding example, both s1.valueOf(7) and String.valueOf(7)
return the string value seven. However, the line of code containing the expression
s1.valueOf(7) doesn’t really involve the variable s1, but rather, simply uses it as a con-
duit to call the class method. Using the instance name in this way will be misleading to
the casual reader. The last line that uses the expression String.valueOf(7) is preferred
because it is clearly referring to a class method.

Creating Methods
Methods,as you learned earlier today, define an object’s behavior—what happens when
that object is created and the various operations that the object can perform during its
lif etime. In this section,you’ll get a basic introduction to method definition and how
methods work. Later today, you’ll go into more detail about advanced things you can do
with methods.

Defining Methods
Method definitions have four basic parts: name, return type, arguments,and body. The
method’s signature is a combination of the name of the method, the type of object or
primitive type this method returns,and the list of its arguments.

05.31318-9 CH03 9/24/98 11:17 AM Page 125

To keep things simple today, two optional parts of the method definition have been left
out: a modifier such as public or private and the throws keyword, which indicates the
exceptions a method can throw. You’ll learn about these tomorrow.

In other languages,the name of the method (or function,procedure, or subroutine) is
enough to distinguish it from other methods in the program. In Java,you can have differ-
ent methods that have the same name but a different argument list. This is called method
overloading, which you’ll explore in depth later today.

Here’s what a basic method definition looks like:

returntype methodName(type1 arg1, type2 arg2, type3 arg3...) {
/* body of the method */
}

The returntype is the type of value this method returns. It can be one of the primitive
types,a class,or void if the method does not return a value at all, such as the main()
method.

126 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

If a method returns an array object, the array brackets can go after either
the returntype or the argument list. Because the former version is consider-
ably easier to read, it is normally used, as in the following:

int[] makeRange(int lower, int upper) {...}

Note

The method’s argument list is a set of variable declarations,separated by commas,inside
parentheses. These arguments become local variables in the body of the method, whose
values are the objects or primitive values passed in when the method is called.

Inside the body of the method you can have statements,expressions,method calls to
other objects,conditionals,loops,and so on—everything you’ve learned about yesterday.
If your method has an actual return type (that is, it has not been declared to return void),
somewhere inside the body of the method you need to return a value. To do this,use the
return keyword.

Notice the return statements while you type Listing 3.8.

LISTING 3.8. RangeClass.java.

1: public class RangeClass {
2:
3: int[] makeRange(int lower, int upper) {
4: int arr[] = new int[(upper - lower) + 1];

TYPE

05.31318-9 CH03 9/24/98 11:17 AM Page 126

Java Intermediate 127

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

5: for (int i = 0; i < arr.length; i++) {
6: arr[i] = lower++;
7: }
8: return arr;
9: }
10:
11: static public void main(String[] args) {
12: int theArray[];
13: RangeClass theRange = new RangeClass();
14: theArray = theRange.makeRange(1, 10);
15: System.out.print(“The array: [“);
16: for (int i = 0; i < theArray.length; i++) {
17: System.out.print(theArray[i] + “ “);
18: }
19: System.out.println(“]”);
20: }
21: }

After you compile and run the project,here is what the output looks like:

The array: [1 2 3 4 5 6 7 8 9 10]

The main() method in this class tests the makeRange() method by creating a
range (line 3) where the lower and upper bounds of the range are 1 and 10,

respectively (line 14). It then uses a for loop to print the values of the new array (lines
16 to 18).

Using the this Keyword
In the body of a method definition, you might want to refer to the current object—the
object the method was called by—to refer to that object’s instance variables or to pass
the current object as an argument to another method. To refer to the current object in
these cases,you can use the this keyword. The this keyword refers to the current
object,and you can use it anywhere that object might appear—in dot notation to refer to
the object’s instance variables,as an argument to a method, as the return value for the
current method, and so on. Here are some examples:

t = this.x; // the x instance variable for the current object
this.myMethod(this); // calls the myMethod method, defined in

// the current object’s class, and
// passes it the current object

return this; // returns the current object

In many cases,however, you might be able to omit the this keyword. You can refer to
both instance variables and method calls defined in the current class simply by name.
The this keyword is implicit in those references and could have been left out.

OUTPUT

ANALYSIS

05.31318-9 CH03 9/24/98 11:17 AM Page 127

Keep in mind that because this is a reference to the current instance of a class,you
should use it only inside the body of an instance method definition. Class methods—that
is, methods declared with the static keyword—cannot use this. Class methods are not
tied to a particular instance of the class; therefore, the this keyword is never relevant.

Understanding Variable Scope and Method Definitions
When you refer to a variable within your method definitions, Java checks for a definition
of that variable first in the current scope (which might be a block) and then in the outer
scopes up to the current method definition. If that variable is not a local variable, Java
then checks for a definition of that variable as an instance or class variable in the current
class. Finally, Java checks each superclass in turn.

Java makes it possible in certain situations for you to create a variable in an inner scope
that hides a variable in an outer scope. When the definition of a variable in an inner
scope is exactly the same as a variable in an outer scope, the value for the outer variable
is hidden. This,of course, is not a recommended programming practice because it can
introduce subtle and confusing bugs into your code. For example, consider this small
Java program:

class ScopeTest {
int test = 10;
void printTest() {

int test = 20;
System.out.println(“test = “ + test);

}
}

In this class,you have two variables with the same name and definition. The first, an
instance variable, has the name test and is initialized to the value 10. The second is a
local variable also called test but with the value 20. Because the local variable in the
inner scope hides the instance variable in the outer scope, the println() method will
print test = 20. However, you can circumvent the default scoping behavior by using
this.test to refer to the instance variable and just test to refer to the local variable.

A more insidious example of the problem occurs when you redefine a variable in a sub-
class that already occurs in a superclass. Again, this can create bugs in your code. For

128 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Omitting the this keyword for instance variables depends on whether there
are no variables of the same name declared in the local scope. See the next
section, “Understanding Variable Scope and Method Definitions,” for more
details.

Note

05.31318-9 CH03 9/24/98 11:17 AM Page 128

Java Intermediate 129

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

example, you might call methods that are intended to change the value of a certain
instance variable but instead end up changing an inner scope variable and cause the value
of the outer one to be left unaltered. Another bug might occur when you cast an object
from one class to another. The value of your instance variable might mysteriously change
(because it is getting that value from the superclass instead of from your class). The best
way to avoid this behavior is to make sure that, when you define variables in a subclass,
you’re aware of the variables in each of that class’s superclasses and don’t duplicate what
is already defined in those superclasses.

Passing Arguments to Methods
When you call a method with object arguments,the variables you pass into the body of
the method are passed by reference, which means that whatever you do to those objects
inside the method affects the original objects as well. This includes arrays and all the
objects that arrays contain. When you pass an array into a method and modify its con-
tents,the original array is affected.

Primitive types are passed to methods by value.Note

Here’s an example to demonstrate how this works. First, you have a simple class defini-
tion, which includes a single method called oneToZero():

class PassByRef {
int oneToZero(int arg[]) {

int count = 0;
for (int i = 0; i < arg.length; i++) {

if (arg[i] == 1) {
count++;
arg[i] = 0;

}
}
return count;

}
}

The oneToZero() method does two things:

● It counts the number of ones in the array and returns that value.

● If it f inds a one, it substitutes a zero in its place in the array.

In this code snippet,you create the main() method for the PassByRef class and pass an
array of integers to the oneToZero() method:

05.31318-9 CH03 9/24/98 11:17 AM Page 129

public static void main (String arg[]) {
int arr[] = { 1, 3, 4, 5, 1, 1, 7 };
PassByRef test = new PassByRef();
int numOnes;
numOnes = test.oneToZero(arr);

}

The first three lines set up the initial variables. The first one is an array of integers. The
second one is an instance of the class PassByRef, which is assigned to the test variable.
The third is an integer to hold the number of ones found in the array. The fourth line
calls the oneToZero() method, defined in the test object,and passes it the array stored
in arr. This method returns the number of ones in the array, which you then assign to the
numOnes variable. The oneToZero() method returns 3. Also, the old values in the
{ 1,3,4,5,1,1,7} array are changed to {0,3,4,5,0,0,7} by the method call.

Using Class Methods
Just as you have class and instance variables,you also have class and instance methods,
and the difference between the two types of methods is analogous. Class methods are
available to any instance of the class itself and can be made available to other classes.
Therefore, some class methods can be used anywhere regardless of whether an instance
of the class exists or doesn’t exist.

For example, the Java class libraries include a class called Math. The Math class defines
a whole set of math operations that can be used in any program or with the various
numeric types:

float root = Math.sqrt(453.0);
System.out.print(“The larger of x and y is “ + Math.max(x, y));

To define class methods,use the static keyword in front of the method definition, simi-
lar to the way you create a class variable. For example, here’s the sqrt class method sig-
nature:

static float sqrt(float arg1) {...}

Java also supplies “wrapper” classes for each of the primitive types—for example, the
Integer, Float, and Boolean classes. Using class methods defined in those classes,you
can convert to and from objects and primitive types. For example, the parseInt() class
method in the Integer class takes a string and a radix and returns the value of that string
as an integer:

int count = Integer.parseInt(“42”, 10); // returns the integer 42

130 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:17 AM Page 130

Java Intermediate 131

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Most methods that operate on or affect a particular object should be defined as instance
methods. Methods that provide some general utility but do not directly affect an instance
of that class are better declared as class methods.

Overloading Methods
Earlier today, you learned how to create methods with a single name and single signa-
ture. Methods in Java can also be overloaded. That is, you can create methods that have
the same name, but with different signatures and different definitions. Method overload-
ing enables instances of your class to have a simpler interface to other objects and allow
them to behave differently based on the input to the method.

When you call a method in an object,Java matches up the method name, the number of
arguments,and the argument types to choose which method definition to execute. (You
might want to review Figure 3.5 and the section “Understanding How Inheritance
Works,” where this concept was introduced.)

To create an overloaded method, all you need to do is create several different method
definitions in your class,all with the same name but with different argument lists. The
argument list might differ in the number of arguments,the data types of the arguments,
or both. The variable names you choose for each method argument are irrelevant; all that
matters is the number and the type.

Java allows method overloading as long as each method of the same name has a unique
argument list. However, in Java,overloaded methods must have identical return types.
That is, if you try to create two methods with the same name and same arguments but
different return types,you will receive a compiler error for your efforts.

The following shows a simple class definition for a class called MyRect, which defines a
rectangular shape. The MyRect class has four instance variables to define the upper-left
and lower-right coordinate pairs for the rectangle’s corners: x1, y1, x2, and y2. When a
new instance of the MyRect class is created, all its instance variables are initialized to 0:

class MyRect {
int x1 = 0;
int y1 = 0;
int x2 = 0;
int y2 = 0;

}

Radix is the name for the base of a particular number system. The radix is 10
in decimal, 16 in hexadecimal, 8 in octal, and 2 in binary.

Note

05.31318-9 CH03 9/24/98 11:17 AM Page 131

Let’s define a buildRect() method that takes four integer arguments,sizes the rectangle
to have the appropriate values for its corners,and returns the resulting rectangle object.
(Note that because the arguments have the same identifier names as the instance vari-
ables,you have to use the this keyword to refer explicitly to the instance variables.) The
method takes each of the arguments in the argument list (x1, y1, and so on) and assigns
the value to the corresponding instance variable (this.x1, this.y1, and so on):

MyRect buildRect(int x1, int y1, int x2, int y2) {
this.x1 = x1;
this.y1 = y1;
this.x2 = x2;
this.y2 = y2;
return this;

}

What if you want to allow the user to specify a rectangle’s dimensions in a different
way—for example, by using Point objects rather than individual coordinates? You can
overload buildRect() so that its argument list takes two Point objects instead. (Note
that you would need to import java.awt.Point to make this work.) This version of the
method takes each Point object and assigns its x and y field values to the corresponding
instance variables:

MyRect buildRect(Point topLeft, Point bottomRight) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = bottomRight.x;
y2 = bottomRight.y;
return this;

}

Perhaps you want to define the rectangle using a top corner and a width and height. Just
create another definition for the buildRect() method:

MyRect buildRect(Point topLeft, int w, int h) {
x1 = topLeft.x;
y1 = topLeft.y;
x2 = (x1 + w);
y2 = (y1 + h);
return this;

}

132 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Remember to avoid using names that are already defined in other classes or
the Java class libraries. For example, there is a Rectangle class in the
java.awt package, so you should name a new class something different than
Rectangle to prevent problems later.

Tip

05.31318-9 CH03 9/24/98 11:17 AM Page 132

Java Intermediate 133

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Method overloading enables you to provide this type of flexibility to users of your class
definition. Keep in mind that you can define as many versions of a method as you need
to in your own classes to implement the behavior you need for that class. You cannot,
however, define two separate methods that have the same name and the same arguments
in the same class. If you attempt to do so,you will receive a “duplicate definition” com-
piler error.

Overriding Methods
When you call an object’s method, Java looks for that method definition in the class of
that object. If it doesn’t find one, it passes the method call up the class hierarchy until a
matching method signature is found. Method inheritance enables you to define and use
methods repeatedly in subclasses without having to duplicate the code itself in each sub-
class.

However, there might be times when you want an object to respond differently to the
method call than the behavior that is defined in the object’s superclass. In this case, you
can override the method. Overriding a method involves redefining a method in a subclass
that has the same signature as a method in a superclass. Then,when that method is
called, the method in the subclass is found and executed instead of the one in the super-
class.

Creating Override Methods
To override a method, all you have to do is create a method in your subclass that has the
same signature (name and argument list) as a method defined by one of your class’s
superclasses. Because Java executes the first method definition it finds that matches the
signature, this effectively hides the original method definition from the current object’s
scope.

To demonstrate, click the Add to project icon,type PrintClass.java, and click Open.
Click on the Content pane, and enter the code shown in Listing 3.9.

LISTING 3.9. PrintClass.java.

1: class PrintClass {
2: int x = 0;
3: int y = 1;
4:
5: void printMe() {
6: System.out.println(“X is “ + x + “, Y is “ + y);
7: System.out.println(“I am an instance of the class “
8: + this.getClass().getName());
9: }
10: }

TYPE

05.31318-9 CH03 9/24/98 11:17 AM Page 133

Next, you want to create a subclass of PrintClass whose only difference is that the sub-
class has a z instance variable. This subclass will also contain the application’s main()
method. Click on the “Add to project” icon again to add PrintSubClass.java, and then
enter the code shown in Listing 3.10.

Listing 3.10. PrintSubClass.java.

1: class PrintSubClass extends PrintClass {
2: int z = 3;
3:
4: public static void main(String args[]) {
5: PrintSubClass obj = new PrintSubClass();
6: obj.printMe();
7: }
8: }

Here’s the output when you compile and run PrintSubClass.java:

X is 0, Y is 1
I am an instance of the class PrintSubClass

In the main() method of PrintSubClass, you created a PrintSubClass object and called
the printMe() method. Note that PrintSubClass doesn’t define this method, so Java
looks for it in each of PrintSubClass’s superclasses. In this case, it finds it in
PrintClass. Unfortunately, because printMe() is defined in PrintClass, it doesn’t
know anything about the z instance variable and prints only x and y.

Now, add PrintSubClass2.java in Listing 3.11 to the project.

Listing 3.11. PrintSubClass2.java.

1: class PrintSubClass2 extends PrintClass {
2: int z = 3;
3:
4: void printMe() {
5: System.out.println(“X is “ + x + “, Y is “ + y
6: + “, Z is “ + z);
7: System.out.println(“I am an instance of the class “
8: + this.getClass().getName());
9: }
10:
11: public static void main(String args[]) {
12: PrintSubClass2 obj = new PrintSubClass2();
13: obj.printMe();
14: }
15: }

134 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

TYPE

TYPE

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 134

Java Intermediate 135

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

When you run PrintSubClass2.java, it will instantiate the PrintSubClass2 subclass
and call the printMe() method defined in this subclass.

The output shows the new behavior obtained from overriding the printMe() method:

X is 0, Y is 1, Z is 3
I am an instance of the class PrintSubClass2

Calling Original Methods
Usually, there are two reasons why you want to override a method that a superclass has
already implemented:

● To replace the definition of that original method completely

● To augment the original method with additional behavior

You’ve already learned how to do the first task. By overriding a method and giving that
method a new definition, you’ve replaced the original method definition as far as the sub-
class is concerned. But sometimes you might just want to add behavior to the original
definition rather than hide it altogether. This is particularly useful when you end up
duplicating behavior in both the original method and the method that overrides it,as you
just did in the PrintClass example. By being able to call the original method in the
body of the overriding method, you can add only the additional behavior.

To call the original method from inside a method redefinition, use the super keyword to
pass the method call up the hierarchy:

void myMethod (String a, String b) {
// do some things here
super.myMethod(a, b);
// do more things here

}

OUTPUT

The super keyword is a placeholder for this class’s superclass. You can use it
anywhere you can use the this keyword, but you use it to refer to the
superclass rather than to the current class.

Note

Rather than duplicating most of the behavior of the superclass’s method in the subclass,
you can define the superclass’s method so that additional behavior can be added easily.
Here’s a revised version of the earlier example, showing how this can be done. Add
PrintRevClass.java to the project,and enter the code shown in Listing 3.12.

05.31318-9 CH03 9/24/98 11:17 AM Page 135

Listing 3.12. PrintRevClass.java.

1: class PrintRevClass {
2: int x = 0;
3: int y = 1;
4:
5: void printMe() {
6: System.out.println(“I am an instance of the class “
7: + this.getClass().getName());
8: System.out.println(“X is “ + x);
9: System.out.println(“Y is “ + y);
10: }
11: }

Then,again click on the Add to project icon. Name this new class
PrintRevSubClass.java and click OK. Click on the Content pane and enter the code
shown in Listing 3.13.

Listing 3.13. PrintRevSubClass.java.

1: class PrintRevSubClass extends PrintRevClass {
2: int z = 3;
3:
4: void printMe() {
5: super.printMe();
6: System.out.println(“Z is “ + z);
7: }
8:
9: public static void main(String args[]) {
10: PrintRevSubClass obj = new PrintRevSubClass();
11: obj.printMe();
12: }
13: }

Select File |Save All. When you run PrintRevSubClass.java, it will instantiate the
PrintRevSubClass subclass,call the printMe() method as defined in PrintRevClass
(the superclass),and then continue on to perform the additional behavior defined in the
method of this subclass.

Here’s the output:

I am an instance of the class PrintRevSubClass
X is 0
Y is 1
Z is 3

136 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

TYPE

TYPE

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 136

Java Intermediate 137

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Understanding Constructor Methods
In addition to regular methods,you can also define constructor methods in your class
definition.

A constructor is a special kind of method that determines how an object is ini-
tialized when it’s instantiated.

Unlike regular methods,you can’t call a constructor method by calling it directly by
name. Instead, constructor methods are called by Java automatically. Here’s how it works
when you use the new keyword to create a new instance of a class; the Java language
does three things:

1. Memory is allocated for the object.

2. The object’s instance variables are initialized, either to the initial values specified
in the class definition, or to the appropriate default value for their types.

3. The class’s constructor method is called (which can be one of several methods).

If a class doesn’t have any special constructor methods defined, you’ll still get an object,
but you might have to set its instance variables or call other methods that the object
needs to initialize itself. Most of the classes you’ve created up to this point have done the
latter, simply allocating memory for the object and not much more.

By defining constructor methods in your own classes,you can set initial values of
instance variables,call methods based on those instance variables,call other objects’
methods,or calculate initial properties for your object. You can also overload construc-
tors,as you would regular methods,to create an object that has specific properties based
on the arguments passed when instantiating an object with the new keyword.

Using Default Constructors
Constructors look a lot like regular methods with two basic differences:

● Constructors always have the same name as the class in which they are defined.

● Constructors don’t have a return type.

For example, Listing 3.14 shows a simple class called Person which defines a construc-
tor that initializes its instance variables based on the arguments passed with the new key-
word. The class also includes a method for the object to “introduce”itself, and a main()
method to see how it all works.

NEW TERM

05.31318-9 CH03 9/24/98 11:17 AM Page 137

Listing 3.14. Person.java.

1: class Person {
2: String name;
3: int age;
4:
5: Person(String n, int a) { // constructor
6: name = n;
7: age = a;
8: }
9:
10: void printPerson() {
11: System.out.print(“Hi, my name is “ + name);
12: System.out.println(“. I am “ + age + “ years old.”);
13: }
14:
15: public static void main(String args[]) {
16:
17: Person p;
18: System.out.println(“----------”);
19: p = new Person(“Michelle”, 44);
20: p.printPerson();
21: System.out.println(“----------”);
22: p = new Person(“Phil”, 49);
23: p.printPerson();
24: System.out.println(“----------”);
25: }
26: }

Be sure to save your work.

Here’s the output from running this program:

Hi, my name is Michelle. I am 44 years old.

Hi, my name is Phil. I am 49 years old.

Lines 5 through 8 are the constructor (the name is the same as the class,and
there is no return type). In line 17,you declare the variable p to be of the object

type Person. However, the constructor doesn’t get called until you reach the main()
method, where it is called twice (lines 19 and 22).

Calling Another Constructor
Some constructors you write might be a superset of another constructor defined in your
class. That is, they might have the same basic behavior as another constructor plus some
additional behavior. Rather than duplicating identical behavior in multiple constructor

138 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

TYPE

OUTPUT

ANALYSIS

05.31318-9 CH03 9/24/98 11:17 AM Page 138

Java Intermediate 139

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

methods in your class,it makes sense to be able to just call that first constructor from
inside the body of the second constructor. Java provides a special syntax to do just that.
To call a constructor defined on the current class,use this general form:

this(arg1, arg2, arg3...);

The arguments to this are the arguments to the constructor. Using the this keyword as a
method call,calls the current class’s constructor. After calling the this() method to
invoke the original constructor, you can add whatever additional functionality your new
constructor needs.

Overloading Constructors
Like regular methods,constructors can also take varying numbers and types of argu-
ments,enabling you to create your object with exactly the properties you want it to have
or with the capability to calculate properties from different kinds of input.

For example, the buildRect() methods you defined in the “Overloading Methods”sec-
tion are good candidates for constructors because they’re initializing an object’s instance
variables to the appropriate values. So instead of the buildRect() methods you defined,
you can create constructors instead. Listing 3.15 shows a class named MyRect.java
which shows the same functionality defined as several overloaded MyRect() constructors
rather than the original overloaded buildRect() methods.

Listing 3.15. MyRect.java.

1: import java.awt.Point;
2:
3: class MyRect {
4: int x1 = 0;
5: int y1 = 0;
6: int x2 = 0;
7: int y2 = 0;
8:
9: MyRect(int x1, int y1, int x2, int y2) {
10: this.x1 = x1;
11: this.y1 = y1;
12: this.x2 = x2;
13: this.y2 = y2;
14: }
15:
16: MyRect(Point topLeft, Point bottomRight) {
17: x1 = topLeft.x;
18: y1 = topLeft.y;
19: x2 = bottomRight.x;
20: y2 = bottomRight.y;

TYPE

continues

05.31318-9 CH03 9/24/98 11:17 AM Page 139

Listing 3.15. CONTINUED

21: }
22:
23: MyRect(Point topLeft, int w, int h) {
24: x1 = topLeft.x;
25: y1 = topLeft.y;
26: x2 = (x1 + w);
27: y2 = (y1 + h);
28: }
29:
30: void printRect() {
31: System.out.print(“MyRect: <” + x1 + “,” + y1);
32: System.out.println(“ , “ + x2 + “,” + y2 + “>”);
33: }
34:
35: public static void main(String args[]) {
36: MyRect rect;
37:
38: System.out.println(“----------”);
39: System.out.println(“Calling MyRect() with “
40: + “coordinates 25, 25, 50, 50:”);
41: rect = new MyRect(25, 25, 50, 50);
42: rect.printRect();
43: System.out.println(“----------”);
44:
45: System.out.println(“Calling MyRect() with “
46: + “points (10,10) and (20,20):”);
47: rect = new MyRect(new Point(10,10), new Point(20,20));
48: rect.printRect();
49: System.out.println(“----------”);
50:
51: System.out.println(“Calling myRect() with “
52: + “point (15,15), width 50 and “
53: + “height 60:”);
54: rect = new MyRect(new Point(15,15), 50, 60);
55: rect.printRect();
56: System.out.println(“----------”);
57: }
58: }

There are several things to remember when converting methods to constructors:

● Remove the return type in the signature.

● Change the method name to match the class name.

● Remove the return method (for example, return this;).

140 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:17 AM Page 140

Java Intermediate 141

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

When you compile and run this code, you get the following output:

Calling MyRect() with coordinates 25, 25, 50, 50:
MyRect: <25,25 , 50,50>

Calling MyRect() with points (10,10) and (20,20):
MyRect: <10,10 , 20,20>

Calling MyRect() with point (15,15), width 50 and height 60:
MyRect: <15,15 , 65,75>

Overriding Constructors
Technically, constructors cannot be overridden. Because they always have the same name
as the current class,you have to create new constructors instead of inheriting construc-
tors from a superclass. Much of the time, this is fine because when your class’s construc-
tor is called, any constructors with the same signature in your superclasses are also called
to ensure that all inherited parts of the object are properly initialized.

However, when you’re defining constructors for your own class,you might want to
change how your object is initialized, not only to initialize new variables that your class
adds,but also to change the contents of variables that are inherited. You do this by
explicitly calling your superclass’s constructors and then making the changes you
require.

To call a regular method in a superclass,you use this form:

super.methodName(args)

But with constructors, you don’t have a method name to call,so use this form instead:

super(arg1, arg2, ...);

Similar to using the this() method in a constructor, the super() method calls the con-
structor for the immediate superclass. For example, the following code shows a class
called NamedPoint that extends the class java.awt.Point. The Point class has only one
constructor, which takes an x and a y argument and returns a Point object. NamedPoint
has an additional instance variable (a String to hold the point’s name) and defines a con-
structor to initialize x, y, and name:

import java.awt.Point;
class NamedPoint extends Point {

String name;
NamedPoint(int x, int y, String name) { // constructor

super(x, y); // calling Point’s constructor

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 141

this.name = name;
}

}

The constructor calls the Point class constructor, using the super() method, to initialize
the Point class instance variables (x and y). Although you might just as easily initialize x
and y yourself, you might not know what other things Point is doing to initialize itself,
so it’s always good form to pass constructors up the hierarchy to make sure that every-
thing is set up correctly.

Understanding Finalizer Methods
Finalizer methods are the opposite of constructor methods. Whereas a constructor
method is used to initialize an object,a finalizer method is called just before the object is
garbage-collected and its memory reclaimed.

142 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

Finalizer methods are the equivalent of C++ destructors. Because Java uses
garbage collection, however, class destruction is done automatically by the
program. This results in Java being much easier to use because you do not
have to keep track of the destruction of your classes. In addition, because
it’s done automatically, you do not have to worry about your classes inadver-
tently not being destroyed.

Note

The Object class defines the default finalize() method, which does nothing. To create a
finalizer method for your own classes,override the finalize() method using this signa-
ture:

protected void finalize() {...}

Inside the body of your finalize() method, include any cleanup you want to do for that
object. You can also call super.finalize() to make use of finalizer method definitions
in your class’s superclasses,if necessary.

You can always call the finalize() method yourself at any time; it’s just a plain method
like any other. However, it is always implicitly called just before an object’s memory
allocations are freed during garbage collection. Also, you need to know that calling
finalize() does not trigger an object to be garbage-collected; it simply causes the code
in the method to be executed. Only removing all references to an object will cause it to
be marked for deletion.

Finalizer methods are best used for optimizing the removal of an object—for example, by
removing references to other objects,by releasing external resources that have been

05.31318-9 CH03 9/24/98 11:17 AM Page 142

Java Intermediate 143

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

acquired, or for other behaviors that might make it easier for that object to be removed.
In most cases,you will not need to use finalize() at all.

Summary
If this is your first encounter with object-oriented programming (OOP),a lot of the infor-
mation today probably seemed really theoretical and somewhat overwhelming. Don’t let
that bother you—the further along in the book you go, and the more Java programs you
create, the easier it will be to understand.

One of the biggest hurdles in OOP is not necessarily the concepts; it’s the jargon. To
summarize this material, here’s a glossary of terms and concepts you learned today:

Class method A function defined inside a class that operates on the class itself and
can be called by the class or any of its instances.

Class variable A variable that belongs to all the instances of a class simultaneously
and whose value is stored in the class.

Class A template for an object that contains variables and methods representing
attributes and behaviors. Classes can inherit variables and methods from other classes.

Instance method A subprogram defined inside a class that operates on instances of
that class; commonly just called a method.

Instance variable A variable that belongs to an individual instance and whose value
is stored in the instance.

Instance Same as an object; an instance is the concrete representation of a class.

Object An actual instance of a class. Multiple objects that are instances of the same
class have access to the same methods but often have different values for their
instance variables.

Subclass A class further down in the class hierarchy that is based on one superclass,
due to single inheritance. Creating a new subclass is called subclassing.

Superclass A class further up in the class hierarchy from which other classes can
inherit. A superclass can have numerous subclasses.

Today, you learned a great deal about objects:how to create them,how to find out and
change the values of their variables,and how to call their methods. You also learned how
to convert objects into other objects or primitives,how to convert primitives into objects,
and how to compare objects. With just about everything you do in your Java programs,
you always end up working with objects.

05.31318-9 CH03 9/24/98 11:17 AM Page 143

You can now define methods,including the parts of a method’s signature, how to return
values from a method, how arguments are passed in and out of methods,and how to use
the this keyword to refer to the current object. You learned all about the main() method
and how it works.

Other method techniques were introduced, such as overloading, overriding, constructors,
and finalizer methods. You also learned how to use the super keyword to reuse method
functionality from a superclass,the this() method to call a constructor within the body
of another method definition, and the super() method to call a superclass’s constructor
from within a subclass’s method body.

You now have the fundamentals of how to deal with most aspects of the Java language.
Tomorrow, learn about the Java language’s more advanced features in putting together
Java programs and working with the Java class libraries.

Q&A
Q I understand instance variables and methods,but not class variables and

methods. Could you explain them in more detail?

A Almost everything you do in a Java program will be accomplished with objects.
Some behaviors and attributes,however, make more sense if they are stored in the
class itself rather than in the object. For example, to create a new instance of a
class,you need a method that is defined for the class itself, not for the object
(which doesn’t yet exist). You need to call the method to create the object,but you
don’t have an object yet, so how can you call the method? This type of problem is
solved by having class methods. Class variables,on the other hand, are often used
when you have an attribute whose value you want to share with all instances of a
class. Most of the time, though,you’ll use instance variables and methods.

Q Is there any limit to the number of subclasses a class can have?

A Theoretically, no. However, practically speaking, there is a limit based on the com-
puter’s file system. Because the .class files are stored on the hard disk,you are
limited to the number of files that can be stored on that hard disk. Also, the .class
files belonging to a package are stored in a subdirectory with the same name as the
package, and nested packages are stored in subdirectories of their parent packages,
so you might be limited by the directory structure as well. This limitation will be
covered in greater detail tomorrow.

Q What is the advantage of not having operator overloading in Java?

A The argument against operator overloading is that because the operator can be
defined to mean anything, it is sometimes difficult to figure out exactly what it

144 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

05.31318-9 CH03 9/24/98 11:17 AM Page 144

Java Intermediate 145

3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

doesmean in any particular context. This makes the code more prone to error and
less maintainable. Java was designed to be simple and more robust than languages
that have operator overloading, so this feature was not implemented.

Q I tr ied creating a constant variable inside a method, and I got a compiler
error. What did I do wr ong?

A The problem is that you cannot create a constant local variable; only class or
instance variables can be created as constants using the final keyword.

Q I created two methods with the following signatur es:
int total(int arg1, int arg2, int arg3) {...}
float total(int arg1, int arg2, int arg3) {...}

The Java compiler complains about “duplica te definition” when I try to com-
pile the class,but their signatur es are different. What have I done wrong?

A. For purposes of overloading, Java does not consider the return type as part of the
method signature, so the compiler complains that the signatures are the same if that
is the only difference (which in this case, it is). Overloading works only if the
argument list is different (either in number, in type, or both). Because the return
type would not be known until after Java decided which method to execute at run-
time, it considers the return type irrelevant in determining whether the method is
overloaded.

Q Can I overload overr idden methods? That is, can I create methods that have
the same name as an inherited method but a different parameter list?

A No reason why not! As long as the argument list varies,it doesn’t matter whether
the original definition of the method is in the same class or a superclass—you can
overload an inherited method just the same as you can any other method.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. Why should you avoid creating lots of custom classes to use with your applets?

2. If you don’t specify a superclass,your class will inherit from what class by
default?

05.31318-9 CH03 9/24/98 11:17 AM Page 145

3. True or False? Java supports multiple inheritance.

4. What do you think the following lines of code do?
boolean aBoolean = true;
Boolean boolObject = new Boolean(aBoolean);

5. When a class takes advantage of method overloading and contains several methods
with the same name, what determines which one will be used when you call the
method?

6. What keyword is used when declaring a class variable?

7. What do this and super refer to?

8. What is the purpose of these methods:this() and super()?

Exercises
1. Modify the program in Listing 3.6 so that when you change pt1, you don’t change

pt2. Name the new program RefTest2.java, and confirm that when it runs,it pro-
duces this output:

Point1: 200, 200
Point2: 100, 100

2. Figure out what’s wrong with the following LunchTime constructor, and then see
whether you can fix it so that it works properly.

void LunchTime(String n, String f, int a) { // constructor
name = n;
food = f;
age = a;
return this;

}

146 Day 3

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 3 Lp#3

OUTPUT

05.31318-9 CH03 9/24/98 11:17 AM Page 146

DAY 4

WEEK 1

Java Advanced
The larger your program becomes, and the more you reuse your classes for new
projects, the more you’ll want some sort of control over their visibility. One of
the solutions to this problem that you can use within a class is modifiers.

Another large-scale solution is packages, which, along with interfaces, help you
implement and design groups of classes and class behavior.

Today, you’ll learn how to create and use the following things:

● Protection for class variables and methods, constant variables, classes that
cannot be subclassed, and methods that cannot be overridden

● The abstract modifier for classes and methods

● How to organize methods and classes when designing Java programs

● How to implement your design using packages and interfaces

Using Modifiers
After you’ve been programming in Java for a while, you’ll discover that mak-
ing all your classes, methods, and variables public can become quite annoying.

06.31318-9 CH04 9/24/98 1:56 PM Page 147

Besides,one of the main goals of OOP is encapsulation, or information-hiding. However,
public has various sibling keywords that can help you protect your classes and their
members, called modifiers.

Modifiers are keywords that can be applied in various combinations to the meth-
ods and variables within a class and, in the case of some modifiers, to the class

itself.

There is a long and varied list of modifiers. The order of modifiers is irrelevant to their
meaning—your order can vary and is really a matter of taste. Pick a style and then be
consistent with it throughout all your classes. Here is the recommended (canonical)
order:

<access> abstract static final <unusual> native synchronized interface

Here, <access> can be public, private, or protected, and <unusual> can be
transient or volatile.

All the modifiers are optional; no modifiers are required in a declaration. You’ll want to
add as many as are necessary to describe the intended use and restrictions on what you’re
declaring. In some special situations (inside an interface, for example),certain modifiers
are implicitly defined for you,and you needn’t type them in—they are assumed to be
there. For example, if you don’t type an <access> modifier, Java assumes that you want
the default,which is access from within the same package that the element is a part of
(package-level access) and for which there is no keyword.

A few of these modifiers are advanced topics:transient, volatile, synchronized, and
native. However, for the sake of completeness,here is a brief description of each. The
transient modifier is used to declare a variable to be outside the persistent part of an
object. This makes persistent object storage systems easier to implement in Java. The
volatile and synchronized modifiers have to do with multithreading. The native mod-
if ier specifies that a method is implemented in the native language of your computer (for
example, compiled C,C++, or Pascal) rather than in Java. Again, you don’t need to know
these modifiers to follow the rest of today’s lesson,so don’t be concerned if their mean-
ing is not totally clear to you.

The interface modifier, as you would expect,is used to indicate classes that are inter-
faces. You’ll learn more about interfaces later today. In this section,you’ll take a closer
look at the <access>modifiers public, private, protected, abstract, static, and
final.

148 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

NEW TERM

06.31318-9 CH04 9/24/98 1:56 PM Page 148

Java Advanced 149

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Controlling Access to Methods and Variables
Access control is about controlling visibility. When a method or variable is visible to
another class,its methods can reference (call or modify) that class member.

A class memberis a method or variable of the class.

To protect a class or class member from such references,you use the levels of visibility
described in the next subsections. Each, in turn, is more restrictive and thus provides
more protection than the one before it.

Learning how to use the protection modifiers comes down to understanding the funda-
mental relationships a method or variable within a class can have to other classes and
subclasses in the system.

public

Because any class is an island unto itself, the first of these relationships builds on the dis-
tinction between the inside and the outside of a class. Any method or variable is visible
to the class in which it is defined, but what if you want to make it visible to all the
classes outside this class?

The answer is fairly obvious:simply declare the class member to have public access.
Almost every class member defined this week will be declared, for simplicity’s sake, to
be public. When you use any of the examples provided in your own code, you’ll proba-
bly decide to restrict this access somewhat. While you’re learning though,it’s not a bad
idea to begin with the widest possible access you can use (package-level access or
public) and then narrow it as you gain more experience. Soon,it will become second
nature for you to know what access your class members should have when you declare
them. Here are some examples of public declarations:

public class APublicClass {
public int aPublicInt;
public String aPublicString;
public float aPublicMethod;() {

...
}

}

A class or class member with public access has the widest possible visibility. Anyone
can see it; anyone can use it.

Package-Level Access (Default)
In some languages,there is the notion of hiding a class or class member so that only the
functions within a given source file can see it. In Java, this notion is replaced by the

NEW TERM

06.31318-9 CH04 9/24/98 1:56 PM Page 149

more explicit idea of packages,which can group classes; you’ll learn about these in the
“Using Packages” section of this chapter. For now, you need to know how to support the
relationship of a class to its sibling classes that implement one piece of a system,library,
or program. This defines the next level of increased protection and narrowed visibility.

Due to an idiosyncrasy of the Java language, this level of access has no keyword associ-
ated with it. Although Java does have a package keyword, it is not used in this context;
rather, it is used to designate whether a class is a member of a package. The package
level of access is indicated by the lack of any access modifier in a declaration and is
therefore thought of as the default access level. Historically, it has been called “fr iendly”
and “package.” The latter term seems most appropriate and is the one used here, so it’s
known as package-level access.

150 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Why would anyone want to make more typing for themselves and desire to
explicitly declare a method or variable with package-level access? It’s mainly
for consistency and clarity. If you have a pattern of declarations with varying
access modifier prefixes, you might always want the modifier to be stated
explicitly, both for the reader’s benefit and because, in some contexts, you
want the compiler to notice your intentions and warn you of any conflicts.

Note

If you would prefer to explicitly label the package level of protection, con-
sider using a comment at the beginning of the line of code. For example:

/* package-level */ float aPackageMethod() {...}

Tip

Most of the declarations you’ve seen so far have used this default level of protection.
Here’s an example of how this works:

public class ALessPublicClass {
int aPackage Int = 2;
String aPackageString = “a 1 and a “;
float aPackageMethod() { // no access modifier means package-level

// access
...
}

}
public class AClassInTheSamePackage {

public void testUse() {
ALessPublicClass aLPC = new ALessPublicClass();
System.out.println(aLPC.aPackageString + aLPC.aPackageInt);
aLPC.aPackageMethod(); // all these references are okay

}
}

06.31318-9 CH04 9/24/98 1:56 PM Page 150

Java Advanced 151

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

If a class from any other package tried to access aLPC the way that
AClassInTheSamePackage does in this example, it would generate compile-time errors.

Why was package made a default? When you’re designing a large system and you parti-
tion your classes into workgroups to implement smaller pieces of that system,the classes
often need to share a lot more with one another than with the outside world. The need for
this level of sharing is common enough that it was made the default level of protection.

Another interesting feature of this level of protection is that any subclasses that are
declared in other packages cannot access or inherit class members that have this level of
protection in the superclass. Only subclasses in the same package as their superclass can
access or inherit these class members.

protected

This level of protection can be applied only to class members,not classes. Other classes
must be content with the public face that the protected class presents. To support the
level of intimacy reserved for subclasses,modern programming languages have invented
an intermediate level of access narrower than the previous two levels but more open than
full privacy. This level gives more protection and less visibility to the rest of the world.

When a class member is declared to be protected, it is accessible to classes in the same
package, accessible and inheritable by subclasses in the same package, and can be inher-
ited by subclasses declared in other packages. However, the protected class’s members
cannot be accessed by anything in another package, even its own subclass.

What if you have some details of your implementation that you don’t want to share even
with sibling classes of the same package, but you still want your subclasses to be able to
inherit? The answer to this question leads you to the next level of protection,private
protected.

private protected

The relationship between a superclass and its present and future subclasses is even more
restricted by this next level of access. Classes cannot be declared private protected;
only class members can be given this level of protection. No other class can access a
private protected class member, not even subclasses in the same package. The only
visibility provided at this level is that subclasses are allowed to inherit these class mem-
bers, regardless of whether the subclass is declared inside or outside the package. The
following code presents three classes; two are created from scratch and one is extended
from another class:

public class AProtectedClass {
private protected int aProtectedInt = 4;
private protected String aProtectedString = “and a 3 and a “;

06.31318-9 CH04 9/24/98 1:56 PM Page 151

privte protected float aProtectedMethod() {
...
}

}
public class AProtectedClassSubclass extends AProtectedClass {

public void testUse() {
AProtectedClassSubclass aPCS = new AProtectedClassSubclass();
System.out.println(aPCS.aProtectedString + aPCS.aProtectedInt);
aPCS.aProtectedMethod(); // all of these references are okay

}
}
public class AnyClassInTheSamePackage {

public void testUse() {
AProtectedClassSubclass aPCS = new AProtectedClassSubclass();
System.out.println(aPCS.aProtectedString + aPCS.aProtectedInt);
aPCS.aProtectedMethod(); // these references are invalid

}
}

Even though AnyClassInTheSamePackage is in the same package as AProtectedClass, it
is not a subclass of it (by default, it’s a subclass of Object). Remember, only subclasses
are allowed to inherit private protected class members.

private

The most restrictive of these relationships is represented by the modifier private. This is
the most narrowly visible, highest level of protection you can get—the diametric oppo-
site of public. Class members that are declared to be private cannot be accessed by any
other class or even inherited by a subclass; they can be used only by the class within
which they are defined.

public class APrivate Class {
private int aPrivateInt;
private String aPrivateString;
private float aPrivateMethod(); {
...
}

}

This might seem extremely restrictive, but it is actually a commonly used level of protec-
tion. Any private data, internal state, or representations unique to your implementation—
anything that shouldn’t be directly shared with subclasses—should be private.
Remember that an object’s primary job is to encapsulate its data, to hide it from the
world’s sight and limit its manipulation. The best way to do that is to make as much data
as private as possible. Your methods always can be less restrictive, as you’ll see a bit
later, but keeping a tight rein on your internal representation is important. This approach
does the following:

152 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:56 PM Page 152

Java Advanced 153

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

● Separates design from implementation

● Minimizes the amount of information one class needs to know about another to get
its job done

● Reduces the extent of code changes generated when your representation changes

Understanding Instance Variable Access Conventions
A good rule of thumb is that unless an instance variable is constant,it should almost cer-
tainly be private. If you don’t do this,you have the following problem:

public class AFoolishClass {
public String aUsefulString;
aUsefulString = “something really useful”;

}

This class might have been intended to set up aUsefulString for the use of other
classes,with the expectation that they would only read it. Because this class isn’t
private, however, the other classes can say this:

AFoolishClass aFC = new AFoolishClass();
aFC.aUsefulString = “oops!”;

Because there is no way to specify separately the level of protection for reading from and
writing to instance variables,they should almost always be private.

The careful reader will notice that this rule is violated in many examples in
this book. Most of these violations are for pedagogical reasons, to increase
the clarity of the examples and to keep them short. (You’ll soon see that it
takes more space to do the right thing.)

One use cannot be avoided: the System.out.print() and
System.out.println() calls scattered throughout the book must use the
public out variable directly. You cannot change this system class (which you
might have written differently). You can imagine the disastrous results if
anyone accidentally modified the contents of this global public variable!

Note

If instance variables are private, how can you give the outside world access to them? The
answer is to write accessor methods. Using methods to control access to an instance vari-
able is one of the most frequently used idioms in object-oriented programs. Applying it
liberally throughout all your classes repays you numerous times over with more robust
and reusable programs. Here’s a simple example that shows how this can be accom-
plished:

public class ACorrectClass {

06.31318-9 CH04 9/24/98 1:56 PM Page 153

private String aUsefulString;

public String getAUsefulString() {
return aUsefulString;

}

private protected void setAUsefulString(String aStr) {
aUsefulString = aStr;

}
}

Notice how separating the reading and writing of the instance variable (using
getAUsefulString() and setAUsefulString(), respectively) enables you to specify a
public method to return its value (making it read-only to the outside world) and a
private protected method to set it (making it read-write within the class). This is often
a useful pattern of protections because everyone probably needs to be able to ask for the
value, but only you (or your subclasses) should be able to change it. If it is a particularly
secret piece of data, you could make its set method private and its get method
protected or any other combination that suits the data’s sensitivity to the light of the
outside world.

154 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

The Java software component model, JavaBeans, defines properties as pri-
vate data that must be accessed only through accessor methods—that is,
through public set and get methods.

Note

Whenever you want to append to your own instance variable, try writing this:

setAUsefulString(getAUsefulString() + “ some appended text”);

In this example, you’re using accessor methods to change aUsefulString in the same
way as if you were accessing it from outside the class. Why do this? You protected the
variable in the first place so that changes to your representation would not affect the use
of your class by others. You should take advantage of that same protection. That way, if
you need to change the representation of aUsefulString, you will not need to individu-
ally update every use of that variable in your class (as you would if you didn’t use the
accessor methods); rather, the change affects only the implementations of the variable’s
accessor methods.

One of the powerful side effects of maintaining this level of indirection in accessing your
own instance variables is that if, at some later date, some special code needs to be per-
formed each time aUsefulString is accessed, you can put that code in one place, and all
other methods in your class (and in other classes) will correctly call that special code.

06.31318-9 CH04 9/24/98 1:56 PM Page 154

Java Advanced 155

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Here’s an example:

private protected void setAUsefulString(String aStr) {
aUsefulString = aStr;
performSomeImportantBookkeeping();

}

It might seem like more trouble to call the accessor method rather than using the instance
variable directly in your code, but the minor inconvenience will reward you with future
reusability and easier maintenance.

Protecting Class Variables and Methods
What if you want to create a shared variable that all your instances can see and use? If
you use an instance variable, each instance has its own copy of the variable, defeating
your whole purpose. If you place it in the class itself, however, only one copy exists,and
all the instances of the class share it. This is called a class variable.

A class variable is one that belongs to all the instances of a class simultaneously
and whose value is stored in the class itself.

Here’s an example:

public class Circle {
public static float pi = 3.14159265359F
public float area (float r) {

return pi * r * r;
}

}

Instances can refer to their own class variables as though they were instance variables,as
in the preceding example. Because pi is declared public, methods in other classes can
also refer to pi:

float circumference = 2 * Circle.pi * r;

NEW TERM

Instances of a class can also use the form instanceName.classVarName to
access a class variable. However, in most cases, the form
className.classVarName is preferred because it clearly indicates that this is a
class variable. It also helps the reader to know instantly that the variable ref-
erenced is global to all instances.

Note

Class methods are defined analogously. They can be accessed in the same two ways by
instances of their class,but other classes can access them only by their full class name

06.31318-9 CH04 9/24/98 1:57 PM Page 155

(which is the preferred reference style). Here’s a class that defines class methods to help
it count its own instances:

public class InstanceCounter {
private static int instanceCount = 0; // a class variable

private protected static int getInstanceCount() {
return instanceCount; // a class method

}

private static void incrementCount() { // a class method
++instanceCount;

}

InstanceCounter() { // the class constructor
InstanceCounter.incrementCount();

}
}

In this example, an explicit use of the class name calls the method incrementCount().
Although this might seem verbose, in a larger program,it immediately tells the reader
which object (the class,rather than the instance) is expected to handle the method. This
is especially useful if the reader needs to find where that method is declared in a large
class that places all its class methods at the top (the recommended practice, by the way).

Note the initialization of instanceCount to 0. Just as an instance variable is initialized
when its instance is created at runtime, a class variable is initialized when its class is cre-
ated at compile-time. This class initialization happens before anything else can happen to
that class,or its instances,so the class in the example will work as planned.

Finally, the conventions you learned for accessing an instance variable are applied in this
example to access a class variable. The accessor methods are therefore class methods.
(There is no set method here, only a get method and an increment method because no
one is allowed to set instanceCount directly.) Note also that only subclasses are allowed
to ask what the instanceCount is because it is considered a relatively intimate detail.
Here’s a test of InstanceCounter in action:

public class InstanceCounterTester extends InstanceCounter {
public static void main(String args[]) {

for (int i = 0; i < 10; ++1)
new InstanceCounter();

System.out.println(“made” + InstanceCounter.getInstanceCount());
}

}

Not surprisingly, this example prints the following output:

made 10

156 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 156

Java Advanced 157

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Using the final Modifier
Although it’s not the last modifier to be discussed, the final modifier is very versatile
and has several effects:

● When the final modifier is applied to a class,it means that the class cannot be
subclassed.

● When applied to a variable, it means that the variable is a constant.

● When applied to a method, it means that the method cannot be overridden by sub-
class methods.

Each of these possibilities is discussed in the following sections.

final Classes
Here’s what a final class declaration looks like:

public final class AFinalClass {...}

You declare a class final for one of two reasons. The first reason is security. You expect
to use its instances as unforgeable capabilities, and you don’t want anyone else to be able
to subclass and create new and different instances of the class. The second reason is effi-
ciency. You want to count on instances of only that one class (and no subclasses) being
present in the system so that you can optimize the class.

The Java class library uses final classes extensively. Some examples of the first
reason (security) to use final are the classes java.lang.System,
java.net.InetAddress, and java.net.Socket. A good example of the second
reason (efficiency) is java.lang.String. Strings are so common in Java, and
so central to it, that the runtime handles them specially.

Note

You’ll rarely need to create a final class yourself, although you’ll have plenty of oppor-
tunity to be annoyed at certain system classes being final (thus making extending them
rather difficult). Oh well, such is the price of security and efficiency.

final Variables
To declare constants in Java,use final variables:

public class AnotherFinalClass {
public static final int aConstantInt = 123;
public final String aConstantString = “Hello Java Enthusiasts!”;

}

06.31318-9 CH04 9/24/98 1:57 PM Page 157

Note that the first constant is a public class constant (indicated by the static modifier),
and the second is simply a public constant.

The final class and instance variables can be used in expressions just like normal class
and instance variables,but they cannot be modified. Therefore, final variables must be
given their (constant) value at the time of declaration, as in the preceding example.
Classes can provide useful constants to other classes by using class variables,such as
aConstantInt in the preceding example. Other classes reference them just as before:
AnotherFinalClass.aConstantInt.

Local variables (those inside blocks of code surrounded by braces—for example, in
while or for loops) can’t be declared final. In fact,local variables can have no modi-
fiers in front of them at all:

{
int aLocalVariable; // I’m so lonely without my modifiers...
...

}

final Methods
Here’s an example of using the final methods:

public class MyPenultimateFinalClass {
public static final void aClassMethodThatCannotBeOverridden() {

...
}

public final void aRegularMethodThatCannotBeOverridden() {
...

}
}

These final methods cannot be overridden by subclasses. It is a rare thing that a method
truly wants to be the last word on its own implementation, so why does this modifier
apply to methods?

The answer is efficiency. If you declare a method final, the compiler can then “inline” it
right in the middle of methods that call it because it knows that no one else can ever sub-
class and override the method to change its meaning. Although you might not use final
right away when first writing a class,you might discover as you tune the system later
that a few methods must be made final to make your class fast enough. Almost all your
methods will be fine, however, just as they are.

The Java class library declares a lot of commonly used methods final so that you’ll ben-
efit from the speed increase, which is essential for this partly compiled, partly interpreted
language. In the case of classes that are already final, this makes perfect sense. The few

158 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 158

Java Advanced 159

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

final methods declared in non-final classes will no doubt annoy you—your subclasses
cannot override them. When efficiency becomes less of an issue for the Java environ-
ment,many of these final methods might be made non-final, restoring flexibility to
the system.

Methods declared private are effectively final because they cannot be
overridden in a subclass. So are all methods declared in a final class because
such a class cannot be subclassed. Marking these methods final (as the Java
library sometimes does) is legal, but redundant; the compiler already treats
them as final.

It’s possible to use final methods for some of the same security reasons you
would use final classes, but it’s a much rarer event.

Note

If you use accessor methods a lot (as recommended) and are worried about efficiency,
take a look at this much faster rewrite of ACorrectClass:

public class ACorrectFinalClass {
private String aUsefulString;

public final String getAUsefulString() {
return aUsefulString; // now faster to use

}

private protected final void setAUsefulString(String aStr) {
aUsefulString = aStr; // also faster now

}
}

It might be that future implementations of Java will be smart enough to automatically
inline simple methods,but for now, using the final keyword does the trick.

Using abstract Methods and Classes
Whenever you arrange classes into an inheritance hierarchy, the presumption is that
higher-level classes are more abstract and general, whereas lower-level subclasses are
more concrete and specific. Often,as you design a set of classes,you factor out common
design and implementation into a shared superclass. If the primary reason that a super-
class exists is to act as a common,shared repository, and if only its subclasses expect to
be used directly, that superclass is called an abstract class.

Classes that are abstract cannot create instances,but they can contain anything a nor-
mal class can contain and, in addition, are allowed to prefix any of their methods with
the abstract modifier. Non-abstract classes are not allowed to use this modifier for

06.31318-9 CH04 9/24/98 1:57 PM Page 159

their class members; using it on even one of your methods would require you to declare
the whole class abstract. Here’s an example:

public abstract class MyFirstAbstractClass {
int anInstanceVariable;

public abstract int aMethodNonAbstractSubclassesMustImplement();

public void doSomething() {
... // a normal method

}
}

public class AConcreteSubclass extends MyFirstAbstractClass {
public int aMethodNonAbstractSubclassesMustImplement(); {

...
/* this subclass *must* implement this method for

it to be of any use to us in this subclass */
...

}
}

Here are two attempted uses of these classes:

Object a = new MyFirstAbstractClass(); // illegal, abstract class

Object c = new AConcreteSubclass(); // legal, a concrete class

Notice that abstract methods need no implementation; it is required that non-abstract
subclasses provide an implementation. The abstract class simply provides the template
(by defining the method signature) for the methods that are implemented by other sub-
classes later. In fact,in the Java class library, several abstract classes have no docu-
mented subclasses in the system but simply provide a base from which you can subclass
in your own programs. Interface classes are a good example of this.

Using an abstract class to embody a pure design—that is, nothing but abstract
methods—is better accomplished in Java by using an interface. Whenever a design calls
for an abstraction that includes instance variables or a partial implementation, however,
an abstract class is your only choice. In previous object-oriented languages,abstract
classes were just a convention. They proved so valuable that Java supports them not only
in the form described here, but also in the purer, richer form of interfaces,as you’ll see
later today.

Using Packages
Packages are a way of relating certain classes and interfaces so that they can be referred
to and imported as a group.

160 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 160

Java Advanced 161

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

A package is a collection of related classes and interfaces.

Grouping classes and interfaces into packages also eliminates potential class name con-
flicts, and you can use package names to fully qualify a class name so that there is no
doubt to which class you are referring. Packages can comprise multiple source code files
as long as each contains the package’s name. Packages also help govern access and pro-
tection,as you learned earlier today.

Packages can be nested within other packages,further organizing the classes within. For
example, the fully qualified class name java.awt.Color indicates that the class named
Color is contained within the awt (Abstract Windowing Toolkit) package, which itself is
contained in the java package.

The classes in the JDK are contained in a package named java. This package is guaran-
teed to be available in any Java implementation, and its classes are the only ones guaran-
teed to be available across different implementations. Classes in other packages (such as
sun or netscape) might be available only in specific implementations.

Your Java classes have default access only to the classes in java.lang (the basic Java
language package). To have access to classes and interfaces in any other packages,you
need to refer to them explicitly by package name or import them in your source code.

To give your program access to a JDK package, use the import keyword and the fully
qualified class name. For example, to import the java.awt.Color class into your pro-
gram,use the following syntax:

import java.awt.Color;

You can also import an entire package by substituting an asterisk (*) in place of a spe-
cific class name. For example, to import the entire java.awt package, use this syntax:

import java.awt.*;

Packages are Java’s way of doing large-scale design and organization. They are used
both to categorize and group classes. Let’s explore why you might need to use packages
in your own Java programs.

Designing Packages
When you begin to develop Java programs that use a large number of classes,you will
quickly discover some limitations in the model presented thus far for designing and
building them.

For one thing, as the number of classes you build increases,the likelihood of your want-
ing to reuse the short, simple name of some class increases. If you have classes that

NEW TERM

06.31318-9 CH04 9/24/98 1:57 PM Page 161

you’ve built in the past or that someone else has built for you (such as the classes in the
Java library), you might not remember—or even know—that these class names are in
conflict. Being able to “hide” a class inside a package becomes useful.

Here’s a simple example of creating a package in a Java source file:

package myFirstPackage;
public class MyPublicClass extends ItsSuperclass {...}

162 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

If a package statement appears in a Java source file, it must be the first thing
in that file (except for comments and whitespace, of course).

Note

You first declare the name of the package by using a package statement,then you define
a class,just as you would normally. That class,and any other classes also declared with
this same package name, are grouped together. (These other classes usually are located
in other separate source files,each with an identical package statement at the top.)

Packages can be organized further into a hierarchy somewhat analogous to the inheri-
tance hierarchy, where each level usually represents a smaller, more specific grouping of
classes. The Java class library itself is organized along these lines. The top level is called
java; the next level includes names such as io, net, util, and awt. The last of these,
image, is at an even lower level. The ColorModel class,located in the java.awt.image
package, can be uniquely referred to anywhere in your Java code as
java.awt.image.ColorModel.

By current convention, the first level of the hierarchy specifies the globally
unique name of the company that developed the Java package or packages.
For example, Sun Microsystems’s classes, which are not part of the standard
Java environment, all begin with the prefix sun, and Borland’s classes begin
with the prefix borland. The standard package, java, is an exception
because it is so fundamental and because it might someday be implemented
by multiple companies.

Sun has proposed a more formal procedure for package naming to be fol-
lowed in the future, reserving the top-level package name for the top-level
domains of the Internet in all uppercase (EDU, COM, GOV, ORG, FR, US, RU, and so
on). These are then to be followed by the Internet domain name. By this
procedure, the Sun packages would be prefixed with COM.sun and the
Borland packages with COM.borland. (Note, however, that neither Sun nor
Borland is currently following this proposed procedure.)

Note

06.31318-9 CH04 9/24/98 1:57 PM Page 162

Java Advanced 163

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Because each Java class usually is located in a separate source file, the grouping of
classes provided by a hierarchy of packages is analogous to the grouping of files into a
hierarchy of directories on your file system. The Java compiler reinforces this analogy by
requiring you to create a directory hierarchy under your jbuilder2\myclasses directory
that exactly matches the hierarchy of the packages you have created and to place a class
into the directory with the same name and level as the package in which it’s defined.

The directory hierarchy for the Java class library is made compact by compressing them
all into a single zip file called classes.zip. For example, the class referenced as
java.awt.image.ColorModel is found as the file named ColorModel.class in the
classes.zip file in the jbuilder2\java\lib subdirectory. If you examine classes.zip
using WinZip or another similar program,you will see that the path listed for
ColorModel.class is \java\awt\image (see Figure 4.1),which mirrors its package
name.

The idea is to keep adding segments to the package name as you go further
down the company’s internal organizational hierarchy, such as
EDU.harvard.cs.projects.ai.myPackage. Because domain names already are
guaranteed to be unique globally, this technique nicely solves a thorny prob-
lem, and as a bonus, the applets and packages from the potentially millions
of Java programmers out there would be stored automatically into a grow-
ing hierarchy below your classes directory, giving you a way to find and cat-
egorize them all in a comprehensible manner.

FIGURE 4.1.
The classes.zip file
contains compressed
Java class files and the
directory structures
mirroring their pack-
age names.

06.31318-9 CH04 9/24/98 1:57 PM Page 163

If you have created a package within myFirstPackage called mySecondPackage, by
declaring a class like

package myFirstPackage.mySecondPackage;
public class AnotherPublicClass extends AnotherSuperclass {...}

the Java source file (called AnotherPublicClass.java) must be located in the JBuilder
subdirectory named myprojects\myFirstPackage\mySecondPackage. When you com-
pile the file, AnotherPublicClass.class is placed in JBuilder’s
myclasses\myFirstPackage\mySecondPackage subdirectory so that the Java Virtual
Machine can find it.

Today’s first example, APublicClass.java would have been placed in
myprojects\myFirstPackage, and the APublicClass.class file would have been placed
in the myclasses\myFirstPackage subdirectory. Both Java-based compilers and inter-
preters expect and enforce the hierarchy. But what happens when,as in earlier examples
in the book,classes are defined without a package statement?

If there is no explicit package statement in the class source file, the compiler places them
in a default, unnamed package, and their .java and .class files can be located at the top
level of JBuilder’s myprojects and myclasses subdirectories,respectively.

164 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

You can customize the source and output root directories for each JBuilder
project. To do this, select File | Project Properties. When the ProjectName.jpr
Properties dialog appears, display its Paths page by clicking on the Paths tab.
Add the preferred path to your source files in the Source root directory text
box, and add the preferred path to your output files in the Output root
directory text box. Click the OK button, and your changes take effect.

Tip

Implementing Packages
When you refer to a class by name in your Java code, you are using a package. Most of
the time, you aren’t aware of it because many of the most commonly used classes in the
system are in a package that the Java compiler automatically imports for you, the
java.lang package. So,for example, whenever you saw

String aString;

something more interesting than you might have thought was occurring. What if you
want to refer to the class you created at the start of this section,the one in the package
myFirstPackage? If you try

MyPublicClass someName;

06.31318-9 CH04 9/24/98 1:57 PM Page 164

Java Advanced 165

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

the compiler will complain. The class MyPublicClass is not defined in the package
java.lang. To solve this problem,Java allows any class name to be prefixed by the
name of the package in which it is defined to form a unique fully qualified reference to
the class:

myFirstPackage.MyPublicClass someName;

By convention, package names begin with a lowercase letter to distinguish
them easily from class names in fully qualified class references. For example,
in the fully qualified name of the built-in String class, java.lang.String, it’s
easier to visually separate the package name from the class name because of
this convention. Also, because of Java’s case-sensitivity, this helps to reduce
potential name conflicts between package names and class names.

Note

Suppose you want to use a lot of classes from a package, a package with a long name, or
both. You certainly wouldn’t want to refer to your class as
that.really.long.package.name.ClassName every time you use it. So Java allows you
to import the names of those classes into your program for your convenience. These
classes then act just as java.lang classes do,and you can refer to them without using
their fully qualified names. For example, to use that really long class name more easily,
you can do the following:

import that.really.long.package.name.ClassName;

ClassName anObject; // that’s much better!

Now you can use ClassName directly as many times as you like. All import statements
must appear after any package statement but before any class definitions, so they will
always near the top of your source code file.

What if you want to use several classes from that same package? Here’s an attempt from
a soon-to-be-tired-of-typing programmer:

that.really.long.package.name.ClassOne first;
that.really.long.package.name.ClassTwo second;
that.really.long.package.name.ClassThree andSoOn;

Here’s one from a more savvy programmer who knows how to import a whole package
of public classes:

import that.really.long.package.name.*;

ClassOne first;
ClassTwo second;
ClassThree andSoOn;

06.31318-9 CH04 9/24/98 1:57 PM Page 165

If you plan to use a class or a package only a few times in your source file, it probably is
not worth importing it. The question to ask yourself is,“Does the need for clarity out-
weigh the convenience of having fewer characters to type?”If it does,don’t use import;
use the fully qualified class name instead. Remember that the fully qualified class name
includes the package name, which lets the programmer immediately know where to find
more information about that class,rather than having to hunt down the import statement.
Also, if there are a number of import statements,it will be unclear to which imported
package the shortened class name belongs.

What if you have the following in ClassA’s source file?

package Motorcycle;
public class startEngine {...}
public class ClassA {...}

And in ClassB’s source file you have this:

package Car;
public class startEngine {...}
public class ClassB {...}

Then you write the following lines somewhere else:

import Motorcycle.*;
import Car.*;

startEngine YamahaObject; // compiler error
startEngine CrownVictoriaObject; // me too

You might be asking yourself, Which startEngine did you mean?as well you should.
There are two possible interpretations for the class you intended; one in Motorcycle and
one in Car. Because this is totally ambiguous,what is a poor compiler to do? It generates
a compiler error, of course, and you have to be more explicit about which one you
intended. Here’s an example that resolves the problem:

166 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

The asterisk (*) does not import all the subpackages of the specified pack-
age. For example, import java.awt.* imports all the public classes from the
java.awt package, such as java.awt.Font and java.awt.Graphics. However,
it does not import the java.awt.image or java.awt.peer subpackages (or
their public classes, for that matter).

To import all the public classes of a package and its subpackages, you must
write a separate import statement for each package and subpackage at each
level of the package’s hierarchy.

Note

06.31318-9 CH04 9/24/98 1:57 PM Page 166

Java Advanced 167

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

import Motorcycle.*;
import Car.*;

Motorcycle.startEngine YamahaObject; // corrected
Car.startEngine CrownVictoriaObject; // corrected

You might be wondering about the numerous declarations that appear as
examples in today’s lesson. Declarations are good examples because they’re
the simplest possible way of referencing a class name. Any use of a class
name—in your extends clause or in new startEngine(), for example—will
obey these same rules.

Note

Hiding Classes
The astute reader might have noticed that the discussion of importing with an asterisk
(*) stated that it imported a whole package of public classes. Why would you want to
import classes of any other kind? Take a look at this:

package collections;

public class LinkedList {
private Node root;

public void add(Object o) {
root = new Node(o, root);

}
...

}

class Node {
private Object contents;
private Node next;
Node(Object o, Node n) {

contents = o;
next = n;

}
...

}

If this were all in one file, you would be violating one of the compiler’s conventions:
only one class should be located in each Java source code file. (In fact,that is how it
decides what to name the .class file.) Actually, the compiler cares only about every
public class being in a separate file, although it’s still good style to use separate files for
each and every class.

06.31318-9 CH04 9/24/98 1:57 PM Page 167

The goal of the LinkedList class is to provide a set of useful public methods (such as
the add() method) to any other classes that might want to use them. It is irrelevant to the
other classes if LinkedList uses any other supporting classes to get its job done. In addi-
tion, LinkedList might feel that the Node class is local to its implementation and should
not be seen by any other classes.

For methods and variables,this would be addressed by the protection modifiers discussed
earlier today: private, protected private, protected, package (default), and public.
You already have explored many public classes,and because both private and pro-
tected really make sense only when you’re inside a class definition, you cannot put
them outside of one as part of defining a new class. LinkedList might need to be visible
only to its source file, but because each class is located in a separate source file by con-
vention,this would be an overly narrow approach.

Instead, LinkedList declares no protection modifier, which gives it the same privileges
as if it were declared as package. Now the class can be seen and used only by other
classes in the same package in which it was defined. In this case, it’s the collections
package. You might use LinkedList as shown here:

import collections.*; // only imports public classes

LinkedList aLinkedList;
/* Node n; */ // would generate a compile-time error

aLinkedList.add(“THX-”);
aLinkedList.add(new Integer(1138));
...

You can also import or declare an instance of aLinkedList using
collections.LinkedList. Because the public class LinkedList refers to the package
class Node, that class is automatically loaded and used, and the compiler verif ies that
LinkedList (as part of the collections package) has the right to create and use the
Node class. However, you still would not have that right, as demonstrated in the preced-
ing example.

One of the great powers of hidden classes is that even if you use them to introduce a
great deal of complexity into the implementation of a public class,all the complexity is
hidden when that class is imported or used. Thus,creating a good package consists of
defining a small,clean set of public classes and methods for other classes to use and
then implementing them by using any number of hidden (package) support classes.

You’ll see another use for hidden classes later today in the “Implementing Interfaces”
section. For now, let’s leave them behind and look into interfaces.

168 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 168

Java Advanced 169

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

Using Interfaces
Remember that Java classes have only a single superclass and that they inherit variables
and methods from that superclass and all its superclasses. Although single inheritance
makes the relationship between classes and the functionality that those classes implement
easier to understand and to design,it can also be somewhat restricting. This is especially
true when you have similar behavior that needs to be duplicated across different branches
of the class hierarchy. Java solves this problem of shared behavior by introducing the
concept of interfaces.

An interfaceis a collection of method declarations without actual implementa-
tions.

Although a single Java class can have only one superclass due to single inheritance, that
class can implement any number of interfaces. In implementing an interface, a class pro-
vides method implementations (definitions) for the method signatures declared in the
interface. If two disparate classes implement the same interface, they both can respond to
the same method calls as declared in that interface, although what each class actually
does in response to those method calls might be very different.

Interfaces,like the abstract classes and methods you saw earlier today, provide templates
of behavior that other classes are expected to implement,but interfaces are much more
powerful than abstract classes. Let’s see why you might need such power.

Designing Interfaces
When you first begin to design object-oriented programs,the class hierarchy seems
almost miraculous. Within that single tree, you can express a hierarchy of numeric types
(number, complex, float, rational, integer),many simple-to-moderately-complex relation-
ships between objects and processes,and any number of points along the axis from
abstract and general to concrete and specific. After some deeper thought,or more com-
plex design experience, this wonderful tree begins to feel restrictive—at times,like a
straitjacket. The very power and discipline you’ve achieved by carefully placing only one
copy of each idea somewhere in the tree can come back to haunt you whenever you need
to cross-fertilize disparate parts of that tree.

Some languages address these problems by introducing more flexible runtime power,
such as the code block and the perform: method of Smalltalk; others choose to provide
more complex inheritance hierarchies,such as multiple inheritance. With the latter com-
plexity comes a host of confusing and error-prone ambiguities and misunderstandings,
and with the former come a harder time implementing safety and security and a harder
language to explain and teach. Java has chosen to take neither of these paths but has

NEW TERM

06.31318-9 CH04 9/24/98 1:57 PM Page 169

instead adopted a separate hierarchy altogether to gain the expressive power needed to
loosen the straitjacket.

This new hierarchy is a hierarchy of interfaces. Interfaces are not limited to a single
super-interface, so they allow a form of multiple inheritance. But they pass on only
method descriptions to their children,not method implementations or instance variables,
which helps to eliminate many of the problematic complexities of full multiple inheri-
tance.

Interfaces,like classes,are declared in source files,one interface to a file. Like classes,
they also are compiled into .class files. In fact,almost everywhere that this book has a
class name in any of its examples or discussions,you can substitute an interface name.
Java programmers often say “class”when they actually mean “class or interface.”
Interfaces complement and extend the power of classes,and the two can be treated
almost exactly the same. One of the few differences between them is that an interface
cannot be instantiated:new can create only an instance of a non-abstract class. Here’s
the declaration of an interface:

package myFirstPackage;

public interface MyFirstInterface extends Interface1, Interface2, ... {
...
// all methods in here will be public and abstract
// all variables will be public, static, and final
...

}

This example is a rewritten version of the first example in today’s lesson. It now adds a
public interface to the package myFirstPackage, rather than a public class. Note that
multiple parents can be listed in an interface’s extends clause.

170 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

If no extends clause is given, interfaces do not default to inheriting from
Object because Object is a class, and interfaces can extend only other inter-
faces. In fact, interfaces have no topmost interface from which they are all
guaranteed to descend. Therefore, if there is no extends clause, the inter-
face becomes a top-level interface (potentially, one of many).

Note

Any variables or methods defined in a public interface are implicitly prefixed by the
modifiers listed in the last example’s comments (that is, public abstract for methods
and public static final for variables). Exactly those modifiers can (optionally)
appear, but no others:

06.31318-9 CH04 9/24/98 1:57 PM Page 170

Java Advanced 171

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

public interface MySecondInterface {
public static final int theAnswer = 42; // OK
public abstract int lifeTheUniverseAndEverything(); // OK

long theWordCounter = 0; // OK, becomes public static final
long ageOfTheUniverse(); // OK, becomes public abstract

private protected int aConstant; // not OK
private int getAnInt(); // not OK

}

If an interface is not declared public (in other words,it is a package),no public modi-
fiers are implicitly prefixed. If you say public inside such an interface, you’re making a
real statement of public-ness,not simply a redundant statement. It’s not often,though,
that an interface will be shared only by the classes inside a package, and not by the
classes using that package as well.

Comparing Design Versus Implementation
One of the most powerful things interfaces add to Java is the capability of separating
design inheritance from implementation inheritance. In the single-class inheritance tree,
these two are inextricably bound. Sometimes,you want to be able to describe an inter-
face to a class of objects abstractly, without having to implement a particular implemen-
tation of it yourself. You could create an abstract class,such as those described earlier
today. For a new class to use this type of “interface,” however, it has to become a sub-
class of the abstract class and accept its position in the tree. What if this new class also
needs to be a subclass of some other class in the tree, for implementation reasons. What
can be done without multiple inheritance? Watch this:

class FirstImplementor extends SomeClass implements MySecondInterface
{...}

class SecondImplementor implements MyFirstInterface, MySecondInterface
{...}

The first of these two classes is “stuck” in the single inheritance tree just below the class
SomeClass but is free to implement an interface as well. The second class is stuck just
below 0bject but has implemented two interfaces. (It could have implemented any num-
ber of them.) Implementing an interface means promising to implement all the methods
specified in it.

An abstract class is allowed to ignore this strict promise, and it can imple-
ment any subset of the interface’s methods (or even none of them). But all
its non-abstract subclasses must still obey this dictum.

Note

06.31318-9 CH04 9/24/98 1:57 PM Page 171

Because interfaces are in a separate hierarchy, they can be mixed in with the classes in
the single-inheritance tree, allowing the designer to sprinkle an interface anywhere it is
needed throughout the tree. The single-inheritance tree can thus be viewed as containing
only the implementation hierarchy. The design hierarchy (full of abstract methods,
mostly) is contained in the interface tree.

Let’s examine one simple example of this separation by creating a new class,Orange.
Suppose you already have a good implementation of the class Fruit and an interface,
Fruitlike, that represents what Fruit objects are expected to be able to do. You want an
orange to be a fruit, but you also want it to be a spherical object that can be tossed,
rotated, and so on. Here’s how to express it all:

interface Fruitlike extends Foodlike {
void decay();
void squish();
. . .

}
class Fruit extends Food implements Fruitlike {

private Color myColor;
private int daysTillRot;
. . .

}
interface Spherelike {

void toss();
void rotate();
. . .

}
class Orange extends Fruit implements Spherelike {

. . . // toss()ing may squish() me (unique to me)
}

You’ll use this example again in the next section. For now, notice that class Orange does
not have to say implements Fruitlike because, by extending Fruit, it already has.

One of the nice things about this structure is that you can change your mind about what
class Orange extends (if a really great Sphere class is suddenly implemented, for exam-
ple), yet Orange will still understand these two interfaces:

class Sphere implements Spherelike { // extends Object
private float radius;
. . .

}
class Orange extends Sphere implements Fruitlike {

. . . // users of Orange need never know about the change!
}

172 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 172

Java Advanced 173

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

The canonical use of the mix-in capability of interfaces is to allow several classes,scat-
tered across the single-inheritance tree, to implement the same set of methods. Although
these classes share a common superclass (at least,Object), it is likely that below this
common parent are many subclasses that are not interested in this set of methods. Adding
the methods to the parent class,or even creating a new abstract class to hold them and
inserting it into the hierarchy above the parent,is not an ideal solution.

Instead, use an interface to specify the methods. It can be implemented by every class
that shares the need and by none of the classes that would have been forced to inherit in
the single-inheritance tree. Design is applied only where needed. Users of the interface
can now specify variables and arguments to be of a new interface type that can refer to
any of the classes that implement the interface (as you’ll see below)—a powerful abstrac-
tion. Some examples are object persistence (via read() and write() methods),produc-
ing or consuming (the Java library does this for images),and providing generally useful
constants. The last of these might look like this:

public interface PresumablyUsefulConstants {
public static final int oneOfThem = 1234;
public static final float another = 1.234F;
public static final String yetAnother = “1234”;
. . .

}
public class AnyClass implements PresumablyUsefulConstants {

public static void main(String args[]) {
double calculation = oneOfThem * another;
System.out.println(“hello “ + yetAnother + calculation);
. . .

}
}

This outputs the thoroughly meaningless hello 12341522.756, but in the process it
demonstrates that the class AnyClass can refer directly to all the variables defined in the
interface PresumablyUsefulConstants. Normally, you refer to such variables and con-
stants via the class,as for the constant Integer.MIN_VALUE, which is provided by the
Integer class. If a set of constants is widely used or their class name is long, the short-
cut of being able to refer to them directly (as oneOfThem rather than
PresumablyUsefulConstants.oneOfThem) makes it worth placing them into an interface
and implementing it widely.

06.31318-9 CH04 9/24/98 1:57 PM Page 173

Implementing Interfaces
How do you actually use these interfaces? Remember that almost everywhere you can
use a class,you can use an interface instead. Let’s try to make use of the interface
MySecondInterface defined previously:

MySecondInterface anObject = getTheRightObjectSomehow();

long age = anObject.ageOfTheUniverse();

After you declare anObject to be of type MySecondInterface, you can use anObject as
the receiver of any message that the interface defines (or inherits). So what does the pre-
vious declaration really mean?

When a variable is declared to be of an interface type, it simply means that any object
the variable refers to is expected to have implemented that interface—that is, it is
expected to understand all the methods that the interface specifies. It assumes that a
promise made between the designer of the interface and its eventual implementers is a
promise kept. Although this is a rather abstract notion,it allows, for example, the previ-
ous code to be written long before any classes that qualify are implemented (or even cre-
ated). In traditional object-oriented programming, you are forced to create a class with
stub implementations to get the same effect as you get with interfaces.

A stubis a routine (method, class,and so on) that is used as a placeholder, usu-
ally containing comments describing what the routine will do when it is fully

implemented. This technique enables programmers to come back and “f ill in the blanks”
later when it is more convenient,while allowing them to refer to the routine in other
parts of the code without causing compiler errors.

Here’s a more complex example of interfaces:

Orange anOrange = getAnOrange();
Fruit aFruit = (Fruit) getAnOrange();
Fruitlike aFruitlike = (Fruitlike) getAnOrange();
Spherelike aSpherelike = (Spherelike) getAnOrange();

aFruit.decay(); // fruits decay
aFruitlike.squish(); // fruits squish

aFruitlike.toss(); // not OK
aSpherelike.toss(); // OK

anOrange.decay(); // oranges can do it all

174 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

NEW TERM

06.31318-9 CH04 9/24/98 1:57 PM Page 174

Interfaces are implemented and used throughout the Java class library whenever a behav-
ior is expected to be implemented by a number of disparate classes. For example, you’ll
find the interfaces java.lang.Runnable, java.util.Enumeration, and
java.util.Observable, among others. Let’s use one of these, the Enumeration inter-
face, to revisit the LinkedList example—and tie together today’s lesson—by demon-
strating a good use of packages and interfaces together.

In JBuilder, select File |New Project,modify the File field to read C:\JBUILDER\
myprojects\JAdvanced.jpr, and click Finish. To add the first three files, you must cre-
ate a subdirectory named collections for the package. Click the Add to Project icon in
the AppBrowser, and when the File Open / Create dialog box appears, click the Create
New Folder icon. Type collections, and then press Enter. Double-click the newly cre-
ated folder to make it the current directory. Type LinkedList.java into the File name
text box, and then click the Open button. Type the code in Listing 4.1 into the Content
pane with the LinkedList.java file selected in the Navigation pane. Use the Add to
Project icon in the AppBrowser to add each of two other files to the project (see Listings
4.2 and 4.3).

LISTING 4.1. LinkedList.java.

1: package collections;
2:
3: import java.util.Enumeration;
4:
5: public class LinkedList {
6: private Node root;
7:

Java Advanced 175

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

anOrange.squish();
anOrange.toss();
anOrange.rotate();

Declarations and cast interfaces are used in this example to restrict an orange to act more
like a mere fruit or sphere, simply to demonstrate the flexibility of the structure built pre-
viously. If the second structure built (the one with the Sphere class) was being used
instead, most of this code still would work. In the lines bearing Fruit, all instances of
Fruit need to be replaced by Sphere. Almost everything else would remain the same.

The direct use of implementation class names is for demonstration purposes
only. Normally, you would use only interface names in declarations and casts
so that none of the code would have to change to support a new structure.

Note

TYPE

continues

06.31318-9 CH04 9/24/98 1:57 PM Page 175

LISTING 4.1. CONTINUED

8: public void add(Object o) {
9: root = new Node(o, root);
10: }
11:
12: public Enumeration enumerate() {
13: return new LinkedListEnumerator(root);
14: }
15:
16: }

LISTING 4.2. Node.java.

1: package collections;
2:
3: class Node {
4: private Object contents;
5: private Node next;
6:
7: Node(Object o, Node n) {
8: contents = o;
9: next = n;
10: }
11:
12: public Object contents() {
13: return contents;
14: }
15:
16: public Node next() {
17: return next;
18: }
19:
20: }

LISTING 4.3. LinkedListEnumerator.java.

1: package collections;
2:
3: import java.util.Enumeration;
4:
5: class LinkedListEnumerator implements Enumeration {

176 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

TYPE

TYPE

06.31318-9 CH04 9/24/98 1:57 PM Page 176

Java Advanced 177

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

6: private Node currentNode;
7:
8: LinkedListEnumerator(Node root) {
9: currentNode = root;
10: }
11:
12: public boolean hasMoreElements() {
13: return currentNode != null;
14: }
15:
16: public Object nextElement() {
17: Object anObject = currentNode.contents();
18:
19: currentNode = currentNode.next();
20: return anObject;
21: }
22:
23: }

To add the next listing, click the Add to Project icon in the AppBrowser, and when the
File Open / Create dialog box appears, click the Up One Level icon. Type
LinkedListTester.java, and then press Enter to add Listing 4.4,which shows a typical
use of the enumerator.

LISTING 4.4. LinkedListTester.java.

1: public class LinkedListTester {
2:
3: public static void main(String argv[]) {
4:
5: collections.LinkedList aLinkedList = new
collections.LinkedList();
6:
7: aLinkedList.add(new Integer(1138));
8: aLinkedList.add(“THX-”);
9:
10: java.util.Enumeration e = aLinkedList.enumerate();
11:
12: while (e.hasMoreElements()) {
13: Object anObject = e.nextElement();
14: // do something useful with anObject
15: System.out.print(anObject);
16: }
17: System.out.print(“\n”);
18: }
19:
20: }

TYPE

06.31318-9 CH04 9/24/98 1:57 PM Page 177

When you compile and run LinkedListTester, this is the output:

THX-1138

Notice that although you are using the Enumeration e as though you know what it is,
you actually do not. In fact,it is an instance of a hidden class LinkedListEnumerator
that you cannot see or use directly. By a combination of packages and interfaces,the
LinkedList class has managed to provide a transparent public interface to some of its
most important behavior (through the already-defined interface java.util.Enumeration)
while still hiding its two classes that actually do the implementation.

Handing out an object like this is sometimes called vending. Often,the vendor gives out
an object that a receiver can’t create itself but that it knows how to use. By giving it back
to the vendor, the receiver can prove it has a certain capability, authenticate itself, or do
any number of useful tasks—all without knowing much about the vended object. This is
a powerful metaphor that can be applied in a broad range of situations.

Summary
Today, you learned how variables and methods can control their visibility and access by
other classes by using modifier keywords. Table 4.1 summarizes those keywords and
their associated protection levels.

TABLE 4.1. LEVELS OF PROTECTION AND VISIBILITY IN JAVA.

(default) private

public package protected protected private

Package Class
(modify access) Yes Yes Yes No No

Package Subclass
(modify access) Yes Yes Yes No No

Package Subclass
(inheritance) Yes Yes Yes Yes No

(default) private

178 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

OUTPUT

06.31318-9 CH04 9/24/98 1:57 PM Page 178

Java Advanced 179

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

public package protected protected private

Outside Class
(modify access) Yes No No No No

Outside Subclass
(modify access) Yes No No No No

Outside Subclass
(inheritance) Yes No Yes Yes No

You also learned that although instance variables are most often declared private,
declaring accessor methods enables you to control the reading and writing of them sepa-
rately. Protection levels enable you, for example, to separate your public abstractions
cleanly from their concrete representations.

You saw how to protect class variables and methods,which are associated with the class
itself, and how to declare final variables,methods,and classes to represent constants,
and fast and secure methods and classes that cannot be overridden or subclassed.

You discovered how to declare and use abstract classes,which cannot be instantiated,
and abstract methods,which have no implementation and must be overridden in sub-
classes. Together, they provide a template for subclasses to fill in and act as a variant for
interfaces.

Also covered was how packages can be used to collect and categorize classes into mean-
ingful groups and in a hierarchy, which not only better organizes your programs,but
allows you and all the other Java programmers out on the Internet to name and share
uniquely named projects with one another. You also learned how to use packages—both
your own and the many preexisting ones in the Java class library.

You then discovered how to declare and use interfaces,a powerful mechanism for
extending the traditional single inheritance of Java’s classes and for separating design
inheritance from implementation inheritance in your programs. Interfaces often are used
to call common (shared) methods when the exact class involved is not known.

Packages and interfaces can be combined to provide useful abstractions that appear sim-

06.31318-9 CH04 9/24/98 1:57 PM Page 179

ple yet actually are hiding almost all their complex implementation-based components
from their users—a very powerful technique.

Q&A
Q Won’t using accessor methods everywhere slow down my Java code?

A Not always. Soon,Java compilers will be smart enough to make them fast automat-
ically, but if you’re concerned about speed, you can always declare accessor meth-
ods to be final, and they’ ll be just as fast as direct instance variable accesses.

Q Ar e class (static) methods inherited just lik e instance methods?

A No, class (static) methods are currently final by default. How, then,can you
ever declare a non-final class method? The answer is that you can’t. Inheritance
of class methods is not supported, breaking the symmetry with instance methods.
Because this goes against the part of Java’s philosophy about making everything as
simple as possible, perhaps it will be reversed in a later release.

Q Based on what I’ ve learned today, it seems as though private abstract meth-
ods and final abstract methods or classes don’t make sense. Ar e they legal?

A No, they produce compile-time errors,as you’ve surmised. To be useful,abstract
methods must be overridden,and abstract classes must be subclassed, but neither
of those two operations would be allowed if they were also private or final.

Q What will happen to package/directory hierarchies when some sort of archiv-
ing is added to Java?

A Archiving has been added to Java,but the package/directory hierarchies are still
relevant; and to prepare your packages for archiving, you would still need to
arrange your files in that hierarchy. The archives are called JAR (Java ARchive)
files. These compressed files dramatically decrease the amount of time necessary
for downloading an applet’s class files over the Internet. The JDK provides a
command-line tool named jar.exe (located in your JBuilder\java\bin direc-
tory), with which you can examine the contents of JAR files,uncompress a JAR
file, or JAR up your own files for distribution.

Q Is there any way that a hidden class can somehow be forced out of hiding?

180 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 180

Java Advanced 181

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

A A bizarre case in which a hidden class can be forced into visibility occurs if it has
a public superclass and someone casts an instance of it to the superclass. Any
public variables or methods of that superclass can now be accessed or called
through your hidden class instance, even if those variables or methods were not
thought of by you as public in the hidden class. Usually these public
methods/variables are ones you don’t mind having your instances give access to,or
you wouldn’t have declared them to have that public superclass. This isn’t always
the case, though. Many of the system’s built-in classes are public—you might not
have a choice. Hopefully, this is a rare combination of events.

Q The abstract classes don’t have to implement all the methods in an interface
themselves. Do all their subclasses have to?

A Actually, no. The rule is that an implementation must be provided by some class
for each method, but it doesn’t necessarily have to be yours. That is, whatever the
abstract class doesn’t implement,the first non-abstract class below it must
implement. Then,any further subclasses need do nothing.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. True or False?

a. If you want to declare a constant and make it global to all instances of the
class,you must use both the static and final keywords.

b. All classes that belong to a particular package must be declared in the same
file.

c. Interfaces that do not extend another interface automatically extend Object.

06.31318-9 CH04 9/24/98 1:57 PM Page 181

d. A class is limited to implementing only one interface.

2. You want to declare a class method that your subclasses can override. What modi-
fiers should you use?

3. What convention can you use to create a variable that is read-only?

4. What parts of an abstract method do you need to declare in the abstract class?

5. What program statement(s) would you have to add to your source code to import
all the java.util classes and subclasses,including its subpackage zip?

6. Where in your source code file does a package statement belong? What about an
import statement?

Exercises
1. Using this example from earlier today, modify the code to add access for classes

and subclasses within the same package for the getInstanceCount() method:
public class InstanceCounter {

private static int instanceCount = 0; // a class variable

private protected static int getInstanceCount() {
return instanceCount; // a class method

}

private static void incrementCount() { // a class method
++instanceCount;

}

InstanceCounter() { // the class constructor
InstanceCounter.incrementCount();

}
}

2. Add a second interface named PlymouthLaserConstants with the following attrib-
utes:38 miles per gallon,19-gallon tank size, and model name “Plymouth Laser
Turbo RS”to the following code. Then change the RentalCars class so that it
implements both interfaces. Add the code necessary to calculate the Laser’s range,
and print information about the Plymouth Laser, similar to that printed for the Ford
Taurus.
public interface FordTaurusConstants {

public static final int mpgFTC = 25;
public static final float tankSizeFTC = 13.5;
public static final String modelNameFTC = “Ford Taurus GL”;

}

182 Day 4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

06.31318-9 CH04 9/24/98 1:57 PM Page 182

Java Advanced 183

4

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 04 Lp#3

public class RentalCars implements FordTaurusConstants {
public static void main(String args[]) {

double totalMilesFTC = mpgFTC * tankSizeFTC;

System.out.println(“Total range for the “
+ modelNamePLC + “ is “
+ totalMilesFTC + “ miles.”);

...
}

}

The modified code, when run in a Java application, should provide the following output:

Total range for the Ford Taurus GL is 337.5 miles.
Total range for the Plymouth Laser Turbo RS is 722 miles.OUTPUT

06.31318-9 CH04 9/24/98 1:57 PM Page 183

06.31318-9 CH04 9/24/98 1:57 PM Page 184

DAY 5

WEEK 1

JBuilder IDE
In the halcyon days of character-mode programming, Borland pioneered the
concept of the Integrated Development Environment or IDE. The IDE was a
breakthrough in development environments because it allowed the developer to
have access to all the tools necessary to create a project from a single program
interface, including an editor, a compiler, and a debugger. Now that most of us
use graphical environments and can switch among many programs easily, this
doesn’t seem so revolutionary, but when it was first introduced, it was a time-
saving concept that greatly increased productivity.

With JBuilder, Borland brings this same concept to Java programming, which
formerly had been accomplished mainly with command-line tools. The JBuilder
IDE comprises a menu system, browser, editor, designer, component palette,
toolbar, property inspector, compiler and linker, and debugger—everything you
need to create your Java programs easily and efficiently. Borland’s Two-Way
Toolstechnology enables you to work either graphically or textually so that you
can use whichever medium best suits you while keeping everything synchro-
nized.

07.31318-9 CH05 9/24/98 10:54 AM Page 185

Today, you’ll be introduced to the features of JBuilder’s IDE and get a feel for how each
benefits your development efforts. The following topics will be covered:

● The IDE’s main window and context-sensitive help

● JBuilder’s extensive menu system,which exposes the majority of the IDE’s feature
set,including customizing the IDE

● A brief introduction to the Object Gallery and Component Palette

● AppBrowser’s modes,editing and debugging views

● Visual Designer, Component Inspector’s Properties and Events pages,and Menu
Designer

Using Context-Sensitive Features
Before you get to know the rest of the IDE,it’s nice to know that it has context-sensitive
help hints that pop up on the screen to assist you in identifying various parts of the IDE.
If you leave your mouse cursor over any of the buttons in JBuilder’s main window for
more than a half-second, a small ToolTip appears with some text in it (see Figure 5.1).
JBuilder’s ToolTips are there to help explain what those buttons are all about.

186 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.1.
A help hint displayed
for the Debug toolbar
button.

JBuilder also provides help specific to the context in which you’re working. Pressing F1
almost anywhere in JBuilder’s IDE causes the appropriate topic to be displayed in a Help
window.

For example, if you want to find out what a particular menu item does,display the menu
and use the arrow keys to highlight the menu item without selecting it. Press F1,and the
help topic for that menu item is displayed. Of course, you can always access the Help
files directly by selecting one of the items on the Help menu or by pressing the Help but-
ton in dialog boxes.

Context-sensitive pop-up menus appear when you right-click in almost any IDE window,
pane, or view. Some of these commands might not be available from the main menu bar,
and the command set changes according to what currently has focus. For example, place
the mouse over any of the panes in the AppBrowser window and right-click. A pop-up
menu containing the commands specific to that pane will appear. Pop-up menus give you
quicker access to essential commands in the context where you need them.

07.31318-9 CH05 9/24/98 10:54 AM Page 186

JBuilder IDE 187

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Identifying Sections of the Main Window
When you first load JBuilder, its main window will be displayed. Figure 5.2 shows
JBuilder’s main window containing the main menu bar, the toolbar, the Component
Palette, and the status bar.

Main menu barFIGURE 5.2.
JBuilder’s main win-
dow.

Toolbar Component PaletteStatus bar

The main menu bar gives you access to JBuilder’s commands in hierarchical text form,
whereas the toolbar contains the most commonly used commands in iconic form. The
Component Palette displays a selection of the drag-and-drop JavaBeans components that
you will use to create your program’s graphical user interface (GUI). The status bar dis-
plays various messages including file saving and compiler status messages.

In addition to the visible parts of the main window, JBuilder has another way to access
commands—local pop-up menus that are available in each of JBuilder’s individual win-
dows and views. These pop-up menus appear when you right-click in the IDE,and the
commands are context-sensitive to each window. For example, in the main window, the
Component Palette has a pop-up menu that enables you to display a dialog box where
you can add and remove components from the palette.

Using the Main Menu Bar
JBuilder’s extensive menu system gives you a large number of commands necessary to
complete tasks in the IDE. The main menu bar is similar to that of other Windows appli-
cations. It contains menu items that are enabled and disabled in response to the current
context. Figure 5.3 shows JBuilder’s main menu bar.

FIGURE 5.3.
JBuilder’s main menu
bar.

07.31318-9 CH05 9/24/98 10:54 AM Page 187

Using File Menu Commands
The File menu contains the commands that pertain to project contents and source code
files (in memory and on disk),project properties,print commands,and exiting the
JBuilder IDE. Figure 5.4 shows the File menu.

188 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

The actual menu items you see on each menu depend on which edition of
JBuilder you purchased: Standard, Professional (Pro), or Client/Server (C/S).
This information is noted in the description of the appropriate menus and
menu items presented shortly.

For a definitive description of what features are available in each edition,
refer to your JBuilder documentation.

Note

FIGURE 5.4.
The File menu.

These menu items are enabled or disabled depending on which project file is selected, if
any, and on the state of the currently active project.

New
The New command displays the New dialog box, shown in Figure 5.5.

Here, you can choose from a number of different file and object types to open in the
AppBrowser window. The New dialog box includes several pages of widgets that com-
pose the Object Gallery, which you’ll be introduced to later today in the “Creating Files
with the Object Gallery” section.

New Project
The New Project command displays the Project Wizard dialog box, shown in Figure 5.6.

07.31318-9 CH05 9/24/98 10:54 AM Page 188

JBuilder IDE 189

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

In this dialog box, you can name your project and package, product title, project author,
company, and a description for internal documentation.

Open / Create
The Open / Create command displays the File Open / Create dialog box. Figure 5.7
shows the File Open / Create dialog box’s File page.

FIGURE 5.5.
The New dialog box.

FIGURE 5.6.
The Project Wizard
dialog box.

FIGURE 5.7.
The File Open / Create
dialog box File page.

07.31318-9 CH05 9/24/98 10:54 AM Page 189

The File page gives you access to the local file system to open an existing file or create a
new one in memory. Figure 5.8 shows the File Open / Create dialog box’s Packages
page.

190 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.8.
The File Open / Create
dialog box Packages
page.

On the Packages page, you can either open one of the existing Java packages on disk or
specify a new package of your own. When you create a new package, the corresponding
directory is created on disk.

Both pages display the Add to Project check box which, when checked, adds the newly
created or opened file to the currently active project.

Reopen
Selecting the Reopen menu item displays a submenu containing the JBuilder project and
Java files that you have recently opened. Figure 5.9 shows what this submenu might look
like after you’ve created the projects and files over the past four days in this book. Notice
that the project files with the .jpr extension are listed at top. The bottom part of the list,
under the menu separator, displays the .java files.

FIGURE 5.9.
A sample Reopen sub-
menu.

Close
Selecting the Close command closes the current AppBrowser window. If any files in the
current AppBrowser window have been modified, you are prompted to save those

07.31318-9 CH05 9/24/98 10:54 AM Page 190

JBuilder IDE 191

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

changes or discard them. All f iles are checked for modifications before the AppBrowser
window is closed.

Close All
The Close All command closes all open AppBrowser windows, including all your open
projects. If any files have been modified, you are prompted to save those changes or dis-
card them.

Save
The Save command saves the currently selected file to disk. Files are saved to disk under
their current name.

Save As
The Save As command displays the Save As dialog box, shown in Figure 5.10.

FIGURE 5.10.
The Save As dialog
box.

In the Save As dialog box, you can save the file under a new name, a new location, or
both.

Save Project
The Save Project command saves the currently active project’s .jpr file to disk. Projects
are saved to disk under their current name.

Save All
The Save All command automatically invokes the Save command for each modified file
in a project and across multiple projects.

Remove from Project
The Remove from Project command enables you to disassociate the selected file from
the project. It doesn’t delete the file from the disk; it simply removes the file’s entry
from the project file.

07.31318-9 CH05 9/24/98 10:54 AM Page 191

Rename
The Rename command invokes the Save As dialog box (see Figure 5.10) so that you can
rename the selected file. In this dialog box, you can save the file under a new name, a
new location, or both.

Project Properties
The Project Properties command displays the ProjectName.jpr Properties dialog box.
This dialog box’s Paths page, shown in Figure 5.11,enables you to modify the JDK ver-
sion used to create your project,the paths of the project’s source and output root directo-
ries,and access to external Java libraries.

192 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.11.
The ProjectName.jpr
Properties dialog box
Paths page.

FIGURE 5.12.
The ProjectName.jpr
Properties dialog box
Compiler page.

The ProjectName.jpr Properties dialog box’s Compiler page, shown in Figure 5.12,
enables you to set various compiler options.

07.31318-9 CH05 9/24/98 10:54 AM Page 192

JBuilder IDE 193

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

The ProjectName.jpr Properties dialog box’s Run/Debug page, shown in Figure 5.13,
enables you to set debug session options,such as command-line parameters and where to
send the console (that is, command-line) output.

FIGURE 5.13.
The ProjectName.jpr
Properties dialog box
Run/Debug page.

Finally, the ProjectName.jpr Properties dialog box’s Code Style page, shown in Figure
5.14,enables you to set the way your code is automatically formatted in the JBuilder edi-
tor.

FIGURE 5.14.
The ProjectName.jpr
Properties dialog box
Code Style page.

Printer Setup
The Printer Setup command invokes the Print Setup dialog box, shown in Figure 5.15,
where you can specify which printer, paper, and orientation you prefer.

07.31318-9 CH05 9/24/98 10:54 AM Page 193

Print
The Print command reacts differently depending on which file you have selected and
which Content pane tab is active. If you have a .jpr or .html file selected and the
AppBrowser is in View mode (the View tab is selected),this command prints the graphi-
cal view being displayed in the Content pane.

If you have a file selected and the AppBrowser is in Editor mode (the Source tab is
selected),this command invokes the Print Selection dialog box, where you can specify
how you want the selected file to be printed. If you have a block of text selected, the
check box labeled Print selected block will be enabled, as shown in Figure 5.16. You can
also choose from other printing options,such as whether to use syntax print, color, line
numbers,header/page numbers,and whether to wrap long lines (or truncate).

194 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.15.
The Print Setup dialog
box.

FIGURE 5.16.
The Print Selection
dialog box.

This dialog box’s Setup button invokes the Print Setup dialog box (see Figure 5.15).

Exit
The Exit command exits JBuilder entirely, closing all files and projects that are open in
the IDE. If there are unsaved files, JBuilder will inquire whether you want to save them
before closing, displaying the Save Modified Files dialog box as shown in Figure 5.17.
In this dialog box, you can choose which files to save.

07.31318-9 CH05 9/24/98 10:54 AM Page 194

JBuilder IDE 195

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using Edit Menu Commands
The Edit menu contains the commands that are used to manipulate text blocks in the
AppBrowser Editor and components in the AppBrowser UI Designer. These commands
include the usual cut,copy, paste, undo,redo,and selection commands. Figure 5.18
shows the Edit menu.

FIGURE 5.17.
The Save Modified
Files dialog box.

FIGURE 5.18.
The Edit menu.

Undo
Use the Undo command to reverse sets of keystrokes performed in the Editor, including
cursor movements. You can use the Undo command an unlimited number of times; the
number of undoable actions is limited only by the number set in the Environment
Options dialog box Editor page. Open this dialog box by selecting the IDE Options com-
mand from the Tools menu. The default undo limit is 32,767 times.

Redo
Use the Redo command to reverse your Undo operations.

Cut
The Cut command removes the selected text blocks or components from the JBuilder
IDE and places them on the Windows Clipboard.

Copy
The Copy command places the selected text blocks or components on the Windows
Clipboard without deleting them from the JBuilder IDE.

07.31318-9 CH05 9/24/98 10:54 AM Page 195

Paste
The Paste command pastes text blocks or components to the JBuilder IDE from the
Windows Clipboard.

Delete
The Delete command deletes the selected text blocks or components from the IDE with-
out placing them on the Windows Clipboard.

Select All
The Select All command selects all the text in the Editor or selects all the components in
the UI Designer.

Using Search Menu Commands
The Search menu contains the commands used to search and replace text, search text in
multiple files across source paths,position the cursor at a specific line number, and
browse code symbols. Figure 5.19 shows the Search menu.

196 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.19.
The Search menu.

Find
The Find command displays the Find Text dialog box, shown in Figure 5.20.

FIGURE 5.20.
The Find Text dialog
box.

This dialog box enables you to specify a text string to locate. If text is selected in the
Editor, it will appear in the Text to find field. You can also choose search options such as
direction,scope, and origin, as well as case-sensitive, whole word, and regular expres-
sion searches.

07.31318-9 CH05 9/24/98 10:54 AM Page 196

JBuilder IDE 197

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Replace
The Replace command displays the Replace Text dialog box, shown in Figure 5.21.

FIGURE 5.21.
The Replace Text
dialog box.

The Replace Text dialog box enables you to specify a text string to locate and a text
string with which to replace the located string. If text is selected in the Editor, it will
appear in the Text to find field. In addition to the options available in the Find Text dia-
log box, you can choose to be prompted for each replace by clicking the OK button,or
you can replace all occurrences at once by clicking the Replace All button.

Search Again
The Search Again command repeats the last search, search and replace, or incremental
search operation.

Incremental Search
The Incremental Search command moves the cursor directly to the matching text as you
type each letter.

Search Source Path
The Search Source Path command searches for text across all the files specified in the
project’s Source Path (as specified in the ProjectName.jpr Properties dialog box). Figure
5.22 shows the Search Source Path dialog box.

FIGURE 5.22.
The Search Source
Path dialog box.

Go to Line Number
The Go to Line Number command displays the Go to Line Number dialog box, shown in
Figure 5.23.

07.31318-9 CH05 9/24/98 10:54 AM Page 197

This dialog box enables you to specify the text line number to which you want the cursor
to be moved.

Browse Symbol
(Pro and C/S) The Browse Symbol command displays the Browse Goto dialog box,
shown in Figure 5.24.

198 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.23.
The Go to Line
Number dialog box.

FIGURE 5.24.
The Browse Goto
dialog box.

In this dialog box, you can specify a class,an interface, or a package to browse.

Using View Menu Commands
The View menu commands invoke or toggle the display of the JBuilder IDE views and
windows,and also let you show or hide portions of the main window. Figure 5.25 shows
the View menu.

FIGURE 5.25.
The View menu.

The following sections present descriptions of some of these windows to give you an
idea of what they typically look like.

Loaded Classes
Selecting the Loaded Classes command during a debugging session opens the Loaded
Classes window, which displays a list of all the classes associated with the program
being debugged. Figure 5.26 shows the Loaded Classes window displayed while the
LinkedListTester program developed during yesterday’s lesson is being debugged.

07.31318-9 CH05 9/24/98 10:54 AM Page 198

JBuilder IDE 199

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Execution Log
Selecting the Execution Log command opens the Execution Log window, which displays
all the command-line messages and errors that a program displays during execution or
debugging. This includes standard output from command-line Java programs,when con-
sole I/O is set to output to Execution Log on the Run/Debug page of the projectName.jpr
Properties dialog box. Figure 5.27 shows a typical Execution Log window.

FIGURE 5.26.
The Loaded Classes
window.

FIGURE 5.27.
The Execution Log
window.

The Execution Log window creates a new tabbed page for each executable that it
receives output from. If you run a program multiple times,you can scroll back to see the
results of previous runs. You can remove pages by selecting the Remove Page command
from the Execution Log window’s pop-up menu.

Breakpoints
Select the Breakpoints command to open the Breakpoints window (see Figure 5.28),
which shows a list of the breakpoints set in the current debugging session.

07.31318-9 CH05 9/24/98 10:54 AM Page 199

Debugger Context Browser
The Debugger Context Browser command displays the Debugger Context Browser win-
dow, which shows various pieces of information about the current debugging session,
including threads,call stack, and data. Figure 5.29 shows an example.

200 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.28.
The Breakpoints
window.

FIGURE 5.29.
The Debugger Context
Browser window.

Multiple Debugger Context Browser windows can be open simultaneously. Tip

New Browser
The New Browser command opens a new AppBrowser window with another copy of the
same project. This enables you to have two or more views of the same set of files.

Next Error Message
The Next Error Message command shows the next error message in the Message view
(automatically displayed at the bottom of the AppBrowser window’s Content pane when
a compiler error occurs) and positions the cursor in the Editor on the line where the error
occurred.

Previous Error Message
The Previous Error Message command shows the previous error message in the Message
view (automatically displayed at the bottom of the AppBrowser window’s Content pane
when a compiler error occurs) and positions the cursor in the Editor on the line where
the error occurred.

07.31318-9 CH05 9/24/98 10:54 AM Page 200

JBuilder IDE 201

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Message View
Message View is a toggle command, alternately showing and hiding the Message view in
the AppBrowser window’s Content pane. This command shows a check mark to its left
when the Message view is being displayed; it is not checked when the Message view is
hidden.

Inspector
The Inspector command is active only when the AppBrowser window is in UI Designer
mode. (You’ll learn more about the UI Designer tomorrow.) When the Inspector pane in
the AppBrowser window has been hidden,you can use this command to show it again.
Figure 5.30 shows the Inspector pane.

FIGURE 5.30.
The Inspector pane in
the AppBrowser win-
dow.

Toolbar
Toolbar is a toggle command, alternately showing and hiding the toolbar in the main
window. If you don’t use the toolbar often or you want more room in the main window
to display the Component Palette, use this command. The Toolbar command shows a
check mark to its left when the toolbar is being displayed; it is not checked when the
toolbar is hidden.

Component Palette
Component Palette is a toggle command, alternately showing and hiding the Component
Palette in the main window. This command shows a check mark to its left when the
Component Palette is being displayed; it is not checked when the it is hidden.

Toggle Curtain
Toggle Curtain is a toggle command, alternately causing the Content pane of the
AppBrowser to cover the entire AppBrowser window, and resetting the AppBrowser to
its default state (showing multiple panes). This command shows a check mark to its left
when multiple AppBrowser panes are being displayed; it is not checked when the
Content pane is expanded.

07.31318-9 CH05 9/24/98 10:54 AM Page 201

Next Pane
The Next Pane command sets the focus to the next pane in the AppBrowser window. The
order is as follows:

1. Navigation pane

2. Structure pane

3. Content pane

4. Message view

Using Build Menu Commands
The Build menu commands make and rebuild both individual files and entire projects.
Figure 5.31 shows the Build menu.

202 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.31.
The Build menu.

The Make commands do conditional compilations,whereas the Rebuild commands do
unconditional compilations. Rebuild is especially useful when you are getting ready to
distribute your application and you want to rebuild the entire project without the debug-
ging information you use to test and track bugs in your applications during development.

Make Project ProjectName.jpr
The Make Project command compiles any source files in the current project that either
don’t have a .class file or are newer than their .class files.

Rebuild Project ProjectName.jpr
The Rebuild Project command compiles all the source files in the current project,
whether they have a current .class file or not. This command also causes all imported
files and packages to be recursively compiled (except java, jbcl, and jgl standard
packages).

Make FileName.java
The Make command compiles the currently selected source file if it either doesn’t have a
.class file, or is newer than its .class file.

Rebuild FileName.java
The Rebuild command compiles the currently selected source file in the project,whether
it has a current .class file or not.

07.31318-9 CH05 9/24/98 10:54 AM Page 202

JBuilder IDE 203

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using Run Menu Commands
The Run menu contains the commands used to run and debug your application from the
JBuilder IDE and to access the debugging views. Figure 5.32 shows the Run menu.

FIGURE 5.32.
The Run menu.

These menu items will be enabled or disabled depending on whether you are in a debug
session or not and at what stage in the debug session you are at any point in time.

Debug Filename
The Debug command starts a debugging session in the JBuilder IDE. Any modified pro-
ject files are compiled before running.

Run Filename
The Run command runs your application from the JBuilder IDE. Any modified project
files are compiled before running.

Parameters
The Parameters command displays the Compiler page of the ProjectName.jpr Properties
dialog box (see Figure 5.12),which enables you to specify the compiler options that will
be used when JBuilder compiles your Java source files.

Step Over
The Step Over command executes a procedure call,its statements,and its return as a sin-
gle step while debugging.

Trace Into
The Trace Into command executes a procedure call,its statements,and its return as sepa-
rate steps while debugging.

Run to Cursor
The Run to Cursor command runs your application until it reaches the current cursor
position in the code while debugging.

07.31318-9 CH05 9/24/98 10:54 AM Page 203

Run to End of Method
The Run to End of Method command runs your application until it reaches the end of the
current method in the code while debugging.

Show Execution Point
The Show Execution Point command positions the debugging cursor at the next line to
be executed while debugging.

Program Pause
The Program Pause command pauses the execution of your application while it is run-
ning in the JBuilder IDE while debugging.

Program Reset
The Program Reset command unloads the application currently running in the JBuilder
IDE while debugging.

Add Watch
The Add Watch command displays the Add Watch dialog box, shown in Figure 5.33.

204 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.33.
The Add Watch dialog
box.

Specify an expression to watch in the Add Watch dialog box; all watches are displayed
in the Watch page of the Debugging window.

Add Breakpoint
The Add Breakpoint command displays the Breakpoint Options dialog box, in which
you can modify an existing breakpoint or add a new breakpoint for debugging. If the
Breakpoint Type is Source Breakpoint,the Breakpoint Definition page shown in Figure
5.34 is displayed.

In this Breakpoint Definition page, you can specify options for the source breakpoint,
including filename, line number, condition,pass count,and thread options. If the
Breakpoint Type is Exception Breakpoint,an alternative Breakpoint Definition page is
shown, as in Figure 5.35.

07.31318-9 CH05 9/24/98 10:54 AM Page 204

JBuilder IDE 205

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

In this Breakpoint Definition page, the filename and line number options are replaced by
choices that tell the debugger for which type of exception you want the breakpoint to
stop execution.

Both source and exception breakpoint types display the same Action page in the
Breakpoint Options dialog box, as shown in Figure 5.36.

In the Action page, you can specify what action or combination of actions you want to
occur when the breakpoint is reached.

Inspect
The Inspect command displays the Inspect dialog box, shown in Figure 5.37.

FIGURE 5.34.
The Breakpoint
Options dialog box
Breakpoint Definition
page that is displayed
when Source
Breakpoint is selected.

FIGURE 5.35.
The Breakpoint
Options dialog box
Breakpoint Definition
page that is displayed
when Exception
Breakpoint is selected.

07.31318-9 CH05 9/24/98 10:54 AM Page 205

In the Inspect dialog box, you can specify an expression that you want to inspect. Both
the expression and its current value are displayed and its value updated as you continue
your debugging session.

Evaluate/Modify
The Evaluate/Modify command displays the Evaluate/Modify dialog box, shown in
Figure 5.38.

206 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.36.
The Breakpoint
Options dialog box
Action page.

FIGURE 5.37.
The Inspect dialog
box.

FIGURE 5.38.
The Evaluate/Modify
dialog box.

The Evaluate/Modify dialog box enables you to evaluate or temporarily change values or
properties while debugging.

07.31318-9 CH05 9/24/98 10:54 AM Page 206

JBuilder IDE 207

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using Wizards Menu Commands
(Pro and C/S) The Wizards menu items invoke various helper utilities that ask you a
series of questions regarding a task and then present you with a new project that contains
all the elements you’ve chosen. Figure 5.39 shows the Wizards menu.

FIGURE 5.39.
The Wizards menu.

The illustrations of the menu items in the following sections were created by selecting
the WelcomeFrame.java file in the Welcome project and then invoking the wizard.

Use DataModule
Data modules enable you to separate the database logic in your applications from their
visual containers. Use an existing data module in your project with the help of the Use
DataModule Wizard. Select the Use DataModule command to start the Use DataModule
Wizard. The Choose a DataModule dialog box appears,as shown in Figure 5.40.

FIGURE 5.40.
The Choose a
DataModule dialog
box.

Implement Interface
Use the Implement Interface Wizard to help you create an interface class. Select the
Implement Interface command to start the Implement Interface Wizard. The Implement
Interface dialog box appears,as shown in Figure 5.41.

Override Methods
Use the Override Methods Wizard to pick a superclass method that you want to override.
From that method, the wizard then creates an empty method in your source code. You
can then add your own code that overrides the original superclass method. Select the
Override Methods command to start the Override Methods Wizard. The Override
Inherited Methods dialog box appears,as shown in Figure 5.42.

07.31318-9 CH05 9/24/98 10:54 AM Page 207

Resource Strings
Use the Resource Wizard for assistance with converting hard-coded strings in your pro-
gram into identifiers,which it then puts into a resource file. Select the Resource Strings
command to start the Resource Wizard. The Resource Wizard dialog box appears,as
shown in Figure 5.43.

208 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.41.
The Implement
Interface dialog box.

FIGURE 5.42.
The Override Inherited
Methods dialog box.

FIGURE 5.43.
The Resource Wizard
dialog box.

07.31318-9 CH05 9/24/98 10:54 AM Page 208

JBuilder IDE 209

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Deployment Wizard
Use the Deployment Wizard for assistance in gathering all files needed to distribute your
application or applet,including creating compressed Java Archive (.jar) files. Select the
Deployment Wizard command to start the Deployment Wizard. The first page of the
Deployment Wizard dialog box appears,as shown in Figure 5.44.

FIGURE 5.44.
The first page of the
Deployment Wizard
dialog box.

Data Migration Wizard
Use the Data Migration Wizard to move data between files and databases. Select the
Data Migration Wizard command to start the Data Migration Wizard. The first page of
the Data Migration Wizard dialog box appears,as shown in Figure 5.45.

FIGURE 5.45.
The first page of the
Data Migration Wizard
dialog box.

Using Tools Menu Commands
The Tools menu contains the commands used to configure the Component Palette and
the JBuilder IDE,and other miscellaneous utilities. Figure 5.46 shows the Tools menu.

The Data Migration Wizard is provided with the JBuilder Client/Server edi-
tion.

Note

07.31318-9 CH05 9/24/98 10:54 AM Page 209

Configure Palette
Select the Configure Palette command to display the Palette Properties dialog box,
shown in Figure 5.47. Use the Palette Properties dialog box to add, remove, and
rearrange both pages and components in the palette. This dialog box is discussed in
detail on Day 7, “JavaBeans Component Library.”

210 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.46.
The Tools menu.

FIGURE 5.47.
The Palette Properties
dialog box.

JDBC Monitor
Monitor and manipulate JDBC traffic using the JDBC monitor. Select the JDBC Monitor
command to display the JDBCMonitor window, shown in Figure 5.48. Use the
JDBCMonitor window to monitor and manipulate JDBC (Java Database Connectivity)
traffic.

The JDBC Monitor is provided with the JBuilder Client/Server edition.Note

07.31318-9 CH05 9/24/98 10:54 AM Page 210

JBuilder IDE 211

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

IDE Options
Select the IDE Options command to display the Environment Options dialog box, which
comprises seven pages:Paths,Compiler, Editor, Display, Colors,AppBrowser, and Code
Style. In these pages,you can configure your working environment to your personal
tastes. By changing various JBuilder IDE options,you can customize your development
environment. Certain options,such as syntax highlighting, can also help you spot errors.
Other options control whether specific information is saved between project sessions.
Still other options are used to set the appearance of JBuilder IDE windows,such as the
AppBrowser options.

The Paths page shown in Figure 5.49 might look familiar. It’s essentially identical to the
Paths page in the ProjectName.jpr Properties dialog box, with one major exception. The
paths and options are the default options for all new projects.

FIGURE 5.48.
The JDBCMonitor
window.

FIGURE 5.49.
The Environment
Options dialog box
Paths page.

The Compiler page shown in Figure 5.50 is essentially identical to the Compiler page in
the ProjectName.jpr Properties dialog box, except that the settings apply to all new pro-
jects. You set various compiler options on this page.

07.31318-9 CH05 9/24/98 10:54 AM Page 211

The Editor page is where you customize the editor’s handling of text, including tabs,
undo limit,block settings,and whether syntax highlighting is used for certain types of
files. The Editor SpeedSetting option automatically sets certain individual editor options
and also controls the default settings for two options on the Display page (BRIEF cursor
shapes and Keystroke mapping). You can also set an individual option differently than
the SpeedSetting choice. If you do so and later decide you want the SpeedSetting choices
back, you can recover by selecting any other SpeedSetting and then reselecting the origi-
nal SpeedSetting. Figure 5.51 shows the Editor page with the installed defaults.

212 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.50.
The Environment
Options dialog box
Compiler page.

FIGURE 5.51.
The Environment
Options dialog box
Editor page.

The Display page is where you set a number of miscellaneous Editor-related features.
Some options deal with how the Editor pane itself is displayed, such as right margin, vis-
ible gutter, font, and cursor shapes. Other options determine whether backup files are
created and keystroke mappings (controlling which set of keyboard shortcuts are in

07.31318-9 CH05 9/24/98 10:54 AM Page 212

JBuilder IDE 213

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

effect). This page is also where you can specify how the Editor maximizes:whether it
takes up the whole screen or just the space available under JBuilder’s main window.
Figure 5.52 shows the Display page with the installed defaults.

FIGURE 5.52.
The Environment
Options dialog box
Display page.

The Colors page of editor-related options is where you set how the color syntax high-
lighting will look, including font attributes for specific code elements. A separate style
can be chosen for each code element,such as Identifier or String. Using syntax high-
lighting provides an effective way to help you spot coding mistakes and makes your code
more readable. The appearance of your code printouts will also be affected by these
choices,to the extent that your printer supports the attributes and colors.

The scrollable sample text window reflects the choices made in this page of the
Environment Options dialog box, but it can also be used to select a code element. For
example, click on the first line, which is a comment. As you do,note that the options are
updated to reflect your choice. This provides an easy way for you to choose a code ele-
ment to examine its settings without having to know what it is called. Figure 5.53 shows
the Colors page with the installed defaults.

The AppBrowser page of the Environment Options dialog box enables you to configure
the behavior of the AppBrowser itself. This page has options for specifying the sorting
order by <access> modifier and by structure type. The Grouping options determine how
data members and methods are displayed and whether items are grouped by accessibility.
You can also control how the items are sorted, both by structure and by accessor. There
is also an option that specifies whether to reload the project on which you were working
last,when JBuilder opens its IDE. Figure 5.54 shows the AppBrowser page with the
installed defaults.

07.31318-9 CH05 9/24/98 10:54 AM Page 213

The Code Style page of the Environment Options dialog box enables you to set the way
in which the Editor automatically formats your Java code. For instance, some people pre-
fer to put the brace for a new block of code at the end of the statement preceding the new
code block. Others prefer to put the brace on its own line. You can set your favorite
method on the Code Style page of the Environment Options dialog box, shown in Figure
5.55 with the installed defaults.

Treat As Text
The Treat As Text command displays a Treat As Text dialog box, shown in Figure 5.56.
This dialog box enables you to extend the types of files that JBuilder treats as text files.

214 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.53.
The Environment
Options dialog box
Colors page.

FIGURE 5.54.
The Environment
Options dialog box
AppBrowser page.

07.31318-9 CH05 9/24/98 10:54 AM Page 214

JBuilder IDE 215

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

JBuilder Web Updates
The JBuilder Web Updates command displays a JBuilder Web Updates dialog box,
shown in Figure 5.57,that enables you to check the Inprise Web site for JBuilder updates
and patches. You can also schedule a monthly reminder to check the Web site.

FIGURE 5.55.
The Environment
Options dialog box
Code Style page.

FIGURE 5.56.
The Treat As Text
dialog box.

FIGURE 5.57.
The JBuilder Web
Updates dialog box.

VisiBroker Smart Agent
VisiBroker Smart Agent is a toggle command that opens a VisiBroker Smart Agent win-
dow, as shown in Figure 5.58. A check mark is displayed next to the command when the
VisiBroker Smart Agent window is open; the check mark is removed when the window
is closed.

07.31318-9 CH05 9/24/98 10:54 AM Page 215

RMIRegistry
Applications using Remote Method Invocation register distributed objects in an RMI reg-
istry. Use the RMIRegistry toggle command to start the rmiregistry utility provided with
the Java Development Kit. The rmiregistry utility starts remote object registries on speci-
fied ports.

216 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.58.
The VisiBroker Smart
Agent window.

VisiBroker is provided with the JBuilder Client/Server edition.Note

The RMIRegistry command is provided with the JBuilder Client/Server edi-
tion.

Note

Notepad
The Notepad command opens the Windows Notepad program. If you select a file in the
Navigation pane before selecting the Notepad command, the contents of that file are
opened with Notepad.

Calculator
The Calculator command opens the Windows Calculator program. This is handy, for
instance, when you want to convert values between number systems,such as decimal and
hexadecimal.

07.31318-9 CH05 9/24/98 10:54 AM Page 216

JBuilder IDE 217

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

SQL Explorer
Select the SQL Explorer command when you want to display the SQL Explorer. The
SQL Explorer is a hierarchical database browser with editing capabilities.

The SQL Explorer is provided with the JBuilder Client/Server edition.Note

Using Workgroup Menu Commands
The Workgroup menu contains commands to set up a project so that it can be worked on
by more than one person—a workgroup. The menu contains commands for setting up a
workgroup,including security, and for software version control. Figure 5.59 shows the
Workgroup menu.

FIGURE 5.59.
The Workgroup menu.

The Workgroup menu is provided with the JBuilder Client/Server edition.Note

Browse PVCS Projects
The Browse PVCS Projects command displays the Version Control window shown in
Figure 5.60. Use this window to create and manage archived versions of an application
development project. You can go back and examine older versions of your project and
track Java code revision histories.

07.31318-9 CH05 9/24/98 10:55 AM Page 217

Manage Archive Directories
Manage the directories holding your project archives through the Archive Directories dia-
log box, which you can open by selecting the Manage Archive Directories command
from the Workgroup menu.

Add ProjectName to Version Control
The Add ProjectNameto Version Control command opens the Create Project for
ProjectNamedialog box, shown in Figure 5.61.

218 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.60.
The Version Control
window.

FIGURE 5.61.
The Create Project for
welcome dialog box.

Use the Create Project for ProjectNamedialog box to begin archiving and tracking your
project.

Set Data Directories
The Set Data Directories command opens the Data Directories dialog box, shown in
Figure 5.62.

07.31318-9 CH05 9/24/98 10:55 AM Page 218

JBuilder IDE 219

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using Help Menu Commands
The Help menu contains commands to access the JBuilder Help and documentation ref-
erence files. There are menu commands for directly accessing frequently used documen-
tation on BeansExpress,the JDK,JBCL,and version control. You can also directly
access Borland Online the Welcome Project (Sample) and display the About box. Figure
5.63 shows the Help menu.

FIGURE 5.62.
The Data Directories
dialog box.

FIGURE 5.63.
The Help menu.

Help Topics
The Help Topics command loads the JBuilder Help system with the JBuilder online doc-
umentation set:Distributed Application Developer’s Guide, Component Writer’s Guide,
and many others.

When accessing help topics, JBuilder automatically loads the documentation
appropriate for the version you have.

Note

BeansExpress
The BeansExpress command loads the JBuilder Help system displaying the
BeansExpress User’s Guide, which explains how to use the JBuilder BeansExpress tools
and examples found on the BeansExpress page of the Object Gallery.

Java Reference
The Java Reference command loads the JBuilder Help system displaying Sun’s JDK
(Java Development Kit) Documentation.

07.31318-9 CH05 9/24/98 10:55 AM Page 219

JBCL Reference
The JBCL Reference command loads the JBuilder Help system displaying the JBCL
Reference documentation for the JavaBeans Component Library (JBCL).

Version Control Help
The Version Control Help command loads the JBuilder Help system displaying the
PVCS Version Manager documentation.

220 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

The Version Control Help command is provided with the JBuilder
Client/Server edition.

Note

Borland Online
The Borland Online command opens your default Web browser with the Borland Web
site URL,giving you direct access to Borland Online from the JBuilder IDE.

Welcome Project (Sample)
The Welcome Project (Sample) command opens the Welcome project in an AppBrowser
window.

About
The About command displays the About JBuilder dialog box.

Creating Files with the Object Gallery
The items that compose the Object Gallery are displayed in the New dialog box, which
you invoke by selecting File |New. This dialog box has eight pages:New, Panels,Menus,
Dialogs,Data Modules,BeansExpress,VisiBroker, and Other.

To use the items in the Object Gallery, either click to select the item and click the OK
button,or simply double-click the item and you’re on your way. You can also add your
own custom components,containers,and reusable code snippets by right-clicking on the
appropriate page and selecting Add Snippet from the pop-up menu.

Using the New Page
The New page, shown in Figure 5.64,contains various file types,including JavaBean,
Application,Applet,Project,Frame, Dialog, Panel,Data Module, Class,Html, and
Servlet. By selecting one of these object or file types,you instruct the JBuilder IDE to
prepare a skeleton source code file of that type and display it in an AppBrowser window.

07.31318-9 CH05 9/24/98 10:55 AM Page 220

JBuilder IDE 221

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Selecting any of the object or file types when no project is open results in starting the
Project Wizard to create a project for the object or file.

After a project is created, the JavaBean,Application,Applet,Project,and Servlet objects
or files are created by invoking a wizard that asks you for information regarding the task
at hand and generates the source code based on your answers. In contrast,the Frame,
Dialog, Panel,Data Module, and Class files are created by invoking a secondary dialog
box that asks you for the item’s package, class name, and filename before generating the
appropriate code. Here is a brief explanation of each of these file types:

Frame Generates a new GUI frame in your UI design

Dialog Aids in creating a new type of dialog box in your UI design

Panel Helps you to create a new container panel for your UI

Data Module Produces a file in which you can gather nonvisual data connection
components together in your UI design

Class Creates a skeleton class source code file with the appropriate package
name and class declarations

The Html item creates a skeleton .html file and places the source code directly into the
Content pane of the AppBrowser window.

Using the Panels Page
The Panels page, shown in Figure 5.65,gives you access to predesigned source code
snippets that enable you to quickly and easily create standardized panels:

FIGURE 5.64.
The New dialog box
New page.

07.31318-9 CH05 9/24/98 10:55 AM Page 221

Tabbed pages Creates a panel with tabbed pages and command buttons

Dual list box Creates a panel with list boxes and command buttons

222 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.65.
The New dialog box
Panels page.

Using the Menus Page
The Menus page, shown in Figure 5.66,gives you access to a predesigned source code
snippet that enables you to add a standardized menu to your project:

StandardMenu Creates a main menu bar with generic File, Edit, and Help menus

FIGURE 5.66.
The New dialog box
Menus page.

07.31318-9 CH05 9/24/98 10:55 AM Page 222

JBuilder IDE 223

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using the Dialogs Page
The Dialogs page, shown in Figure 5.67,gives you access to predesigned code snippets
that enable you to add standardized dialog boxes to your project:

About Box Creates an about box dialog with product name, copyright, ver-
sion labels,an image control, and a command button

Standard Dialog1 Creates an empty dialog box with horizontally aligned command
buttons

Standard Dialog2 Creates an empty dialog box with vertically aligned command
buttons

Password Dialog Creates a dialog box with a password field and command buttons

FIGURE 5.67.
The New dialog box
Dialogs page.

Using the Data Modules Page
The Data Modules page, shown in Figure 5.68,contains a predesigned code snippet that
enables you to connect to the Dataset Tutorial database. You can use this snippet as a
template for creating connections to other databases,as well.

Employee Data Generates source code that provides database connection and query
dataset examples

Using the BeansExpress Page
The BeansExpress page, shown in Figure 5.69,contains predesigned code snippets that
provide you with examples of how to create your own custom JavaBeans components.

07.31318-9 CH05 9/24/98 10:55 AM Page 223

For all the details on these items,including a tutorial highlighting each one, select Help|
BeansExpress from the JBuilder IDE main menu bar. Here is a brief description of each
item:

New Bean Creates a new generic component

Ok Cancel Bean Creates a component containing command buttons

DB Bean Creates a database-browsing component

Bean Info Creates a BeanInfo class that exposes information about the corre-
sponding component to its intended users (UI designers)

New Event Bean Creates the pieces necessary for a new event set to go with your
new JavaBeans component

224 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.68.
The New dialog box
Data Modules page.

FIGURE 5.69.
The New dialog box
BeansExpress page.

07.31318-9 CH05 9/24/98 10:55 AM Page 224

JBuilder IDE 225

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using the VisiBroker Page
The VisiBroker page, shown in Figure 5.70,contains a predesigned code snippet that cre-
ates an ORB server that serves an object.

CORBA Server Generates source code that provides a connection to CORBA
servers

FIGURE 5.70.
The New dialog box
VisiBroker page.

Using the Other Page
The Other page, shown in Figure 5.71,can be used to gather up miscellaneous code
snippets that you want to reuse. It starts you off with a predefined chunk of code that can
be pasted into your file. Selecting the Example Snippet object from this page displays a
secondary dialog box, where you can select all or part of the snippet to be pasted.

VisiBroker is provided with the JBuilder Client/Server edition.Note

07.31318-9 CH05 9/24/98 10:55 AM Page 225

Using the Toolbar
The toolbar gives you access to the 14 most commonly used commands as icons in one
convenient place—the JBuilder main window. Figure 5.72 shows the toolbar as it appears
in the JBuilder main window after installation.

226 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.71.
The New dialog box
Other page.

FIGURE 5.72.
The toolbar.

Remember, to see which command a toolbar icon represents, move the
mouse pointer over the icon, and a ToolTip displaying the command name
appears momentarily.

Tip

You can adjust the size of the palette in the main window by placing your mouse over
the divider between the toolbar and Component Palette and then clicking and dragging
the divider until the toolbar is the desired size. If you hide the Component Palette, the
toolbar will expand to the entire width of the main window, leaving lots of blank space
for you to add new toolbar icons. You can also hide the toolbar by toggling the View |
Toolbar command.

Using the Component Palette
JBuilder contains JavaBeans components that can be accessed through the Component
Palette, which is located in the JBuilder main window. The palette is a collection of

07.31318-9 CH05 9/24/98 10:55 AM Page 226

JBuilder IDE 227

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

tabbed pages filled with icons representing a selection of the components provided with
JBuilder. You can add your own custom components,as well as components that you’ve
purchased from third parties,to the Component Palette. You’ll see examples of how each
component on the Component Palette is used on Day 7, “JavaBeans Component Library.”

Positioning the mouse pointer briefly over a component displays a ToolTip

containing the component’s fully qualified class name. After you know its
name, select the appropriate help command from the Help menu and drill
down through the classes to the component’s help page for more informa-
tion.

You can adjust the size of the palette in the main window by placing your mouse over

Tip

the divider between the Component Palette and the toolbar and then clicking and drag-
ging the divider until the palette is the desired size. If you hide the toolbar, the
Component Palette will expand to the entire width of the main window. You can also
hide the Component Palette by toggling the View |Component Palette command.

If a palette page is not wide enough to display all its components,you can use the broad
arrowheads at each end of the palette page to scroll through that page’s components. If
the area containing the palette is not wide enough to display all the palette page tabs,a
pair of small arrowheads will appear in the upper-right corner of the palette, enabling
you to scroll the page tabs.

Using the AppBrowser
The AppBrowser window is where you’ll do most of your work in the JBuilder IDE:cre-
ating and adding files to projects,editing and debugging source code, and structuring
your program. Figure 5.73 shows an AppBrowser window displaying the Welcome pro-
ject in Debug mode.

You set the mode by selecting one of the tabs at the bottom left. The AppBrowser has
seven modes:

● Project

● Opened Files

● Directory

● Debug

● Watch

07.31318-9 CH05 9/24/98 10:55 AM Page 227

● Class Hierarchy

● Search Results

The last two modes don’t show up as tabs in Figure 5.73. In the figure, both an icon and

228 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.73
An AppBrowser win-
dow in Debug mode.

text are displayed in each mode tab. These tabs adjust their display depending on how
much room they are given. If you want to see both the icon and the text, use the
AppBrowser window’s splitter to resize the panes by positioning your mouse over the
divider between the left and right “halves” of the AppBrowser window, and then click
and drag until the tabs are displayed as you desire. At a minimum, the tabs display the
icon only.

In each mode, the panes on the left change to display information pertinent to that con-
text and so are covered in the individual mode sections later in this section.

However, the Content pane on the right is always visible. It has its own set of tabs,
which control how you want to view or edit the material in the Content pane. These tabs
are Source, Design,Bean,Doc, View, Viewer, and Error pane. They appear in combina-
tion according to the context of the selected item in the AppBrowser.

If an item is selected for which there is a text representation, such as a .java or .html
file, the Source tab appears. Selecting the Source tab displays the text in the Content
pane, and it becomes the Editor.

07.31318-9 CH05 9/24/98 10:55 AM Page 228

JBuilder IDE 229

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

If the selected item has an associated user interface design,the Design tab appears. This
causes the AppBrowser window to become the UI Designer (see the “Using the UI
Designer”section later today).

The Doc tab appears whenever the selected item can have an associated HTML docu-
mentation file, such as you would generate using the javadoc utility. (Remember that
javadoc extracts documentation comments from your files and automatically creates an
HTML f ile for you.) If the javadoc HTML f ile has been generated, it will be displayed
in the Doc page of the Content pane; if not,a message stating this fact will be displayed
instead.

If the selected item has a visual representation, such as a GIF, a JPEG, or an HTML file,
the View tab appears. Selecting the View tab causes that graphic to be displayed in the
Content pane.

One more feature of the Content pane is that you can toggle it so that it expands to cover
the entire AppBrowser window by using either Alt+Z or the View |Toggle Curtain com-
mand. This can be very handy when working with large graphics or laying out your user
interface design.

Using Project Browser Mode
When the AppBrowser window is in Project Browser mode, three sections appear:the
Navigation pane, the Structure pane, and the Content pane. The Content pane might also
display a secondary section,the Message view, when compiler errors occur. Figure 5.74
shows the Project Browser mode.

Navigation Pane
The upper-left pane of the Project Browser is the Navigation pane. This pane displays a
tree representing the parts of the current project. As each node is selected in this pane,
the other two panes are updated to reflect the new selection. Figure 5.74 shows the
WelcomeFrame.java file selected in the Navigation pane.

Structure Pane
The lower-left pane is the Structure pane, and it displays the structure of the item cur-
rently selected in the Navigation pane. This tree structure shows all the classes,objects,
methods,resources,and import files that compose the current project node. Selecting one
of these structures will cause its content to be displayed in the Content pane. Figure 5.74
shows the structure of the WelcomeFrame.java file, with the jbInit() method selected.

07.31318-9 CH05 9/24/98 10:55 AM Page 229

Content Pane
The pane on the right is the Content pane. What is displayed in this pane depends on
what nodes are selected in the Navigation and Structure panes. If a .java file is selected
in the Navigation pane, the Content pane will display the file and will be positioned
according to the structure selected in the Structure pane. In Figure 5.74,because the
WelcomeFrame.java file is selected in the Navigation pane, its Java source code is shown
in the Content pane. And because the jbInit() method is selected in the Structure pane,
that method is highlighted in the Content pane.

When a .java file is being displayed, the Content pane becomes the Editor. The page
contains the source code for your program and its event handlers (methods) in text for-
mat. In addition to the code you add manually, code is also automatically generated and
inserted into the source code in a number of ways. Changing the user interface (UI)
design in the UI Designer invokes the Two-Way Tools feature and automatically inserts
generated source code for the item you visually designed in the UI Designer.

The Editor provides Brief-style editing commands,syntax highlighting, search and
replace functions,and the choice of four sets of key mappings to facilitate this task.
When the Editor page is active, the bottom of the Content pane displays a panel contain-
ing status information: the Line:Column Indicator (line:column), the Modified Indicator
(blank or Modified),and the Mode Indicator (Insert or Overwrite).

230 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.74.
The AppBrowser win-
dow in Project
Browser mode.

07.31318-9 CH05 9/24/98 10:55 AM Page 230

JBuilder IDE 231

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Using Opened Files Browser Mode
When the AppBrowser window is in Opened Files Browser mode, which is invoked by
clicking the Opened tab, the Navigation Pane displays those files you have opened dur-
ing that session. These files might or might not actually be part of the project,and you
can add or remove files from the working set as desired without affecting the contents of
the project. If you edit a file in the AppBrowser, it is automatically added to your Opened
page. You can also add files to the Opened page by dragging and dropping files from
other views onto the Opened tab.

When in Opened Files Browser mode, the Structure pane displays the structure of the file
selected in the Navigation pane, and the Content pane displays the content of the file
selected. If the file has a textual representation, the Source tab of the Content pane is an
Editor.

Using Directory Browser Mode
Clicking on the Directory tab puts the AppBrowser window into Directory Browser
mode and causes your computer’s disk drive directory trees to be displayed in the
Navigation pane. This gives you easy access to files you might want to add to your pro-
ject or opened files. The Structure and Content panes have the same functionality in this
mode as they do in Project Browser and Opened Files Browser modes.

Using Debug and Watch Modes
When you are ready to debug your program,JBuilder adds debugging views to your
AppBrowser window for your convenience. You use the integrated debugger to execute
your program by stepping over, tracing into,and pausing your code. While paused, you
have access to several views that enable you to examine and change the values of vari-
ables and determine the state of objects.

In Debug mode (shown in Figure 5.73),the upper-left pane is the Threads and Stack
pane, which lists the threads,methods,and parameters that were called to bring you to a
certain point in program execution. The lower-left pane is the Data pane, which enables
you to examine the state of an object’s data. The Content pane displays the source, but
now execution lines are indicated by a dot in the left gutter of the Editor, and an arrow is
displayed to indicate the current execution line.

In Watch mode, the single left pane displays identifiers or expressions that you want to
examine as they change while your application is running. These watches can be set with
the Run|Add Watch command. The Content pane looks the same as it does in Debug
mode.

07.31318-9 CH05 9/24/98 10:55 AM Page 231

The debugging views comprise the AppBrowser in Debug mode (Threads and Stack
pane, Data pane, and Content pane),the AppBrowser in Watch mode (Watch pane and
Content pane),the Breakpoint window, and the Inspector and Evaluate/Modify dialog
boxes. These debugging views are covered in detail on Day 11,“Compiling and
Debugging.”

Using the UI Designer
To invoke the UI Designer, select a Frame node in the Navigation pane, and then click on
the Content pane’s Design tab. (You’ll learn more about Frame components and how to
add them to projects tomorrow.)

Selecting the Design tab invokes the UI Designer, converting the Content pane into the
UI Designer, the Structure pane into the Component Tree, and displaying the Inspector
window. These elements,shown in Figure 5.75,are used to design your program’s user
interface (UI).

232 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.75.
The UI Designer.

The Component Palette in the main window contains the drag-and-drop components you
use to visually design your program. After you’ve placed menu components on the
Frame in the UI Designer, the Menu Designer becomes available, which is used to lay
out your program’s menu system,both main menus and context menus. The AppBrowser
window’s Editor and the UI Designer views are synchronized so that any changes made
to the Frame in the UI Designer are automatically reflected in your source code dis-
played in the Editor.

The UI Designer is the place where you design your application’s user interface (UI).
The Frame component acts as a container or parent of the components placed on it. The

07.31318-9 CH05 9/24/98 10:55 AM Page 232

JBuilder IDE 233

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

project can have multiple Frames to represent your application’s windows,dialog boxes,
and other interfaces with the application’s underlying code.

In the JBuilder programming environment,the visual UI for your Java program is based
on the contents of the Frame. The UI Designer gives you a graphical way to modify the
Frame’s properties,including placing and manipulating child components. The UI
Designer’s context menu conveniently provides many of the commands you need to
arrange and manipulate the items in the Frame, such as alignment and spacing.

Controlling Projects Using the Component Tree
When the Content pane becomes the UI Designer, the Structure pane displays a structure
hierarchy of the components in the current Frame in the UI Designer. This is the
Component Tree, and it reflects all visual components that are added the to UI Designer.
You can also add nonvisual components to the project by dropping them onto this pane.

A visualcomponent is one that can be viewed as a graphic in the UI Designer,
such as a button or a label.

A nonvisualcomponent is one that has no graphical representation in the UI
Designer, such as a dialog box or data access component.

When you select a node in the Component Tree, that item becomes selected in the UI
Designer, and its properties and events are displayed in the Inspector.

Working with Components Using the Inspector
The Inspector is a separate window that is invoked when the Design tab is selected. In
this window, event handlers and component properties are set at design time. When a
component is selected in the Component Tree or UI Designer, its properties and event
handlers are displayed in the Inspector. If the component is selected in the Inspector, it
becomes the selected component in the UI Designer and Component Tree.

The Inspector window holds two multicolumn pages,the Properties page and the Events
page. The component properties that are graphically represented in the UI Designer, such
as size, color, and position,are listed and can be modified in the Properties page. The
Events page is the point of origin for creating event handlers,which are methods that
respond to messages.

Double-clicking on one of the entries in the Inspector window’s Events page for the
component inserts a skeleton method into the source code to hold your event-handling
instructions.

After a skeleton method has been inserted, you need to add lines of code to instruct your
program how to handle the event.

NEW TERM

NEW TERM

07.31318-9 CH05 9/24/98 10:55 AM Page 233

Properties
On the Properties page, shown in Figure 5.76,the Property column on the left alphabeti-
cally lists the properties,and the Value column on the right lists the property values.
Click on the property you want to change, or use the incremental search by typing the
name of the desired property. In the Value column,click on the value you want to
change. When multiple objects are selected, the changes you make to the Values column
for a property are set for all the selected objects.

234 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Pressing F1 while your mouse cursor is pointing to a component in the
Inspector or the component tree opens Help on that particular JavaBeans
component.

Note

FIGURE 5.76.
The Inspector window
Properties page.

Events
On the Events page, shown in Figure 5.77,the Event column on the left alphabetically
lists the events,and the Handler column on the right lists the event handlers. Click on the
event you want to navigate to,or use the incremental search by typing the name of the
desired event. In the Handler column,double-clicking a blank entry causes an event han-
dler link to be formed and inserts skeleton procedure code into the source code in the
Editor, positioning the cursor at the end of the first line of the newly created method.

After an event handler has been created, it can be associated with another event by click-
ing on the drop-down arrow to the right of the column and selecting it from the list of
compatible handlers (those with matching parameter lists).

07.31318-9 CH05 9/24/98 10:55 AM Page 234

JBuilder IDE 235

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

Menu Designer
The Menu Designer is invoked by double-clicking a Menu or PopupMenu in the
Component Tree when the AppBrowser window is in Design mode. You can also right-
click on a menu component and choose Activate designer from the pop-up menu. This
object editor enables you to edit your menus graphically. As you add and delete menu
items,the Menu Designer displays the menu just as it will look in your application.

A menu-bar itemrefers to a menu item that, when invoked, displays a drop-down
menu.

A menu-command itemrefers to an menu item that, when invoked, executes a
command or displays a dialog box.

The Menu Designer is shown in Figure 5.78. It shows the Help menu-bar item with an
About menu-command item in WelcomeFrame.java. It also shows the Inspector display-
ing the Help menu-bar item’s properties.

The Menu Designer enables you to immediately visualize how the menu you are creating
will look at runtime. The ability to drag-and-drop menu items and whole submenus to
rearrange the order of your menu makes creating menus one of the simplest tasks in cre-
ating your project.

FIGURE 5.77.
The Inspector window
Events page.

NEW TERM

NEW TERM

07.31318-9 CH05 9/24/98 10:55 AM Page 235

Summary
Today, you’ve taken a whirlwind tour of the JBuilder IDE and learned about its context-
sensitive Help,the main window, and the AppBrowser window where you can navigate,
edit, compile, and debug the elements of your projects. You’ve also explored the UI
Designer comprising the UI Designer and Component Tree panes in the AppBrowser
window and the Inspector, and you’ve explored the Menu Designer.

Q&A
Q Will Bor land’s JBuilder be available for platforms other than Windows?

A At the time of this writing, JBuilder is supported on Windows 95 and Windows NT.
Although JBuilder might be supported on other platforms in the future, it is
unknown at this time what platforms are currently under consideration. For the lat-
est information, be sure to check out the JBuilder Web site at
http://www.inprise.com/jbuilder/.

Q I pr efer to use the Explorer for locating files,and I’d like to remove the
Dir ectory tab to make more room for the other tabs. How do I do this?

A To remove a mode tab from the AppBrowser, right-click on the tab and select the
Drop Tabnametab command from the pop-up menu.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material

236 Day 5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

FIGURE 5.78.
The AppBrowser win-
dow in Menu Designer
mode.

07.31318-9 CH05 9/24/98 10:55 AM Page 236

JBuilder IDE 237

5

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Chapter 05 Lp3

covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provide you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. How can you get context-sensitive help in the JBuilder IDE?

2. When you select a .java file in the AppBrowser window’s Navigation pane, what
is displayed in the other two panes?

3. How do you invoke the UI Designer? The Menu Designer?

4. What command compiles the files in a project if the .class file is older than the
.java source code file or if there is no .class file yet?

Exercises
1. Open and explore some of the Help files from the Help menu in the JBuilder IDE.

2. Try pressing F1 from various places in the JBuilder IDE and see what gets dis-
played!

3. Right-click in some of the JBuilder IDE panes,views,and windows,and explore
what commands are available in each location.

3. See whether you can find the documentation for the <APPLET> tag in the Java
Reference. (This will be very handy later.)

07.31318-9 CH05 9/24/98 10:55 AM Page 237

07.31318-9 CH05 9/24/98 10:55 AM Page 238

DAY 6

WEEK 1

User Interface Design
So far, you’ve been concentrating on Java programs that do very simple things.
However, you probably want to start creating more complex programs that
behave like real GUI (Graphical User Interface) applications, with buttons,
menus, text fields, and other elements of user interface design. For the next two
days, you’ll be immersed in the components provided by Java class libraries.
These components reside on the Component palette, and you can use them to
design a wide array of user interfaces for your Java programs.

Today, you’ll be introduced to the features of the Java Abstract Windowing
Toolkit (AWT). Classes from the AWT can be used to create a complete user
interface. In fact, the HotJava browser user interface was built using the AWT.

The AWT provides the following:

• A full set of UI widgets and other components, including windows,
menus, buttons, check boxes, text fields, scrollbars, and scrolling lists

• Support for UI containers, which are components that can have other UI
elements embedded in them

• Mechanisms for laying out components in a way that enables platform-
independent UI design, called layout managers

08.31318-9 CH06 9/24/98 1:24 PM Page 239

You’ll also learn how to use JBuilder IDE’s UI Designer and Menu Designer to drag-
and-drop your way through UI design,set properties,and provide initial values for your
interface.

To create today’s project,select File | New Project,modify the File field so it reads
C:\JBuilder\myprojects\UIDesign.jpr, and then click the Finish button. You will add
listings to the project later in this chapter by clicking the Add to Project icon above the
Navigation pane, naming the file, and then typing the code.

Using the UI Designer
In the JBuilder IDE,several elements combine to provide you with a way to visually
design your program’s user interface. These elements—Component palette (main win-
dow), Navigation pane, Context Tree (Structure pane),UI Designer (Content pane),and
Inspector—compose the UI Designer, which is invoked when you click on the Design
tab in the Content pane of the AppBrowser window. After you’ve switched to the UI
Designer, you can add components,set properties,and connect event handlers that will
govern how your program interacts with the user.

For example, select File | New, select the Application icon,and then click OK. The first
page of the Application Wizard dialog box appears. Delete the contents of the Package
field, type UITest in the Class field, and then click the Next button. In the second page
of the Application Wizard dialog box, type MyFrame in the Class field. Make sure none of
the check boxes are checked, and click the Finish button. When the two .java files have
been generated, click on the MyFrame.java node in the AppBrowser window Navigation
pane, and then click the Design tab in the Content pane.

At this point,several things will happen. A message will appear in the Structure pane,
Opening designer..., which will be replaced by a Context Tree of components. The
Content pane becomes the UI Designer and displays your new user interface window,
which includes the Inspector pane, with its Properties page on top. Figure 6.1 shows
what the JBuilder IDE looks like in this configuration.

The Context Tree in the Structure pane shows you all the components that compose your
UI design,and the levels show which components are contained by other components,
called nesting. You can click on any item in the Context Tree, and it will become the
selected component in the UI Designer pane, and its attributes will be displayed in the
Inspector. The Context Tree view displays all the components (like the Frame, referred to
as this) divided into top-level categories:UI, Menu, and Data Access.

240 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

08.31318-9 CH06 9/24/98 1:24 PM Page 240

User Interface Design 241

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

The Content pane, which now functions as the UI Designer, is waiting for you to add
more components to your UI design,such as labels,text fields,and other graphical ele-
ments. When you select an item here, its node becomes selected in the Context Tree, and
its attributes are displayed in the Inspector. In the UI Designer, you’ll notice a number of
small black boxes around the edges. These are grab handles that enable you to manipu-
late the component,and they indicate which component is selected.

The Inspector has two pages:Properties and Events. On the Properties page, the attrib-
utes associated with the selected component are listed, along with their current values.
Here, you can set initial values for the attributes,and if the attribute has a visual repre-
sentation, it will be reflected in the UI Designer pane. For example, if you change the
font property for a label, you will see immediately the effect on the label itself. The
Events page lists all the events to which the component is capable of responding and
gives you access to existing event-handling methods that your component can use.

FIGURE 6.1.
The JBuilder IDE in
UI Designer mode.

UI Designer (Content pane) Component Inspector

Component Palette (main window)

Navigation pane

Context Tree
(Structure pane)

Some categories are displayed in the Context Tree view only when necessary.
For example, a node named Other will appear if you add nonvisual compo-
nents, such as dialogs, to your UI.

Note

08.31318-9 CH06 9/24/98 1:24 PM Page 241

Although you’ll create a few event-handling methods in today’s examples,you’ll mainly
be working with the Properties page. (Events and how to add event methods to your code
are discussed in detail on Day 12,“Handling Events.”)

Modifying the GUI
Let’s make a few modifications to this program,so you can see how to use the UI
Designer for adding components and setting properties and the Menu Designer for
adding and modifying menu items. For this program,you’ll add a menu, an event
method, and a label field to display your message.

Click on the AWT page tab of the Component palette, click on the java.awt.Label
component (the one with the large capital A), and then click in the middle of the Frame
in the UI Designer. In the Inspector pane Properties page, click on the right column of
the text property, type Anybody Home?, and press Enter. Next, click on the alignment
property in the Inspector window, type 1, and press Enter. When you’re done, the UI
Designer pane should look as shown in Figure 6.2 with the grab handles indicating that
the label is the currently selected component.

242 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.2.
The UI Designer pane
with a label.

Now, click on the right column of the <name> property, type lblAnybodyHome, and press
Enter to give the identifier a more meaningful name than label1.

The <name> property is not a standard Java property. JBuilder provides this
pseudo-property as a convenient way for you to change a component’s iden-
tifier without having to do a search and replace throughout your code.
When you set this pseudo-property, the JBuilder IDE automatically finds
each occurrence of the old identifier name in JBuilder-generated code and
replaces it with the newly entered identifier name for you.

Note

08.31318-9 CH06 9/24/98 1:24 PM Page 242

User Interface Design 243

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Notice that when you press Enter, the label’s name is also updated in the Context Tree.

Next, in the Component palette’s AWT page, click on the java.awt.MenuBar component,
and then click in the UI Designer, somewhere near lblAnybodyHome. A component
named menuBar1 is added to the Context Tree. When you double-click the new menuBar1
node, the Menu Designer is invoked, replacing the UI Designer in the Content pane (see
Figure 6.3).

FIGURE 6.3.
Menu Designer in the
AppBrowser window’s
Content pane.

Before you add menu items,rename the menu component by clicking on the right col-
umn of the <name> property. Then,type myMenuBar and press Enter. To add your first
menu-bar item to myMenuBar, click on the placeholder in the Menu Designer, type File
as the first menu-bar item,and press Enter. As you do this,notice that two more place-
holders are added:one below for the File menu’s first menu-command item,and
another to the right for the myMenuBar’s next menu-bar item. Also note that the Menu
Designer has automatically named this new item menu1. Before adding any more items,
rename this component menuBarFile.

Delete ItemCreate Submenu

Enable/Disable Item

Checkable Item

Placeholder

Insert Separator

Insert Item

If you’ve done something else in the meantime or closed the Menu Designer
inadvertently, just double-click on the menuBar1 component in the Context
Tree to reopen the Menu Designer.

Tip

08.31318-9 CH06 9/24/98 1:24 PM Page 243

To add the next item,click on the placeholder below the File menu-bar item,type Say
Hello, and press Enter; rename it menuItemFileSayHello. Click on the placeholder
below Say Hello in the Menu Designer, type Exit, and press Enter; rename it
menuItemFileExit.

Let’s add a second menu-bar item,to make this look more like a complete menu. Click
on the placeholder to the right of the File menu-bar item,type Help, and press Enter;
rename it menuBarHelp. When you’re done, click on File in the Menu Designer. Figure
6.4 shows what the AppBrowser window looks like at this point.

244 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.4.
Menu Designer with
the menu additions.

The Context Tree shows a complete outline of your menu’s structure, whereas the Menu
Designer shows its visual representation. As you select each item,either in the Context
Tree or Menu Designer, its attributes will be displayed in the Inspector.

Some of you who have created Windows menus are probably wondering
why accelerators are not used here. The reason is that the & character used
to indicate accelerators on Windows platforms is not recognized as being
special on other platforms and shows up as a literal & character in your
menu item label. Because this functionality is platform-specific, you should
refrain from using menu accelerators in Java programs.

Tip

Next, you’ll create simple event handlers for menuItemFileSayHello and
menuItemFileExit so that they do something useful when invoked by the user.

An event-handleris a method that responds to an event,such as a mouse click,
mouse move, or keystroke.

NEW TERM

08.31318-9 CH06 9/24/98 1:24 PM Page 244

User Interface Design 245

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

In the Menu Designer, click on the Say Hello menu-command item,and then click the
Events tab of the Inspector. For a menu-command item,there is only one event it can
respond to,the actionPerformed event. Click the right column next to
actionPerformed, and a new event-handling method name will be generated by combin-
ing the component’s <name> property value with the event name. In this case, the method
name becomes menuItemFileSayHello_actionPerformed, as shown in Figure 6.5.

FIGURE 6.5.
The Inspector pane
displays the new event-
handling method
name.

Double-click in the right column next to actionPerformed after this method name is
generated. This causes the AppBrowser window to return to Project Browser mode, clos-
ing the Inspector pane and setting the focus to the event-handling method name in the
Structure pane. At the same time, JBuilder creates the method stub in the Source tab of
the Content pane, ready for your event-handling code. Add this line of code to the
method:

lblAnybodyHome.setText(“Here I Am!”);

The Content pane should now look as shown in Figure 6.6.

When the user selects the Say Hello menu item from the File menu, this code will
change the label’s text to Here I Am!

Because menu item nodes are listed in the Context Tree, you don’t have to have the
Menu Designer open to create an event handler for a menu-command item. However,
you do have to have one of the designers open so that the Inspector pane is available. So
click on the Design tab to switch back to UI Designer mode, and then click on the
menuItemFileExit node in the Context Tree to display its attributes in the Inspector
pane.

08.31318-9 CH06 9/24/98 1:24 PM Page 245

To create an event handler for the Exit menu-command item,click on the Events tab in
the Inspector pane, and click on the right column to generate the new event-handling
method name. Then double-click the method name to return to Project Browser mode,
and add this line of code to the newly generated menuItemFileExit_actionPerformed
method stub:

System.exit(0);

246 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.6.
The Content pane with
new method code.

To switch between UI Designer mode and Project Browser mode, just click
the Design and Source tabs, respectively. When you’re in UI Designer mode,
you can also switch easily between Menu Designer and UI Designer by
double-clicking any node listed beneath the Menu and UI folder nodes,
respectively.

Tip

Just to make the UI a bit more interesting, let’s add another AWT control, using an alter-
nate placement technique. Switch back to UI Designer mode by clicking on the Design
tab of the Content pane. On the Component palette’s AWT page, click on the
java.awt.Button, and then click on the bevelPanel1 in the Context Tree to add the but-
ton to the panel. Click on the Properties tab of the Inspector pane, then change the new
button1 component’s <name> property to btnWhereAreYou and its label property to
Where Are You? Remember to press Enter after changing each property to save your
changes.

You want the Where Are You? button to update the label the same way that the Say
Hello menu item does. So rather than create a new event handler, you’re going to reuse

08.31318-9 CH06 9/24/98 1:24 PM Page 246

User Interface Design 247

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

the existing one. To do this,click on the Events tab, and then click on the right column
next to the actionPerformed event. Because this component has an actionPerformed

event,it is compatible with the one you’ve already created for the Say Hello menu item.
To make the button use the existing event handler, just type
menuItemFileSayHello_actionPerformed in the right column next to the
actionPerformed event,and press Enter. (If you’ve already clicked and generated a
method name, just highlight it and type over it.) When the user presses the Where Are
You? button,the Anybody Home? label will change its text to say Here I Am!

Select File | Save All, and you’re done. Notice that when the files are saved, that fact is
reflected in the Status Bar in JBuilder’s main window.

Viewing Generated Code
Now you can click on the UITest.java node in the Navigation pane, and click the Run
button on the toolbar to try out your new GUI test application. Figure 6.7 shows what the
application looks like after you click the Where Are You? Button.

FIGURE 6.7.
The running UITest
application.

Listing 6.1 shows what is generated by the JBuilder IDE for the UITest.java file.

LISTING 6.1. UITest.java.

1: import com.sun.java.swing.UIManager;
2:
3: public class UITest {
4: boolean packFrame = false;
5:
6: //Construct the application
7:
8: public UITest() {
9: MyFrame frame = new MyFrame();
10: //Validate frames that have preset sizes

TYPE

continues

08.31318-9 CH06 9/24/98 1:24 PM Page 247

11: //Pack frames that have useful preferred size info,
➥e.g. from their layout

12: if (packFrame)
13: frame.pack();
14: else
15: frame.validate();
16: frame.setVisible(true);
17: }
18: //Main method
19:
20: public static void main(String[] args) {
21: try {
22: UIManager.setLookAndFeel(new com.sun.java.swing.plaf.

➥windows.WindowsLookAndFeel());
23: //UIManager.setLookAndFeel(new com.sun.java.swing.plaf.

➥motif.MotifLookAndFeel());
24: }
25: catch (Exception e) {
26: }
27: new UITest();
28: }
29: }

Listing 6.2 shows the entire MyFrame.java file, including your event-handling methods.

LISTING 6.2. MyFrame.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import borland.jbcl.control.*;
4: import borland.jbcl.layout.*;
5:
6: public class MyFrame extends DecoratedFrame {
7:
8: //Construct the frame
9: BorderLayout borderLayout1 = new BorderLayout();
10: XYLayout xYLayout2 = new XYLayout();
11: BevelPanel bevelPanel1 = new BevelPanel();
12: Label lblAnybodyHome = new Label();
13: MenuBar myMenuBar = new MenuBar();
14: Menu menuBarFile = new Menu();
15: MenuItem menuItemFileSayHello = new MenuItem();
16: MenuItem menuItemFileExit = new MenuItem();
17: Menu menuBarHelp = new Menu();
18: Button btnWhereAreYou = new Button();
19:
20: public MyFrame() {

248 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

LISTING 6.1. CONTINUED

TYPE

08.31318-9 CH06 9/24/98 1:24 PM Page 248

User Interface Design 249

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

21: try {
22: jbInit();
23: }
24: catch (Exception e) {
25: e.printStackTrace();
26: }
27: }
28: //Component initialization
29:
30: private void jbInit() throws Exception{
31: this.setLayout(borderLayout1);
32: this.setSize(new Dimension(400, 300));
33: this.setTitle(“Frame Title”);
34: lblAnybodyHome.setAlignment(1);
35: lblAnybodyHome.setText(“Anybody Home?”);
36: menuBarFile.setLabel(“File”);
37: menuItemFileSayHello.setLabel(“Say Hello”);
38: menuItemFileSayHello.addActionListener(new

➥java.awt.event.ActionListener() {
39: public void actionPerformed(ActionEvent e) {
40: menuItemFileSayHello_actionPerformed(e);
41: }
42: });
43: menuItemFileExit.setLabel(“Exit”);
44: menuItemFileExit.addActionListener(new

➥java.awt.event.ActionListener() {
45: public void actionPerformed(ActionEvent e) {
46: menuItemFileExit_actionPerformed(e);
47: }
48: });
49: menuBarHelp.setLabel(“Help”);
50: btnWhereAreYou.setLabel(“Where Are You?”);
51: btnWhereAreYou.addActionListener(new

➥java.awt.event.ActionListener() {
52: public void actionPerformed(ActionEvent e) {
53: menuItemFileSayHello_actionPerformed(e);
54: }
55: });
56: bevelPanel1.setLayout(xYLayout2);
57: this.add(bevelPanel1, BorderLayout.CENTER);
58: bevelPanel1.add(lblAnybodyHome, new XYConstraints(197, 133, -1, -
1));
59: bevelPanel1.add(btnWhereAreYou, new XYConstraints(0, 0, -1, -1));
60: myMenuBar.add(menuBarFile);
61: myMenuBar.add(menuBarHelp);
62: menuBarFile.add(menuItemFileSayHello);
63: menuBarFile.add(menuItemFileExit);
64: }
65: void menuItemFileSayHello_actionPerformed(ActionEvent e) {

continues

08.31318-9 CH06 9/24/98 1:24 PM Page 249

66: lblAnybodyHome.setText(“Here I Am!”);
67: }
68: void menuItemFileExit_actionPerformed(ActionEvent e) {
69: System.exit(0);
70: }
71: }

In these two listings,all but two lines of code were generated either by the
JBuilder IDE when the files were created or by your actions in the UI Designer

windows. Lines 66 and 69 of Listing 6.2 are the lines for which you had to manually
write code to instruct the event handlers what specific actions should be performed. The
other lines of code were created for you through your visual design efforts.

In this example, you’ve exercised most of the features of the UI Designer:placing com-
ponents,changing properties,creating event handlers,hooking up existing event han-
dlers,and designing menus. In the following section,you’ll examine each of the AWT
controls, learning about their properties and the events to which they respond.

Understanding AWT
TheAWT is Java’s Abstract Windowing Toolkit, which comprises graphic control ele-
ments as defined in the java.awt package. This is the same package you’ve been import-
ing all week to use the Graphics, Color, Font, and FontMetric classes. Java’s AWT was
designed to give Java programmers a way to create graphical user interfaces (GUIs) in
the days before JavaBeans (components) were created. Before visual development envi-
ronments,such as JBuilder, arrived on the scene, you had to instantiate AWT objects,set
their properties,and create event handlers,all by manually writing source code.

250 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

LISTING 6.2. CONTINUED

ANALYSIS

The AWT components have been modified to conform to the JavaBeans
component standard since JDK version 1.1. All Java components are Java
beans.

Note

In JBuilder, these objects are presented as components on the Component palette so that,
within the IDE,you can just drag-and-drop them onto the Frame. You don’t have to
know (or look up) what events a component responds to—the Inspector presents you
with a list on its Events page. You don’t have to remember (or look up) all the properties
that a component has—the Inspector lists them on its Properties page. Much of the code

08.31318-9 CH06 9/24/98 1:24 PM Page 250

User Interface Design 251

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

that you would have written to instantiate AWT objects and connect events to event han-
dlers is generated for you and placed into your source code automatically. Still, it’s a
smart idea to get a good grounding in the basics of how the AWT is put together because
it forms the basis for the other components provided on the Component palette.

The basic idea of Java’s Abstract Windowing Toolkit (AWT) is that a Java window is a
set of nested components,starting from the outermost window all the way down to the
smallest UI component. Components can include both visual components,which have a
representation on the screen that you can see (such as windows,buttons,and panels),and
nonvisual components,which don’t appear until they’re invoked (such as menus and
dialogs). Some visual components are containers that can have other visual components
nested within them.

The AWT components fall into two basic categories:

Containers AWT components that can contain other components,
including other containers. The most common form of
container is the panel,which represents a container that
can be displayed on-screen. An applet’s drawing area is a
form of panel,and in fact,the Applet class is a subclass
of the Panel class.

UI Components Buttons,lists,menus,check boxes,text fields,and other
typical graphical user interface elements

The classes in the java.awt package are written and organized to mirror the abstract
structure of containers and individual UI components.

The root of most of the AWT components is the classComponent, which provides basic
display and event-handling features. The Container class and many of the other UI com-
ponents inherit from Component. Inheriting from the Container class are objects that can
contain other AWT components—the Panel and Window classes,in particular. Note that
the java.applet.Applet class,even though it resides in its own package, inherits from
the Panel class,so your applets are an integral part of the hierarchy of components in the
AWT system.

A graphical user interface-based application that you write by using the AWT can be as
complex as you like, with dozens of nested containers and components inside each other.
The AWT was designed so that each component can play its part in the overall AWT sys-
tem without needing to duplicate or keep track of the behavior of other parts in the sys-
tem.

08.31318-9 CH06 9/24/98 1:24 PM Page 251

In the JBuilder IDE,the AWT components are found on the AWT tab of the Component
palette, as shown in Figure 6.8.

252 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.8.
The AWT tab of the
Component palette.

In the next two sections,you’ll explore the basic categories of AWT components:UI
Components and Containers.

Using UI Components
The simplest form of AWT component is the basic UI component. You can create and
add these to an applet without needing to know anything about containers—your applet
is already an AWT container and is itself contained within another container, the browser
window. Because an applet is a container, you can put other AWT components into it,
nesting them as needed.

The basic procedure for adding the component to your user interface design is always
the same. Simply click on the desired component in the Component palette, and then
click in the UI Designer at the location where you want the component to appear. If you
want to size the component at the same time you are placing it,click and hold down the
left mouse button,drag until the outline is the desired size, and then release the mouse
button. If you didn’t get the component quite where you wanted it,click on it (anywhere
but the grab handles),and drag it to the appropriate location. To resize the component
after you’ve placed it,position the mouse over one of the grab handles until the cursor
changes to the double-headed sizing cursor, and then click and drag the grab handle until
the component is the size you desire.

java.awt.Button java.awt.TextField

java.awt.Checkbox java.awt.TextArea

java.awt.CheckboxGroup java.awt.ScrollPane

java.awt.Choice java.awt.Scrollbar

java.awt.Label java.awt.Panel

java.awt.List java.awt.PopupMenu

java.awt.MenuBar

08.31318-9 CH06 9/24/98 1:24 PM Page 252

User Interface Design 253

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

In this section,you’ll learn about these UI components,their key properties,the methods
to get and set those property values,and their key events.

In the property descriptions that follow, the getXxxx() method is used to obtain the
property value and the setXxxx(datatype) method is used to set the property value.
These methods are generally used at runtime because you can easily set properties using
the Inspector at design time. But you can also use these methods in event handlers at
design time, such as when you used the label’s setText() method in the Say Hello
menu item’s event handler earlier today.

Button
The java.awt.Button component is used to trigger some action in your interface when
it is clicked. For example, a calculator applet might have buttons for each number and
operator, or a dialog box might have OK and Cancel buttons. Button components have
these key elements:

• label property—String value representing the visible text on the Button;
getLabel(), setLabel(String)

• actionPerformed event—names the method called when the Button is pressed

Figure 6.9 shows a few buttons as they might appear in your user interface.

Sometimes using the Inspector to set properties affecting size and locations
makes it easier to create components of the same size.

Tip

FIGURE 6.9.
Button components.

Checkbox
The java.awt.Checkbox component can be selected or unselected to provide options
or indicate preferences. A check box can have two states:on or off (or checked and
unchecked, selected and unselected, and so on). Unlike buttons,check boxes don’t

08.31318-9 CH06 9/24/98 1:24 PM Page 253

normally trigger direct or immediate actions in the interface, but rather are used to allow
the user to select optional features that you want to occur for some future action in the
interface.

Check boxes can be used in two ways:

• Non-mutually exclusive, which means that any Checkbox in a series of check boxes
can be selected or not selected. This is the default.

• Mutually exclusive, which means that any Checkbox in the group that is selected
automatically causes the rest of the check boxes in the group to be unselected. To
make a Checkbox exclusive, you must set its checkboxGroup property; all check
boxes with the checkboxGroup property value set are displayed as radio buttons.

254 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Radio buttons are commonly referred to as option buttons.Note

Checkbox components have these key elements:

• checkboxGroup property—CheckboxGroup component to which the Checkbox
belongs,selected from a drop-down list of available CheckboxGroup components
(if set,Checkbox becomes exclusive); getCheckboxGroup(),
setCheckboxGroup(CheckboxGroup)

• label property—String value representing the visible text next to the Checkbox;
getLabel(), setLabel(String)

• state property—boolean that determines whether the Checkbox is checked (true)
or unchecked (false); getState(), setState(boolean)

• itemStateChanged event—names the method called when the state property of
the Checkbox changes

Figure 6.10 shows two nonexclusive check boxes,one checked and the other unchecked.

FIGURE 6.10.
Nonexclusive Checkbox
components.

08.31318-9 CH06 9/24/98 1:24 PM Page 254

User Interface Design 255

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

CheckboxGroup
The java.awt.CheckboxGroup component is a nonvisual component that serves to group
exclusive check boxes together into radio button groups. Checkbox components with
their checkboxGroup property value set to the same CheckboxGroup will become mem-
bers of a radio button group,only one of which can be selected (state = true) at a
time.

CheckboxGroup components have this key element:

• selectedCheckbox property—Checkbox in the group that is the currently selected
radio button (automatically unselects the previously selected radio button);
getSelectedCheckbox(), setSelectedCheckbox(Checkbox)

This component has no events. Figure 6.11 shows three exclusive check boxes (radio
buttons) with the second one in the CheckboxGroup selected.

Checkbox components in Java that belong to the same CheckboxGroup are
the same as radio buttons in other languages. However, they are not auto-
matically physically co-located, as a group. When creating check boxes that
will belong to a group and will function as radio buttons, you might want
first to place a container component, such as a Panel, to group them visu-
ally. Then place the check boxes within the container to visually cue the user
that these components work together.

Tip

FIGURE 6.11.
Exclusive Checkbox
components in a
CheckboxGroup

component.

When placing Checkbox components into a CheckboxGroup component, the
easiest procedure is as follows:

Tip

08.31318-9 CH06 9/24/98 1:24 PM Page 255

1. Place all the Checkbox components that you want to be in the group,
and then add the CheckboxGroup component.

2. Use the multiple selection feature to select all the Checkbox compo-
nents that will become members of the group by clicking the first one
and then Shift-clicking the additional group member candidates.

3. When all the check boxes that belong in the group are selected, set
the CheckboxGroup property for all of them at once by selecting the
CheckboxGroup from the drop-down list on the Properties page.

When the check boxes are members of a group, setting the state property
of any one to true will automatically set the state of all other check boxes in
the group to false.

256 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Label
The Label component displays nonselectable, non-editable text; however, it can be
changed programmatically at runtime. Labels are usually used in conjunction with some
other component,to identify the purpose of the other component. Labels can also be
used to identify groups of components.

Label components have these key elements:

• alignment property—int constant representing the horizontal alignment of the
text string: 0 (Label.LEFT), 1 (Label.CENTER), 2 (Label.RIGHT); getAlignment(),
setAlignment(int)

• text property—String value representing the default text for the Label;
getText(), setText(String)

For an example of Label components,refer to Figure 6.12 in the next section,
“TextField.”

TextField
The java.awt.TextField component is an editable field that enables the user to enter a
single line of text and can also display a single line of text.

TextField components include only the editable field itself. You usually
need to add a Label component next to the TextField to indicate what
belongs in that editable field.

Tip

08.31318-9 CH06 9/24/98 1:24 PM Page 256

User Interface Design 257

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

In addition, you can use the TextField component to create a text field that obscures the
characters typed into it—for example, to implement password fields—by setting its
echoChar property. Read-only fields are created by setting the editable property to
false. TextField components have these key elements:

• columns property—int value representing the limit for the number of characters
that can be typed or displayed in the field; getColumns(), setColumns(int)

• echoChar property—char value representing the character which is echoed to the
screen for masking input; echoCharIsSet() returns a boolean, getEchoChar()
returns a char, setEchoChar(char)

• editable property—boolean value representing the read-only attribute for the
field: true is read-write and false is read-only; isEditable(), getEditable(),
setEditable(boolean)

• text property—String value representing the default text for the field; getText(),
setText(String)

• textValueChanged event—names the method called when the text property is
modified or updated

Figure 6.12 shows two TextField components,each preceded by an identifying Label
component,as they might appear in a login dialog.

FIGURE 6.12.
Label and TextField
components.

List
The List component displays a list of items from which one or more can be chosen. If
the list is longer than the list box, a scrollbar is automatically provided. You can limit
selection to a single item or allow multiple selections,by setting the multipleMode prop-
erty.

List components have these key elements:

08.31318-9 CH06 9/24/98 1:24 PM Page 257

• multipleMode property—boolean value that determines whether to allow multiple
selections (true) or limit to single selection (false); setMultipleMode(boolean)

• items property—String array representing the initial set of items to be displayed
in the List; getItem(int) returns the String at the int index, getItems() returns
a String array

• selectedItem property—String value representing the currently selected item;
getSelectedItem() returns a String, getSelectedItems() returns a String array

• itemStateChanged event—names the method called when the List item selection
changes

If the items are too long to fit, either horizontally or vertically, scrollbars will automati-
cally be displayed. Figure 6.13 shows a List component with several items entered.

258 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.13.
List component with
several items and
scrollbars.

Choice
The java.awt.Choice component combines capabilities of a read-only TextField and
List components. The List part of the Choice component is displayed when the user
clicks the drop-down arrow to the right of the TextField part of the component. Choice
components combine the key elements of TextField and List components.

Figure 6.14 shows how a Choice component looks in a running application when it first
appears. Figure 6.15 shows how the same component looks with its list dropped down
and the second item in the list ready to be selected.

MenuBar
The java.awt.MenuBar component enables you to display a hierarchical menu system,
including submenus. Each new window in your user interface can have its own menu
system. You can enable and disable menu items,have checkable menu items for toggling
commands,add separator bars to group menu items,and add shortcuts to menu items
(such as Ctrl+C for Copy). MenuBar components are composite components comprising

08.31318-9 CH06 9/24/98 1:24 PM Page 258

User Interface Design 259

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Menu components (menu-bar items) and MenuItem components (menu-command items),
which have these key elements:

FIGURE 6.14.
Choice component in a
running application.

FIGURE 6.15.
Choice component
with dropped list and
second item high-
lighted.

• label property—String value representing the text displayed for the menu item;
getLabel(), setLabel(String)

• shortcut property—String value representing the text displayed to the right of
the menu’s label,which designates the keyboard shortcut for that item;
getShortcut(), setShortcut(String)

• actionPerformed event—names the method called when a MenuItem is selected

For an example of what a MenuBar component with Menu and MenuItem components
looks like, refer to Figure 6.4 in the “Using the UI Designer”section earlier today.

PopupMenu
The java.awt.PopupMenu component enables you to display a context menu in your user
interface. The show() method controls how the PopupMenu is displayed in response to a
call in an event-handling method of another component. For example, to show
popupMenu1 in response to a user clicking on button1, you would insert the code line

popupMenu1.show(Frame1, 10, 30);

08.31318-9 CH06 9/24/98 1:24 PM Page 259

in button1’s actionPerformed event handler, which would display popupMenu1 at coor-
dinates 10,30 relative to the origin of Frame1 when button1 was clicked. Figure 6.16
shows what a sample PopupMenu looks like in the Menu Designer.

260 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.16.
PopupMenu component
in the Menu Designer.

The Menu Designer’s PopupMenuItem components inherit their functionality from the
MenuBar component’s MenuItem component.

Scrollbar
The Scrollbar component gives you a way to add scrollbars to manipulate a range of
values. Scrollbars are used to select a value between a maximum and a minimum value.
To change the current value of that Scrollbar, you can use three different parts of the
component (see Figure 6.17,which shows a horizontal and a vertical scrollbar):

• An arrow on either end which, when clicked, increments or decrements the value
by a small unit (1 by default).

• A shaft which, when clicked, increments or decrements the value by a larger
amount (10 by default).

• A thumb (also sometimes called an elevator) whose position indicates the current
value in the range. Dragging the thumb will scroll the value; releasing the thumb
will set the value to the thumb’s position.

Choosing any of these visual elements causes a change in the value; you don’t have to
update anything or handle any events. All you have to do is set the maximum and minimum
properties,and Java will handle the rest. Scrollbar components have these key ele-
ments:

08.31318-9 CH06 9/24/98 1:24 PM Page 260

User Interface Design 261

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

• maximum property—int value representing the upper bound for the range of values;
getMaximum(), setMaximum(int)

• minimum property—int value representing the lower bound for the range of values;
getMinimum(), setMinimum(int)

• orientation property—int constant:0 (Scrollbar.HORIZONTAL) or 1
(Scrollbar.VERTICAL); getOrientation(), setOrientation(int)

• blockIncrement property—int value representing how many units the Scrollbar
will increment or decrement when the shaft is clicked; getBlockIncrement(),
setBlockIncrement(int)

• unitIncrement property—int value representing how many units the Scrollbar
will increment or decrement when an arrow is clicked; getUnitIncrement(),
setUnitIncrement(int)

• value property—int value representing the absolute value and therefore the posi-
tion of the trailing edge of the thumb; getValue(), setValue(int)

• adjustmentValueChanged event—names the method called when the value prop-
erty is modified

TextArea
The TextArea component is similar to a TextField, except that it allows multiple lines
of text. Because TextArea components can be any given width and height and have
scrollbars by default, you can deal with larger amounts of text more easily. TextArea
components share the properties and methods of TextField and Scrollbar components,
plus these additional key elements:

• rows property—int value representing the number of rows of text the text window
can display; getRows(), setRows(int)

FIGURE 6.17.
Two Scrollbar com-
ponents,horizontal
and vertical.

Arrow (+1)

Thumb (at maximum)

Shaft (±10)

Arrow (–1)

Arrow (–1)

Shaft (±10) Thumb (at 50%)

Arrow (+1)

08.31318-9 CH06 9/24/98 1:24 PM Page 261

• textValueChanged event—names the method called when the text property value
is modified

Figure 6.18 shows a TextArea control with a horizontal scrollbar.

262 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.18.
A TextArea component
with some text.

Using Containers
Containers are components in which you can place other components. The Panel and
ScrollPane components on the AWT page are both containers,and they can be nested as
many levels deep as you desire. You can use them to group and arrange other UI compo-
nents and to add visual depth to your interface. The other really handy thing about con-
tainers is that when you have placed other components into them,you can move them as
a group by moving the container component.

Panel
The java.awt.Panel component displays a rectangle, whose background color you can
set,within which you can nest other components,including other container components.
Panel components have this key element:

• layout property—sets the arrangement of the components nested within the
Panel; setLayout(int, int), setLayout(Point). This property is discussed in
the “Arranging Controls with Layout Managers” section later today.

The JBuilder Application Wizard automatically adds a panel to all your appli-
cations. It adds the BevelPanel component, which is part of the
borland.jbcl.control package.

Note

08.31318-9 CH06 9/24/98 1:24 PM Page 262

User Interface Design 263

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

ScrollPane
The java.awt.ScrollPane component displays a rectangle with horizontal and vertical
scrollbars as needed. This is a special container component that provides a scrollable
“view port” onto a single child component nested within. ScrollPane has these key ele-
ments:

• scrollPosition property—Point coordinates of the child component which will
appear at the 0,0 coordinates in the ScrollPane; getScrollPosition(),
setScrollPosition(int, int), setScrollPosition(Point).

• layout property—sets the arrangement of the components nested within the
ScrollPane; setLayout(int, int), setLayout(Point). This property is dis-
cussed in the “Arranging Controls with Layout Managers” section later today.

Figure 6.19 shows how a Frame might look with a TextField component nested in a
ScrollPane component.

Check the Use Only Core JDK and Swing Classes check box on the first page
(Step 1) of the JBuilder Application Wizard dialog box if you don’t want the
JBCL BevelPanel component to be used.

Tip

FIGURE 6.19.
A ScrollPane compo-
nent containing a
TextField component.

Arranging Controls with Layout Managers
You know at this point that a Panel can contain UI components or other Panel compo-
nents. The question now is how those components are actually arranged and displayed
on the screen.

In other windowing systems,UI components are sometimes arranged using hard-coded
pixel coordinates,the same way you used the graphics operations to paint squares and
ovals on the applet’s drawing area. In Java, the window can be displayed on many

08.31318-9 CH06 9/24/98 1:24 PM Page 263

different windowing systems on many different screens,with many different fonts using
different font metrics. Therefore, you need a more flexible method of arranging compo-
nents on the screen so that a layout that looks nice on one platform doesn’t appear to be
a jumbled mess on another platform. For this purpose, Java has layout managers, insets,
and hints that each component can provide to assist with laying out the screen.

The actual appearance of components on the screen is determined by two things:the
order in which they were added to the Panel that holds them,and the layout manager
that Panel is currently using to lay out the screen. The layout manager determines how
portions of the screen will be sectioned and how components within that Panel will be
placed.

Note that each Panel component in your user interface can have its own layout manager
by setting its layout property. By nesting panels within panels and using the appropriate
layout manager for each one, you can often arrange your UI to group and arrange com-
ponents in a way that is both functionally useful and also looks good on a variety of plat-
forms and windowing systems.

The AWT provides eight layout managers,which are listed in the layout property’s
drop-down list:

BorderLayout Arranges components designated as North (top),
South (bottom),East (right), West (left), and
Center (middle) within the Panel

CardLayout Arranges components as cards that can be seen
one at a time within the Panel

FlowLayout Arranges components linearly left to right in rows,
top to bottom,with each line of components hori-
zontally centered in the Panel

GridLayout Arranges components in specified rows and
columns within the Panel

GridBagLayout Arranges and resizes components according to
specified constraints within the Panel

XYLayout Arranges components according to their x,y ori-
gin coordinates within the Panel

PaneLayout Arranges components as separate panes within the
ScrollPane

264 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

08.31318-9 CH06 9/24/98 1:24 PM Page 264

User Interface Design 265

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

VerticalFlowLayout Arranges components linearly top to bottom,with
each line of components vertically centered in the
Panel

Once the layout is set,you can start adding components to the Panel. The order in which
components are added is often significant,depending on which layout manager is cur-
rently set. In the UI Designer, you’ll notice that below each Panel component,the first
item listed is the layout for that Panel. That’s because setting the layout property for the
Panel actually creates a corresponding layout component,each with properties of its
own.

In the following sections,the layout managers are presented in order of increasing com-
plexity. You’ll learn about each layout manager component,its properties and methods,
and how it controls presentation of components within the Panel.

FlowLayout
The FlowLayout is the most basic of layouts. Using FlowLayout, components are added
to the Panel one at a time, row by row. If a component doesn’t fit onto the current row,
it’s wrapped onto the next row. FlowLayout also has an alignment,which determines the
alignment of each row. By default, each row is center aligned.

After you have set the layout property of the Panel to FlowLayout, a new FlowLayout
component is added to the Context Tree just below the Panel component. By selecting
the new FlowLayout component in the Context Tree, you can examine its properties on
the Properties page of the Inspector:

• alignment property—int constant representing alignment of FlowLayout rows:
0 (FlowLayout.LEFT), 1 (FlowLayout.CENTER), 2 (FlowLayout.RIGHT);
getAlignment(), setAlignment(int)

• hgap property—int value representing the number of units between components in
the rows (defaults to 5); getHgap(), setHgap(int)

• vgap property—int value representing the number of units between rows (defaults
to 5); getVgap(), setVgap(int)

Figure 6.20 shows a FlowLayout and its effect on a row of five buttons.

GridLayout
The GridLayout offers more control over the placement of components inside a Panel.
Using a GridLayout, you portion the area of the Panel into rows and columns. Each
component you then add to the Panel is placed in a cell of the grid, starting from the top
row and progressing through each row from left to right. Here’s where the order of

08.31318-9 CH06 9/24/98 1:24 PM Page 265

adding components becomes relevant. By using GridLayout and nested grids, you can
often place UI components precisely where you want them.

266 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.20.
FlowLayout and five
buttons.

When you have set the layout property of the Panel to GridLayout, selecting the new
GridLayout component in the Context Tree displays these properties:

• columns property—int value representing the number of columns in the grid
(defaults to 0); getColumns(), setColumns(int)

• rows property—int value representing the number of rows in the grid (defaults to
1); getRows(), setRows(int)

• hgap property—int value representing the number of horizontal units between
cells (defaults to 0); getHgap(), setHgap(int)

• vgap property—int value representing the number of vertical units between cells
(defaults to 0); getVgap(), setVgap(int)

Figure 6.21 shows the same five buttons in a Panel with the layout changed to
GridLayout, and the GridLayout component’s rows property set to 2.

FIGURE 6.21.
GridLayout of two
rows of buttons.

08.31318-9 CH06 9/24/98 1:24 PM Page 266

User Interface Design 267

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

BorderLayout
The BorderLayout arranges components within the Panel by geographic location:
Center, South,West,North, and East. After you have set the layout property of the
Panel to BorderLayout, select the new BorderLayout component to see its properties:

• hgap property—int value representing the number of horizontal units between
components (defaults to 0); getHgap(), setHgap(int)

• vgap property—int value representing the number of vertical units between com-
ponents (defaults to 0); getVgap(), setVgap(int)

Figure 6.22 shows a BorderLayout of those same five buttons.

FIGURE 6.22.
BorderLayout of five
buttons.

VerticalFlowLayout
The VerticalFlowLayout arranges components within the Panel vertically, from top to
bottom. After you have set the layout property of the Panel to VerticalFlowLayout,
select the new VerticalFlowLayout component to see its properties:

• alignment property—int value that sets the vertical alignment of the container’s
components:0 aligns them to the top (default), 1 centers them vertically, and 2
aligns them to the bottom

• hgap property—int value representing the number of horizontal units between
components (defaults to 0); getHgap(), setHgap(int)

• horizontalFill property—Boolean value

• verticalFill property—Boolean value

• vgap property—int value representing the number of vertical units between com-
ponents (defaults to 0); getVgap(), setVgap(int)

Figure 6.23 shows a VerticalFlowLayout of buttons.

08.31318-9 CH06 9/24/98 1:24 PM Page 267

CardLayout
The CardLayout manager doesn’t actually visually arrange components. Instead, it pro-
duces a slide show of components,which are shown one at a time within the Panel. If
you’ve ever used the HyperCard program,you’ve seen how this works.

Generally, when you create a CardLayout, the components you add to it will be other
container components—usually Panel components. You can then use different layouts
for those individual “cards” so that each one has its own look. When you add each card
to the Panel, you can give it a name. Then you can use methods defined in the
CardLayout class to move back and forth between different cards in the layout.

After you have set the layout property of the Panel to CardLayout, select the new
CardLayout component to see its properties:

• hgap property—int value representing the number of horizontal units between
components (defaults to 0); getHgap(), setHgap(int)

• vgap property—int value representing the number of vertical units between com-
ponents (defaults to 0); getVgap(), setVgap(int)

XYLayout
The XYLayout enables you to arrange components precisely according to their x,y origin
coordinates within the Panel. This is a custom layout manager supplied by JBuilder so
that you can place components exactly where you want them without having a layout
manager interfere while you are prototyping.

268 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.23.
VerticalFlowLayout

of buttons.

After you’ve decided on a layout using the XYLayout manager, be sure to
change the Panel component’s layout property to one of the standard Java
layouts so that it will look nice on platforms other than the one on which it
was designed.

Tip

08.31318-9 CH06 9/24/98 1:24 PM Page 268

User Interface Design 269

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Figure 6.24 shows what components placed in an XYLayout might look like.

FIGURE 6.24.
XYLayout of various
components in a
Panel.

PaneLayout
The PaneLayout arranges components by splitting display space with existing selected
components within the Panel. For example, if you added a TextField to a Panel and set
the Panel component’s layout property to PaneLayout, it would look as shown in Figure
6.25.

FIGURE 6.25.
A TextField in a
Panel set to
PaneLayout.

The TextField is automatically resized to take up the entire Panel’s display space, so it
just looks like an oversized TextField. Now add a second TextField and see what hap-
pens,as shown in Figure 6.26.

FIGURE 6.26.
Adding a second
TextField to the
Panel.

08.31318-9 CH06 9/24/98 1:24 PM Page 269

Adding a third, fourth, and fifth TextField produces the result in Figure 6.27.

270 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

FIGURE 6.27.
Adding three more
TextField components
to the Panel.

The ScrollPane layout simply splits the space of the currently selected component with
the newly placed component.

The way that the UI Designer splits the space of the currently selected com-
ponent depends on where you click in the component to add new compo-
nents. You can change the way JBuilder splits it up for you by dragging the
splitter bars.

Note

GridBagLayout
The GridBagLayout is a variation of the GridLayout which relies on
GridBagConstraints. The number of constraint options that can be set for this layout
make it the most complex layout available, but it gives you more control over layout.

When you have set the layout property of the Panel to GridBagLayout, you then set the
constraints property for each container in the Panel. When this layout is in effect,the
constraints property will display an ellipsis (...) button to the right of the property
value. Clicking on that button will display the Constraints dialog for that component,as
shown in Figure 6.28.

In this dialog, you can specify many aspects of how a component is positioned within
the Panel:

• Grid Position options control the row and column position where the component
will be placed and how many grid cells it will use as its display area. For example,
a button in the second column of the third row would be X=1, Y=2 (indices begin
at 0). A width of 2 would indicate that you want the component to take up two hor-
izontal grid cells.

08.31318-9 CH06 9/24/98 1:25 PM Page 270

User Interface Design 271

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

• External Insets options determine how much external padding a component will
have between its border and the edge of its display area.

• Size Padding governs how many pixels are added to the component’s minimum
size as internal padding.

• Weight options specify what proportion of the row the component should receive
for its display space when it is resized.

• Anchor options tell where the component should be positioned within its display
area when the component is smaller than the area allowed.

• Fill options specify whether the component should expand itself to fill up its dis-
play area.

For a full explanation of how to use constraints,refer to the “GridBagLayout” topic in
the User’s Guide help file, listed under “Designing a User Interface, Layouts Provided by
JBuilder.”

Summary
Today, you learned more about the UI Designer and how you can use it to design your
graphical user interface with drag-and-drop ease. You also learned about the components
on the AWT page of the Component palette and their key properties,methods,and
events. The AWT components form the basis of the other GUI components on the palette
and are well worth studying. Tomorrow, you’ll become acquainted with the advanced
JavaBeans components that compose JBuilder’s JavaBeans Component Library, or JBCL.

FIGURE 6.28.
The Constraints dialog
for a Button whose
Panel has been set to
GridBagLayout.

08.31318-9 CH06 9/24/98 1:25 PM Page 271

Q&A
Q You’ve mentioned a lot about the Component and Container classes,but it

looks like the only Container objects that ever get created are Panel compo-
nents. What do the Component and Container classes give me?

A Those classes factor out behavior for generic AWT components and containers.
Although you don’t necessarily create direct instances of these classes,you can
create subclasses of them if you want to add behavior to the AWT that the default
classes do not provide. When you begin to create your own JavaBeans components,
these classes will become more valuable to you.

Q Can I put a UI component at a specific x,y position on the screen?

A By using the XYLayout manager provided by JBuilder, you can do so,but it is rec-
ommended only for the prototyping phase of creating your user interface. When
you’ve decided which layout looks best,select the standard layout manager that
corresponds with your final layout, and change over to that layout. That way, you’ll
be assured that your program will look its best on different platforms. You can’t
guarantee that with hard-coded layouts.

Q I was explor ing the AWT package, and I saw this subpackage called peer.
There are also references to the peer classes sprinkled thr oughout the API
documentation. What do peers do?

A Peers are responsible for the platform-specific parts of the AWT. For example,
when you create an AWT window, you have an instance of the Window class that
provides generic window behavior, and then you have an instance of a class imple-
menting WindowPeer that creates the very specific window for that platform—a
Motif window under the X Window System,a Macintosh-style window on the
Mac, or a MS Windows window under Windows 95 or Windows NT. These peer
classes also handle communication between the window system and the Java win-
dow itself. By separating the generic component behavior (the AWT classes) from
the actual system implementation and appearance (the peer classes),you can focus
on providing behavior in your Java application and let the Java implementation
deal with the platform-specific details.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

272 Day 6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

08.31318-9 CH06 9/24/98 1:25 PM Page 272

User Interface Design 273

6

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

Quiz
1. What do you do to invoke UI Designer mode in the AppBrowser?

2. How do you switch between the Menu Designer and the UI Designer?

3. What are the differences between an exclusive and non-exclusive Checkbox? What
component must be added, and what Checkbox property must be set to make a
Checkbox act like a radio button?

4. True or False? It’s okay to leave Panel components set to XYLayout when you are
ready to distribute your program.

5. Which layout manager arranges your components according to the points of the
compass?

Exercises
1. Create an application with a Frame component whose appearance mimics the lay-

out of the dialog that appears when you select the Search | Browse Symbol menu
item in the IDE. Begin the exercise by selecting File | New and double-clicking on
the Application object.

2. Add one or more of each AWT component to a Panel and experiment with the dif-
ferent layout managers to see how they affect your design. Remember to first place
a Panel component in the Frame, and then set the Panel component’s layout prop-
erty to change its effective layout manager. Experiment with the layout properties
in each layout manager. Try nesting Panel components and selecting different lay-
out managers for each level.

08.31318-9 CH06 9/24/98 1:25 PM Page 273

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch CH06 Lp#3

08.31318-9 CH06 9/24/98 1:25 PM Page 274

DAY 7

WEEK 1

JavaBeans Component
Library

JBuilder contains JavaBeans components that can be accessed through the
Component Palette, each palette page containing a category of JavaBeans
components.

A Java bean, or bean, is a Java-based component comprising a class with
methods, properties, and events that defines an instantiable object.

In addition to the components provided with JBuilder, you can add third-party
components that you’ve purchased, as well as your own custom components.
Figure 7.1 shows the Component Palette as it appears in JBuilder’s main
window.

NEW TERM

09.31318-9 CH07 9/24/98 1:26 PM Page 275

The items displayed on the palette are controlled by the currently loaded Palette .INI
file. By maintaining different .INI files, you can switch among several component
palettes,depending on your project’s needs.

To configure theComponent Palette, place the mouse over the palette and right-click.
This displays a pop-up menu containing the Properties command. Selecting the
Properties command displays the Palette Properties dialog box (see Figure 7.2),where
you specify the page, class name, and icon image for the new component you want
added to the Component Palette. The page name defaults to the currently selected palette
page. You can select an existing page, or you can create a new page by specifying a name
not currently on the palette. The class name must be fully qualified, and the icon image
must be a GIF file. You can use the Shift+Ctrl keys to select multiple components.

276 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FIGURE 7.1.
The Component
Palette.

FIGURE 7.2.
The Palette Properties
dialog box.

In its default configuration, the Component Palette presents tabbed pages containing
AWT beans,JBuilder beans,and other JavaBeans components (such as you might create
yourself). The sections that follow correspond to each Component Palette page and
describe what the component’s capabilities are after it is placed in the UI Designer.

09.31318-9 CH07 9/24/98 1:26 PM Page 276

JavaBeans Component Library 277

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

In the property descriptions that follow, the getXxxx() method is used to obtain the
property value, and the setXxxx(datatype) method is used to set the property value.
Occasionally, the data type of a method’s return value or argument is different from the
data type of the property; these exceptions are noted where they apply.

Using JBCL Components
The components on theJBCL page are defined in the borland.jbcl.control package
and are data aware. In addition to being data aware, these components typically provide
more special features than their AWT counterparts. For instance, the ButtonControl
component is able to display images,whereas the Button component from the AWT is
not. Figure 7.1 shows the JBCL page of components.

The components on this page are the ones you’ll use most often in building your Java
programs,and they are selected by default when you load JBuilder. The sections that fol-
low give a brief description of each component,along with its key methods,properties,
and events.

ButtonControl
The ButtonControl is a pushbutton to launch actions. It can include a graphical image
as well as a text label. ButtonControl components have these key elements:

● label property—String representing the visible text on the ButtonControl;
getLabel(), setLabel(String)

● image property—Image or URL value representing a GIF or JPEG image;
getImage() returns an Image; setImage(Image); setImage(URL)

● imageFirst property—boolean value that controls whether the image is top/left of
the button’s label; isImageFirst()

● orientation property—int constant:Orientation.HORIZONTAL (image and label
form a row) or Orientation.VERTICAL (image and label form a column);
getOrientation(); setOrientation(int)

● actionPerformed event—names the method called when the ButtonControl is
pressed

On many of the palette pages, you’ll notice that the components are data
aware, which means that they can display fields of table data when used in
conjunction with databases and the Data Express components (Pro and C/S
only).

Note

09.31318-9 CH07 9/24/98 1:26 PM Page 277

CheckboxControl
The CheckboxControl is a check box that enables the user to make on/off, true/false
choices. It can also be used to set/display Boolean values in a table field.
CheckboxControl components can be either non-mutually exclusive or mutually exclu-
sive, just like AWT Checkbox components. CheckboxControl components have these key
elements:

● label property—sets the visible text next to the Checkbox; getLabel(),
setLabel(String)

● readOnly property—boolean value determines whether the check box is a read-
only control (true) or a read-write control (false)

● checked property—boolean value determines whether the Checkbox is checked
(true) or unchecked (false); getChecked(), setChecked(boolean)

● itemStateChanged event—names the method called when the state property of
the Checkbox changes

278 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

CheckboxPanel
The CheckboxPanel is a BevelPanel with multiple check boxes that can be grouped.
If the grouped property is true, all check boxes contained within the CheckboxPanel
become exclusive (radio buttons). CheckboxPanel components have these key elements:

● grouped property—boolean value that determines whether the check boxes within
are grouped and exclusive (true) or ungrouped and non-exclusive (false);
isGrouped(), setGrouped(boolean)

● labels property—String array of labels for radio buttons; getLabels(),
setLabels(String[]), addLabel(String)

● orientation property—int constant:Orientation.HORIZONTAL (check boxes
form a row) or Orientation.VERTICAL (check boxes form a column);
getOrientation(), setOrientation(int)

● selectedIndex property—int representing which radio button is selected in the
group; getSelectedIndex(), setSelectedIndex(int)

CheckboxControl components in Java that are placed within a grouped
CheckboxPanel container are radio buttons (exclusive check boxes).

Tip

09.31318-9 CH07 9/24/98 1:26 PM Page 278

JavaBeans Component Library 279

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● selectedLabel property—String of the selected radio button’s text label;
getSelectedLabel(), setSelectedLabel(String)

Note that check boxes within a CheckboxPanel that are not grouped are nonetheless con-
tained within the CheckboxPanel and can be moved together as a unit.

ChoiceControl
The ChoiceControl is a drop-down selection list,also known as a combo box, which
combines capabilities of a read-only TextFieldControl and ListControl components.
ChoiceControl components combine the key elements of TextFieldControl and
ListControl components.

FieldControl
The FieldControl is a type-controlled input and editing field of table data.
FieldControl components have these key elements:

● columnName property—String representing the table column containing text to be
displayed; getColumnName(), setColumnName(String)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● editInPlace property—boolean value that determines whether field is read-write
(true) or read-only (false)

● text property—String for the default text; getText(), setText(String)

● modelContentChanged event—names the method called when the list content
changes

LabelControl
The LabelControl component displays nonselectable, non-editable text. LabelControl
components have these key elements:

● alignment property—int constant (LEFT, CENTER, RIGHT) representing the align-
ment of the Label; getAlignment(), setAlignment(int)

● columnName property—String representing the table column containing text to be
displayed; getColumnName(), setColumnName(String)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● text property—String for the Label; getText(), setText(String)

09.31318-9 CH07 9/24/98 1:26 PM Page 279

TextControl
The TextControl component. TextControl components have these key elements:

● alignment property—int constant representing the alignment of the Label;
getAlignment(), setAlignment(int)

● text property—String for the Label; getText(), setText(String)

The TextControl displays specified text over a transparent background. Your applica-
tions can dynamically change the text in a TextControl component.

ListControl
The ListControl displays a scrollable list of selectable text items,and it can be used to
display/update a field of table data. You can limit selection to a single item or allow mul-
tiple selections by setting the multiSelect property. ListControl components have
these key elements:

● columnName property—String representing the table column containing text to be
displayed; getColumnName(), setColumnName(String)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● items property—String array of items in the list; getItems(),
setItems(String[])

● boolean value that determines whether to allow multiple selections (true) or limit
to single selection (false);

● multiSelect property—boolean value that determines whether to allow multiple
selections (true) or limit to single selection (false); isMultiSelect(),
setMultipleMode(boolean)

● setItems(DataSet, String) method—sets the contents of the specified column
(String) in a DataSet to the list’s current contents

● modelContentChanged event—names the method called when the list content
changes

● selectionChanged event—names the method called when the single selection item
changes

● selectionItemChanged event—names the method called when the noncontiguous
multiple item selection changes

● selectionRangeChanged event—names the method called when the contiguous
multiple item selection changes

280 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 280

JavaBeans Component Library 281

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

If the items are too long to fit, either horizontally or vertically, scrollbars will be dis-
played automatically.

LocatorControl
The LocatorControl is used to select DataSet records by performing an incremental
search of the current column if it is a character column. If the column is of some other
type, the search is not incremental,and the locate occurs after the user presses the Enter
key.

When the LocatorControl is used with another control sharing the same
DataSet, such as a GridControl, the current match can be displayed in the
GridControl as the incremental search proceeds. The locate can also gener-
ate messages, so it is a good idea to direct those messages to a StatusBar
component.

Tip

LocatorControl components have these key elements:

● caseSensitive property—boolean value that determines whether the locate will
not be case-sensitive (false) or will be case-sensitive (true); isCaseSensitive(),
setCaseSensitive(boolean)

● columnName property—String value representing the table column containing text
to be displayed; getColumnName(), setColumnName(String)

● columns property—int value representing limit for the number of characters that
can be typed or displayed in the field; getColumns(), setColumns(int)

● dataSet property—DataSet object binds the control to a data set; getDataSet(),
setDataSet(DataSet)

● echoChar property—char that is echoed to the screen for masking input;
echoCharIsSet() returns a boolean, getEchoChar() returns a char,
setEchoChar(char)

● text property—String for the component’s default text; getText(),
setText(String)

● modelContentChanged event—names the method called when the content in the
related DataSet changes

● textValueChanged event—names the method called when the text property is
modified or updated

09.31318-9 CH07 9/24/98 1:26 PM Page 281

GridControl
The GridControl displays table or query data in a grid format. Display properties can be
set column-by-column and the grid can be used as a data-aware spreadsheet control.
GridControl components have these key elements:

● columnCount property—int representing the number of columns in the grid’s
DataSet; getColumnCount()

● columnHeaderVisible property—boolean determining whether column headers
should be displayed (true) or not displayed (false)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● editInPlace property—boolean value determining whether field is read-write
(true) or read-only (false)

● items property—String array of items in the list; getItems(),
setItems(String[])

● multiSelect property—boolean value determining whether to allow multiple
selections (true) or limit to single selection (false); isMultiSelect(),
setMultipleMode(boolean)

● navigateWithDataSet property—boolean indicating whether the current row in
the GridControl should move in sync with the current row in the DataSet and
vice-versa (true), or whether it should navigate independently (false);
isNavigateWithDataSet(), setNavigateWithDataSet(boolean)

● rowCount property—int value representing the number of rows in the grid’s
DataSet; getRowCount()

● rowHeaderVisible property—boolean indicating whether row headers should be
displayed (true) or notdisplayed (false)

● selectColumn property—boolean value determining whether the column is
selected as you navigate the grid (true) or is unselected (false);
isSelectColumn(), setSelectColumn(boolean)

● selectRow property—boolean value determining whether the row is selected as
you navigate the grid (true) or is unselected (false); isSelectRow(),
setSelectRow(boolean)

● toggleColumnSort(int) method—int value represents the column index whose
sort order will be toggled (ascending or descending)

● modelContentChanged event—names the method called when the list content
changes

282 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 282

JavaBeans Component Library 283

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● selectionChanged event—names the method called when the single selection item
changes

● selectionItemChanged event—names the method called when the noncontiguous
multiple item selection changes

● selectionRangeChanged event—names the method called when the range of items
selected changes

ImageControl
The ImageControl displays a graphical image, optionally used to display an image-
BLOB field of table data. ImageControl components have these key elements:

The ImageControl component works only with Java image types (GIFs,
JPEGs).

Note

● columnName property—String representing the table column containing the image
to be displayed; getColumnName(), setColumnName(String)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● editInPlace property—boolean value determining whether field is read-write
(true) or read-only (false)

● image property—Image or URL value representing a GIF or JPEG image;
getImage() returns Image, setImage(Image), setImage(URL)

● imageName property—String value representing a GIF or JPEG image filename;
getImageName(); setImageName(String)

● modelContentChanged event—names the method called when the list content
changes

TransparentImage
The TransparentImage displays a transparent graphical image. TransparentImage com-
ponents have these key elements:

● imageName property—String value representing a GIF or JPEG image filename;
getImageName(); setImageName(String)

● transparent property—Boolean value sets whether or not the image is displayed
as transparent

09.31318-9 CH07 9/24/98 1:26 PM Page 283

ButtonBar
The ButtonBar is a container for ButtonControl objects. Each button can have a text
label, a graphic, or both. ButtonBar components have these key elements:

● buttonType property—int constant (TEXT_ONLY, IMAGE_ONLY, or TEXT_AND_IMAGE)
that controls what appears on the button face; getButtonType(),
setButtonType(int)

● dataSet property—DataSet object binds the component to a model;
getDataSet(), setDataSet(DataSet)

● hgap property—int representing the gap (in pixels) between horizontal buttons;
getHgap(), setHgap(int)

● imageBase property—String value representing the path prefix for button image
filenames; getImageBase(), setImageBase(String)

● imageNames property—String array representing button image filenames;
getImageNames(), setImageNames(String[])

● labels property—String array representing button text values (also implicitly sets
each button’s actionCommand); getLabels(), setLabels(String[])

● layout property—LayoutManager value for the layout of ButtonBar;
setLayout(LayoutManager)

● orientation property—int constant:Orientation.HORIZONTAL (buttons form
rows) or Orientation.VERTICAL (buttons form columns); getOrientation(),
setOrientation(int)

● vgap property—int representing the gap (in pixels) between vertical buttons;
getVgap(), setVgap(int)

● addImageButton(Image, String, String) method—adds a new ButtonControl
to ButtonBar with the specified Image, text (String), and command (String)

● addImageButton(String, String, String) method—adds a new ButtonControl
to ButtonBar with the specified image filename (String), text (String), and com-
mand (String)

● addSpace() method—adds four pixels to the existing ButtonBar gaps

● addSpace(int) method—adds int pixels to the existing ButtonBar gaps

● addTextButton(String, String) method—adds a new ButtonControl to
ButtonBar with the specified text (String) and command (String)

● setButtonEnabled(String, boolean) method—button whose label matches
String argument; enabled if boolean argument is true, and disabled if boolean is
false

284 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 284

JavaBeans Component Library 285

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● setButtonEnabled(int, boolean) method—button whose index matches int
argument is enabled if boolean argument is true, disabled if boolean is false

● actionPerformed event—names the method called when one of the buttons is
pressed

NavigatorControl
The NavigatorControl is a descendant of ButtonBar that performs database record
operations and database navigation. NavigatorControl components share the properties
and methods of ButtonBar components,plus these additional key elements:

● buttonType property—int constant (TEXT_ONLY, IMAGE_ONLY, or TEXT_AND_IMAGE)
that controls what appears on the button face; getButtonType(),
setButtonType(int)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● labels property—String array (defaults:First, Prior, Next, Last, Insert,
Delete, Post, Cancel, Ditto, Save, Refresh) that determines what text appears
on navigator buttons when the buttonType property is set to TextOnly or
TextAndImage

ShapeControl
The ShapeControl enables you to place shape objects,such as ellipses,lines,and rectan-
gles,in your interface. ShapeControl components have these key elements:

● drawEdge property—boolean determining whether the shape’s border is drawn
(true) or not drawn (false); isDrawEdge(), setDrawEdge(boolean)

● edgeColor property—Color object for drawing the shape’s edge; getEdgeColor(),
setEdgeColor(Color)

● fill property—boolean value determining whether the shape is a filled (true) or
an outlined (false) shape; isFill(), setFill(boolean)

● foreground property—Color object for drawing fill; setForeground(Color)

● type property—int constant (RECTANGLE, ROUND_RECT, SQUARE, ROUND_SQUARE,
ELLIPSE, CIRCLE, HORZ_LINE, VERT_LINE, POS_SLOPE_LINE, NEG_SLOPE_LINE) rep-
resenting what shape will bedrawn; getType(), setType(int)

09.31318-9 CH07 9/24/98 1:26 PM Page 285

StatusBar
The StatusBar is a BevelPanel containing a java.awt.label component,on which
messages can be displayed. It can also be used to display a database status messages by
connecting to a DataSet. StatusBar components have these key elements:

● dataSet property—DataSet object binds the component to a model;
getDataSet(), setDataSet(DataSet)

● text property—String for the java.awt.label text; getText(),
setText(String)

TextAreaControl
The TextAreaControl accepts input and displays scrollable multiple-line text field or a
text-BLOB field of table data. TextAreaControl components share the properties and
methods of TextFieldControl and Scrollbar components,plus these additional key
elements:

● columnName property—String representing the table column containing the text to
be displayed; getColumnName(), setColumnName(String)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

● rows property—int number of rows of text that the text window can display;
getRows(), setRows(int)

● textValueChanged event—names the method called when the text property value
is modified

TextFieldControl
The TextFieldControl displays a single line of editable text or field of data. In addition,
you can use the TextFieldControl component to create a text field that obscures charac-
ters to implement password fields,by setting its echoChar property. Read-only fields are
created by setting the editable property to false.

TextFieldControl components have these key elements:

● columnName property—String representing the table column containing text to be
displayed; getColumnName(), setColumnName(String)

● columns property—int limit f or the number of characters that can be typed or dis-
played in the field; getColumns(), setColumns(int)

● dataSet property—DataSet object containing the table data to be displayed;
getDataSet(), setDataSet(DataSet)

286 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 286

JavaBeans Component Library 287

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● echoChar property—char that is echoed to the screen for masking input;
echoCharIsSet() returns boolean, getEchoChar() returns char,
setEchoChar(char)

● editable property—boolean value determining whether field is read-write (true)
or read-only (false); isEditable(), setEditable(boolean)

● text property—String for the TextFieldControl component’s default text;
getText(), setText(String)

● textValueChanged event—names the method called when the text property is
modified orupdated

TreeControl
The TreeControl displays related data in a single-inheritance outline or hierarchy tree. A
higher-level node is a parent, a same-level node is a sibling, and a lower-level node is a
child. Individual nodes are LinkedTreeNode objects and can include graphical icons for
each tree node. TreeControl components have these key elements:

● autoEdit property—boolean value determining whether a keypress automatically
initiates an edit (true) for a selected node’s label or not (false); getAutoEdit(),
setAutoEdit(boolean)

● expandByDefault property—boolean value determining whether the tree will be
expanded (true) or collapsed (false) when first displayed;
getExpandByDefault(), setExpandByDefault(boolean)

● style property—int constant (STYLE_PLUSES, STYLE_ARROWS) representing the
presentation style for node graphics; getStyle(), setStyle(int)

● removeChildren(GraphLocation) method—deletes the children of the specified
parent node

● nodeCollapsed event—names the method called when a node is collapsed

● nodeExpanded event—names the method called when a node is expanded

● selectionChanged event—names the method called when the single selection item
changes

● selectionItemChanged event—names the method called when the noncontiguous
multiple item selection changes

Using JBCL Containers
The components onthe JBCL Containers page are defined in the borland.jbcl.control
package and are data aware. Figure 7.3 shows the JBCL Containers page of components.

09.31318-9 CH07 9/24/98 1:26 PM Page 287

Containers are components in which you can place other components,and they can be
nested as many levels deep as you desire. You can use them to group and arrange other
UI components and to add visual depth to your interface. They also enable you to move
nested components as a unit. Several container components are offered to you on the
JBCL Containers page of the Component Palette. These are described in the following
sections.

BevelPanel
The BevelPanel displays a rectangle, whose background color you can set,with beveled
borders within which you can nest other components,including other container compo-
nents. BevelPanel components have these key elements:

● background property—Color object for the background of BevelPanel;
setBackground(Color)

● bevelInner property—int constant (FLAT, RAISED, LOWERED) representing the style
of the inner bevel edge; getBevelInner(), setBevelInner(int)

● bevelOuter property—int constant (FLAT, RAISED, LOWERED) representing the style
of the outer bevel edge; getBevelOuter(), setBevelOuter(int)

● layout property—LayoutManager that sets the arrangement of the components
nested within; setLayout(LayoutManager)

● margins property—Insets object (defaults to 0,0,0,0 representing top,left, bot-
tom,and right margins in pixels) which sets the width of the border that surrounds
the nested objects when the layout property is applied; getMargins(),
setMargins(Insets)

● soft property—boolean value that determines whether bevel edges are drawn as
soft edge colors (true) or not (false); isSoft(), setSoft(boolean soft)

For an example of soft edges,click on an HTML file in the AppBrowser window’s
Navigation pane. The View tab of the Content pane displays soft edges,whereas the
Source tab displays hard edges.

GroupBox
The GroupBox component is a rectangular container with an optional label that visually
organizes and contains other components. GroupBox has these key elements:

288 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FIGURE 7.3.
The JBCL Containers
page of the Component
Palette.

09.31318-9 CH07 9/24/98 1:26 PM Page 288

JavaBeans Component Library 289

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● background property—Color object for background of GroupBox;
setBackground(Color)

● label property—String representing the visible text on the ButtonControl;
getLabel(), setLabel(String)

SplitPanel
The SplitPanel component is a multipaned container with splitters that divides its
nested panels into panes. SplitPanel components have these key elements:

● background property—Color object for the background of SplitPanel;
setBackground(Color)

● dividerColor property—Color object used for drawing pane dividers;
getDividerColor(), setDividerColor(Color)

● gap property—int representing the gap (in pixels) between panes; getGap(),
setGap(int)

● actionPerformed event—names the method called when the panel is clicked

TabsetControl
The TabsetControl is a set of horizontal tabs used to initiate actions (for example, to
index the multiple cards or custom dialog pages). These exclusive tabs act like radio but-
tons in that only one tab can be selected at a time. TabsetControl components have
these key elements:

● labels property—String array containing text for tab labels; getLabels(),
setLabels(String[])

● readOnly property—boolean determining whether tab labels are read-only (true)
or read-write (false) at runtime; isReadOnly(), setReadOnly(boolean)

● selectedIndex property—int representing the index of the selected tab (-1 if
none selected); getSelectedIndex(), setSelectedIndex(int)

● tabsOnTop property—boolean determining whether tabs appear as top (true) or
bottom (false) tabs; isTabsOnTop(), setTabsOnTop(boolean)

● addTab(String) method—adds new tab to the end of tabset with String as its
label

● getLabel(int) method—returns String label of the tab at specified int index

● removeTab(String) method—deletes the tab with the specified String label

● renameTab(String, String) method—renames the tab with the specified String
label (first argument) to the new String label (second argument)

09.31318-9 CH07 9/24/98 1:26 PM Page 289

● repaintTab(int) method—repaints the tab at the specified int index (call when a
single tab has been updated)

● setLabel(int, String) method—renames the tab with the specified int index to
the new String label

● keyPressed event—names the method called when one of the buttons is pressed;
these four keypresses have special meaning in this component:Home selects the
first tab, Left selects the tab to left,Right selects the tab to right, and End selects
the last tab

● mouseClicked event—names the method called when one of the tabs is clicked

If not all the tabs can be displayed in the space provided, a scrollbar is automatically pro-
vided (similar to the one on the Component Palette in the JBuilder IDE). If an integrated
page/tab solution is desired, use the TabsetPanel instead.

TabsetPanel
The TabsetPanel component is a multipaged container with tabs that combine the func-
tionality of a panel and a TabsetControl. Each panel placed on this component becomes
a separate page on which you can then place other components. These pages are exclu-
sive in that only one page can be selected at a time. TabsetPanel components have these
key elements:

● background property—Color object for the background of TabsetPanel;
setBackground(Color)

● labels property—String array containing text for the page tab labels;
getLabels(), setLabels(String[])

● itemMargins property—Insets object (defaults to 1,4,1,4 representing top,left,
bottom,and right margins in pixels) which sets the width of the border that sur-
rounds the nested objects; getItemMargins(), setItemMargins(Insets)

● selectedIndex property—int representing currently selected page (-1 if none
selected); getSelectedIndex(), setSelectedIndex(int)

● addTab(int, String) method—adds a tab at the specified int index with the
specified String as its label

● removeTab(String) method—deletes a tab with the specified String label

● actionPerformed event—names the method called when the panel is clicked

● modelContentChanged event—names the method called when the panel content
changes

● selectionChanged event—names the method called when the single selection item
changes

290 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 290

JavaBeans Component Library 291

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

● selectionItemChanged event—names the method called when the noncontiguous
multiple item selection changes

Dialog Boxes
Dialog boxes are containers,and the JBCL Containers page includes dialog box controls
in its array of components. Dialog box components are nonvisual controls that display a
dialog box when invoked via the show() method. When placed in the UI Designer, these
components appear only in the Context Tree in the Structure pane of the AppBrowser
window, in the Other folder. To display one of these dialog box components in your
interface, you must call the show() method in another component’s event handler. For
example, to show a Filer dialog named filer1, you would add the line of code

filer1.show();

to an event handler. Which event handler you choose depends on the component that
is intended to invoke the dialog. For example, if a button press or menu selection will
invoke the dialog, you will put this line of code in that component’s actionPerformed
event handler. Also, you can have multiple components invoke a dialog by putting the
show() method in more than one component’s event handler or by using a shared handler
that contains the show() method.

In addition to the event handler, you must also set the frame property to indicate the par-
ent Frame to which the dialog component should return focus.

Filer

The Filer component displays a file-selection dialog box for opening and saving files.
The Filer component has these key elements:

● frame property—Frame object parent of the dialog box, selected from a drop-down
list; getFrame(), setFrame(Frame)

● directory property—String representing the default directory for the dialog box;
getDirectory(), setDirectory(String)

● file property—String representing the default file for the dialog box; getFile(),
setFile(String)

● filenameFilter property—FilenameFilter object for the Show Files of Type
drop-down list; getFilenameFilter(), setFilenameFilter(FilenameFilter)

● mode property—int constant (LOAD, SAVE) for determining type of dialog box (File
Open or File Save); getMode(), setMode(int)

● title property—String representing the title bar text (caption) of the dialog box;
getTitle(), setTitle(String)

09.31318-9 CH07 9/24/98 1:26 PM Page 291

● show() method—displays the Filer dialog box

Figure 7.4 shows what the Filer dialog box looks like when invoked.

292 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FIGURE 7.4.
The invoked Filer dia-
log box with default
settings.

ColorChooser

The ColorChooser component is a wrapper component that displays the ColorChooser
color selection dialog box for selecting colors. ColorChooser components have these key
elements:

● frame property—Frame object parent of the dialog box, selected from a drop-down
list; getFrame(), setFrame(Frame)

● result property—int constant (OK, CANCEL) representing the button chosen in the
dialog; getResult(), setResult(int)

● title property—String representing the title bar text (caption) of the dialog;
getTitle(), setTitle(String)

● value property—Color object that is active (default) in the dialog; getValue(),
setValue(Color)

● show() method—displays the ColorChooser dialog box

● actionPerformed event—names the method called when the dialog is closed using
the system Close command

Figure 7.5 shows what the ColorChooser dialog box looks like when invoked.

FIGURE 7.5.
The invoked
ColorChooser dialog
box.

09.31318-9 CH07 9/24/98 1:26 PM Page 292

JavaBeans Component Library 293

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FontChooser

The FontChooser component is a wrapper component that displays the FontChooser font
selection dialog box for setting font attributes and metrics. FontChooser components
have these key elements:

● frame property—Frame object parent of the dialog box, selected from a drop-down
list; getFrame(), setFrame(Frame)

● result property—int constant (OK, CANCEL) representing the button chosen in the
dialog box; getResult(), setResult(int)

● title property—String representing the title bar text (caption) of the dialog box;
getTitle(), setTitle(String)

● value property—Font object that is active (default) in the dialog; getValue(),
setValue(Font)

● show() method—displays the FontChooserDialog dialog box

● actionPerformed event—names the method called when the dialog box is closed
using the system Close command

Figure 7.6 shows what the FontChooser dialog box looks like when invoked.

FIGURE 7.6.
The invoked
FontChooser dialog
box.

Message

The Message component is a wrapper component which displays the Message dialog box
that shows a text message to the user. Message components have these key elements:

● frame property—Frame object parent of the dialog, selected from a drop-down list;
getFrame(), setFrame(Frame)

● buttonSet property—int constant (OK, OK_CANCEL, YES_NO, YES_NO_CANCEL) rep-
resenting the default set of buttons for the dialog; getButtonSet(),
setButtonSet(int)

● labels property—String array of labels for buttons in the dialog; getLabels(),
setLabels(String[])

09.31318-9 CH07 9/24/98 1:26 PM Page 293

● message property—String representing the text of the message to be shown in the
dialog; getMessage(), setMessage(String)

● result property—int constant (OK, OK_CANCEL, YES_NO, YES_NO_CANCEL) repre-
senting the button chosen in the dialog; getResult(), setResult(int)

● title property—String representing the title bar text (caption) of the dialog;
getTitle(), setTitle(String)

● show() method—displays the FontChooser dialog box

● actionPerformed event—names the method called when the dialog box is closed
using the system Close command

Figure 7.7 shows what the Message dialog box looks like when invoked.

294 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FIGURE 7.7.
The invoked Message
dialog box with default
settings.

FIGURE 7.8.
The invoked
StringInput dialog
box.

StringInput

The StringInput component displays the StringInput dialog box, which accepts a
string typed by the user. Figure 7.8 shows what the StringInput dialog box looks like
when invoked.

StringInput components have these key elements:

● frame property—Frame object parent of the StringInput component,selected
from a drop-down list; getFrame(), setFrame(Frame)

● result property—int constant (OK, OK_CANCEL, YES_NO, YES_NO_CANCEL) repre-
senting the button chosen in the dialog box; getResult(), setResult(int)

● title property—String representing the title bar text (caption) of the StringInput
component; getTitle(), setTitle(String)

● show() method—displays the StringInput dialog box

09.31318-9 CH07 9/24/98 1:26 PM Page 294

JavaBeans Component Library 295

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

Understanding Data Express Components
The components on the Data Expresspage are defined in the borland.jbcl.dataset,
borland.sql.dataset, borland.datastore, and borland.jbcl.control packages. The
JavaBeans components on this page are database access controls. Figure 7.9 shows the
Data Express page of components.

FIGURE 7.9.
The Data Express page
of the Component
Palette.

These components are discussed in greater depth on Day 14,“JBuilder Database
Architecture,” so some of the components are only briefly summarized here (from left to
right):

● The Database component provides a persistent JDBC connection to a physical
SQL database.

● The TableDataSet component represents data obtained from a file.

● The TextDataFile componentholds properties used to import data from a text file.

● The QueryDataSet component uses a SQL query to acquire data from a physical
database.

● The QueryResolver component saves changes to data using a SQL query.

● The ProcedureDataSet component runs a stored procedure against data stored in a
SQL database.

● The ProcedureResolver component saves changes to data back to the data source
by calling stored procedures in that data source.

● The ParameterRow component maps parameter values to columns.

● The DataSetView component provides an alternative view of data.

● The DataStore componentprovides the main access point to high-performance
data caching and compact permanent storage.

The Data Express page of components is available in the Professional and
Client/Server Editions only.

Tip

09.31318-9 CH07 9/24/98 1:26 PM Page 295

dbSwing Components
The componentson the dbSwing page are defined in the borland.dbswing package. The
JavaBeans components on this page are database-aware Swing controls. Figure 7.10
shows the dbSwing page of components.

296 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

FIGURE 7.10.
The dbSwing page of
the Component Palette.

FIGURE 7.11.
The Swing page of the
Component Palette.

FIGURE 7.12.
The Swing Containers
page of the Component
Palette.

Swing Components
The components on the Swing page are defined in the com.sun.java.swing package.
The JavaBeans components on this page are Swing controls. Figure 7.11 shows the
Swing page of components.

Swing components are Java standard components that provide a wide range of options so
that you can provide your Java applications with rich graphical user interfaces.

Swing Containers
The components onthe Swing Containers page are defined in the com.sun.java.swing
package. The JavaBeans components on this page are Swing containers. Figure 7.12
shows the Swing Containers page of components.

AWT Components
The components on the AWT page are defined in the java.awt package. Figure 7.13
shows the AWT page of components.

09.31318-9 CH07 9/24/98 1:26 PM Page 296

JavaBeans Component Library 297

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

These components are not part of the JBCL; rather, they are part of the Java Class
Library (JCL). For more information on these components,refer to Day 6, “User
Interface Design.”

More Pages
Depending on which edition of JBuilder you have, you might have two additional pages
on your Component Palette:KL Group and Other.

The KL Grouppage is populated with third-party JavaBeans components,which are sup-
ported directly by the KL Group. These components are defined in the jclass.bwt,
jclass.table, and jclass.chart packages. Figure 7.14 shows the KL Group page of
components.

FIGURE 7.13.
The AWT page of the
Component Palette.

FIGURE 7.14.
The KL Group page of
the Component Palette.

To determine which component is what, place the mouse cursor over the icon and pause
momentarily—this will reveal the component’s class name so that you can investigate
further. Refer to the KL Group documentation for details on these third-party compo-
nents.

The Other page is provided as a place for you to put other third-party components or
your own JavaBeans components. It is currently blank.

One way to organize your new components is to create a new page for each
third-party vendor that you buy them from.

Tip

Summary
Today you have had a look at the library of components that JBuilder provides for your
use. You have learned about components in general, and you have learned about the key
elements of specific components in the JavaBeans Component Library (JBCL). There is
much more information about these components than can be covered in a single day.

09.31318-9 CH07 9/24/98 1:26 PM Page 297

Be sure to explore further by looking up individual components,properties,methods,and
events in the JBCL Reference help files. Remember that these components are based, in
part, on classes and interfaces in the AWT hierarchy, so follow the component tree back
through those classes by using the hierarchy tree at the top of each component’s help
topic to find out more about what attributes and behaviors are inherited from the
java.awt package.

Q&A
Q If I c hange the <name> property of a component using the Inspector, JBuilder

will automatically change all references to that component in my code, r ight?

A Well, yes and no. It will change the component’s identifier for all code generated
by the JBuilder IDE,but it cannot track and will not change component identifiers
in code you have manually written (in event handler method bodies,for example).
This is why it is a good idea to rename components as soon as you have placed
them in the UI Designer.

Q The Filer component is obviously a visible component when it is invoked.
Why is it called a nonvisual component?

A It is a nonvisual component because it has no graphical representation at design
time. It becomes visible only when the dialog box is actually invoked at runtime.

Q I seem to be using properties more than methods when dealing with my com-
ponents in code. Is that the right way to do it?

A Yes,that’s the way the components were designed. A well-written component
makes maximum use of properties. For this reason,you might not use a compo-
nent’s methods very often. Use methods when necessary, but otherwise use proper-
ties to manipulate your components.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

298 Day 7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 298

JavaBeans Component Library 299

7

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

Quiz
1. Can you change the <name> property of a component at runtime?

2. Which component presents a drop-down selection list? To what AWT component is
it similar?

3. How are TabsetControl and TabsetPanel components similar to exclusive check
boxes?

4. What does the term data aware mean?

5. What method is used to display a dialog box? Where should this method be called
in your code?

Exercises
1. Create a user interface that mimics the layout of the File Properties dialog box in

JBuilder. Don’t worry about the event handling, just do the layout with JBCL com-
ponents in a Frame.

2. Create an applet that displays two check box groups:one with six check boxes in
two columns and another with a set of three radio buttons across the bottom of the
applet’s drawing space. Hint: use a GroupBox for the nonexclusive check boxes.

3. Explore the help topics for the dialog box components and find out how they are
put together so that you can create your own dialog boxes later, using the same
techniques.

09.31318-9 CH07 9/24/98 1:26 PM Page 299

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH07 Lp#3

09.31318-9 CH07 9/24/98 1:26 PM Page 300

At a Glance
Day 8 Applets, Applications, and

Wizards

9 Graphics, Fonts, and
Multimedia

10 Streams and I/O

11 Compiling and Debugging

12 Handling Events

13 Exception Handling

14 JBuilder Database Architecture

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Wk2AAG Lp#1

WEEK 2 8

9

10

11

12

13

14

10.31318-9 Wk2AAG 9/24/98 1:28 PM Page 301

P/V TY Generic in 14/21/Week ISBN# Name Part Lp#

10.31318-9 Wk2AAG 9/24/98 1:28 PM Page 302

DAY 8

WEEK 2

Applets, Applications,
and Wizards

Much of Java’s current popularity has come about because of Java-enabled Web
browsers and their support for Java applets—small routines that run inside a
Web page and can be used to create dynamic, interactive Web page designs.
Applets, as noted at the beginning of this book, are written in the Java lan-
guage, and you can view them in any Web browser that supports Java, includ-
ing Sun’s HotJava, Netscape’s Navigator, and Microsoft’s Internet Explorer.
Learning how to create applets is one of the most important topics on Java and
probably the main reason you bought this book.

Competition in the computer software industry has lead to vari-
ous flavors of the Java Virtual Machine that don’t necessarily con-
form to the official Java specification. You can be sure that all of
your Java applications can run correctly when users run them in
the Java Plug-in. Check the JavaSoft Web site at
http://splash.javasoft.com/products/plugin/ for more infor-
mation and for downloading the Java Plug-in.

Note

11.31318-9 CH08 9/24/98 1:29 PM Page 303

In addition, the Java language supports writing standalone programs,which are called
applications. Last week,when you focused on learning about the Java language itself,
most of the small programs you created were Java applications,albeit console applica-
tions that only wrote to the screen. Now that you have the basics down, you’ll learn more
about applications,including GUI applications.

The JBuilder IDE also provides both Applet and Application wizards to generate skeleton
code for your Java programs. You’ll also learn what these wizards can do for you and
what information they require to do their magic.

Today, you’ll cover a lot of ground:

● Reviewing the differences between Java applets and applications

● Getting started with applets:the basics of how an applet works and how to create
your own simple applets

● Embedding an applet on a Web page by using the <APPLET> and </APPLET> tags,
including the various features of the <APPLET> tag

● Passing parameters to applets and learning how to deal with those parameters
inside your applet’s code

● Creating Java applications,including how to pass arguments to a Java program
from a command line

● Creating a dual-purpose program:one that can serve as both an applet and an
application

● Using the Applet and Application wizards to set up your initial source code files

To create a new project for today’s listings,select File |New Project and modify the File
field so that it says this:

C:\jbuilder2\myprojects\AppletsAppsWizards.jpr

Then click the Finish button. All of today’s listings will be added to this project via the
Add to Project icon above the Navigation pane in the AppBrowser window.

Comparing Applets to Applications
Although you explored the differences between Java applications and Java applets in the
early part of this book,let’s review them again here.

In short, Java applications are standalone Java programs that can be run by using just the
Java Virtual Machine from the command line, from within Windows,or from within
JBuilder.

304 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

11.31318-9 CH08 9/24/98 1:29 PM Page 304

Applets, Applications, and Wizards 305

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Java applets,however, cannot be run independently; they are run from inside a Web
browser. A reference to an applet is embedded in a Web page using a special pair of
HTML tags. When a Java-enabled browser loads a Web page with an applet in it,the
browser downloads that applet’s code from the Web server and executes it on the local
system (the one on which the browser is also running).

Because Java applets run inside a Java-enabled Web browser, they have the advantage
of the structure the Web browser provides:an existing window, an event-handling and
graphics context, and the surrounding user interface (UI). Java applications can also cre-
ate this structure, but they don’t require it.

The convenience that applets have over applications in terms of structure and UI capabil-
ities,however, is hampered by restrictions on what applets are allowed to do. Given the
fact that Java applets can be downloaded from anywhere and run on a client’s system,
restrictions are necessary to prevent an applet from causing system damage or security
breaches. Without these restrictions in place, Java applets could be written to contain
viruses or Trojan horses (programs that seem friendly but can damage the system). These
restrictions also don’t allow applets to compromise the security of the system that runs
them. The restrictions on what an applet can do include these:

● Applets can’t have read/write access to the reader’s file system except in specific
directories (which are defined by the user through an access control list that, by
default, is empty). Some browsers might not even allow an applet read/write access
to the file system at all or at the same time as using the network.

● Applets usually can’t communicate with a server other than the one that had origi-
nally stored the applet. (This might be configurable by the browser; however, your
applet should not depend on having this behavior available to it.)

● Applets can’t run any programs on the reader’s system. For UNIX systems,this
includes forking a process.

● Applets can’t load programs native to the local platform, including shared libraries
such as DLLs.

In addition, Java itself includes various forms of security and consistency checking in the
Java compiler and interpreter to prevent unorthodox use of the language. This combina-
tion of restrictions and security features makes it more difficult for a rogue Java applet to
damage the client’s system.

11.31318-9 CH08 9/24/98 1:29 PM Page 305

Creating Applets
For the most part, all the Java programs you’ve created up to this point have been Java
applications—simple programs with a single main() method that created objects,set
instance variables,and ran methods. Today, and in the days following, you’ll be creating
applets exclusively, so you’ll need a good grasp of how an applet works, the features an
applet has,and where to start when you first create your own applets.

To create an applet,you create a subclass of the class Applet, a member of the
java.applet package. The Applet class provides behavior to enable your applet not
only to work within the browser itself, but also to take advantage of the capabilities of
AWT to include UI elements,to handle mouse and keyword events,and to draw to the
screen. Although your applet can have as many “helper” classes as it needs,it’s the main
applet class that triggers the execution of the applet. That initial applet class always has a
signature that looks like this:

public class myAppletClass extends java.applet.Applet {...}

Note the public keyword. Java requires that your applet subclass be declared public.
This makes sense because the applet is intended to be run by the general public from the
Internet. Again, this is true only of your main applet class; any helper classes you create
can be either public or private as you want.

When a Java-enabled Web browser encounters your applet in a Web page, it loads your
initial applet class over your Internet connection (modem,T1, LAN, and so on),as well
as any other helper classes that the first class requires. With applications,Java calls the
main() method directly on your initial class. In contrast,when your applet is loaded,
Java creates an instance of that class,and a series of Applet methods are called on that
instance. Different applets that use the same class use different instances,so each one
can behave differently from the other applets running in the same Web browser.

306 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

These restrictions prevent all the traditional ways of causing damage to a
client’s system, but it’s impossible to be absolutely sure that someone cannot
somehow work around these restrictions, violate privacy, use CPU resources,
and generally be annoying. To test Java’s security, Sun has asked the Internet
community at large to try to break Java’s security and to create an applet
that can work around the restrictions imposed upon it.

Note

11.31318-9 CH08 9/24/98 1:29 PM Page 306

Applets, Applications, and Wizards 307

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Major Applet Activities
To create a basic Java application, your class has to have one method—main()—with a
specific signature. Then,when your application starts,main() is executed, and from
main() you can set up the behavior that your program needs. Applets are similar but
more complicated. Applets have many different activities that correspond to various
major events in the life cycle of the applet,such as initialization, painting, or mouse
events. Each activity has a corresponding method. So when an event occurs, the browser
or other Java-capable tool calls those specific methods.

The default implementations of these activity methods do nothing; to provide behavior
for an event you must override the appropriate method in your applet’s subclass. You
don’t have to override all of them,of course. Different applet behavior requires different
methods to be overridden.

You’ll learn about the various important methods to override as the week progresses. For
now, the following sections discuss the five most important methods in an applet’s execu-
tion: initialization, starting, stopping, destroying, and painting.

Initialization
Initialization occurs when the applet is loaded. Initialization might include creating the
objects the applet needs,setting up an initial state, loading images or fonts,or setting
parameters. To provide behavior for the initialization of your applet,override the init()
method:

public void init() {...}

Starting
After an applet is initialized, it is started. Starting can also occur if the applet was previ-
ously stopped but not destroyed. For example, an applet is stopped if the reader follows
a link to a different page, and it is started again when the reader returns to the applet’s
page. To provide startup behavior for your applet,override the start() method:

public void start() {...}

Starting (and stopping) can occur several times during an applet’s life cycle,
whereas initialization happens only once.

Note

11.31318-9 CH08 9/24/98 1:29 PM Page 307

Functionality that you might want to put in the start() method can include starting up a
thread to control the applet,sending the appropriate messages to helper objects,or in
some way telling the applet to begin running. You’ll learn more about starting applets
tomorrow.

Stopping
Stopping and starting go hand in hand. Stopping occurs when the reader leaves the page
that contains a currently running applet,or you can stop the applet yourself by calling
stop(). By default,when the reader leaves a page, any threads the applet has started will
continue running. By overriding stop(), you can suspend execution of these threads and
then restart them if the applet is viewed again (reloaded):

public void stop() {...}

Destroying
Destroying sounds rather more violent than it is. Destroying enables the applet to clean
up after itself just before it is freed or the Web browser exits—for example, to kill any
running threads or to release any other running objects. Generally, you won’t want to
override destroy() unless you have specific resources that need to be released, such as
threads that the applet has created. To provide cleanup behavior for your applet,override
the destroy() method:

public void destroy() {...}

308 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

The destroy() and finalize() methods are not the same. The destroy()
method applies only to applets, whereas the finalize() method is a more
general-purpose way for a single object of any type to clean up after itself.

Note

Painting
Painting is how an applet actually draws something on the screen,be it text, a line, a col-
ored background, or an image. Painting can occur many hundreds of times during an
applet’s life cycle. The following are some of the situations in which the paint()
method is called:

● Browser is covered by another window and then uncovered

● Browser is moved to a new location

● Browser is minimized and then restored

11.31318-9 CH08 9/24/98 1:29 PM Page 308

Applets, Applications, and Wizards 309

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

You override the paint() method for your applet to have a visual appearance on the
screen. The paint() method looks like this:

public void paint(Graphics g) {...}

Note that unlike the other major methods in this section,paint() takes an argument,an
instance of the class Graphics. This object is created and passed to the paint() method
by the browser, so you don’t have to worry about that part. However, you will have to
make sure that the Graphics class (part of the java.awt package) gets imported by your
applet code through an import statement at the top of your Java source code file:

import java.awt.Graphics;

Because your applet will not have a visible presence on the HTML page without overrid-
ing the paint() method, this import line is a virtual requirement in any applet source
code you write.

Examining a Simple Applet
On Day 3, “Java Intermediate,” you created a simple applet called HelloAgainApplet
(the one that displayed the text Hello Again! in large red letters). There, you created
and used that applet as an example of creating a subclass. Let’s go over the code for that
applet again, this time named HelloAgainApplet2, looking at it slightly differently in
light of the things you just learned about applets. Listing 8.1 shows the code for this
applet.

LISTING 8.1. HelloAgainApplet2.java.

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class HelloAgainApplet2 extends Applet {
5:
6: Font f = new Font(“TimesRoman”, Font.BOLD, 36);
7:
8: public void paint(Graphics g) {
9: g.setFont(f);
10: g.setColor(Color.red);
11: g.drawString(“Hello again!”, 5, 50);
12: }
13: }

When an animation is being used, the paint() method is called each time
the animation changes.

Note

TYPE

11.31318-9 CH08 9/24/98 1:29 PM Page 309

This applet overrides the paint() method, one of the major methods described
earlier today. Because the applet doesn’t actually do much (it only prints two

words to the screen),and there’s not really anything to initialize; you don’t need init(),
start(), or stop() methods.

The paint() method is where the real work of this applet (what little work there is) goes
on. The Graphics object passed into the paint() method holds the graphics state—that
is, the current features of the drawing surface. Line 9 sets up the font for this graphics
state (in the font object held in the f instance variable, created in line 6); line 10 sets up
the color (from an object representing the color red that’s stored in the Color class’s vari-
able red).

Line 11 then draws the string Hello Again! by using the current font and color at the
x,y coordinates 5,50. Note that the coordinates 0,0 are at the top left of the applet’s draw-
ing surface, with positive x moving toward the right and positive y moving downward.
Figure 8.1 shows how the applet’s bounding box and the string are drawn on the page.

310 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

ANALYSIS

FIGURE 8.1.
Drawing the applet for
HelloAgainApplet2.

0,0

x=5

y=50

Embedding an Applet on a Web Page
After you create a class or classes that contain your applet and compile them into class
files as you would any other Java program,you have to create a Web page that will hold
that applet by using HTML (Hypertext Markup Language). There is a special HTML tag
pair for embedding applets in Web pages. Java-capable browsers use the information
contained in that tag pair to locate the compiled class files and execute the applet itself.
In this section,you’ll learn about how to put Java applets in a Web page and how to
serve those files to the Web at large.

If you need help understanding and writing HTML pages, you might find
Teach Yourself Web Publishing with HTML in 14 Days, Premier Edition, also
available from Sams, useful.

Note

11.31318-9 CH08 9/24/98 1:29 PM Page 310

Applets, Applications, and Wizards 311

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

To embed an applet on a Web page, use the <APPLET> and </APPLET> tag pair. This tag
pair is a special extension to HTML for including applets in Web pages.

Listing 8.2 shows a simple example of an HTML page with an applet embedded in it,
similar to the one you used on Day 3, “Java Intermediate,” to view the applet,with some
additional HTML code added to it.

LISTING 8.2. HelloAgain2.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD>
5: <BODY>
6: <P>My Java applet now says:
7:

8: <APPLET CODE=”HelloAgainApplet2.class” WIDTH = 250 HEIGHT = 100>
9: The HelloAgainApplet2 applet would be running here

10: in a Java-enabled browser.
11: </APPLET>
12: </BODY>
13: </HTML>

You’ll notice in this book that the terms “HTML page” and “Web page” are
used somewhat interchangeably. However, you should be aware that not all
Web pages are HTML-based. Web pages can also be based on Common
Gateway Interface (CGI) scripts, which are often used to present form-based
pages, such as order forms or surveys. For more information on CGI, you can
refer to Webmaster Expert Solutions, available from Que (Macmillan).

Note

TYPE

When you create or modify an HTML file in the JBuilder IDE Editor, the new
version of the source code is held in memory until you save it to disk.
However, the appletviewer loads the referenced HTML file directly from the
disk. JBuilder takes this into account and saves HTML files automatically
before compiling code in your project. This way, the HTML file is always
saved before the appletviewer utility is launched.

Tip

11.31318-9 CH08 9/24/98 1:29 PM Page 311

There are several things to notice about the <APPLET> and </APPLET> tag pair on
this page:

● The entirety of line 8 comprises the <APPLET> tag; line 11 contains the </APPLET>
tag. Together, they delineate all the information that the Web page knows about the
applet to be run.

● In the <APPLET> tag, the CODE attribute indicates the name of the class file that con-
tains the applet to be run, including the .class filename extension. In this case, the
class file must be in the same directory as this HTML file because no directory
path is given. To indicate that applets are in a specific directory, use the CODEBASE
attribute described later today.

● Also, in the <APPLET> tag, WIDTH and HEIGHT are optional and are used to indicate
the bounding box of the applet—that is, how large a rectangular space to reserve,
then draw, for the applet on the Web page. Be sure to set WIDTH and HEIGHT to an
appropriate size for the applet because, depending on the browser, if your applet
attempts to draw outside the boundaries of the space you’ve reserved for it, you
might not be able to see or get to those parts of your applet.

● The text between the <APPLET> and </APPLET> tags,on lines 9 and 10,is displayed
by browsers that do not understand the tag pair (which includes any browsers that
are not Java-capable). Because your page might be viewed in many kinds of
browsers (including WebTV), it is a very good idea to put alternate text here so that
readers of your page who don’t have Java will see something other than ablank
space.

Here are some of the other additions to this HTML page:

● Lines 2 and 4 feature the<HEAD> and </HEAD> tag pair, which delineates a Web
page’s header area. Right now, it only encloses line 3 which contains the <TITLE>
and </TITLE> tag pair you saw on Day 3.

● Line 6 adds the paragraph <P> tag followed by some text to be displayed on the
Web page, outside the applet itself. The paragraph tag causes two linefeeds to be
inserted at that point.

● On line 7,a break
 tag is placed, to insert a single linefeed just before the
applet space is reserved.

Debugging and Testing the Applet
Now, with a compiled class file and an HTML file that refers to your applet,you should
be able to load that HTML f ile into your Java-enabled browser (using either the Open
File menu item or a file URL). The browser loads and parses your HTML file and then
loads and executes your applet class.

312 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

ANALYSIS

11.31318-9 CH08 9/24/98 1:29 PM Page 312

Applets, Applications, and Wizards 313

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Figure 8.2 shows the running applet in appletviewer.

FIGURE 8.2.
HelloAgainApplet2 in
appletviewer.

Making Applets Available to the Web
After you have an applet and an HTML file and you’ve verif ied that everything is work-
ing correctly on your local system,the last step is making that applet available to the
World Wide Web at large so that anyone with a Java-enabled browser can view it.

Java applets are served by a Web server the same way that HTML f iles, images,and
other media are served. You don’t need special server software to make Java applets
available to the Web. You don’t even need to configure your server to handle Java files. If
you have a Web server up and running, or space on a Web server available to you (say,
from your Internet Service Provider, or ISP),all you have to do is move your .html and
compiled .class files to that server, as you would any other files.

If you don’t already have a Web server, you can set one up yourself. (Web server setup
and administration, as well as other facets of Web publishing in general, are outside the
scope of this book,however.) The alternative for most of us is to rent space on someone
else’s server. Most ISPs,the folks who provide many of us with our Internet email
accounts,will be more than happy to help you with setting up fee-based disk space on
their server for your account. If you have a home page on your ISP account,you might
already have some limited amount of server disk space available to you at no additional
charge. So if you don’t already have your own Web server, and aren’t planning to get
one, be sure to check with your ISP for more details.

Using Advanced <APPLET> Tag Features
In its simplest form, by using CODE, WIDTH, and HEIGHT, the <APPLET> tag merely creates
a space of the appropriate size and then loads and runs the applet in that space. The
<APPLET> tag, however, does include several attributes that can help you better integrate
your applet into the overall design of your Web page. Among these are ALIGN, HSPACE,
VSPACE, and CODEBASE.

11.31318-9 CH08 9/24/98 1:29 PM Page 313

ALIGN
The ALIGN attribute defines how the applet will be aligned on the page. This attribute can
have one of nine values:LEFT, RIGHT, TEXTTOP, MIDDLE, ABSMIDDLE, BASELINE, BOTTOM,
and ABSBOTTOM.

In the case of ALIGN=LEFT, the applet is placed at the left margins of the page, and all
text following that applet flows in the space to the right of that applet. ALIGN=RIGHT does
just the opposite, with the applet at the right margin and the text flowing in the space to
the left. The text will continue to flow in that space until the end of the applet,or you can
use a break
 tag with its CLEAR attribute set to start the line of text below that applet.
The CLEAR attribute can have one of three values:CLEAR=LEFT starts the text at the next
clear left margin; CLEAR=RIGHT starts the text at the next clear right margin; and
CLEAR=ALL starts the text at the next line where both margins are clear.

For example, here’s the body of an HTML file that aligns an applet against the left mar-
gin, has some text flowing alongside it,and then breaks at the end of the paragraph so
that the next bit of text starts completely below the applet’s drawing space:

<BODY>
<P>My Java applet now says:

<P><APPLET CODE=”HelloAgainApplet2.class” WIDTH=200 HEIGHT=100>
HelloAgainApplet2</APPLET>
To the left of this paragraph is an applet. It’s an unassuming
applet, in which a small string is printed in red type, set in 36 point
Times bold.
<BR CLEAR=ALL>
<P>In the next part of the page, we demonstrate how under certain
conditions,
what appear to be styrofoam peanuts can be used as a healthy snack.
</BODY>

Figure 8.3 shows how this applet and the text surrounding it might appear in a Java-
enabled browser.

For smaller applets,you might want to include your applet within a single line of text. To
do this,the other seven values for ALIGN determine how the applet is vertically aligned
with the text:

● ALIGN=TEXTTOP aligns the top of the applet with the top of the tallest text in the
line.

● ALIGN=TOP aligns the applet with the topmost item in the line (which might be
another applet,an image, or the top of the text).

● ALIGN=ABSMIDDLE aligns the middle of the applet with the middle of the largest
item in the line.

314 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

11.31318-9 CH08 9/24/98 1:29 PM Page 314

Applets, Applications, and Wizards 315

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

● ALIGN=MIDDLE aligns the middle of the applet with the middle of the baseline of the
text.

● ALIGN=BASELINE aligns the bottom of the applet with the baseline of the text.

● ALIGN=BOTTOM is equivalent to ALIGN=BASELINE.

● ALIGN=ABSBOTTOM aligns the bottom of the applet with the lowest item in the line
(which might be the baseline of the text, another applet,or an image).

FIGURE 8.3.
A left-aligned applet.

FIGURE 8.4.
Applet alignment
options in text.

Figure 8.4 shows the various alignment options,where the line is an image and the
arrowhead is a small applet named ArrowApplet.

11.31318-9 CH08 9/24/98 1:29 PM Page 315

HSPACE and VSPACE
The HSPACE and VSPACE attributes are used to set the amount of space, in pixels,
between an applet and its surrounding text. HSPACE controls the horizontal space (the
space to the left and right of the applet). VSPACE controls the vertical space (the space
above and below the applet). For example, here’s the <APPLET> tag for the same sample
of HTML you saw earlier, with vertical space of 30 and horizontal space of 30 added:

<P><APPLET CODE=”HelloAgainApplet2.class” WIDTH=200 HEIGHT=100
ALIGN=LEFT VSPACE=30 HSPACE=30>
HelloAgainApplet2</APPLET>

The result in a typical Java-enabled browser might look as shown in Figure 8.5.

316 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

FIGURE 8.5.
Vertical and horizontal
space.

By comparing this to Figure 8.3,shown earlier, you can readily see that the applet’s
drawing space has both vertical and horizontal buffer zones between it and the surround-
ing text.

CODE and CODEBASE
CODE is used to indicate the name of the class file that holds the compiled Java code for
the current applet. If CODE is used alone in the <APPLET> tag, the .class file is searched
for in the same directory as the .html file that references it.

If you want to store your class files in a different directory than your HTML files, you
have to tell the browser where to find those class files. To do this,you use the CODEBASE
attribute. CODE contains only the name of the class file; CODEBASE contains an alternate
pathname where the classes can be located. For example, say you have a directory where
you keep your HTML files,and in that same directory you also have a subdirectory

VSPACE=30

HSPACE=30

11.31318-9 CH08 9/24/98 1:29 PM Page 316

Applets, Applications, and Wizards 317

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

named myapplets where you keep the related class files. Here’s what the <APPLET> tag
might look like for the class file called myclass.class:

<APPLET CODE=”myclass.class” CODEBASE=”myapplets”
WIDTH=100 HEIGHT=100></APPLET>

Passing Parameters to Applets
With Java applications,you can pass parameters to your main() routine by using argu-
ments on the command line. You can then parse those arguments inside the body of your
class,and the application acts accordingly based on the arguments it is given.

Applets,however, don’t have a command line because they are effectively subroutines
run from the browser application. How, then,do you pass different arguments to an
applet? Applets can get different input from the HTML file that contains the <APPLET>
tag through the use of applet parameters. To set up and handle parameters in an applet,
you need two things:

● A special parameter tag in the HTML file

● Code in your applet to parse those parameters

Applet parameters have two attributes:a NAME and a VALUE. The NAME is simply a name
you pick, just like any other identifier in your code. The VALUE determines the value of
that particular parameter. So,for example, for one HTML page, you can indicate the
color of text in an applet by using a parameter with the name color and the value red,
whereas for another HTML page, you can specify the value blue.

In the HTML file that contains the embedded applet,you indicate each parameter using
the <PARAM> tag, which uses the NAME and VALUE attributes. The <PARAM> tag goes in
between the <APPLET> and </APPLET> tag pair:

<APPLET CODE=”MyApplet.class” WIDTH=100 HEIGHT=100>
<PARAM NAME=font VALUE=”TimesRoman”>
<PARAM NAME=size VALUE=”36”>
A Java applet appears here.
</APPLET>

This particular example defines two parameters to the MyApplet applet:one whose name
is font and whose value is TimesRoman and another whose name is size and whose
value is 36.

Parameters are passed to your applet when it is loaded. In the init() method for your
applet,you can then get hold of those parameters by using the getParameter() method.
The getParameter() method takes one argument,a string representing the name of the
parameter you’re looking for, and returns a string containing the corresponding value of

11.31318-9 CH08 9/24/98 1:29 PM Page 317

that parameter. (Like arguments in Java applications,all the parameter values are
returned as strings.) To get the value of the font parameter from the HTML file, you
might have a line such as this in your init() method:

String theFontName = getParameter(“font”);

318 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

The names of the parameters as specified in <PARAM> and the names of the
parameters in getParameter() must match, including case. In other words,
just like everything else in Java, applet parameters are case-sensitive.
Therefore, the line <PARAM NAME=”name”> is different from <PARAM
NAME=”Name”>. If your parameters are not being properly passed to your
applet, the first thing to check is whether the parameter cases match.

Caution

Note that if a parameter you expect has not been specified in the HTML file,
getParameter() returns null. Most often,you will want to test for a null parameter and
supply a reasonable default:

if (theFontName == null)
theFontName = “CourierNew”;

Keep in mind that getParameter() returns strings. If you want a parameter to be some
other object or type, you have to convert it yourself. To parse the size parameter from
that same HTML file and assign it to an integer variable called theSize, you might use
the following lines:

int theSize;
String s = getParameter(“size”);
if (s == null) theSize = 12;
else theSize = Integer.parseInt(s);

Got it? Not yet? Okay, let’s create an example of an applet that uses these techniques.
You’ll modify the HelloAgainApplet2 code so that it says hello to a specific name, for
example Fran or Chris. The name is passed into the applet through an HTML parameter.
Start by copying the HelloAgainApplet2 class,renaming it to HelloAnybodyApplet:

import java.applet.*;
import java.awt.*;

public class HelloAnybodyApplet extends Applet {

Font f = new Font(“TimesRoman”, Font.BOLD, 36);

public void paint(Graphics g) {
g.setFont(f);
g.setColor(Color.red);

11.31318-9 CH08 9/24/98 1:29 PM Page 318

Applets, Applications, and Wizards 319

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

g.drawString(“Hello again!”, 5, 50);
}

}

The first thing you need to add to this class is a place for the name. Because you’ll need
that name throughout the applet,add an instance variable for the name, just after the
variable for the font:

String helloName;

To set a value for helloName, you have to get the parameter. The best place to handle
parameters to an applet is inside an init() method. The init() method is defined simi-
larly to the paint() method (public, with a return type of void, but no arguments).
Make sure when you get the parameter that you always test for a value of null. The
default, in this case, if a name isn’t indicated, is to say hello to Chris:

public void init() {
helloName = getParameter(“name”);
if (helloName == null)

helloName = “Chris”;
}

One last thing to do now that you have the name from the HTML parameters is to mod-
ify the name so that it’s a complete string—that is, to tack Hello and a space onto the
beginning and an exclamation point onto the end. You could do this in the paint()
method just before printing the string to the screen; however, paint() is done every time
the screen is repainted, so it’s somewhat more efficient to put this line in the init()
method instead:

helloName = “Hello “ + helloName + “!”;

And now, all that’s left is to modify the paint() method. You want to replace the literal
Hello Again! string in the original call to the drawString() method with the variable
name:

g.drawString(helloName, 5, 50);

Listing 8.3 shows the final result of the HelloAnybodyApplet class.

LISTING 8.3. HelloAnybodyApplet.java.

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class HelloAnybodyApplet extends Applet {
5:
6: Font f = new Font(“TimesRoman”, Font.BOLD, 36);

TYPE

continues

11.31318-9 CH08 9/24/98 1:29 PM Page 319

LISTING 8.3. CONTINUED

7: String helloName;
8:
9: public void init() {
10: helloName = getParameter(“name”);
11: if (helloName == null) helloName = “Chris”;
12: helloName = “Hello “ + helloName + “!”;
13: }
14:
15: public void paint(Graphics g) {
16: g.setFont(f);
17: g.setColor(Color.red);
18: g.drawString(helloName, 5, 50);
19: }
20: }

Now, make a copy of the HelloAgain2.html file, name it HelloAnybodyApplet1.html,
and edit the HTML file so that you can pass parameters to it and execute your newly cre-
ated class. Listing 8.4 shows the new HTML code specifically designed for the
HelloAnybodyApplet applet.

LISTING 8.4. HelloAnybodyApplet1.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD>
5: <BODY>
6: <P>
7: <APPLET CODE=”HelloAnybodyApplet.class” WIDTH=300 HEIGHT=100>
8: <PARAM NAME=name VALUE=”Fran”>
9: Hello to whoever you are!
10: </APPLET>
11: </BODY>
12: </HTML>

On line 7 is the <APPLET> tag, which points to the class file for the applet with
the appropriate width and height (300 and 100). On line 8 is the <PARAM> tag,

which you use to pass in the name. Here, the NAME parameter is simply name, and the
VALUE is the string Fran.

To run this from within JBuilder, be sure you have added both the
HelloAnybodyApplet.java and HelloAnybodyApplet1.html files to the
AppletsAppsWizards.jpr project. Compile the HelloAnybodyApplet.java file, right-
click on the HTML node in the Navigation pane, and then select the Run command. The
appletviewer displays the results shown in Figure 8.6.

320 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

TYPE

ANALYSIS

11.31318-9 CH08 9/24/98 1:29 PM Page 320

Applets, Applications, and Wizards 321

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Now, let’s try a second example. Remember that if no name is specified in the code for
HelloAnybodyApplet.java, the default is the name Chris. Listing 8.5 shows an HTML
page very similar to the HelloAnybodyApplet1.html file; however,
HelloAnybodyApplet2.html has no parameter tag for name.

LISTING 8.5. HelloAnybodyApplet2.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD>
5: <BODY>
6: <P>
7: <APPLET CODE=”HelloAnybodyApplet.class” WIDTH=300 HEIGHT=100>
8: Hello to whoever you are!
9: </APPLET>
10: </BODY>
11: </HTML>

Here, because no name is supplied by this HTML file, the applet will use the default. To
run this from within JBuilder, be sure you have added HelloAnybodyApplet2.html to the
project. Then,when you run this HTML file, the appletviewer displays the results shown
in Figure 8.7.

FIGURE 8.6.
HelloAnybodyApplet1.

html as shown in
appletviewer.

FIGURE 8.7.
HelloAnybodyApplet2.

html as shown in
appletviewer.

Applet parameters, then,provide the same flexibility as application command-line para-
meters. They enable you to “reuse”the applet code in various HTML pages by allowing
each HTML page to specify the parameters that it will provide to the applet.

Other Applet Tidbits
This section presents some miscellaneous applet hints that just didn’t seem to fit any-
where else:using showStatus() to print messages in the Web browser’s status window,

TYPE

11.31318-9 CH08 9/24/98 1:29 PM Page 321

providing applet information to others,and communicating among multiple applets on
the same page.

Using the showStatus() Method
The showStatus() method, available in the applet class,enables you to display a string
in the status bar of the Web browser that contains the applet. You can use this for printing
error, link, help,or other status messages:

getAppletContext().showStatus(“Changing the color.”);

The getAppletContext() method enables your applet to access features of the Web
browser that contains it.

322 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Providing Applet Information
The java.awt class gives you a mechanism for associating information with your applet.
Usually, there is a mechanism in the Web browser that’s displaying the applet to view
display information. You can use this mechanism either to sign your name or organiza-
tion to your applet or to provide contact information so that users can reach you if they
desire.

To provide information about your applet,override the getAppletInfo() method:

public String getAppletInfo() {
return “AllClear copyright 1997 Triple-M Consulting”;

}

When you’ve added this method to an applet and you display it using appletviewer, you
can select Applet| Info to see what information your applet will display.

Communicating Among Applets
Sometimes you might want to have an HTML page with several applets on it. To do this,
all you have to do is include several different instances of the <APPLET> tag. The browser
will display the applet named in each <APPLET> tag in the HTML page, all at the same
time. What if you want to communicate among those applets? What if you want a
change in one applet to affect the other applets in some way?

The showStatus() method might not be supported in all Web browsers, so
do not depend on it for your applet’s functionality or interface. It is a useful
way of communicating optional information to the user, but if you need a
more dependable method of communication, set up a label in your applet
and update it to reflect changes in the message.

Caution

11.31318-9 CH08 9/24/98 1:29 PM Page 322

Applets, Applications, and Wizards 323

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

The best way to approach this is to use the applet context to access different applets on
the same page, using the getAppletContext().getApplets() methodto find out which
applets are out there, and getAppletContext().getApplet() method(note this is
getApplet() singular) to address a particular applet.

For example, to call a method named sendMessage() on all the applets on a page,
including the current applet,use the getAppletContext().getApplets() method and
a for loop that looks like this:

for (Enumeration e = getAppletContext().getApplets();
e.hasMoreElements();) {
Applet current = (Applet)(e.nextElement());
current.sendMessage();

}

The getApplets() method returns an Enumeration object with a list of the applets on
the page. Iterating over the Enumeration object in this way enables you to access each
element in the Enumeration in turn.

If you want to call a method in a specific applet,it’s slightly more interesting. To do this,
give your applets a name, and then refer to them by that name inside the body of code
for that applet. To give the applet a name, use the NAME parameter in your HTML file:

<P>This applet sends information:
<APPLET CODE=”AllClear.class” WIDTH=100 HEIGHT=150

NAME=”sender”></APPLET>
<P>This applet receives information from the sender:
<APPLET CODE=”RunIfClear.class” WIDTH=100 HEIGHT=150

NAME=”receiver”></APPLET>

Use the getAppletContext().getApplet() method with the name of that applet,which
gives you a reference to the named applet. You can then refer to that applet as if it were
just another object:by using call methods,setting its instance variables,and so on:

// gain access to the receiver applet
applet receiver = getAppletContext().getApplet(“receiver”);
// tell it to update itself
receiver.update(text, value);

In this example, the getApplet() method gets a reference to the applet named receiver.
Given that reference, you can then call methods in that applet as if it were just another
object in your own environment. Here, for example, if receiver has an update()
method, you can tell receiver to update itself by using the information the current
applet has in the variables text and value.

Naming your applets and then referring to them by using the methods described in this
section enables your applets to communicate and stay in sync with each other, providing
uniform behavior for all the applets on your HTML page.

11.31318-9 CH08 9/24/98 1:29 PM Page 323

Creating Applications
Applications,unlike applets,do not require a Java-enabled browser to view them from
within an HTML Web page. Applications are Java programs that run on their own.
However, Java applications do require that the Java VM be installed on the client
machine so that the applications have access to the runtime interpreter.

A Java application consists of one or more classes and can be as large or as small as you
want it to be. HotJava is a good example of a large Java application. The only thing you
need to make a Java application run is one class that serves as the “jumping-off” point
for the rest of your Java program. If your program is small enough,it might need only
that one class.

The jumping-off class for your program needs a main() method. When you run your
compiled Java class (using the Java VM interpreter),the main() method is the first thing
that gets called. None of this should be a surprise to you at this point; you’ve been creat-
ing Java applications with main() methods all along.

The signature for the main() method always looks like this:

public static void main(String args[]) {...}

Here are the parts of the main() method:

● public means that this method is available to other classes and objects. The
main() method must always be declared public.

● static means that this is a class method.

● void means this method doesn’t return a value.

● main() takes one argument:an array of strings. This argument is used for
command-line arguments,which you’ll learn about in the next section.

The body of the main() method contains any code you need to get your application
started: initializing variables or creating instances of any classes you might have
declared.

When Java executes the main() method, keep in mind that main() is a class method. The
class that holds it is not automatically instantiated when your program runs. If you want
to treat that class as an object,you have to instantiate it in the main() method yourself.
(All examples up to this point have done just this.)

Passing Command-Line Arguments
Because Java applications are standalone programs,it’s useful to be able to pass argu-
ments or options to that program to determine how it will r un or to enable a generic pro-
gram to operate on different kinds of input. Command-line arguments can be used for

324 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

11.31318-9 CH08 9/24/98 1:29 PM Page 324

Applets, Applications, and Wizards 325

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

many different purposes. For example, you can use them to turn on debugging input,to
indicate a filename to read from or write to,or for any other information that you might
want your Java program to know.

To pass arguments to a Java program,you merely append them to the command line
when you run your Java program:

java myprogram argumentOne 2 three

On this command line, you have three arguments:argumentOne, 2, and three. Note that
a space separates arguments,so this command line produces three arguments also:

java myprogram Java is cool

To group arguments,surround them with double-quotes. This command line produces
one argument:

java myprogram “Java is cool”

The double-quotes are stripped off before the argument gets to the main() method in
your program,but they serve to keep the text between them intact as one argument until
it gets there.

Parsing Arguments
How doesJava handle arguments? It stores them as an array of strings,which is passed
to the main() method in your Java program. Remember the signature for main():

public static void main (String args[]) {...}

Here, args is the name of the array of strings that contains the list of arguments. You
actually can call it anything you want. Inside your main() method, you can then handle
the arguments your program was given by iterating through the array of arguments and
handling those arguments as you want.

For example, examine the class named EchoArgs in Listing 8.6.

LISTING 8.6. EchoArgs.java.

1: class EchoArgs {
2: public static void main(String args[]) {
3: for (int i = 0; i < args.length; i++) {
4: System.out.println(“Argument “ + i + “: “ + args[i]);
5: }
6: }
7: }

TYPE

11.31318-9 CH08 9/24/98 1:29 PM Page 325

To pass arguments to a Java application from within the JBuilder IDE,select the Run|
Parameters menu item. Select the AppletAppsWizards.jpr Properties dialog box
Run/Debug page by clicking on the Run/Debug tab. Type the arguments that you want to
pass to the Java application in the Command line parameters text box. Do not enter java
or the program name; enter only the arguments to your program. For example, type the
following set of arguments into the Command line parameters text box to get the result
shown in Figure 8.8:

9 1 8 jump over the moon

326 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

FIGURE 8.8.
The Parameters dialog
box with several argu-
ments entered.

In the Default Runnable File field, click on the drop-down arrow and select the
EchoArgs.java program. Also, check to make sure that the radio button labeled Send run
output to Execution Log is selected, and then click OK. Now, select View |Execution
Log so that you can watch the output while you run this program,and then click the Run
button on the toolbar. With these command-line arguments,this program produces the
following output in the Execution Log window:

Argument 0: 9
Argument 1: 1
Argument 2: 8
Argument 3: jump
Argument 4: over
Argument 5: the
Argument 6: moon

In Java, args[0] is the first argument, not the program name as it is in C and
UNIX.

Caution

OUTPUT

11.31318-9 CH08 9/24/98 1:29 PM Page 326

Applets, Applications, and Wizards 327

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Now, enter this set of arguments in the Run/Debug page of the AppletAppsWizards.jpr
Properties dialog box:

aOne “and aTwo” and aThree

With these arguments,this program produces the following output in the Execution Log
window:

Argument 0: aOne
Argument 1: and aTwo
Argument 2: and
Argument 3: aThree

An important thing to remember about the arguments you pass into a Java program is
that those arguments are stored in an array of strings. To treat any of them as nonstrings,
you have to convert them to whatever type you really wanted. For example, suppose you
have a very simple Java program called SumAverage. This Java program can take any
number of numeric arguments and returns the sum and the average of those arguments.
Listing 8.7 shows a first pass at this program.

LISTING 8.7. SumAverageNot.java.

1: class SumAverageNot {
2: // this listing doesn’t compile
3: public static void main(String args[]) {
4: int sum = 0;
5: for (int i = 0; i < args.length; i++) {
6: sum += args[i];
7: }
8: System.out.println(“Sum is: “ + sum);
9: System.out.println(“Average is: “ +
10: (float)sum / args.length);
11: }
12: }

At first glance, this program seems rather straightforward. A for loop iterates
over the array of arguments and sums them,and then the sum and average are

printed out as the last step. But what happens when you try to compile this? Go ahead
and key in the listing and try it. You will be greeted with the following compiler error
message (displayed in the Error pane of the AppBrowser window):

Error: (6) incompatible types; found: java.lang.String, required: int.

This error occurs because, in line 6,you are attempting to assign an element of the args

array (which is an array of strings) to sum (which is an int). To solve this problem,you
must convert the arguments to integers before assigning the values to sum. Fortunately,

TYPE

ANALYSIS

OUTPUT

11.31318-9 CH08 9/24/98 1:29 PM Page 327

there’s a handy method in the Integer class,called parseInt(), that does exactly that.
Modify line 6 in SumAverage so that it looks like Listing 8.8.

LISTING 8.8. SumAverage.java.

1: class SumAverage {
2: // this listing compiles okay
3: public static void main(String args[]) {
4: int sum = 0;
5: for (int i = 0; i < args.length; i++) {
6: sum += Integer.parseInt(args[i]);
7: }
8: System.out.println(“Sum is: “ + sum);
9: System.out.println(“Average is: “ +
10: (float)sum / args.length);
11: }
12: }

Now it should compile. Try out your program by selecting Run|Parameters to display
the AppletAppsWizards.jpr Properties dialog box. Open the dialog box to the Run/Debug
page by clicking on the Run/Debug tab. Select SumAverage.java as the Default
Runnable File, and enter the following command-line arguments in the Command line
parameters text box:

8 3 8 6 1

If you added SumAverageNot.java to the current project,your build will stop at that
file’s compiler error. Select the SumAverageNot.java node in the Navigation pane, and
then click the Remove from Project icon (the folder with the minus) to unassociate that
file with the project (it will remain on disk if you’ve saved it). Then do the build again;
this time it shouldcomplete properly.

The following output appears in the Execution Log window:

Sum is: 26
Average is: 5.2

Dual-Duty Programs
What if you wanted to write the same program and be able to use it as both an applet and
an application? Java lets you do that by simply putting the code for both the applet’s
functionality and the application’s functionality (including the main() method) in the
same class. If the class is called from the <APPLET> tag in an HTML page, it will r un as
an applet (given that the appropriate code is present); if the class is called from the

328 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

TYPE

OUTPUT

11.31318-9 CH08 9/24/98 1:29 PM Page 328

Applets, Applications, and Wizards 329

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

operating system,it will r un as an application (given that the main() method is present).
In other words,the Java VM interpreter is smart enough to be able to tell the context in
which the class file is called and executes the appropriate part of the class.

As an example, Listing 8.9 shows the HelloAnybodyApplet converted so that it also
functions as a standalone Java application and renamed to HelloAnybody.

LISTING 8.9. HelloAnybody.java.

1: import java.applet.*;
2: import java.awt.*;
3:
4: public class HelloAnybody extends Applet {
5:
6: Font f = new Font(“TimesRoman”, Font.BOLD, 36);
7: String helloName;
8:
9: public void init() {
10: helloName = getParameter(“name”);
11: if (helloName == null) helloName = “Chris”;
12: helloName = “Hello “ + helloName + “!”;
13: }
14:
15: public void paint(Graphics g) {
16: g.setFont(f);
17: g.setColor(Color.red);
18: g.drawString(helloName, 5, 50);
19: }
20:
21: public static void main(String args[]) {
22: System.out.print(“Hello”);
23: if (args.length == 0) {
24: System.out.print(“ Chris”);
25: }
26: else {
27: for (int i = 0; i < args.length; i++) {
28: System.out.print(“ “ + args[i]);
29: }
30: }
31: System.out.println(“!”);
32: }
33: }

To make this a dual-duty program,you need to add the main() method, which
does basically the same things that the applet code is doing.

● Line 22 prints the first part of the string, Hello.

TYPE

ANALYSIS

11.31318-9 CH08 9/24/98 1:29 PM Page 329

● Lines 23 through 25 check to see whether any arguments have been provided and,
if not, print a space and Chris as the default.

● Lines 26 through 30 execute when the if comparison is false—that is, there is at
least one argument. The for loop iterates through the arguments and prints a space
followed by the argument for each iteration.

● Line 31 prints the exclamation point at the end of the output string.

Listing 8.10 shows the HTML file associated with this program so that you can run it as
an applet.

LISTING 8.10. HelloAnybody.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hello to Everyone!</TITLE>
4: </HEAD>
5: <BODY>
6: <P>
7: <APPLET CODE=”HelloAnybody.class” WIDTH=500 HEIGHT=100>
8: <PARAM NAME=name VALUE=”JBuilder Fans”>
9: Hello to whoever you are!
10: </APPLET>
11: </BODY>
12: </HTML>

Now, you’re all set. Select File |Save All, and then run your new program as an applet by
right-clicking on the HelloAnybody.html node and selecting Run. The results will appear
in the appletviewer window, as shown in Figure 8.9.

330 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

TYPE

FIGURE 8.9.
The HelloAnybody
applet displayed in the
appletviewer.

Also, try running this as a standalone program by selecting the Run|Parameters com-
mand. Select the Run/Debug page by clicking on the Run/Debug tab. Select
HelloAnybody.java in the Default Runnable File field. Finally, enter Kristi as the
command-line argument in the Command line parameters text box. Click OK to dismiss
the dialog box, and click on the Run toolbar button. The Execution Log window will dis-
play this:

Hello Kristi!OUTPUT

11.31318-9 CH08 9/24/98 1:29 PM Page 330

Applets, Applications, and Wizards 331

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

The best approach to creating programs that can run as either an applet or an application
is first to define the program as an applet,making sure that any output variables are
defined as instance variables for accessibility. Then,create the HTML file and test the
applet. When it’s running properly, add the main() method so that your class file can
also be run as a standalone application, and you’ve got it!

JBuilder Projects
A JBuilder project is any collection of files that you want to treat as an organized group,
such as files that compose an application or an applet. In JBuilder, the project file that
tracks all the pieces of a project is designated by the file extension .jpr. When you open
an existing .jpr file in the Browser, all its elements are listed in the Navigation pane.

Creating a Project
You create a project file by selecting File |New Project,which displays the Project
Wizard dialog box, shown in Figure 8.10.

FIGURE 8.10.
The Project Wizard
dialog box.

In this dialog box, the File field is the place where you enter information about the pro-
ject name and the package to which it belongs. Remember that packages follow a direc-
tory hierarchy, so by entering the fully qualified path and filename for your project,you
are telling JBuilder which package (directory) the project belongs in. In Figure 8.10,the
package is untitled1, and the project is untitled1.jpr. You can either type the path
and filename manually, as you have done in past days,or use the Browse button to find a
particular directory (package) in which you want to locate your new project.

You can optionally enter a title, author, company, and description for your project as
well. This information is inserted into an HTML file with the same root name as your
project. By clicking the Finish button in this dialog, you instruct JBuilder to open the
.jpr file in memory and prepare it to receive any files that you want to add to it to com-
plete your project.

11.31318-9 CH08 9/24/98 1:29 PM Page 331

Dividing your packages into projects in this way is good practice. It enables you to parti-
tion your packages into sections that can be built and debugged independently, using the
Build |Make Project or Build|Build Project command. For example, for today’s lessons,
you were instructed to add all the listing files to the AppletAppsWizards project. If you
did so,you can build all the listings in today’s lesson with just one command:Build |
Build “AppletAppsWizards.jpr”.

If you’ve added SumAverageNot.java to the project,your build will stop at that file’s
compiler error. Remove SumAverageNot.java and do the build again. This time it should
complete properly if you’ve typed everything correctly.

Project File Extensions
Aside from the .java and .html files that you’ve added to projects so far, there are a
number of other files that a project can comprise. Table 8.1 shows what types of files can
be part of a JBuilder project and gives a brief explanation of the purpose of each type.

TABLE 8.1. JBUILDER PROJECT FILES.

Extension Purpose

.~jav, .~htm Backup files for .java and .html files; enable you to recover previous file
contents after saving to disk.

.au Audio file in AU (µ-law) format.

.bmp Graphics file in Windows Bitmap format.

.class Compiled source code file containing Java bytecodes.

.gif Graphics file in GIF format.

.html Hypertext Markup Language file; used to run applet class files in a Java-
enabled Web browser.

.jar Java ARchive file, a compressed collection of files.

.java Source code file containing Java code for applets and/or applications; com-
piling this file creates a .class file.

.jpg Graphics file in JPEG format.

.jpr Project file; holds references to all other files in the project and project
properties.

.zip ZIP file, a compressed collection of files.

332 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Any file can be added to a JBuilder 2 project. There’s an option to treat cus-
tom extensions as text, such as .c or .cpp.

Tip

11.31318-9 CH08 9/24/98 1:29 PM Page 332

Applets, Applications, and Wizards 333

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Using Wizards
You now have some experience with applets and applications,but with the JBuilder IDE,
there’s always an easier way! This section introduces you to the Applet and Application
wizards,which generate skeleton code for your Java programs based on the answers you
provide in the wizard dialog boxes.

You’ve already used one wizard, the Project Wizard, to create new projects to hold your
files as you’ve been trying them out during the past week. (You have been trying them
out,haven’t you?) JBuilder also provides an Applet Wizard and an Application Wizard.
These wizards present you with dialog boxes that step you through creating the source
code for an applet or application. You specify some of the more common options while
JBuilder generates the code for you.

Applet Wizard
First,make sure that today’s project,AppletsAppsWizards,is open; you’ll be adding this
applet to it. Now, to create a Java applet using the Applet Wizard, select File |New to dis-
play the New dialog box. On the New page, click on the Applet icon and then click OK.
The first page of the Applet Wizard dialog box appears,as shown in Figure 8.11.

Creating the Source Files
The first page of the Applet Wizard dialog box asks you for the name of the applet’s
package and class. Keep the current package name, AppletsAppsWizards,displayed in
the Package text box. In the Class text box, type GreenApplet. As you type this informa-
tion, notice that the File field automatically reflects what you’re typing, as shown in
Figure 8.12.

FIGURE 8.11.
The first page of the
Applet Wizard dialog
box.

11.31318-9 CH08 9/24/98 1:29 PM Page 333

This page of the dialog box also enables you to decide whether to generate comments
and methods and whether this applet will also be an application. Finish filling out the
dialog as shown in Figure 8.12. After filling in this page, click the Next> button.

In the next page of the Applet Wizard dialog box, you’re asked for the names and other
details of the applet’s parameters,as shown in Figure 8.13.

334 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

FIGURE 8.12.
Applet Wizard: Step 1
of 3.

FIGURE 8.13.
Applet Wizard: Step 2
of 3.

This applet doesn’t take any parameters, so just click the Next> button again.

The third, and last,page of the Applet Wizard dialog box asks whether you want the wiz-
ard to generate an HTML page. You’ll need one to run your applet in; so make sure that
the Generate HTML Page check box is checked, and type TestGreenApplet in the Name
field, as shown in Figure 8.14.

11.31318-9 CH08 9/24/98 1:29 PM Page 334

Applets, Applications, and Wizards 335

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

When you’re done, click the Finish button. At this point,the JBuilder IDE generates the
source code files,both .java and .html, needed to support your choices. You’ll see that
two files are added to the current project:an HTML file, GreenApplet.html, and a Java
source code file, GreenApplet.java. When the IDE has completed the code generation,
click on the GreenApplet.html entry in the Navigation pane, and click on the Source tab
in the Content pane.

Modifying the HTML File
You might want to change some things in the HTML file to suit your needs. In this case,
let’s change the title and the width attributes. Click on the Contents pane, on the line
below the <TITLE> tag that reads HTML Test Page. Press Home and then press
Shift+End to select the entire line. Now type GreenApplet Is Alive! as the new title,
which will appear as the caption of the HTML page’s window. Press the down arrow
until the cursor is on the WIDTH attribute line, press End and then Shift+Ctrl+left arrow to
select the 400 value. Now type 600 as the new width. The applet will now appear in a
rectangular area,600 pixels by 300 pixels. Figure 8.15 shows the resulting HTML source
file.

FIGURE 8.14.
Applet Wizard: Step 3
of 3.

FIGURE 8.15.
GreenApplet.html.

11.31318-9 CH08 9/24/98 1:29 PM Page 335

Select File |Save to preserve your changes. Next, you’ll modify the skeleton applet file.

Modifying the Applet
Although the HTML page and the applet code have been generated for you,you will
want to change a line of code in the jbInit() method and add a paint() method in the
GreenApplet class.

To accomplish this in the JBuilder IDE,click on the GreenApplet.java entry in the
Navigation pane. In the Structure pane, scroll down until you see a method named
jbInit() and then click on that entry. The cursor in the Contents pane will automatically
be positioned on that method, with its header highlighted, as shown in Figure 8.16.

336 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

FIGURE 8.16.
The AppBrowser with
the jbInit() method’s
signature highlighted.

Click on the highlighted line and then move the cursor down and over to the offending
400 text. Change it to 600 so that the line reads as follows:

xYLayout1.setWidth(600);

Then add the paint() method listed next to your new applet. The GreenApplet.java file
source code should look similar to what’s shown in Figure 8.17.

//Paint the applet
public void paint(Graphics g) {

Font f = new Font(“TimesRoman”, Font.ITALIC, 72);
g.setFont(f);
g.setColor(Color.green);
g.drawString(“I’m alive, I tell you!”, 10, 150);

}

11.31318-9 CH08 9/24/98 1:29 PM Page 336

Applets, Applications, and Wizards 337

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Select File |Save. Run the applet and see what happens! You’ll also want to explore the
generated .java file and see what different variables and methods JBuilder automatically
provides for your applets. You’ll learn more about how these work in the next few days.

Application Wizard
First,make sure today’s project,AppletsAppsWizards,is open; you’ll be adding this
application to it. Now, to create a Java application using the Application Wizard, select
File |New to display the New dialog box. On its New page, click on the Application icon
and then click OK. The Application Wizard will display a series of pages with fields for
you to fill in the blanks.

Creating the Source Files
The first page of the Application Wizard dialog box asks you for the name of the applica-
tion class,which is Hello, and also allows you to decide whether to generate comments,
as shown in Figure 8.18.

FIGURE 8.17.
The newly added
paint() method.

FIGURE 8.18.
Application Wizard:
Step 1 of 2.

11.31318-9 CH08 9/24/98 1:29 PM Page 337

After filling in the first page, you can click the Finish button if your application is not
going to have any UI components (in other words,it will be a command-line application
only). However, most of the time, you will want to add UI components to your applica-
tion, so click the Next> button.

In the second page of the Application Wizard dialog box, you’ll be asked for the name of
the Frame class. Remember that a Frame is a window that holds other UI components.
This page also allows you to choose which generic methods and components will be gen-
erated automatically for you. Fill in the Name field as shown in Figure 8.19.

338 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

FIGURE 8.19.
Application Wizard:
Step 2 of 2.

Notice once again that as you type HelloFrame in the Name field, the File field reflects
your choice. When you’re done, click the Finish button. At this point,the IDE generates
the source code files needed to support your choices. When it’s finished, click on the
Hello.java entry in the Navigation pane of the AppBrowser window so that it looks as
shown in Figure 8.20.

FIGURE 8.20.
Hello.java in the
AppBrowser window.

11.31318-9 CH08 9/24/98 1:29 PM Page 338

Applets, Applications, and Wizards 339

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

Modifying Source Files
You’ll see that two Java source code files,Hello.java and HelloFrame.java, were gen-
erated. In a GUI application, such as this one, you’ll add much of the functionality by
putting components in the Frame and creating event handlers, just as you did on Day 6,
“User Interface Design.”

Summary
Applets are probably the most common use of the Java language today. Applets are more
complicated than many Java applications because they are executed and drawn inline
within Web pages,but they can access the graphics,user interface (UI),and event struc-
ture provided by the Web browser itself. Today, you learned the basics of creating
applets,including the following:

● All applets you develop using Java inherit from the Applet class,which is part of
the java.applet package. The Applet class provides basic behavior for how the
applet will be integrated with and react to the browser and various forms of input
from that browser and the person running it. By subclassing Applet, you have
access to all that behavior.

● Applets have five major methods that are used for the basic activities an applet per-
forms during its life cycle: init(), start(), stop(), destroy(), and paint().
Although you don’t necessarily need to override all these methods,these are the
most common ones you’ll see repeated in many of the applets you create in this
book and in other samples you might come across.

● The Applet Wizard can be used to generate foundation code for your Java Applets.
You can invoke this code generator by selecting File |New from the JBuilder menu
and then selecting Applet Wizard from the New page of the New dialog box. Fill in
the requested information in the ensuing pages of the Applet Wizard dialog box to
create an applet.

● To run a compiled applet class file, you embed it in an HTML Web page by using
the <APPLET> and </APPLET> tag pair. When a Java-capable browser comes across
<APPLET>, it loads and runs the applet described in that tag. If the browser is not
Java-enabled, the text between the <APPLET> and </APPLET> tags (if any) is dis-
played instead. To publish Java applets on the World Wide Web in HTML files,
you do not need special server software; any old Web server will do just fine.

● Unlike applications,applets do not have a command line on which to pass argu-
ments,so those arguments must be passed into the applet through the HTML file
in which the applet is embedded. You indicate parameters in the HTML file by

11.31318-9 CH08 9/24/98 1:29 PM Page 339

placing the <PARAM> tag between the <APPLET> and </APPLET> tag pair. <PARAM>
has two attributes:NAME for the name of the parameter (its identifier) and VALUE for
its value. Inside the body of your applet (usually in the init() method),you can
then gain access to those parameters using the getParameter() method; remember
that all parameters are passed into the applet as strings,and you must convert val-
ues to other types if necessary.

You also learned about some miscellaneous applet tricks, such as how to use the
showStatus() and getAppletInfo() methods and how to use named applets to facilitate
communication among applets on the same HTML page.

You also learned about creating applications as well as dual-purpose programs that can
serve as both applets and applications. Finally, you built both a GUI application project
and an applet project by using the wizards in the JBuilder IDE.

Q&A
Q In the fir st part of today’s lesson,you say that applets are downloaded from

random Web servers and run on the client’ s system. What’ s to stop an applet
developer from creating an applet that deletes all the files on the client’ s sys-
tem or in some other way compromises that system’s security?

A Recall that Java applets have several restrictions that make it difficult for all the
more obvious malicious behavior to take place. For example, because Java applets
cannot read or write files on the client system,they cannot delete or read system
files that might contain private information. Because they cannot run programs on
the client’s system without your express permission,they cannot,for example, run
system programs pretending to be you. Nor can they run so many programs that
your system crashes.

In addition, Java’s very architecture makes it difficult to circumvent these restric-
tions. The language itself, the Java compiler, and the Java Virtual Machine all have
checks to make sure that no one has tried to sneak in bogus code or play games
with the system itself. Of course, no system can claim to be 100 percent secure,
and the fact that Java applets are run on your system shouldmake you concerned.
Being concerned is what makes you careful.

Q Wait a minute—if I can’ t read or write files or run programs on the client sys-
tem on which the applet is running, doesn’t that mean that I basically can’t do
anything other than simple animations and flashy graphics? How can I save
state in an applet? How can I create, say, a word processor or a spreadsheet as
a Java applet?

340 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

11.31318-9 CH08 9/24/98 1:29 PM Page 340

Applets, Applications, and Wizards 341

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

A For each person who doesn’t believe that Java is secure enough,there is another
who believes that Java’s security restrictions are too severe for just these reasons.
Yes,Java applets are limited because of the security restrictions. But given the pos-
sibility for abuse, the Java team believes that it’s better to err on the side of being
more cautious as far as security is concerned. Consider it a challenge!

Keep in mind, also,that Java applications have none of the restrictions that pertain
to Java applets,but they are just as portable across platforms. It might be that the
thing you want to create would make a much better application than an applet.

Q I have an applet that takes parameters and an HTML file that passes values to
those parameters. But when my applet runs,all I get are null values,so it
always displays my defaults. What’ s going on here?

A Check to make sure that your parameter identifiers (the strings following the NAME
attributes) match the names you’re testing for in your getParameter() statements.
Remember that Java is case-sensitive, and this includes applet parameters. Make
sure, also,that your <PARAM> tags are placed between the <APPLET> and </APPLET>
tags and that you haven’t misspelled anything.

Q In the Browser, when my application project is open,I see that Java class files
are sometimes imported into my project. What does this mean,and how can I
find out more about these imported files?

A Java class files are imported to add their functionality to your application. For
example, if you used Java AWT controls in your project,the Imports node would
show java.awt.* to indicate that those class files were used by your project. If
you’d like to see what is in those imported files, just double-click on the entry in
the Imports list,and JBuilder will load the import library and its files into the
AppBrowser window so that you can examine them in detail.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. What are the five major methods that an applet can override? Must an applet over-

ride all five of these methods to execute properly?

11.31318-9 CH08 9/24/98 1:29 PM Page 341

2. Plain text between the <APPLET> and </APPLET> tag pair serves what purpose? Is it
a requirement,or is it optional?

4. What <APPLET> attribute can be used to tell the HTML page to look in some other
directory for the applet’s class files?

5. True or False? All applet parameters are passed as strings and must be converted
within the applet body if they represent some other type of data.

Exercise
Using Listing 8.11 as a base, make the following changes to the HTML code, and name
the resulting file HeyYouApplet2.html:

● Add a parameter named fname with a value of CourierNew.

● Add a parameter named fsize with a value of 12.

LISTING 8.11. HeyYouApplet.html.

1: <HTML>
2: <HEAD>
3: <TITLE>Hey You!</TITLE>
4: </HEAD>
5: <BODY>
6: <P>
7: <APPLET CODE=”HeyYouApplet.class” WIDTH=300 HEIGHT=150>
8: <PARAM NAME=name VALUE=”Michelle”>
9: Hey out there!
10: </APPLET>
11: </BODY>
12: </HTML>

Then,using Listing 8.12 as a base, make the following changes to the Java code, and
name the resulting file HeyYouApplet2.java:

● Get the fname parameter’s value, and set fontName to that value; make the default
value TimesRoman.

● Get the fsize parameter’s value, and set fontSize to that value. Convert the
fontSize to an integer fontSizeInt, and make the default value 36.

● In the paint() method, set the f variable’s arguments using fontName and
fontSizeInt.

● Also in the paint() method, pass f to the getSetFont() method.

342 Day 8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

TYPE

11.31318-9 CH08 9/24/98 1:29 PM Page 342

Applets, Applications, and Wizards 343

8

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

LISTING 8.12. HeyYouApplet.java.

1: import java.awt.Graphics;
2: import java.awt.Font;
3: import java.awt.Color;
4:
5: public class HeyYouApplet extends java.applet.Applet {
6:
7: String heyName;
8:
9: public void init() {
10:
11: heyName = getParameter(“name”);
12: if (heyName == null)
13: heyName = “You”;
14: heyName = “Hey “ + heyName + “!”;
15: }
16:
17: public void paint(Graphics g) {
18: Font f = new Font(“TimesRoman”, Font.BOLD, 36);
19: g.setFont(f);
20: g.setColor(Color.green);
21: g.drawString(heyName, 5, 50);
22: }
23: }

TYPE

11.31318-9 CH08 9/24/98 1:29 PM Page 343

P1/V1 TY JBuilder in 21 Days 31318-9 Susan Chapter 08 Lp#2

11.31318-9 CH08 9/24/98 1:29 PM Page 344

DAY 9

WEEK 2

Graphics, Fonts, and
Multimedia

Yesterday, you gained a good understanding of how applets work. Now, you’ll
build on that understanding by learning the kinds of things you can do with
applets with the Java and JBuilder class libraries and how to combine them to
produce interesting effects. You’ll start with how to draw to the screen—that is,
how to produce lines and shapes with the built-in graphics primitives, how to
print text using fonts, and how to use and modify color in your applets. Today,
you’ll learn the following:

● How the graphics system works in Java: the Graphics class, the coordi-
nate system used to draw to the screen, and how applets paint and repaint

● Using the Graphics class primitives, including drawing and filling lines,
rectangles, ovals, and arcs

● Creating and using fonts, including how to draw characters and strings
and how to find out the metrics of a given font for better layout, using the
Font and FontMetrics classes

12.31318-9 CH09 9/24/98 1:31 PM Page 345

● All about color in Java, including the Color class and how to set the foreground
(drawing) and background color for your applet

Today, you’ll also learn the fundamentals of animation in Java: how the various parts of
the system all work together so that you can create moving figures and dynamically
updatable applets. Specifically, you’ll explore the following:

● How Java animations work—what the paint() and repaint() methods are, start-
ing and stopping dynamic applets,and how to use and override these methods in
your own applets

● Threads—a quick introduction to what they are and how they can make your
applets more well behaved

● Using images—getting them from the server, loading them into Java,and display-
ing them in your applet

● Creating animations by using images,including an extensive example

● Using sounds—getting them and playing them at the appropriate times

● Sun’s Animator applet—an easy way to organize animations and sounds in Java

● Reducing animation flicker, a common problem with animation in Java

● Double-buffering—advanced flicker avoidance

Animations are fun and easy to do in Java,but there’s only so much you can do with the
built-in Java methods for graphics,fonts and colors. For really interesting animations,
you have to provide your own images for each frame of the animation. Having sounds is
nice, as well. Today, you’ll learn to create such animations,incorporating graphics,
images,and sounds into Java applets.

To create a new project for today’s listings,select File |New Project,and modify the File
field so that it says

C:\jbuilder2\myprojects\GraphicsFontsEtc.jpr

Click the Finish button. You’ll add all of today’s listings to this project by selecting the
Add to Project icon in the Navigation pane in the AppBrowser window.

Graphics
With Java’s graphics capabilities, you can draw lines,shapes,characters,and images to
the screen inside your applet. Most of the graphics operations in Java are methods
defined in the Graphics class. You don’t have to explicitly create an instance of
Graphics in order to draw something in your applet. In fact,in one of your applets yes-
terday, you were given a Graphics object to work with simply by using the Graphics

346 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 346

Graphics, Fonts, and Multimedia 347

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

argument to the paint() method—in other words,the instance was created for you by
the paint() method. By drawing on that object,you draw onto your applet,and the
results appear on the screen.

The Graphics class is part of the java.awt package, so if your applet does any painting
(as it usually will), make sure that you import the class at the beginning of your Java file
(after the package statement,if any):

import java.awt.Graphics;

public class MyClass extends java.applet.Applet {...}

Graphics Coordinate System
To draw an object on-screen,you call one of the drawing methods available in the
Graphics class. All the drawing methods have arguments representing endpoints,cor-
ners,or starting locations of the object as values in the applet’s coordinate system. For
example, a line starts at the point 10,10 and ends at the point 20,20.

Java’s coordinate system has the origin (0,0) in the top-left corner. Positive x values go
to the right, and positive y values are down. All pixel values are integers; there are no
partial or fractional pixels. Figure 9.1 shows how you might draw a simple square by
using this coordinate system.

FIGURE 9.1.
The Java graphics
coordinate system.

20,20

0,0 +X

+Y

60,60

Java’s coordinate system is different from some of the painting and layout programs that
have their x and y origins in the bottom-left corner. If you’re not used to working with
this graphics coordinate system,it might take some practice to get familiar with it. Just
remember that the numbers run the same way English is read, left to right, top to bot-
tom.

12.31318-9 CH09 9/24/98 1:31 PM Page 347

Drawing and Filling
The Graphics class provides a set of simple built-in graphics primitives for drawing,
including lines,rectangles,polygons,ovals,and arcs.

348 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Bitmap images, such as GIF files, can also be drawn by using the Graphics
class. You’ll learn about this tomorrow.

Note

Lines
To draw straight lines,use the drawLine() method. This method takes four arguments:
the x and y coordinates of the starting point and the x and y coordinates of the ending
point.

public void paint(Graphics g) {
g.drawLine(25,25,175,175);

}

Figure 9.2 shows the result of this snippet of code. Its starting point is 25,25 and the
ending point is 175,175, so the line is drawn from upper-left to lower-right.

FIGURE 9.2.
Lines are drawn from
one coordinate to
another.

Rectangles
The Java graphics primitives provide not just one, but three kinds of rectangles:

● Plain rectangles with squared corners

● Rounded rectangles with rounded corners

● Three-dimensional rectangles,which are drawn with a shaded border

For each of these rectangles,you have two methods from which to choose:one that
draws the rectangle in outline form and one that fills the rectangle with color.

12.31318-9 CH09 9/24/98 1:31 PM Page 348

Graphics, Fonts, and Multimedia 349

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

To draw a rectangle with squared corners,use either the drawRect() or fillRect()
methods. Both take four arguments:the x and y coordinates of the upper-left corner of
the rectangle and the width and height of the rectangle to be drawn. For example, the
following paint() method draws two squares; the left one is outlined, and the right one
is filled:

public void paint(Graphics g) {
g.drawRect(20,20,160,160);
g.fillRect(200,20,160,160);

}

Figure 9.3 shows the resulting rectangles,which are actually squares because their width

and height arguments are equal.

FIGURE 9.3.
The drawRect() and
fillRect() functions
both create rectangles.

Rounded rectangles,are as you might expect,rectangles with rounded corners. The
drawRoundRect() and fillRoundRect() methods are similar to the methods to draw
regular rectangles except that rounded rectangles have two extra arguments,arcWidth
and arcHeight, to specify the horizontal diameter and vertical diameter of the arc at the
corners. Those two arguments determine how far along the edges of the rectangle that
the arc for the corner will start: arcWidth for the arc along the horizontal (x dimension)
and arcHeight for the vertical (y dimension).

In the first example in Figure 9.4,the arcWidth and arcHeight are both set to 5, which
produces a nicely rounded corner. In the second example, the arcWidth is set to 30, and
the arcHeight is set to 10. Larger values for arcWidth and arcHeight make the overall
rectangle more rounded. Values equal to half the width and half the height of the rectan-
gle itself produce a circle, as in the third example, although it’s simpler to use ovals to
create circles (see “Ovals” a bit later in this section).

12.31318-9 CH09 9/24/98 1:31 PM Page 349

Here’s a paint() method that draws two rounded rectangles:one as an outline with
rounded corners 10 pixels square; the other filled, with rounded corners 20 pixels square.

public void paint(Graphics g) {
g.drawRoundRect(20,20,160,160,10,10);
g.fillRoundRect(200,20,160,160,20,20);

}

Figure 9.5 shows the resulting rounded rectangles.

350 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.4.
The arcWidth and
arcHeight control the
appearance of the
rounded corners.

5

20

20

10

30
5

FIGURE 9.5.
Rounded corners
soften the appear-
ance of rectangles.

Finally, there are three-dimensional rectangles. These rectangles aren’t really 3D.
Instead, they use a beveled border that makes them appear as if a light were shining from
the upper-left corner of the screen,so they look either raised or lowered from the surface
of the applet. Three-dimensional rectangles have five arguments:the starting x and y; the
width and height of the rectangle; and the fifth argument,a boolean, indicating whether
the 3D effect is raised (true) or indented (false). As with the other rectangles,there are
also different methods for drawing and filling: draw3DRect() and fill3DRect(). Here’s

12.31318-9 CH09 9/24/98 1:31 PM Page 350

Graphics, Fonts, and Multimedia 351

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

code to produce two outlined three-dimensional rectangles—the left one raised and the
right one lowered.

public void paint(Graphics g) {
g.draw3DRect(20,20,160,160,true);
g.draw3DRect(200,20,160,160,false);

}

Figure 9.6 shows the resulting three-dimensional rectangles.

FIGURE 9.6.
Three-dimensional
rectangles create the
appearance of depth.

Polygons
Polygons are shapes with an unlimited number of sides. To draw a polygon,you need a
set of x,y coordinate pairs. The drawing method starts at the first pair of x,y coordinates
and draws a line to the second pair, then a line to the third pair, and so on.

As with rectangles,you can draw an outline or a filled polygon with the drawPolygon()
and fillPolygon() methods,respectively. Both of these methods automatically close the
polygon for you if the starting and ending points are different. If you would rather have a
series of connected lines,without automatically closing the outlined shape (an open poly-
gon), you can use the drawPolyline() method. You also have a choice of how you want
to list the coordinates—either as arrays of x and y coordinates or by passing them to an
instance of the Polygon class.

Using the first technique, the drawPolyline(), drawPolygon(), and fillPolygon()
methods take three arguments:

Because you don’t have any control over the width of the beveled border, it
can be very difficult to see the 3D effect of 3D rectangles due to the fact
that the default line width is only one pixel. (Actually, the borders on Figure
9.6 are enlarged to better show the effect.) If you are having trouble with
3D rectangles, this might be why. Drawing 3D rectangles in any color other
than black makes them much easier to see.

Note

12.31318-9 CH09 9/24/98 1:31 PM Page 351

● An array of integers representing the x coordinates

● An array of integers representing the y coordinates

● An integer for the total number of points

The x and y arrays should, of course, have the same number of elements. Here’s an
example of drawing an open polygon’s outline by using this technique:

public void paint(Graphics g) {
int xCoordArr[] = { 78,188,194,284,106,116,52 };
int yCoordArr[] = { 66,148,72,140,216,160,212 };
int numPts = xCoordArr.length;
g.drawPolyline(xCoordArr, yCoordArr, numPts);

}

Figure 9.7 shows the resulting open polygon.

352 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.7.
An open polygon.

The second technique uses a Polygon object to create the polygon and then passes it
whole to the polygon drawing method. The Polygon class is useful if you intend to add
points to the polygon or if you’re building the polygon on-the-fly. The Polygon class
enables you to treat the polygon as an object and use its methods to add points. To
instantiate a polygon object,you can create an empty polygon:

Polygon poly = new Polygon();

After you have a polygon object,you can append points to the polygon as you need to,
using the Polygon class addPoint() method. Here are the same seven points from the
first polygon example specified as coordinate pairs passed to the addPoint() method:

poly.addPoint(78,66);
poly.addPoint(188,148);
poly.addPoint(194,72);
poly.addPoint(284,140);
poly.addPoint(106,216);

12.31318-9 CH09 9/24/98 1:31 PM Page 352

Graphics, Fonts, and Multimedia 353

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

poly.addPoint(116,160);
poly.addPoint(52,212);

Then,to draw the polygon, just use the polygon object as an argument of the polygon
drawing methods. Here’s the previous example, rewritten using this second technique,
including the last line which passes the poly object to the g.drawPolygon() method.

public void paint(Graphics g) {
Polygon poly = new Polygon();
poly.addPoint(78,66);
poly.addPoint(188,148);
poly.addPoint(194,72);
poly.addPoint(284,140);
poly.addPoint(106,216);
poly.addPoint(116,160);
poly.addPoint(52,212);
g.drawPolygon(poly);

}

Figure 9.8 shows the resulting outlined polygon.

FIGURE 9.8.
An outlined polygon.

As you can see, if you have a lot of points to add, the arrays technique takes fewer lines
of code. You can also combine the two techniques by defining the two arrays using one
of the Polygon class’s alternate constructors to create the polygon object with the coordi-
nate arrays and finally passing the object to the desired polygon drawing method. Here’s
that same example using the two techniques combined, but this time you pass the object
to the fillPolygon() method.

public void paint(Graphics g) {
int xCoordArr[] = { 78,188,194,284,106,116,52 };
int yCoordArr[] = { 66,148,72,140,216,160,212 };
int numPts = xCoordArr.length;
Polygon poly = new Polygon(xCoordArr, yCoordArr, numPts);

12.31318-9 CH09 9/24/98 1:31 PM Page 353

g.fillPolygon(poly);
}

Figure 9.9 shows the resulting filled polygon.

354 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.9.
A filled polygon.

Ovals
You can use ovals to draw ellipses or circles. Ovals are just rectangles with overly
rounded corners,drawn using four arguments:the x and y of the upper-left corner and
the width and height of the oval itself. Note that, because you’re drawing an oval, the
starting coordinates are some distance up and to the left from the actual outline of the
oval itself; it’s the upper-left corner of the bounding rectangle.

As with other drawing operations,the drawOval() method draws an outline of an oval,
and the fillOval() method draws a filled oval. Here’s an example of two ovals:a circle
and an ellipse.

public void paint(Graphics g) {
g.drawOval(20,20,160,160);
g.fillOval(200,20,200,160);

}

Figure 9.10 shows the resulting ovals. The first is a circle because its width and height
are the same; the second is an ellipse whose width is a larger value than its height.

Arcs
Of all the drawing operations,arcs are the most complex to construct. An arc is a seg-
ment of an oval. In fact,the easiest way to think of an arc is as a section of a complete
oval. Figure 9.11 shows some arcs.

12.31318-9 CH09 9/24/98 1:31 PM Page 354

Graphics, Fonts, and Multimedia 355

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

The arc drawing methods take six arguments:the starting corner x and y coordinates,the
width and height of the bounding oval, the startAngle (degree at which to start the
arc), and the arcAngle (degrees to draw before stopping). Once again, there is a
drawArc() method to draw the arc’s outline and a fillArc() method to draw a filled arc.
Filled arcs are drawn as if they were sections of a pie; instead of joining the two end-
points,both endpoints are joined to the center of the oval.

The important thing to understand about arcs is that you’re actually formulating the arc
as an oval and then drawing only some of that oval. The starting x,y coordinates,width,
and height, are not those of the actual arc as drawn on-screen; they’re those of the full
ellipse of which the arc is a part. The first four arguments determine the size and shape
of the arc; the last two arguments (startAngle and arcAngle) determine the endpoints of
the arc.

Let’s start with a simple arc: a C-shaped arc based on a circle as shown in Figure 9.12.

FIGURE 9.10.
An outlined circle and
a filled ellipse.

FIGURE 9.11.
Examples of arcs.

12.31318-9 CH09 9/24/98 1:31 PM Page 355

To construct the list of arguments to draw this arc, the first thing you do is think of it as a
complete circle. Then you find the x and y coordinates and the width and height of that
circle. Those four values are the first four arguments to the drawArc() or fillArc()
methods. The x and y coordinates are obtained by placing the upper-left corner of the
bounding rectangle. Figure 9.13 shows how to obtain the width and height values from
the circle’s bounding rectangle.

356 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.12.
A circular arc.

FIGURE 9.13.
The width and height
arguments determine
the length and position
of the arc.

100

100

To get the last two arguments,think in degrees around the circle. Referring to Figure
9.14:0 degrees is at 3 o’clock; 90 degrees is at 12 o’clock, 180 at 9 o’clock, and 270 at 6
o’clock. The start of the arc is the degree value of the starting point. In this example, the
starting point is the top of the C at 90 degrees; therefore, 90 is the fifth argument,
startAngle.

The sixth argument is another degree value indicating how far around the circle to sweep
(not the ending degree value, as you might think) and the direction to go in (indicated by
the integer’s sign). In this case, because you’re going halfway around the circle, you’re
sweeping 180 degrees. You’re also sweeping in the direction that the degrees are increas-
ing in number; therefore, the sign is positive. So the value of the sixth argument,
arcAngle, is +180, or just 180. These particulars are shown in Figure 9.14.

12.31318-9 CH09 9/24/98 1:31 PM Page 356

Graphics, Fonts, and Multimedia 357

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

If you were drawing a backwards C,you would sweep 180 degrees in the negative direc-
tion, and the last argument would have been -180.

Here’s the code for this example. You’ll draw an outline of the C and a filled C.

public void paint(Graphics g) {
g.drawArc(20,20,160,160,90,180);
g.fillArc(200,20,160,160,90,180);

}

The arcs this code produces are shown in Figure 9.15.

FIGURE 9.14.
The arc begins at
the value of the
startAngle argument
and continues for the
span of the value of the
arcAngle argument.

90°

90°

270°

180°

0°180°

FIGURE 9.15.
An outlined circular
arc and a filled circu-
lar arc.

Visualizing arcs on circles is easy; arcs on ellipses are slightly more difficult. Let’s go
through this same process to draw the arc shown in Figure 9.16.

FIGURE 9.16.
An elliptical arc.

12.31318-9 CH09 9/24/98 1:31 PM Page 357

Like the arc on the circle, this arc is a piece of a complete oval—in this case, an elliptical
oval. By completing the oval that this arc is a part of, you can get the four starting argu-
ments for the drawArc() or fillArc() method:x, y, width and height. Figure 9.17
shows how these values are derived from the ellipse’s bounding rectangle.

358 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.17.
The arc’s width and
height arguments.

140

30

Then,all you need to do is figure out the starting angle and the angle to sweep to obtain
the startAngle and arcAngle arguments. This arc doesn’t start on a nice boundary such
as 90 or 180 degrees,so you’ll need to either use a protractor template or get the values
by trial and error. This arc starts somewhere around 25 degrees and then sweeps clock-
wise about 130 degrees,as shown in Figure 9.18.

FIGURE 9.18.
The startAngle and
arcAngle arguments.

90°

270°

-130°

25°
0°180°

With all the arguments for the arc in hand, you can now write the code. Here’s the code
for this arc, both drawn and filled (notice that in the case of the filled arc, it is drawn as
if it were a pie section):

public void paint(Graphics g) {
g.drawArc(10,20,250,150,25,-130);
g.fillArc(10,180,250,150,25,-130);

}

The arcs this code produces are shown in Figure 9.19.

A Simple Graphics Example
Here’s an example of an applet that uses many of the built-in graphics primitives you’ve
learned so far to draw a rudimentary shape. In this case, it’s a lamp with a spotted shade
(or a cubist mushroom,depending on your point of view). Listing 9.1 shows the com-
plete code for the Lamp project; Figure 9.20 shows the resulting applet.

12.31318-9 CH09 9/24/98 1:31 PM Page 358

Graphics, Fonts, and Multimedia 359

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

LISTING 9.1. SpottedLamp.java.

1: package GraphicsFontsEtc;
2: import java.awt.Graphics;
3: public class SpottedLamp extends java.applet.Applet {
4:
5: public void paint(Graphics g) {
6: // the lamp platform
7: g.fillRect(0,250,290,290);
8:
9: // the base of the lamp
10: g.drawLine(125,160,125,250);
11: g.drawLine(175,160,175,250);
12:
13: // the shade, top and bottom edges
14: g.drawArc(85,87,130,50,62,58);
15: g.drawArc(85,157,130,50,-65,312);
16:
17: // the sides of the shade
18: g.drawLine(119,89,85,177);
19: g.drawLine(181,89,215,177);
20:
21: // the spots on the shade
22: g.fillArc(78,120,40,40,63,-174);
23: g.fillOval(120,96,40,40);
24: g.fillArc(173,100,40,40,110,180);
25: }
26:
27: }

Remember to create and save an .html file before attempting to run the applet.

FIGURE 9.19.
An outlined elliptical
arc and a filled ellipti-
cal arc.

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 359

The WIDTH and HEIGHT parameters for the HTML file are not specified here; that’s left as
an exercise. Experimenting with different parameters will give you a better feel for creat-
ing your own HTML files later.

360 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.20.
The SpottedLamp
applet.

Copying and Clearing
After you’ve drawn a few things on-screen,you might want to move them around or
clear the entire applet. The Graphics class provides methods for doing both of these
things.

The copyArea() method copies a rectangular area of the screen to another area of the
screen. This method takes six arguments:the x and y coordinates of the upper-left corner
of the rectangle to copy, the width and height of that rectangle, and dx and dy, which
represent the delta (change) in the x and y starting-point coordinates. For example, this
line of code copies a rectangular area 90 pixels by 70 pixels with starting coordinates of
5,10 and copies it to a rectangle starting 100 pixels to the right of the original starting x
coordinate with no change (0 pixels) to the starting y coordinate:

g.copyArea(5,10,90,70,100,0);

The dx and dy arguments can be either positive or negative, depending on which direc-
tion you want to copy the rectangle. Negative dx values copy the rectangle upward, and
positive dx values copy downward; negative dy values copy the rectangle to the left,
whereas positive dy values copy to the right.

To clear a rectangular area,use the clearRect() method, which takes the same four
arguments as the drawRect() and fillRect() methods:starting x,y coordinates ,width,
and height. This method fills the specified rectangle with the current background color
of the applet. (You’ll learn how to set the current background color later today.)

To clear the entire applet’s drawing area,use the Applet class getSize() method (inher-
ited from the Component class),which returns a Dimension object representing the width

12.31318-9 CH09 9/24/98 1:31 PM Page 360

Graphics, Fonts, and Multimedia 361

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

and height of the applet. You can then get to the actual values for width and height by
using the Dimension object’s width and height instance variables and passing them to
the clearRect() method:

g.clearRect(0,0,getSize().width,getSize().height);

Fonts and Text
The Graphics class also enables you to print text on-screen,in conjunction with the Font
class and sometimes the FontMetrics class. The Font class represents a given font—its
name, style, and point size. FontMetrics gives you information about that font (for
example, the actual height or width of a given character) so you can precisely lay out text
in your applet.

Note that graphics text is drawn to the screen once and intended to stay there. You’ll
learn about entering and displaying text from the keyboard later this week.

Creating Font Objects
To draw text to the screen,first you need to create an instance of the Font class. A Font
object represents an individual font—that is, its font name, style, and point size. Font
names are strings representing the family of the font, such as,TimesRoman, Courier, or
Arial. Font styles are constants defined by the Font class; they are Font.PLAIN,
Font.BOLD, or Font.ITALIC. Finally, the point size is the nominal size of the font, as
defined by the font itself; the point size might or might not be the actual height of the
characters. However, it is useful to know that, by typesetting convention,there are 72
points to a vertical inch of font height. So to specify 1/2-inch high characters, you would
use 36 for the point size.

To create an individual font object,give three arguments to the Font class constructor:

Font f = new Font(“TimesRoman”, Font.BOLD, 24);

This example creates a font object in the Bold TimesRoman font, 24 points in height (1/3
inch high). Note that like most Java classes,you have to import this class before you can
use it:

import java.awt.Font;

Font styles are actually integer constants that can be added to create combined styles. For
example, the following statement produces a font that is both bold and italic:

Font f = new Font(“TimesRoman”, Font.BOLD + Font.ITALIC, 24);

12.31318-9 CH09 9/24/98 1:31 PM Page 361

The fonts you have available to you in your applets depend on which fonts are installed
on the system where the applet is running. If you pick a font for your applet that isn’t
available on the client system,Java will substitute a default font (usually Courier). For
best results,it’s a good idea to stick with standard fonts such as TimesRoman or Courier.

You can also use the getFontList() method, defined in the java.awt.Toolkit class to
get a listing of the current fonts available on the client system (returned as a String
array). Then you can make choices on-the-fly about which fonts to use, based on this
information. (Don’t forget to import java.awt.Toolkit if you decide to use the
getFontList() method in your code.)

Drawing Characters and Strings
With a font object in hand, you can draw text on-screen using the methods drawChars()

and drawString(). First, though,you need to set the current font to your font object
using the setFont() method.

The current font is part of the graphics state that is tracked by the Graphics object on
which you’re drawing. Each time you draw a character or a string to the screen,that text
is drawn using the current font. To change the font of the text, first change the current
font. Here’s a paint() method that creates a new font, sets the current font to that font,
and draws the string This is a big font., at the coordinates 10,100:

public void paint(Graphics g) {
Font f = new Font(“TimesRoman”, Font.PLAIN, 72);
g.setFont(f);
g.drawString(“This is a big font.”, 10, 100);

}

This should all look very familiar to you—this is how the Hello applets throughout this
book were produced.

The latter two arguments to drawString() determine the point where the string will
start. The x value is the start of the leftmost edge of the text; y is the baseline for the
entire string.

Similar to drawString() is the drawChars() method that, instead of taking a string as an
argument,takes an array of characters. The drawChars() method takes five arguments.
The first three arguments are the array of characters,an integer representing the first
character in the array to draw, and another integer for the last character in the array to
draw. All characters between the first and last,inclusive, are drawn. The last two argu-
ments are the x,y starting coordinates.

Listing 9.2 shows an applet that draws several lines of text in different fonts; Figure 9.21
shows the result.

362 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 362

Graphics, Fonts, and Multimedia 363

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

LISTING 9.2. ManyFonts.java.

1: package GraphicsFontsEtc;
2: import java.awt.Font;
3: import java.awt.Graphics;
4: public class ManyFonts extends java.applet.Applet {
5:
6: public void paint(Graphics g) {
7: Font f = new Font(“TimesRoman”, Font.PLAIN, 18);
8: Font fb = new Font(“TimesRoman”, Font.BOLD, 18);
9: Font fi = new Font(“TimesRoman”, Font.ITALIC, 18);
10: Font fbi = new Font(“TimesRoman”, Font.BOLD + Font.ITALIC, 18);
11:
12: g.setFont(f);
13: g.drawString(“This is a plain font.”, 10, 25);
14: g.setFont(fb);
15: g.drawString(“This is a bold font.”, 10, 50);
16: g.setFont(fi);
17: g.drawString(“This is an italic font.”, 10, 75);
18: g.setFont(fbi);
19: g.drawString(“This is a bold italic font.”, 10, 100);
20: }
21:
22: }

TYPE

FIGURE 9.21.
The ManyFonts applet.

Getting Font Information
Sometimes,you might want to make decisions in your Java program based on the attrib-
utes of the current font—its point size or the total height of its characters. You can find
out some basic information about fonts and font objects by creating a variable to hold the
result and then assigning the attributes of the current font to that variable by using one of
the methods shown in Table 9.1.

12.31318-9 CH09 9/24/98 1:31 PM Page 363

TABLE 9.1. FONT INFORMATION METHODS.

Method Name Object Returned Value

getFont() Graphics Current font object previously set by setFont()

getName() Font Current font name, a String

getSize() Font Current font size, an int

getStyle() Font Current font style, an int constant (0 is plain; 1 is bold; 2 is
italic; 3 is bold italic)

isBold() Font true if f ont style is bold; else false

isItalic() Font true if f ont style is italic; else false

isPlain() Font true if f ont style is plain; else false

For example, to find out the name of the current font, you would declare a String vari-
able to receive the information and then assign it the result of the getName() method.
These methods,if not passed any arguments,return the current font’s attributes. If you
want to get information for a specific font, you can pass a font object to the method.
Here’s an example of both uses:

Font fcb = new Font(“Courier”, Font.BOLD, 12);
Font ftb = new Font(“TimesRoman”, Font.BOLD, 12);
g.setFont(fcp);
...
String currFontName = getName();
String ftbFontName = getFontName(ftb);

In this code snippet,currFontName is set to Courier because the current font object is
fcp, whereas the ftbFontName is set to TimesRoman because the specified font object is
ftb.

For more detailed information about the attributes of the current font, such as the length
or height of given characters, you need to work with font metrics. The FontMetrics class
methods describe information specific to a given font: the leading (pronounced “led-
ding”) between lines,the height and width of each character, and so on. To work with
these sorts of values,you create a FontMetrics object and then assign it the attributes of
the current font by using the Graphics class getFontMetrics() method:

Font f = new Font(“TimesRoman”, Font.BOLD, 36);
g.setFont(f);
FontMetrics fmetrics = g.getFontMetrics();

The getFontMetrics() method, if not passed any arguments,returns the current font’s
metrics. If you want to get metrics for a specific font, you can pass a font object to the
method:

g.getFontMetrics(fbi);

364 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 364

Graphics, Fonts, and Multimedia 365

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Table 9.2 shows some of the information you can find using font metrics by calling these
methods on a FontMetrics object; all return values are in pixels.

TABLE 9.2. FONT METRICS METHODS.

Method Name Returned Value

charWidth(char) Width of the given character

getAscent() Ascent of the font: the distance between the font’s baseline and the top of
the majority of the font’s characters (such as b and d)

getDescent() Descent of the font: the distance between the font’s baseline and the bot-
tom of the majority of the font’s characters (such as p and q)

getHeight() Total height of the font: the sum of the ascent,descent,and leading values

getLeading() Leading of the font: the distance between the descent of one line and the
ascent of the next

getMaxAscent() Ascent of the font: the distance between the font’s baseline and the top of
the font’s highest ascender

getMaxDescent() Descent of the font: the distance between the font’s baseline and the bot-
tom of the font’s deepest descender

stringWidth(string) Width of the given string

As an example of the use of these font metrics methods,Listing 9.3 shows the Java code
for an applet that automatically centers a string horizontally and vertically inside an
applet. By using font metrics to find out the actual size of a string, you can determine the
starting position of the string so that it is properly centered and displays in the appropri-
ate place.

LISTING 9.3. CenterString.java.

1: package GraphicsFontsEtc;
2: import java.awt.Font;
3: import java.awt.FontMetrics;
4: import java.awt.Graphics;
5: public class CenterString extends java.applet.Applet {
6:
7: public void paint(Graphics g) {
8: Font f = new Font(“TimesRoman”, Font.PLAIN, 36);
9: g.setFont(f);
10: FontMetrics fm = g.getFontMetrics();
11:
12: String str = “Stuck in the middle with you.”;
13: int xStart = (getSize().width - fm.stringWidth(str)) / 2;

TYPE

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 365

LISTING 9.3. CONTINUED

14: int yStart = (getSize().height + fm.getHeight()) / 2;
15:
16: g.drawString(str, xStart, yStart);
17: }
18:
19: }

Note the use of the Applet class getSize() method here, which returns the
width and height of the overall applet area as a Dimension object. You then

obtain the individual width and height by using the Dimension object’s width and
height instance variables. Figure 9.22 shows the result (which would be more interesting
if you compiled and experimented with various applet and font sizes).

366 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

ANALYSIS

FIGURE 9.22.
The CenterString
applet.

Using Color
Drawing black on a gray background is pretty dull; being able to use different colors is
much more interesting. Java provides methods and behaviors for dealing with color in
general through the Color class and also provides methods for setting the current fore-
ground and background colors so you can draw with the colors you’ve created.

Java uses 24-bit color, wherein a color is represented as a combination of red, green,and
blue values (also called the RGB model). Each component of the color can be a number
between 0 and 255,inclusive. 0,0,0 is black, 255,255,255 is white, and this model can
represent millions of colors in between,as well.

Java’s abstract color model maps onto the color model of the platform on
which Java is running, which might have only 256 colors or fewer from
which to choose. If a requested color in a color object is not available for
display, the resulting color might be mapped to another color or dithered,
depending on how the browser viewing the color implemented this feature
and depending on the platform. In other words, although Java enables you
to manage millions of colors, very few might actually be available to you in
real life.

Note

12.31318-9 CH09 9/24/98 1:31 PM Page 366

Graphics, Fonts, and Multimedia 367

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Color Objects
To draw an object in a particular color, you must create an instance of the Color class to
represent that color. The Color class defines a set of standard Color objects,stored in
class variables,that enable you to easily use some of the more common colors. For
example, Color.red gives you a Color object representing red (RGB value 255,0,0).
Table 9.3 shows the standard colors defined by Color class.

TABLE 9.3. STANDARD COLORS.

Color Name RGB Value

Color.black 0,0,0

Color.blue 0,0,255

Color.cyan 0,255,255

Color.darkGray 64,64,64

Color.gray 128,128,128

Color.green 0,255,0

Color.lightGray 192,192,192

Color.magenta 255,0,255

Color.orange 255,200,0

Color.pink 255,175,175

Color.red 255,0,0

Color.white 255,255,255

Color.yellow 255,255,0

If the color you want to draw in is not one of the standard Color objects,you can create
a Color object for any combination of red, green,and blue, as long as you know the val-
ues of the color you want. Just create a new color object:

Color c = new Color(140,140,140);

This line of Java code creates a Color object representing a shade of gray. Alternatively,
you can create a Color object using three floats from 0.0 to 1.0, representing the percent
of each color attribute you desire. This line of code produces the same color value as
140,140,140:

Color c = new Color(0.55,0.55,0.55);

12.31318-9 CH09 9/24/98 1:31 PM Page 367

Testing and Setting Colors
To draw an object or text using a color object,you have to set the current color to be that
color object,just as you have to set the current font to the font you want to draw. Use the
Graphics class setColor() method to do this:

g.setColor(Color.green);

After setting the current color, all drawing operations will occur in that color.

In addition to setting the current color for the graphics context, you can set the back-
ground and foreground colors for the applet itself by using the setBackground() and
setForeground() methods. Both of these methods are defined in the
java.awt.Component class,from which Applet is descended.

The setBackground() method sets the background color of the applet,which is usually
gray. It takes a single argument,a Color object:

setBackground(Color.white);

The setForeground() method also takes a single Color object as an argument and
affects everything that has been drawn on the applet to that point, regardless of the color
in which it was originally drawn. You can use setForeground() to change the color of
everything drawn in the applet at once, rather than having to redraw everything:

setForeground(Color.black);

There are also corresponding getColor(), getBackground(), and getForeground()
methods that enable you to retrieve the current graphics color, background color, or fore-
ground color. You can use these methods to choose colors based on existing colors in the
applet:

setForeground(g.getColor());

A Simple Color Example
Listing 9.4 shows the code for an applet that fills the applet’s drawing area with square
boxes,each of which has a randomly chosen color in it. It’s written so that it can handle
any size of applet and automatically fills the area with the right number of boxes.

LISTING 9.4. ColorBoxes.java.

1: package GraphicsFontsEtc;
2: import java.awt.Color;
3: import java.awt.Graphics;
4: public class ColorBoxes extends java.applet.Applet {
5:

368 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 368

Graphics, Fonts, and Multimedia 369

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

6: public void paint(Graphics g) {
7: int rval, gval, bval;
8:
9: for (int j = 30; j < (getSize().height - 25); j += 30)
10: for (int i = 5; i < (getSize().width - 25); i += 30) {
11: rval = (int)Math.floor(Math.random() * 256);
12: gval = (int)Math.floor(Math.random() * 256);
13: bval = (int)Math.floor(Math.random() * 256);
14: g.setColor(new Color(rval,gval,bval));
15: g.fillRect(i, j, 25, 25);
16: g.setColor(Color.black);
17: g.drawRect(i-1, j-1, 25, 25);
18: }
19:
20: }
21:
22: }

The two for loops are the heart of this example. The first one draws the rows,
and the second draws the individual boxes within the rows. For each box, the

random color is first calculated, and the rectangle is filled with that color. Then,a black
outline is drawn around each box because some of the colors generated might blend into
the background color of the applet.

Because this paint() method generates new colors each time the applet is painted, you
can regenerate the colors by moving the window around or by covering the applet’s win-
dow with another window. Figure 9.23 gives you an idea of what the finished applet
would look like.

ANALYSIS

FIGURE 9.23.
The ColorBoxes
applet.

Creating Simple Animation
Animation in Java involves two steps:constructing a frame of animation and then asking
Java to paint that frame. These two steps are repeated as necessary to create the illusion

12.31318-9 CH09 9/24/98 1:31 PM Page 369

of movement on-screen. The basic static applets you created yesterday taught you how to
construct a frame. Now you’ll learn how to tell Java to paint a frame.

Painting and Repainting
The paint() method, as you learned yesterday, is called by Java whenever the applet
needs to be painted—when the applet is initially drawn, when the window containing it
is moved or restored, or when it is beneath another window and that covering window is
removed. You can also,however, ask Java to repaint the applet any time you choose. So
to change the appearance of what is on-screen,you construct the frame (image) you want
to paint and then ask Java to paint this frame. If you do this repeatedly and quickly, with
slightly varying images in each frame, you get animation inside your Java applet. That’s
really all there is to it.

Where does all this take place? Not in the paint() method itself—all paint() does is
put dots on-screen. The paint() method, in other words,is responsible only for display-
ing the current frame of the animation. The real work of changing what paint() does,of
modifying the frame for an animation, actually occurs somewhere else in the definition
of your applet.

In that “somewhere else,” you construct the frame (set variables and create Color, Font,
or other objects that paint() will need),and then call the repaint() method. The
repaint() method is the trigger that causes Java to call paint() and causes your frame
to get drawn.

370 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

A Java applet can contain many different components that all need to be
painted, and applets are embedded inside a larger Java application (usually
a browser) that also paints to the screen in similar ways. So when you call
the repaint() method (and therefore the paint() method), you’re not actu-
ally immediately drawing to the screen as you do in other window or graph-
ics toolkits. Instead, repaint() is a request for Java to repaint your applet as
soon as it can. Also, if too many repaint() requests are made in a short
amount of time, the system might call repaint() only once for all of them.
Much of the time, the delay between the call and the actual repaint is negli-
gible.

Note

Starting and Stopping
Remember the start() and stop() methods from Day 8, “Applets,Applications,and
Wizards”? These are the methods that trigger your applet to begin and cease running.
You didn’t use start() and stop() yesterday because those applets did nothing except

12.31318-9 CH09 9/24/98 1:31 PM Page 370

Graphics, Fonts, and Multimedia 371

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

paint once. With animations and other Java applets that are actually processing and run-
ning over time, you’ll need to make use of the start() and stop() methods to trigger
the start of your applet’s execution and to stop it from running when the reader leaves the
page that contains that applet. For many applets,you’ll want to override the start() and
stop() methods for just this reason.

The start() method triggers the execution of the applet. You can either do all the
applet’s work inside that method or call other object’s methods to perform tasks. Usually,
start() is used to create and begin execution of a thread (more about threads momentar-
ily in the section “Applets and Threads”) so that the applet can run in its own time.

The stop() method, on the other hand, suspends an applet’s execution so that when the
reader moves off the page on which the applet is displaying, it doesn’t keep running and
using up system resources. Most of the time, when you create a start() method, you
should also create a corresponding stop() method.

A Broken Digital Clock
Explaining how to do Java animation is more of a task than actually showing you how it
works in code. Some examples will help make the relationship between all these meth-
ods clearer. Listing 9.5 shows a sample applet that attempts to use basic applet animation
to display the date and time, updating it every second to create a very simple animated
digital clock. A single frame from the working clock (which you’ll soon create) is shown
in Figure 9.24.

FIGURE 9.24.
A single frame from
the working DigiClock
applet.

See whether you can figure out what’s going on with this code before you go on to the
analysis.

The words “attempts to use” in the previous paragraph are very important:
This applet, as described in Listing 9.5 does not work. However, despite the
fact that it doesn’t work, you can still learn a lot about basic animation from
it, so working through the code will be a valuable exercise. In the following
sections, you’ll learn just what’s wrong with it.

Caution

12.31318-9 CH09 9/24/98 1:31 PM Page 371

LISTING 9.5. DigiClock.java (NONFUNCTIONAL VERSION).

1: package GraphicsFontsEtc;
2: import java.awt.Font;
3: import java.awt.Graphics;
4: import java.util.Date;
5: public class DigiClock extends java.applet.Applet {
6:
7: Font theFont = new Font(“TimesRoman”, Font.BOLD, 24);
8: Date theDate;
9:
10: public void start() {
11: while (true) {
12: theDate = new Date();
13: repaint();
14: try { Thread.sleep(1000); }
15: catch (InterruptedException e) { }
16: }
17: }
18:
19: public void paint(Graphics g) {
20: g.setFont(theFont);
21: g.drawString(theDate.toString(), 10, 50);
22: }
23:
24: }

Think you’ve got the basic idea? Let’s go through it,line by line.

Lines 7 and 8 define two basic instance variables,theFont and theDate, which hold
objects representing the current font and the current date, respectively. More about these
later.

The start() method triggers the actual execution of the applet. Note the while loop
inside this method; given that the test (true) always returns true, this loop never exits.
A single animation frame is constructed inside that while loop,with the following steps:

● The Date class represents a date and time. (Date is part of the java.util package
and was imported in line 3.) Line 12 creates a new instance of the Date class,
which holds the system’s current date and time, and assigns it to the instance vari-
able, theDate.

● The repaint() method is called in line 13.

● Lines 14 and 15,as complex as they might look,do nothing except pause for 1000
milliseconds (one second) before the loop repeats. The sleep() method here, part
of the Thread class,is what causes the applet to pause. Without a specific sleep()

372 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 372

Graphics, Fonts, and Multimedia 373

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

method, the applet would run as fast as it possibly could, which, for most computer
systems,would be too fast for the eye to see. Using sleep() enables you to control
exactly how fast the animation takes place. The try and catch that surround it
enable Java to manage errors if they occur. (The use of try and catch is covered
on Day 11,“Compiling and Debugging.”)

Now, on to the paint() method. Here, all that happens is that the current font is set to
theFont (line 20),and the contents of theDate are printed to the screen (line 21). (Note
that you have to call the toString() method to convert the Date object to a printable
String. Most objects define this handy method.) Because paint() is called repeatedly
(via repaint() in line 13) with whatever value happens to be in theDate, the string is
updated every second to reflect the new date and time.

There is one other thing to note about this example. You might think it would be easier to
create the new Date object inside the paint() method. That way you could use a local
variable and not need an instance variable to pass the Date object around. Although
doing things that way creates cleaner code, it also results in a less efficient program. The
paint() method is called every time a frame needs to be changed. In this case, it’s not
that critical, but in an animation that needs to change frames very quickly, the paint()
method would have to pause to create that new object each time. By leaving paint() to
do what it does best—painting the screen—and calculating new objects beforehand, you
can make painting as efficient as possible. This is precisely the same reason why the
Font object is also in an instance variable.

So why doesn’t the DigiClock applet work? The simple reason is it doesn’t use threads.
Instead, you put the while loop that cycles through the animation directly into the
start() method so that when the applet starts running, it keeps going until you quit the
appletviewer or the browser. Although this might seem like a good way to approach the
problem, this applet won’t work because the while loop in the start() method is
monopolizing all the resources in the system—including the resources needed to do the
repaint. If you try compiling and running the DigiClock.java in its current condition,all
you’ll get is a blank screen. You also won’t be able to stop the applet normally because
there’s no way the inherited stop() method can ever be called.

The solution to this problem is to rewrite the applet to use threads. Threads enable this
applet to animate on its own without interfering with other system operations,enable it
to be started and stopped, and enable you to run it in parallel with other applets. So
before you can fix the DigiClock applet,you need to have some understanding of how
threads are used inapplets.

12.31318-9 CH09 9/24/98 1:31 PM Page 373

Applets and Threads
Multithreading is a necessary part of animation in applets. Depending on your experience
with operating systems and with environments within those systems,you might or might
not have run into the concept of threads. What follows is a very brief introduction to sim-
ple threads.

When a typical program runs,it starts executing, runs its initialization code, calls meth-
ods,and continues running and processing either until it’s complete or the program is
stopped. This type of program uses a single thread, where the thread is a single locus of
control for the program. Like a selfish child, it basically hogs the system until it’s done
playing. Multithreading, as in Java,enables several different execution threads to run at
the same time inside the same program,in parallel, without interfering with each other.
Like well-mannered children,threads share the system resources so that they can all play
together.

Threads are especially useful if you have several applets on the same page. Without
threads,each applet would have to run and finish before the next could begin execution.
Using threads,you can have lots of applets running at once on the same page. Depending
on how many you have, you might eventually tax the system so that they all run slower,
but they will all run apparently simultaneously. (The word “apparently” is used because
threads don’t literally run in parallel; they trade control back and forth in time slices.

Even if you don’t have lots of applets on the same page, using threads in your applets is
good Java programming practice. The general rule of thumb for well-behaved applets is
that whenever you have an animation loop,or anything that takes a long time to execute,
put it in a thread.

How do you create an applet that uses threads? There are several things you need to do.
Fortunately, none of them are particularly difficult. A lot of the basics of using threads in
applets is just boilerplate code that you can copy and paste from one applet to another.
Because it’s so easy, there’s almost no reason not to use threads in your applets,given
the benefits.

There are five modifications you need to make to create an applet that uses threads:

● Change the signature of your applet class to include the words implements
Runnable.

● Include an instance variable to hold this applet’s thread.

● Modify your start() method to do nothing but spawn a thread and start it run-
ning.

374 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 374

Graphics, Fonts, and Multimedia 375

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

● Create a run() method that contains the actual code that begins your applet’s exe-
cution.

● Create a stop() method to kill the thread and release its memory.

The first change is to the first line of your class definition. You’ve already got something
like this:

public class MyAppletClass extends java.applet.Applet {...}

You need to change it to the following:

public class MyAppletClass extends java.applet.Applet
implements Runnable {...}

What does this do? It includes support for the Runnable interface in your applet. If you
think back to Day 4, “Java Advanced,” in the “Interfaces”section,you’ll remember that
an interface was defined as a collection of abstract method declarations that can be
implemented in whatever classes needing that particular behavior. Here, the Runnable
interface defines the behavior your applet needs to run a thread; in particular, it gives you
a default definition for the run() method. By implementing Runnable, you tell others
that they can call the run() method on your instances.

The second step is to add an instance variable to hold this applet’s thread. You can call it
anything you like; it’s a variable of type Thread. (Because Thread is a class in
java.lang, you don’t have to explicitly import it.) Because the thread will run the applet,
let’s name it runner:

Thread runner;

Third, add a start() method or modify the existing one so that it does nothing but cre-
ate a new thread and start it running. Here’s a typical example of a start() method:

public void start() {
if (runner == null); {

runner = new Thread(this);
runner.start();

}
}

This example assigns a new thread to the runner instance variable declared earlier and
then calls the Thread class start() method to start the execution of the runner thread.
This is called spawninga thread.

If you modify the applet’s start() method to do nothing but spawn a thread, where does
the body of your applet go? The fourth step, declaring the run() method, takes care of
this:

12.31318-9 CH09 9/24/98 1:31 PM Page 375

public void run() {
... // the body of your applet’s working code

}

The run() method can contain anything you want to run in the newly-created thread:ini-
tialization code, the actual loop for your applet,or anything else that needs to run in its
own thread. You can also create new objects and call methods from inside run(), and
they’ ll also run inside that thread. The run() method is the real heart of your applet.

Finally, now that you have a thread running and a start() method to spawn it, you
should add a stop() method to suspend execution of that thread (and, therefore, what-
ever the applet is doing at the time) whenever the reader leaves the page. The stop()
method usually looks something like this:

public void stop() {
if (runner != null); {

runner.stop();
runner = null;

}
}

The stop() method here does two things:it stops the thread from executing and also sets
the thread’s variable runner to null. Setting the variable to null makes the Thread
object available for garbage collection so that the applet can be removed from memory
after a certain amount of time. If the reader comes back to this page and this applet,the
start() method creates a new thread and starts up the applet once again.

And that’s it! Five basic modifications,and now you have a well-behaved applet that
runs in its own thread.

A Fixed Digital Clock
Now that you have a basic understanding of how to use threads in applets,let’s fix
DigiClock.java by making the five modifications outlined in the preceding section.
Complete the following steps to do so:

1. Modify the class definition to include the Runnable interface:
public class DigiClock extends java.applet.Applet

implements Runnable {
...
}

2. Add an instance variable for the Thread:

Thread runner;

3. Because the start() method already has the functionality you want in the run()
method, just rename the existing start() method to run():

376 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 376

Graphics, Fonts, and Multimedia 377

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

public void run() {
while (true) {

...
}

}

4. Add the boilerplate start() and stop() methods for threads:

public void start() {
if (runner == null) {

runner = new Thread(this);
runner.start();

}
}

public void stop() {
if (runner != null) {

runner.stop();
runner = null;

}
}

You’re finished! One applet converted to use threads in less than a minute flat. The
resulting modified code is shown in Listing 9.6.

LISTING 9.6. DigiClock.java (THREADED VERSION).

1: package GraphicsFontsEtc;
2: import java.awt.Font;
3: import java.awt.Graphics;
4: import java.util.Date;
5: public class DigiClock extends java.applet.Applet
6: implements Runnable {
7: Font theFont = new Font(“TimesRoman”, Font.BOLD, 24);
8: Date theDate = null;
9: Thread runner = null;
10:
11: public void start() {
12: if (runner == null) {
13: runner = new Thread(this);
14: runner.start();
15: }
16: }
17:
18: public void stop() {
19: if (runner != null) {
20: runner.stop();
21: runner = null;

TYPE

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 377

LISTING 9.6. CONTINUED

22: }
23: }
24:
25: public void run() {
26: while (true) {
27: repaint();
28: try { Thread.sleep(1000); }
29: catch (InterruptedException e) { }
30: }
31: }
32:
33: public void paint(Graphics g) {
34: g.setFont(theFont);
35: theDate = new Date();
36: g.drawString(theDate.toString(), 10, 50);
37: }
38:
39: }

Retrieving and Using Images
When dealing with animation, you might already have a pre-constructed set of images
that you want to use as frames in your applet. Using those images and basic image han-
dling in Java is very easy. The Image class in java.awt provides abstract methods to rep-
resent common image behavior, and special methods defined in Applet and Graphics
give you everything you need to load and display images in your applet as easily as
drawing a rectangle. In this section,you’ll learn how to get and draw images and how to
implement images in Java-based animations.

378 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Other formats might be supported later, for but now, Java supports images
only in the GIF and JPEG formats. So be sure that your images are in one of
these currently supported formats.

Note

Getting Images
To display an image in your applet,you must first download that image over the Internet
into your Java program. Images are stored as separate files from your Java class files, so
you have to tell Java where to find them on the server.

12.31318-9 CH09 9/24/98 1:31 PM Page 378

Graphics, Fonts, and Multimedia 379

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

The Applet class provides the getImage() method, which loads an image and automati-
cally creates an instance of the Image class for you. To use it,all you have to do is import
the java.awt.Image class and then give getImage() the URL of the image you want to
load. There are two ways of doing the latter step:

● The getImage() method with a single argument (an object of type URL), which
retrieves the image at that URL

● The getImage() method with two arguments:the base URL (also a URL object) and
a String representing the path or filename of the actual image, relative to the base

Although the first way seems easier (just plug in the URL as a URL object),the second is
more flexible. Because you’re compiling .java files, remember that if you include a
hard-coded URL of an image and then move your files to a different location on the
server, you have to recompile those .java files.

The latter form is, therefore, usually the one to use. The Applet class also provides two
methods that will help with the base URL argument to the getImage() method:

● The getDocumentBase() method returnsa URL object representing the fully quali-
fied directory location of the HTML document in which the applet is embedded.

● The getCodeBase() method returns a String representing the directory in which
this applet is contained—which might or might not be the same directory as the
HTML f ile, depending on whether the CODEBASE attribute in the <APPLET> tag is set
or not.

Whether you use getDocumentBase() or getCodeBase() depends on whether your
images are stored relative to your HTML files or relative to your Java class files. Use
whichever one best applies to your situation. Note that either of these methods is more
flexible than hard-coding a URL or pathname into the getImage() method; using either
of these methods enables you to move your HTML files and applets,and Java will still
be able find your images.

Just as your applet’s class files must be downloaded from the server to the
client system, so must your image files. Because the applet cannot write to
the client’s file system to store these image files locally, this means that each
time your applet makes a call to paint(), the image must be downloaded
over the Internet. Therefore, if you are dealing with large or high-quality
images, your applet might experience an apparent loss of efficiency (that is,
speed) while downloading these images. You’ll want to keep that in mind
when dealing with images in your Java applets.

Note

12.31318-9 CH09 9/24/98 1:31 PM Page 379

Here are a few examples of getImage(), to give you a better idea of how to use it. The
first call to getImage() retrieves the file at a specific URL
(http://www.server.com/files/image.gif). If any part of that URL changes,you
would have to recompile your Java applet to take the new path into account:

Image img = getImage(new URL(“http://www.server.com/files/image.gif”));

In the following form of getImage(), the image.gif file is in the same directory as the
HTML f iles which refer to the applet that requires the image:

Image img = getImage(getDocumentBase(), “image.gif”);

In this similar form, the file image.gif is in the same directory as the applet itself:

Image img = getImage(getCodeBase(), “image.gif”);

If you have lots of image files, it’s common to put them into their own subdirectory. This
form of getImage() looks for the file image.gif in the directory named myimages,
which in turn is a subdirectory in the directory where the Java applet resides:

Image img = getImage(getCodeBase(), “myimages/image.gif”);

If getImage() can’t find the file indicated, it returns null. Attempting to draw a null
image will simply draw nothing. Using a null image in other ways will probably cause
an error.

380 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

In URLs, you will see the forward slash (/) used in pathnames, which is the
standard form on the World Wide Web. Even though the standard on
Windows platforms is to use the backslash (\) character, JBuilder is smart
enough to be able to use the forward slash (/) in the relative pathnames in
Java code, so you won’t have to change the pathnames for your code to run
properly over the Internet.

Note

Drawing Images
All those calls to getImage() do nothing except go off and retrieve an image and return
it in an instance of the Image class. Now that you have an image, you’ll want to do
something with it. The most likely thing to do is to display it as you would a rectangle or
a text string. The Graphics class provides six methods to do just this,all called
drawImage(). Two of them are illustrated here.

The first form of drawImage() takes four arguments. The arguments are the instance of
the image to be displayed, the x and y positions of the top-left corner, and this:

12.31318-9 CH09 9/24/98 1:31 PM Page 380

Graphics, Fonts, and Multimedia 381

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

public void paint() {
g.drawImage(img, 10, 10, this);

}

This first form does what you expect:it draws the image img in its original dimensions
with the top-left corner at the given x,y coordinates. Listing 9.7 shows the code for a
very simple applet that loads in an image called ladybug.gif and displays it; Figure 9.25
shows the resulting frame.

LISTING 9.7. Ladybug.java.

1: package GraphicsFontsEtc;
2: import java.awt.Graphics;
3: import java.awt.Image;
4: public class Ladybug extends java.applet.Applet {
5:
6: Image bugImg;
7:
8: public void init() {
9: bugImg = getImage(getCodeBase(), “myimages/ladybug.gif”);
10: }
11:
12: public void paint(Graphics g) {
13: g.drawImage(bugImg, 10, 10, this);
14: }
15:
16: }

TYPE

FIGURE 9.25.
The Ladybug applet.

In this example, you have an instance variable bugImg to hold the ladybug image,
which is loaded in the init() method. The paint() method then draws that

image on-screen.

The second form of drawImage() takes six arguments:the image to draw, the x and y
coordinates,a width and height of a rectangle with which to bound the image, and
this. If the width and height arguments for the bounding rectangle are smaller or larger

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 381

than the actual image, the image is automatically scaled to fit. Using those extra argu-
ments enables you to squeeze and expand images into whatever space you need to fill.
Keep in mind, however, that there might be some image degradation due to scaling it
smaller or larger than its intended size.

One helpful hint for scaling images is to find out the actual size of the image you’ve
loaded so you can then scale it to a specific percentage and avoid distortion in either
dimension. Two methods defined for the Image class are provided to do this:getWidth()
and getHeight(). Both take a single argument,an instance of ImageObserver, which is
used to track the loading of the image (more about this in the analysis for Listing 9.8).
Most of the time, you can just use this as an argument to either getWidth() or
getHeight().

If you stored the ladybug image in a variable called bugImg, for example, this line of
code returns the width of that image, in pixels:

theWidth = bugImg.getWidth(this);

Listing 9.8 shows multiple uses of the ladybug image, scaled to different sizes. Figure
9.26 shows the resulting screen images.

LISTING 9.8. Ladybugs.java.

1: package GraphicsFontsEtc;
2: import java.awt.Graphics;
3: import java.awt.Image;
4: public class Ladybugs extends java.applet.Applet {
5:
6: Image bugImg;
7:
8: public void init() {
9: bugImg = getImage(getCodeBase(), “myimages/ladybug.gif”);
10: }
11:
12: public void paint(Graphics g) {
13:
14: int iWidth = bugImg.getWidth(this);
15: int iHeight = bugImg.getHeight(this);
16: int xPos = 10;
17:
18: // 25%
19: g.drawImage(bugImg, xPos, 10, iWidth/4, iHeight/4, this);
20:
21: // 50%
22: xPos += iWidth/4 + 15;
23: g.drawImage(bugImg, xPos, 10, iWidth/2,
24: iHeight/2, this);

382 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 382

Graphics, Fonts, and Multimedia 383

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

25:
26: // 100%
27: xPos += iWidth/2 + 15;
28: g.drawImage(bugImg, xPos, 10, this);
29:
30: // 150% x, 25% y
31: g.drawImage(bugImg, 10, iHeight + 30,
32: (int)(iWidth*1.5), iHeight/4, this);
33: }
34:
35: }

FIGURE 9.26.
The Ladybugs applet.

What about that last argument to drawImage(), the mysterious this, which also
appears as an argument to getWidth() and getHeight()? Why is it needed? Its

official use is to pass in an object that functions as an ImageObserver (that is, an object
that implements the ImageObserver interface). ImageObserver objects enable you to
watch the progress of an image during the loading process and to make decisions when
the image is only partially or fully loaded. The Applet class,which your applet inherits,
contains default behavior for watching for images that should work in the majority of
cases—hence, the this argument to the drawImage(), getWidth(), and getHeight()
methods. The only reason you’ll want to use an alternative argument is if you are track-
ing lots of images loading asynchronously. For more details,refer to the
java.awt.image.ImageObserver interface documentation.

There are four other drawImage() method signatures. One does more advanced scaling
operations and takes 10 arguments:the image, eight coordinate arguments,and this. The
last three are duplicates of the first three, with an extra argument to specify an alternative
background color for the non-opaque portions of the image. Be sure to read the
Graphics class documentation for the details on these other forms of drawImage().

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 383

Modifying Images
In addition to loading and drawing images,the java.awt.Image package provides more
classes and interfaces that enable you to modify images and their internal colors or to
create bitmap images manually. Most of these classes require background knowledge in
image processing, including a good grasp of color models and bitwise operations. All
these things are outside the scope of an introductory book on Java,but if you have this
background (or you’re interested in investigating further),the classes in java.awt.Image
will be helpful to you.

Take a look at the sample code for creating and using images that comes with the Java
Development Kit (JDK) for examples of how to use the image classes. Also, check out
the samples that came with JBuilder for additional examples of image processing.

Animation Using Images
Movies are made up of individual frames of film that are shown at a fast enough rate that
the images they capture appear to be moving. Animations using images is basically the
same process. Each image is somewhat different from the last,creating the illusion of
movement.

In Java,creating animations with images uses the same methods as creating animations
with graphics primitives. The difference is that you have a stack of images to flip through
rather than a set of painting methods.

Probably the best way to show you how to use images for animation is simply to walk
through an example. Here’s an extensive one of an animation of a small cat called Neko.

Understanding the Neko Example Project
Neko was a small Macintosh animation/game written and drawn by Kenji Gotoh in 1989.
“Neko” is Japanese for “cat,” and the animation is of a small kitten that chases the mouse
pointer around the screen,sleeps,scratches,and generally acts cute. The Neko program
has since been ported to just about every possible platform and also has been reincar-
nated as a popular screen saver.

For this example, you’ll implement a small animation based on the Neko graphics. The
original Neko was autonomous—it could “sense”the edges of the window and turn and
run off in a different direction,along with all its other antics. However, this applet merely
causes Neko to enter stage-left, stop in the middle, yawn, scratch his ear, take a quick
catnap, and then exit stage-right.

384 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 384

Graphics, Fonts, and Multimedia 385

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Before you begin writing Java code to construct an animation, you should have all the
images that form the animation itself. For this version of Neko there are nine of them
(the original has 36),as shown in Figure 9.27.

This is by far the largest of the applets discussed in this book. So rather than
build it up line by line, each part of the applet is discussed independently,
leaving out the basic things you’ve already learned (such as stopping and
starting threads, the run() method, and the like). At the end of this section,
the entire Neko applet listing is printed for your reference.

Note

FIGURE 9.27.
The images for the
Neko applet.

I’ ve stored these images in a directory called myimages. Where you store your images
isn’t all that important,just take note of that information because you’ll need it later.

Building the Neko Example Project
The basic idea of animation by using images is that you have a set of images,and you
display them rapidly one at a time so that they give the appearance of movement. The
easiest way to manage this in Java is to store the images in an array of class Image and
then to have a special variable that stores a reference to the current image.

The java.util class contains the HashTable class which, oddly enough,
implements a hash table. For large numbers of images, using a hash table to
locate and retrieve images is faster and more efficient than an array.
However, an array is used here because there’s a small number of images
and because arrays are better for fixed-length, repeating animations.

Note

For the Neko applet,you’ll include instance variables to implement both these things:an
array to hold the images called nekopics and a variable of type Image to hold the current
image.

Image nekopics[] = new Image[9];
Image currentimg;

Because you’ll need to pass the position of the current image around between the meth-
ods in this applet,you’ll also need to keep track of the current x and y positions. The y

12.31318-9 CH09 9/24/98 1:31 PM Page 385

stays constant for this particular applet,but the x will vary. Let’s add two instance vari-
ables for those positions:

int xpos;
int ypos = 50;

Next, the body of the applet. During the applet’s initialization, you’ll read in all the
images and store them in the nekopics array. This is the sort of operation that works
especially well in an init() method.

Given that you have nine images with nine different filenames,you could do a separate
call to getImage for each one. You can save at least a bit of typing, however, by creating
an array of the filenames (nekosrc, an array of strings) and then just using a for loop to
iterate through them. Here’s the init() method for the Neko applet that loads all the
images into the nekopics array:

public void init() {
Image
String nekosrc[] =

{ “right1.gif”, “right2.gif”, “stop.gif”,
“yawn.gif”, “scratch1.gif”, “scratch2.gif”,
“sleep1.gif”, “sleep2.gif”, “awake.gif” };

for (int i=0; i , nekopics.length; i++) {
nekopics[i] = getImage(getCodeBase(), “myimages/” + nekosrc[i]);

}
}

Note here in the call to getImage() that the directory where these images are stored is
included as part of the path. With the images loaded, the next step is to start animating
the individual images. You do this inside the applet thread’s run() method. In this applet,
Neko does five main things:

1. Enters stage-left running

2. Stops in the middle and yawns

3. Scratches four times

4. Takes a short catnap

5. Wakes up,runs stage-right, and exits

Although you could animate this applet by merely painting the right image to the screen
at the right time, it makes more sense to write this applet so that many of Neko’s activi-
ties are contained in individual methods. This way, you can reuse some of the activities
(running, in particular) if you want Neko to do things in a different order.

Actually, given that during this animation there will be a lot of sleeping of various inter-
vals,it also makes sense to create a method that does the sleeping for the appropriate
time interval. Call it pause()—here’s its definition:

386 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 386

Graphics, Fonts, and Multimedia 387

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

void pause(int time) {
try { Thread.sleep(time); }
catch (InterruptedException e) { }

}

With that out of the way, let’s create a method to make Neko run. Because you’re going
to be using this one at least twice, making it generic is a good plan. Let’s create the
nekorun()method, which takes two arguments:the x position to start and the x position
to end. Neko then runs between those two positions (the y remains constant).

There are two images that represent Neko running, so to create the running effect,you
need to alternate between those two images (stored in positions 0 and 1 of the image
array), as well as move them across the screen. The moving part is a simple for loop
from the start to the end position,setting x to the current loop value. Swapping the
images means merely testing to see which one is active at each turn of the loop and
assigning the other one to the current image. Finally, at each new frame, you’ll call
repaint() and then pause() for a bit. Here’s the definition of nekorun():

void nekorun(inst start, int end) {
currentimg = nekopics[0];
for (int i = start; i < end; i+=10) {

xpos = i;
// swap images
if (currentimg == nekopics[0])

currentimg = nekopics[1];
else currentimg = nekopics[0];
repaint();
pause(150);

}
}

Note in that second line you increment the loop by 10,which increments the x position
by 10 pixels. Why 10 pixels,and not,say, 5 or 8? Ten simply seems to work best for this
animation. When you write your own animations,you will have to play with both the
distances and the sleep times until you get the effect you want.

Next, let’s cover the paint() method that paints each frame. Here the paint() method is
trivially simple. All paint() is responsible for is painting the current image at the cur-
rent x and y positions. All this information is stored in instance variables. But before you
can call the drawImage() method, you have to have a current image to draw, so add a
check to ensure that currentimg isn’t null:

public void paint(Graphics g) {
if currentimg != null

g.drawImage(currentimg, xpos, ypos, this);
}

12.31318-9 CH09 9/24/98 1:31 PM Page 387

Now, on to the run() method, where the main processing of this animation will be hap-
pening. You’ve created the nekorun() method, so in run() you’ll call that method with
the appropriate values to make Neko run from the left edge of the screen to the center:

// run from left side of the screen to the middle
nekorun(0, getSize().width / 2);

The second major thing Neko does in this animation is stop and yawn. You have a single
frame for each of these things (in positions 2 and 3 of the array), so you don’t really need
a separate method for them. All you need to do is set the appropriate image, call
repaint(), and pause for the right amount of time. This example pauses for a full sec-
ond each time for both stopping and yawning (again,using trial and error to determine
the time). Here’s that code:

// stop and pause
currentimg = nekopics[2]
repaint();
pause(1000);

// yawn
currentimg = nekopics[3]
repaint();
pause(1000);

The third part of the animation is Neko scratching. There’s no horizontal movement for
this part of the animation. You simply alternate between the two scratching images
(stored in positions 4 and 5 of the array). Because scratching is a repeatable action,how-
ever, let’s create a separate method for it.

The nekoscratch() methodtakes a single argument:the number of times to scratch.
With that argument,you can then iterate in a loop,alternate between the two scratching
images,and repaint() each time.

void nekoscratch(int numtimes) {
for (int i = numtimes; i > 0; i--) {

currentimg = nekopics[4];
repaint();
pause(150);
currentimg = nekopics[5];
repaint();
pause(150);

}
}

Inside the run method, you then can call nekoscratch() with an argument of 4:

// scratch 4 times
nekoscratch(4);

388 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 388

Graphics, Fonts, and Multimedia 389

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

After scratching, Neko settles in for a short catnap. Again, you have two images for
sleeping (in positions 6 and 7 of the array), which you’ll alternate a certain number of
times. Here’s the nekosleep() method, which takes a single number argument and ani-
mates for that many “turns”:

void nekosleep(int numtimes) {
for (int i = numtimes; i > 0; i--) {

currentimg = nekopics[6];
repaint();
pause(250);
currentimg = nekopics[7];
repaint();
pause(250);

}
}

Call nekosleep() in the body of the run() method like this:

// sleep for 5 “turns”
nekosleep(5);

Finally, to complete the animation, Neko wakes up and runs off. The wakeup() method
uses the last image in the array (position 8), and you can reuse the nekorun() method to
finish:

// wake up and run off
currentimg = nekopics[8];
repaint();
pause(500);
nekorun(xpos, getSize().width + 10);

There’s one more thing left to do to finish the applet. The images for the animation all
have white backgrounds. Drawing those images on a Web browser’s default applet back-
ground (a medium gray) means an unsightly white box around each image. To get
around this problem,setthe applet’s background to white at the start of the run()
method:

setBackground(Color.white);

You might not notice the difference in appletviewer (depending on your Windows color
scheme),but it will make a big difference when you view the applet in your Web
browser. Setting the applet background to the same color as your images’base back-
ground color is always a good idea.

Well, that’s all of it. There’s a lot of code in this applet and there are a lot of individual
methods to accomplish a rather simple animation, but it’s not all that complicated. The
heart of it, as in the heart of all Java animations,is to set up the frame and then call
repaint() to enable the screen draw. Listing 9.9 shows the complete code for the Neko
applet.

12.31318-9 CH09 9/24/98 1:31 PM Page 389

LISTING 9.9. Neko.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: public class Neko extends Applet implements Runnable {
5:
6: Image nekopics[] = new Image[9];
7: Image currentimg;
8: Thread runner;
9: int xpos;

10: int ypos = 50;
11:
12: public void init() {
13: String nekosrc[] = { “right1.gif”, “right2.gif”,
14: “stop.gif”, “yawn.gif”,
15: “scratch1.gif”, “scratch2.gif”,
16: “sleep1.gif”, “sleep2.gif”,
17: “awake.gif” };
18: for (int i=0; i < nekopics.length; i++) {
19: nekopics[i] = getImage(getCodeBase(),
20: “myimages/” + nekosrc[i]);
21: }
22: setBackground(Color.white);
23: }
24:
25: public void start() {
26: if (runner == null) {
27: runner = new Thread(this);
28: runner.start();
29: }
30: }
31:
32: public void stop() {
33: if (runner != null) {
34: runner.stop();
35: runner = null;
36: }
37: }
38:
39: public void run() {
40:
41: // run from one side of the screen to the middle
42: nekorun(0, getSize().width / 2);
43:
44: // stop and pause
45: currentimg = nekopics[2];
46: repaint();
47: pause(1000);
48:

390 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 390

Graphics, Fonts, and Multimedia 391

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

49: // yawn
50: currentimg = nekopics[3];
51: repaint();
52: pause(1000);
53:
54: // scratch four times
55: nekoscratch(4);
56:
57: // sleep for 5 seconds
58: nekosleep(5);
59:
60: // wake up and run off
61: currentimg = nekopics[8];
62: repaint();
63: pause(500);
64: nekorun(xpos, getSize().width + 10);
65:
66: }
67:
68: void nekorun(int start, int end) {
69: currentimg = nekopics[0];
70: for (int i = start; i < end; i+=10) {
71: xpos = i;
72: // swap images
73: if (currentimg == nekopics[0])
74: currentimg = nekopics[1];
75: else currentimg = nekopics[0];
76: repaint();
77: pause(150);
78: }
79: }
80:
81: void nekoscratch(int numtimes) {
82: for (int i = numtimes; i > 0; i--) {
83: currentimg = nekopics[4];
84: repaint();
85: pause(150);
86: currentimg = nekopics[5];
87: repaint();
88: pause(150);
89: }
90: }
91:
92: void nekosleep(int numtimes) {
93: for (int i = numtimes; i > 0; i--) {
94: currentimg = nekopics[6];
95: repaint();
96: pause(250);
97: currentimg = nekopics[7];

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 391

LISTING 9.9. CONTINUED

98: repaint();
99: pause(250);
100: }
101: }
102:
103: void pause(int time) {
104: try { Thread.sleep(time); }
105: catch (InterruptedException e) { }
106: }
107:
108: public void paint(Graphics g) {
109: if (currentimg != null)
110: g.drawImage(currentimg, xpos, ypos, this);
111: }
112:
113: }

Reducing Animation Flicker
If you’ve been trying the examples in this book as you go along, you might have noticed
that when the CurrentDate program runs,every once in a while, there’s an annoying
flicker in the animation. This isn’t an error in the program; it’s a side effect of creating
animations. However, there are ways of reducing flicker so that your animations run
cleaner and look better on-screen,after you understand how flicker is actually caused.

Flicker is a result of the way Java paints and repaints each frame of an applet. At the
beginning of today’s lesson,you learned that when you request a repaint,the repaint()
method calls paint(). That’s not precisely the case. What actually happens is this:

1. The call to repaint() results in a call to the method update().

2. The update() method clears the applet of any existing contents (in essence, it fills
it with the current background color).

3. The update() method then calls paint().

4. The paint() method draws the contents of the current frame to the applet.

It’s step 2, the call to update(), that causes animation flicker. Because the screen is
cleared between frames,the parts of the screen that don’t change alternate rapidly
between being painted and being cleared. Hence, you have flicker. There are three
main ways to avoid flickering:

392 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 392

Graphics, Fonts, and Multimedia 393

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

● Override update() so it doesn’t clear the screen and just paints over what’s already
there.

● Override update() so it clears only the parts of the screen that are changing.

● Override both update() and paint(), and use double-buffering.

If the third way sounds complicated, that’s because it is. Double-buffering involves draw-
ing to an offscreen graphics surface and then copying that entire surface to the screen.
Because it’s more complicated, you’ll look at it last. For now, let’s begin with overriding
just the update() method.

Here’s the default version of the update() method that you’ll be overriding:

public void update(Graphics g) {
g.setColor(getBackground());
g.fillRect(0, 0, width, height);
g.setColor(getForeground());
paint(g);

}

Overdrawing: Don’t Clear the Applet
The first solution to reducing flicker is not to clear the applet at all. This works only for
some applets,of course. Here’s an example of an applet of this type. The ColorSwirl
applet prints a single string to the screen,but that string is presented in different colors
that fade into each other dynamically. This applet flickers terribly when it’s run. Listing
9.10 shows the source for this applet,and Figure 9.28 shows one frame of the result.

LISTING 9.10. ColorSwirl.java.

1: package GraphicsFontsEtc;
2:
3: import java.applet.*;
4: import java.awt.*;
5:
6: public class ColorSwirl extends Applet implements Runnable {
7:
8: Font f = new Font(“TimesRoman”,Font.BOLD,48);
9: Color colors[] = new Color[50];
10: Thread runner;
11:
12: public void start() {
13: if (runner == null) {
14: runner = new Thread(this);
15: runner.start();

TYPE

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 393

LISTING 9.10. CONTINUED

16: }
17: }
18:
19: public void stop() {
20: if (runner != null) {
21: runner.stop();
22: runner = null;
23: }
24: }
25:
26: public void init() {
27: // initialize the color array
28: float c = 0;
29: for (int i = 0; i < colors.length; i++) {
30: colors[i] = Color.getHSBColor(c,(float)1.0,(float)1.0);
31: c += .02;
32: }
33: }
34:
35: public void run() {
36: // cycle through the colors
37: int i = 0;
38: while (true) {
39: setForeground(colors[i]);
40: repaint();
41: i++;
42: try { Thread.currentThread().sleep(50); }
43: catch (InterruptedException e) { }
44: if (i == (colors.length)) i = 0;
45: }
46: }
47:
48: public void paint(Graphics g) {
49: g.setFont(f);
50: g.drawString(“Swirling Colors”, 15, 50);
51: }
52:
53: }

394 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.28.
The ColorSwirl applet.

12.31318-9 CH09 9/24/98 1:31 PM Page 394

Graphics, Fonts, and Multimedia 395

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

There are some new things in this applet that require explaining:

● In the init() method (lines 26 through 33),you initialize the array of Color
objects,so that you then can just draw text by accessing each color using the array
subscripts.

● To create the different colors,a method in the Color class named getHSBColor()
(line 30) creates a Color object based on the HSB (hue, saturation, brightness)
color model rather than RGB (red, green,blue). This enables you to deal with the
colors as floating-point values so you can easily control the shades of the colors
mathematically (line 31).

● In the run() method (lines 35 through 46),the applet cycles through the array of
colors, setting the foreground to each in turn and calling repaint(). When it gets
to the end of the array, it resets the color to the first entry in the array (line 44) and
starts over.

● The flicker results each time the applet is painted. Of course, line 40 is the culprit
here because it calls the repaint() method, which calls update(), which causes
the applet to “blank out”momentarily between each color change—not at all the
effect you desired.

Because the flicker is caused by the update() method clearing the applet,the solution
is easy. Simply override update() and remove the part where the applet is cleared. It
doesn’t really need to get cleared anyway because nothing is redrawn—only the color is
changing. With the applet-clearing behavior removed from update(), all that’s left for
update()to do is call paint(). Here’s what the update() method looks like for this type
of applet:

public void update(Graphics g) {
paint(g);

}

With this small three-line addition—no more flicker! Wasn’t that easy? Add this code to
the ColorSwirl applet and see how much better it looks.

Clipping: Redraw Only When Necessary
Of course, for some applets,it won’t be quite that easy. Here’s a different example. In
this applet,called Checkers,a red oval (checker piece) moves from a black square to a
white square, as if on a checkerboard. Listing 9.11 shows the code for this applet.

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 395

LISTING 9.11. Checkers.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: public class Checkers extends Applet implements Runnable {
5:
6: Thread runner;
7: int xpos;
8:
9: public void start() {
10: if (runner == null); {
11: runner = new Thread(this);
12: runner.start();
13: }
14: }
15:
16: public void stop() {
17: if (runner != null) {
18: runner.stop();
19: runner = null;
20: }
21: }
22:
23: public void init() {
24: setBackground(Color.blue);
25: }
26:
27: public void run() {
28:
29: while (true) {
30:
31: for (xpos = 5; xpos <= 105; xpos+=4) {
32: repaint();
33: try { Thread.sleep(100); }
34: catch (InterruptedException e) { }
35: }
36:
37: for (xpos = 105; xpos > 5; xpos -=4) {
38: repaint();
39: try { Thread.sleep(100); }
40: catch (InterruptedException e) { }
41: }
42:
43: }
44:
45: }
46:
47: public void paint(Graphics g) {
48: // Draw background

396 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 396

Graphics, Fonts, and Multimedia 397

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

49: g.setColor(Color.black);
50: g.fillRect(0, 0, 100, 100);
51: g.setColor(Color.white);
52: g.fillRect(101, 0, 100, 100);
53: // Draw checker
54: g.setColor(Color.red);
55: g.fillOval(xpos, 5, 90, 90);
56: }
57:
58: }

Figure 9.29 shows one frame of the Checkers applet.

FIGURE 9.29.
The Checkers applet.

Here’s a quick run-through of what this applet does:

● An instance variable, xpos, keeps track of the current starting position of the
checker. (Because it moves horizontally, the y stays constant.)

● In the run() method (lines 27 through 43),you change the value of x and repaint,
waiting 100 milliseconds between each move.

● The checker moves from one side of the screen to the other (lines 31 through 35)
and then moves back (lines 37 through 41).

● In the actual paint() method (lines 47 through 56),the background squares are
painted (one black and one white), and then the checker is drawn at its current
position.

● This applet also has a terrible flicker. The applet’s background color is set to blue
(line 24) in the init() method to emphasize it, so when you run this applet,you’ll
definitely see the flicker.

The solution to the flicker problem for this applet is more difficult than for the
ColorSwirl applet because in this instance, you actually do want to clear the applet

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 397

before the next frame is drawn. Otherwise, the red checker won’t have the appearance of
leaving one position and moving to another; it’ll just leave a red smear as it crosses the
applet’s space.

How do you get around this? You still want the animation effect,but rather than clearing
the entire applet area,you clear only the part you actually are changing. By limiting the
redraw to only a small area,you can eliminate much of the flicker you would get from
redrawing the entire applet space.

To limit what gets redrawn, you need a couple of things. First, you need a way to restrict
the drawing area so that each time paint() is called, only the part that needs to redraw
does so. Fortunately, this is easy by using a mechanism called clipping.

Clipping, as implemented in the Graphics class,enables you to restrict the draw-
ing area to a small portion of the full applet area. Although the entire applet area

might get instructions to redraw, only the portions defined as being inside the clipping
area are actually redrawn.

The second thing you need is a way to keep track of the actual area to redraw. Both the
left and right edges of the redrawing area change for each frame of the animation (the
left side to erase the bit of oval left over from the previous frame, and the right side to
draw the new oval). So to keep track of those two x values,you need instance variables
for both the left side and the right.

With those two concepts in mind, let’s start modifying the Checkers applet to redraw
only what needs redrawing. First, you’ll add instance variables for the left and right
edges of the redrawing area. Let’s call them ux1 and ux2 (u for update),where ux1 is the
left side of the area to redraw, and ux2 is the right.

int ux1, ux2;

Now let’s modify the run() method so that it keeps track of the redraw area. You would
think this is easy—just update each side for each iteration of the animation. Here, how-
ever, is where things get complicated because of the way Java uses paint() and
repaint().

The problem with updating the edges of the redraw area with each frame of the anima-
tion is that for every call to repaint(), there might not be an individual corresponding
paint(). If system resources get tight (because of other programs running on the system
or for any other reason),paint() might not be immediately executed, and several calls to
paint() might queue up waiting for their turn to change the pixels on-screen. In that
case, rather than trying to make all those calls to paint() in order (and be potentially
behind all the time),Java catches up by executing only the most recent callto paint()
and flushes the queue (skipping all the other calls to the paint() method).

398 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

NEW TERM

12.31318-9 CH09 9/24/98 1:31 PM Page 398

Graphics, Fonts, and Multimedia 399

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

If you update the edges of the redraw area with each repaint() and a couple of calls to
paint() are skipped, you end up with bits of the redraw area not being updated, and bits
of the oval are left behind. There’s a way around this:Update the leading edge of the
oval each time the frame updates,but update the trailing edge only if the most recent
paint() has actually occurred. This way, if some calls to paint() get skipped, the draw-
ing area will get larger for each frame, and when paint() finally catches up,everything
will get repainted correctly.

Yes,this is horribly complex and not terrif ically elegant. But alas,without this mecha-
nism,the applet will not get repainted correctly. Let’s step through it in the code, so you
can get a better grasp of what’s going on at each step.

Let’s start with run(), where each frame of the animation takes place. Here’s where you
calculate each side of the drawing area based on the old position of the oval and the new
position of the oval. When the oval is moving toward the right side of the screen,this is
easy. The value of ux1 (the left side of the redraw area) is the previous oval’s x position
(xpos), and the value of ux2 is the x position of the current oval plus the width of that
oval (90 pixels,in this example).

Here’s what the original run() method looks like, for reference:

public void run() {
while (true) {

for (xpos = 5; xpos <= 105; xpos+=4) {
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }

}
for (xpos = 105; xpos > 5; xpos -=4) {

repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }

}
}

}

In the first for loop,where the oval is moving toward the right, you want to update ux2
(the right edge of the redraw area):

ux2 = xpos + 90;

After the repaint() has occurred, you update ux1 to reflect the old x position of the
oval. However, you want to update this value only if the paint() has actually happened.
How can you tell? You can reset ux1 at the end of the paint() method to a given value
(0) and then test to see whether you can update that value or whether you are still wait-
ing for the paint() to occur:

12.31318-9 CH09 9/24/98 1:31 PM Page 399

if (ux1 == 0) ux1 = xpos;

Here’s the new for loop when the oval is moving toward the right:

for (xpos = 5; xpos <= 105; xpos+=4) {
ux2 = xpos + 90;
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }
if (ux1 == 0) ux1 = xpos;

}

When the oval is moving toward the left,everything flips. The left side (ux1) is the lead-
ing edge of the oval that gets updated every time, and the right side (ux2) has to wait to
make sure it gets updated. So in the second for loop, first update ux1 to be the x position
of the current oval:

ux1 = xpos;

After the repaint() is called, test to make sure that the paint() method has executed,
and update ux2:

if (ux2 == 0) ux2 = xpos + 90;

Here’s the new version of the second for loop in the run() method:

for (xpos = 105; xpos > 5; xpos -=4) {
ux1 = xpos;
repaint();
try { Thread.sleep(100); }
catch (InterruptedException e) { }
if (ux2 == 0) ux2 = xpos + 90;

}

Those are the only modifications the run() method needs. But you still need to override
update() to limit the region that is being painted to the left and right edges of the draw-
ing area that you set inside run(). To clip the drawing area to a specific rectangle, use
the clipRect() method. This method is defined in the Graphics class and takes four
arguments:x and y starting coordinates and the width and height of the region.

Here’s another place where ux1 and ux2 come into play. The ux1 variable represents the
x point of the top corner of the region; use ux2 to get the width of the region by subtract-
ing ux1. The y values are constant for the top and height of the oval, so they are entered
as such (5 and 95). Then,to complete the overridden update() method, call paint().

public void update(Graphics g) {
g.clipRect(ux1, 5, ux2-ux1, 95);
paint(g);

}

400 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 400

Graphics, Fonts, and Multimedia 401

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Note that with the clipping region in place you don’t have to do much to the actual
paint() method to control the redraw area. The paint() method attempts to redraw the
entire applet area each time, but only the areas inside the clipping region defined inside
the update() method actually are redrawn. The only modification you need to make to
paint() is to reset ux1 and ux2 to 0 at the end so that you can test when the paint()
method has actually been executed (in case some calls to paint() get skipped) in the
two for loops:

ux1 = ux2 = 0;

Although it seems like a lot of work, that’s only because you needed to step through the
explanation of each change. Actually, there are only six new lines of code inserted plus
four more lines for overriding the update() method. This doesn’t totally eliminate flick-
ering in the animation, but it does reduce it a great deal—try it and see. Listing 9.12
shows the updated code for the applet,renamed to Checkers2.

LISTING 9.12. Checkers2.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: public class Checkers2 extends Applet implements Runnable {
5:
6: Thread runner;
7: int xpos;
8: int ux1, ux2;
9:
10: public void start() {
11: if (runner == null); {
12: runner = new Thread(this);
13: runner.start();
14: }
15: }
16:
17: public void stop() {
18: if (runner != null) {
19: runner.stop();
20: runner = null;
21: }
22: }
23:
24: public void init() {
25: setBackground(Color.blue);
26: }
27:
28: public void run() {

TYPE

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 401

LISTING 9.12. CONTINUED

29:
30: while (true) {
31:
32: for (xpos = 5; xpos <= 105; xpos+=4) {
33: ux2 = xpos + 90;
34: repaint();
35: try { Thread.sleep(100); }
36: catch (InterruptedException e) { }
37: if (ux1 == 0) ux1 = xpos;
38: }
39:
40: for (xpos = 105; xpos > 5; xpos -=4) {
41: ux1 = xpos;
42: repaint();
43: try { Thread.sleep(100); }
44: catch (InterruptedException e) { }
45: if (ux2 == 0) ux2 = xpos + 90;
46: }
47:
48: }
49:
50: }
51:
52: public void update(Graphics g) {
53: g.clipRect(ux1, 5, ux2-ux1, 95);
54: paint(g);
55: }
56:
57: public void paint(Graphics g) {
58: // Draw background
59: g.setColor(Color.black);
60: g.fillRect(0, 0, 100, 100);
61: g.setColor(Color.white);
62: g.fillRect(101, 0, 100, 100);
63: // Draw checker
64: g.setColor(Color.red);
65: g.fillOval(xpos, 5, 90, 90);
66: ux1 = ux2 = 0;
67: }
68:
69: }

402 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 402

Graphics, Fonts, and Multimedia 403

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

Double-Buffering: Drawing Offscreen
In addition to the two flicker-reduction techniques you’ve seen so far, there is one other
way to reduce flicker in an application: double-buffering.

With double-buffering, you create a second surface (offscreen,so to speak),do all your
painting to that surface, and then draw the whole surface at once onto the actual applet
area at the end. Because all the work actually goes on behind the scenes,there’s no
opportunity for interim parts of the drawing process to appear accidentally and disrupt
the smoothness of the animation.

Double-buffering isn’t always the best solution. If your applet is suffering from flicker,
try one of the first two solutions first—they might solve your problem and for a lot less
overhead. Double-buffering is less efficient than regular buffering and also takes up more
memory and space, so if you can avoid it, make an effort to do so. In terms of nearly
eliminating animation flicker, however, double-buffering works exceptionally well.

To create an applet that uses double-buffering, you need two things:an offscreen image
to draw on and a graphics context for that image. Those two together mimic the effect of
the applet’s drawing surface:the graphics context that provides the drawing methods and
the Image to hold the dots that get drawn.

There are five major steps to adding double-buffering to your applet:

1. Add instance variables to hold the image and graphics contexts for the offscreen
buffer.

2. Create an image and a graphics context when your applet is initialized.

3. Do all your applet painting to the offscreen buffer, not the applet’s drawing area.

4. At the end of your paint() method, draw the offscreen buffer to the real applet
drawing area onscreen.

5. Override the update() method so that it doesn’t clear the drawing area each time.

First, your offscreen image and graphics context need to be stored in instance variables
so that you can pass them to the paint() method. Declare the following instance vari-
ables in your class definition:

By drawing only the parts of the screen that need to be redrawn, you not
only make your applet flicker less, but you also conserve system resources. A
well-behaved applet should always endeavor to use as few system resources
as possible. So using clipping regions is good practice to follow in general,
not just when you have a problem with flicker.

Tip

12.31318-9 CH09 9/24/98 1:31 PM Page 403

Image offscreenImage;
Graphics offscreenGraphics;

Second, during the initialization of the applet,create an Image and a Graphics object and
assign them to these variables. (You have to wait until initialization occurs so you know
how big they’ ll be.) The createImage() method gives you an instance of Image, which
you can then send the getGraphics() method to get a new graphics context for that
image:

offscreenImage = createImage(getSize().width, getSize().height);
offscreenGraphics = offscreenImage.getGraphics();

Third, whenever you have to draw to the screen (usually in your paint() method),rather
than drawing to the applet’s drawing area,draw to your offscreen graphics. For example,
use this line of code to fill a square of 100 pixels by 100 pixels with the current color:

offscreenGraphics.fillRect(0, 0, 100, 100);

Fourth, at the end of your paint() method, after all the drawing to the offscreen image is
completed, add the following line to draw the offscreen buffer to the applet’s actual
drawing area:

g.drawImage(offscreenImage, 0, 0, this);

Finally, of course, you’ll want to override update() so that it doesn’t clear the drawing
area between paintings:

public void update(Graphics g) {
paint(g);

}

That’s it—and it’s a whole lot more elegant than the second solution. But remember, it
takes more system resources to do double-buffering, so use it only when really necessary.
Listing 9.13 shows the Checkers3 applet,which is the Checkers2 applet rewritten to add
double-buffering, so that you can compare the effect.

LISTING 9.13. Checkers3.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: public class Checkers3 extends Applet implements Runnable {
5:
6: Thread runner;
7: int xpos;
8: int ux1, ux2;
9: Image offscreenImage;
10: Graphics offscreenGraphics;

404 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 404

Graphics, Fonts, and Multimedia 405

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

11:
12: public void start() {
13: if (runner == null); {
14: runner = new Thread(this);
15: runner.start();
16: }
17: }
18:
19: public void stop() {
20: if (runner != null) {
21: runner.stop();
22: runner = null;
23: }
24: }
25:
26: public void init() {
27: setBackground(Color.blue);
28: offscreenImage = createImage(getSize().width,
29: getSize().height);
30: offscreenGraphics = offscreenImage.getGraphics();
31: }
32:
33: public void run() {
34:
35: while (true) {
36:
37: for (xpos = 5; xpos <= 105; xpos+=4) {
38: ux2 = xpos + 90;
39: repaint();
40: try { Thread.sleep(100); }
41: catch (InterruptedException e) { }
42: if (ux1 == 0) ux1 = xpos;
43: }
44:
45: for (xpos = 105; xpos > 5; xpos -=4) {
46: ux1 = xpos;
47: repaint();
48: try { Thread.sleep(100); }
49: catch (InterruptedException e) { }
50: if (ux2 == 0) ux2 = xpos + 90;
51: }
52:
53: }
54:
55: }
56:
57: public void update(Graphics g) {
58: g.clipRect(ux1, 5, ux2-ux1, 95);
59: paint(g);

continues

12.31318-9 CH09 9/24/98 1:31 PM Page 405

LISTING 9.13. CONTINUED

60: }
61:
62: public void paint(Graphics g) {
63: // Draw background
64: offscreenGraphics.setColor(Color.black);
65: offscreenGraphics.fillRect(0, 0, 100, 100);
66: offscreenGraphics.setColor(Color.white);
67: offscreenGraphics.fillRect(101, 0, 100, 100);
68: // Draw checker
69: offscreenGraphics.setColor(Color.red);
70: offscreenGraphics.fillOval(xpos, 5, 90, 90);
71: ux1 = ux2 = 0;
72: g.drawImage(offscreenImage, 0, 0, this);
73: }
74:
75: }

Notice that you’re still clipping the main graphics rectangle in the update()
method, just as you did earlier. You could just redraw the entire screen,but that

would not be nearly as efficient, and remember that you always want your applet to use
as few system resources as possible.

As you can see, each successive technique for reducing flicker builds on the earlier tech-
niques,so it really does make sense to try the three solutions in order, stopping when
you’re satisfied with the way your applet paints. That way, you’ll be assured you’re using
the most efficient solution that gives the desired results.

Making It Multimedia
Multimedia generally refers to the use of more than one medium of expression through
which information is communicated, including both sights and sounds. Earlier today, you
learned how to draw and use images in your animations. Now, you’ll learn how to add
sounds to make multimedia animations.

Java has built-in support for playing sounds in conjunction with running animations and
for using sounds on their own. Currently, the only sound format that Java supports is
Sun’s AU format, sometimes called the µ-law format. The AU files tend to be smaller
than sound files in other formats,but the sound quality is not very good. If you’re espe-
cially concerned with sound quality, you might want your sound clips to be references in
the traditional HTML way (as links to external files) rather than included in a Java
applet.

406 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

ANALYSIS

12.31318-9 CH09 9/24/98 1:31 PM Page 406

Graphics, Fonts, and Multimedia 407

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

However, for some purposes,applet sounds might be quite sufficient. First, you’ll see
how to add sounds to your applets,and then you’ll review Sun’s Animator applet.

Adding Sounds
The simplest way to retrieve and play a sound is through the play() method, part of the
Applet class and therefore available to you in your applets. The play() method is simi-
lar to the getImage() method in that it takes one of two forms:

● With one argument (a URL object),play() loads and plays the given audio clip at
that URL.

● With two arguments (a base URL and a pathname),play() loads and plays that
audio file. The first argument can be either a call to getDocumentBase() or
getCodeBase().

For example, the following line of code retrieves and plays the sound meow.au, which is
contained in the mysounds directory that, in turn, is located in the same directory as this
applet:

play(getCodeBase(), “mysounds/meow.au”);

The play() method retrieves and plays the given sound as soon as possible after it is
called. If it can’t find the sound, you won’t get an error; you just won’t get any sound
when you expect it.

If you want to play a sound repeatedly or to start and stop the sound clip, things get
slightly more interesting. In this case, you use the applet method getAudioClip() to load
the sound clip into an instance of the class AudioClip (defined in java.applet) and then
operate directly on that AudioClip object.

Suppose, for example, that you have a sound loop you want to play in the background of
your applet. In your initialization code, you can use this line of code to get the audio
clip:

AudioClip clip = getAudioClip(getCodeBase(), “mysounds/loop.au”);

To play the clip once, use the play() method:

clip.play();

The JavaSoft multimedia Application Programming Interfaces will greatly
improve Java’s sound capabilities.

Note

12.31318-9 CH09 9/24/98 1:31 PM Page 407

To stop a currently playing sound clip, use the stop() method:

clip.stop();

To loop the clip (play it repeatedly), use the loop() method:

clip.loop();

In your applet,you can play as many audio clips as you need; all the sounds you use will
mix together properly as they are played by your applet. If the getAudioClip() method
can’t find the sound you indicate or can’t load it for some reason,it returns null. You
should always test for this case in your code before trying to play the audio clip because
attempting to call the play(), stop(), and loop() methods on a null object results in an
exception being thrown.

If you use a background sound—a sound clip that repeats—that sound clip will not stop
playing automatically when you suspend the applet’s thread. This means that even if your
reader moves to another page, the first applet’s sounds will continue to play, even if a
second applet gets loaded. You can fix this problem by adding this line of code in your
stop() method to stop the applet’s background sound:

if (bgsound != null) bgsound.stop();

Basically, anywhere you use runner.stop() to stop a thread, you should also have an
accompanying bgsound.stop() to stop the sound.

Listing 9.14 shows the AudioLoop applet,a simple framework for an applet that plays
two sounds. The first, a background sound (loop.au), plays repeatedly. The second, a
horn honking (beep.au), plays once every five seconds. The graphic is unimportant,so
it’s not shown here; it just displays the name of the applet to the screen.

LISTING 9.14. AudioLoop.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: public class AudioLoop extends Applet implements Runnable {
5:
6: AudioClip bgsound;
7: AudioClip beep;
8: Thread runner;
9:
10: public void start() {
11: if (runner == null) {
12: runner = new Thread(this);
13: runner.start();
14: }

408 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

TYPE

12.31318-9 CH09 9/24/98 1:31 PM Page 408

Graphics, Fonts, and Multimedia 409

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

15: }
16:
17: public void stop() {
18: if (runner != null) {
19: if (bgsound != null) bgsound.stop();
20: runner.stop();
21: runner = null;
22: }
23: }
24:
25: public void init() {
26: bgsound = getAudioClip(getCodeBase(),
27: “mysounds/loop.au”);
28: beep = getAudioClip(getCodeBase(),
29: “mysounds/beep.au”);
30: }
31:
32: public void run() {
33: if (bgsound != null) bgsound.loop();
34: while (runner != null) {
35: try { Thread.sleep(5000); }
36: catch (InterruptedException e) { }
37: if (bgsound != null) beep.play();
38: }
39: }
40:
41: public void paint(Graphics g) {
42: g.drawString(“AudioLoop Applet”, 10, 10);
43: }
44:
45: }

Sun’s Animator Applet
Because most Java animations have a lot of code in common,being able to reuse all that
code as much as possible makes creating animations with images and sounds much eas-
ier. For this reason,Sun provides an Animator class as part of the standard JDK.

The Animator applet provides a simple, general-purpose animation interface. You com-
pile the code and create an HTML file with the appropriate parameters for the animation.
Using the Animator applet,you can do the following:

● Create an animation loop—an animation that runs repeatedly.

● Add a soundtrack to the applet.

● Add sounds to be played for individual frames.

● Indicate the speed at which the animation is to occur.

12.31318-9 CH09 9/24/98 1:31 PM Page 409

● Specify the order of frames in the animation—which means you can reuse frames
that repeat during the course of the animation.

Even if you don’t intend to use Sun’s Animator, it’s a great example of how animations
work in Java and the sorts of clever tricks you can use in a Java applet. The Animator
class is part of the JDK,and in the standard JBuilder installation, it will be located at

C:\jbuilder2\samples\java\demo\Animator

In this directory, there is also an Animator.jpr project,which you can open and run in
the JBuilder IDE,along with several sample HTML files,audio files,and image files.
Documentation for the applet is in the index.html file. You can find more information
about this handy applet on Sun’s Java home page at http://www.javasoft.com.

Summary
You present something on-screen by painting inside your applet:shapes,graphics,text,
or images. Today, you learned the basics of how to paint by using graphics primitives to
draw rudimentary shapes,using fonts and font metrics to draw text, and using Color
objects to change the color of what you are drawing on-screen. It’s this foundation in
painting that enables you to do animation inside an applet (iterative painting to the
screen) and to work with images.

You learned quite a bit about animation today, including which methods to use and over-
ride: start(), stop(), paint(), repaint(), run(), and update(). You were introduced
to creating and using threads. You also learned how to locate, load, and display images in
your applets and how to create animations using images.

You mastered the three major techniques for reducing flicker: overdrawing, clipping, and
double-buffering. You also had an opportunity make your animations multimedia by
adding audio,either as background sounds or stopping and starting sound clips as
needed. Sun’s Animator applet was also introduced, which serves as a template for fur-
ther animation development and as an example of some of the more advanced things you
can do with animation applets.

Q&A
Q In all the examples you show and in all the tests I’ve made, the graphics prim-

iti ves,such as drawLine() and drawRect(), produce lines that are one pixel
wide. How can I draw thicker lines?

410 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

12.31318-9 CH09 9/24/98 1:31 PM Page 410

Graphics, Fonts, and Multimedia 411

9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

A In the current implementation of the Graphics class,you can’t set the line thick-
ness; there are no methods for changing the default width of the line. If you need a
thicker line, you have to draw multiple lines one pixel apart to produce that effect.

Q I tr ied out ColorBoxes, but each time it draws,a lot of the boxes are the same
color. The same occurs when running ColorSwirl. Why is this?

A The most likely reason is that there probably aren’t enough colors available in your
browser or on your system to draw all the colors that the applet is actually generat-
ing. If your system can’t produce the wide range of colors available using the
Color class,or if the browser has allocated too many colors for other things,you
might end up displaying duplicate colors in the applet,depending on how the
browser and system have been set up to handle such things. Usually your applet
won’t use quite so many colors, so you won’t run into this problem so often in
your real programs.

Q. Why all the indirection with paint(), repaint(), and update()? Why not have
a simple paint() method that just puts stuff on-screen when you want it
there?

A. The reason is that Java allows you to nest drawable surfaces within other drawable
surfaces. When a repaint occurs,all parts of the system are redrawn, starting from
the outermost surface and moving on to the most nested surface. Because the draw-
ing of your applet takes place at the same time everything else is drawn, your
applet doesn’t get any special treatment—it will be painted with everything else.
Although you sacrif ice some immediacy, this enables your applet to coexist cleanly
with the rest of the system.

Q. When an applet uses threads,is it tr ue that I just tell the thr ead to start and it
starts, and tell it to stop and it stops? I don’t have to test anything in my loops
or keep tr ack of the thread’s state?

A. That’s true. When you put your applet into a thread, Java can control the execution
of your applet much more readily. By causing the thread to stop,your applet just
stops running and then resumes when the thread starts up again. It’s all automatic.
Neat, eh?

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

12.31318-9 CH09 9/24/98 1:31 PM Page 411

Quiz
1. True or False? The following line of code draws a filled rectangle whose upper-left

corner is at 20,20 and whose lower-right corner is at 60,60:

g.fillRect(20,20,60,60);

2. True or False? You can draw an outline of a circle using either the
drawRoundRect() or the drawOval() method.

3. There is no isBoldItalic() method defined in the Font class. What method could
you use to help you find out whether the font object was both bold and italic?

4. Describe the effect of the following line of code in an applet:

setForeground(getBackground());

Exercises
1. Write an applet named PacIsBack that draws the graphic (in blue) and text in

Figure 9.30 to the applet’s drawing surface (TimesRoman Bold Italic, 24 points,in
red). Also, create an HTML file to display the applet; be sure to size the applet
appropriately to display the entire the applet.

412 Day 9

P2/VB/swg1 TY JBuidler in 21 days 31318-9 dietsch Chapter 09 Lp#3

FIGURE 9.30.
The PacIsBack applet.

2. Add sound to the Neko applet.

12.31318-9 CH09 9/24/98 1:31 PM Page 412

DAY 10

WEEK 2

Streams and I/O
Today, you’ll explore the topic of Java’s streams and files, including the differ-
ences and similarities between an input stream and an output stream. You’ll
learn how to do the following:

● Create, use, and detect the end of input streams

● Use and nest filtered input streams

● Create, use, and close output streams

● Read and write typed streams

● Use utility classes to access the file system

None of the examples in today’s lessons will work unless you
remember to add the following line at the top of each source
code file you create:

import java.io.*

If you forget, you’ll get a compiler error because Java won’t know
where the java.io classes and methods you’re using are defined.

Caution

13.31318-9 CH10 9/24/98 1:32 PM Page 413

Let’s begin with a little history behind the invention of streams and their precursors,
pipes.

A pipe is a mechanism for passing data from one item in a system to another.
The item sending information through the pipe is the source; the item receiving

information is the destination.

A streamis a path of communication between the source of some information
and its destination. The item sending information through the stream is the pro-

ducer; the item receiving information is the consumer.

A processoris a filter that manipulates the data in some way while it is in
transit—that is, between the producer and the consumer.

One of the early inventions of the UNIX operating system was the pipe. By unifying
many disparate ways of communicating into a single metaphor, UNIX paved the way for
a whole series of related inventions,culminating in the abstraction now known as
streams.

An uninterpreted stream of bytes can come from any pipe source, which might include
files,programs,peripherals,a computer’s memory, or even the Internet. In fact,the
source and destination of a stream are completely arbitrary producers and consumers of
bytes,respectively. Therein lies the power of the abstraction. You don’t need to know
about the source of the information when reading from a stream,and you don’t need to
know about the final destination when writing to one.

General-purpose methods that can read from any source will accept a stream argument to
specify that source; general methods for writing will accept a stream to specify the desti-
nation. Arbitrary processors of data have two stream arguments. They read from the first
argument,process the data,and write the results to the second argument. These proces-
sors have no idea of either the source or the destination of the data they are processing.
Sources and destinations can vary widely—from a memory buffer on a local computer to
a NASA deep-space probe’s real-time data streams.

Decoupling the producing, processing, and consuming of data from the sources and des-
tinations of that data enables you to mix and match combinations at will as you write
your program. In the future, when new forms of sources and destinations are introduced,
they can be used within the same framework, without changing your classes. In addition,
new stream abstractions,supporting higher levels of interpretation, can be written com-
pletely independently of the underlying transport mechanism for the data bytes them-
selves.

414 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

NEW TERM

NEW TERM

NEW TERM

13.31318-9 CH10 9/24/98 1:32 PM Page 414

Streams and I/O 415

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

The main foundations of this stream framework are the two abstract classes InputStream
and OutputStream. You’ll begin with these two superclasses and work your way down in
the hierarchy.

The methods you will explore today are declared to throw an IOException
object. The IOException class is a subclass of the Exception class and concep-
tually embodies all the possible input/output errors that might occur while
using streams. Several subclasses define even more specific exceptions that
can be thrown as well. For now, just know that your code must either catch
an IOException or pass the exception back up the hierarchy to be consid-
ered a well-behaved user of streams.

Tip

Understanding Input Streams
Input streams read data from various sources of input,such as keyboard input,a byte at a
time. Data that is read by an input stream can be directed, in many different ways, to any
valid consumer of data. These are the input stream classes discussed in this section:

● InputStream (the abstract class)

● ByteArrayInputStream

● FileInputStream

● FilterInputStream

● ObjectInputStream

● PipedInputStream

● SequenceInputStream

● StringBufferInputStream

InputStream Abstract Class
InputStream is an abstract class that defines the fundamental ways in which a consumer
reads a stream of bytes from some source. The identity of the source and the manner of
the creation and transport of the bytes are irrelevant. The input stream is simply the des-
tination of those bytes,and that’s all that is necessary for your program to know.

All input streams descend from the abstract class InputStream. All share the few meth-
ods described in this section. Thus,stream s in the following examples can be any of the
more complex streams described later in this section. The read() and skip() methods
provide basic default functionality in the abstract class; the available(), close(),

13.31318-9 CH10 9/24/98 1:32 PM Page 415

markSupported(), mark(), and reset() methods are simply skeletons and must all be
overridden in a stream subclass to do anything useful.

read()

The most important method to the consumer of an input stream is the one that reads
bytes from the source. The read() method comes in three flavors,and each of these
read() methods is defined to block (wait) until all the input requested becomes avail-
able.

416 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

Don’t worry about the blocking limitation; due to multithreading, your pro-
gram can do as many other things as you like while this one thread is wait-
ing for input. In fact, it is common to assign a thread to each stream of
input or output that is solely responsible for reading or writing the stream.
These threads might then hand off the information to other threads for pro-
cessing, overlapping your program’s I/O time with its compute time.
However, we’ll forgo that small pleasure for the time being and just pretend
we have to be concerned only with input and output.

Tip

The first form of the read() method simply reads a single byte of data:

InputStream s = getAnInputStream ();
System.out.println(“Bytes read: “ + s.read());

If the read() method is successful,it returns 1 (an int representing the number of bytes
read). If it is unsuccessful,it will r eturn -1. This indicates either that you are already at
the end of the input stream or that there were no bytes in the stream at all.

Here’s an example of the second form of the read() method, which takes a buffer name
as its only argument:

byte[] myBuff = new byte[1024]; // any size will do
System.out.println(“Bytes read: “ + s.read(myBuff));

This form of the read() method attempts to fill the entire buffer given to it. If it can’t, it
returns the actual number of bytes that were read into the buffer. After that, any further
calls to the read() method return -1, indicating that you are at the end of the stream. It
also returns -1 if there are no bytes in the stream.

Because a buffer is an array of bytes,you can specify an offset into the buffer and the
number of bytes as arguments to the read method:

s.read(myBuff, 101, 300);

13.31318-9 CH10 9/24/98 1:32 PM Page 416

Streams and I/O 417

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

This example tries to fill in bytes 101 through 400 and otherwise behaves exactly the
same as the second read() method just presented. In fact,the default implementation of
that read() method does exactly this,using 0 as the offset and b.length (buffer length)
as the number of bytes to read.

skip()

What if you want to skip over some of the bytes in a stream or start reading a stream
from some point other than its beginning? The skip() method is similar to the read
method and does the trick nicely:

if (s.skip(1024) != 1024)
System.out.println(“I skipped less than I anticipated.”);

This would skip over the next 1,024 bytes in the input stream,and if the skip method
doesn’t return 1024 as the number of bytes skipped, the message is printed. The skip()
method takes and returns a long value because streams are not required to be limited to
any particular size. The implementation of the skip method simply uses the read()
method without storing the bytes anywhere; it just throws them in the bit bucket!

available()

If , for some reason,you need to know how many bytes are in the stream right now, you
can ask:

if (s.available() < 1024)
System.out.println(“Too few bytes are in there just now.”);

This tells you the number of bytes that you can read by using the read() method without
blocking. Due to the abstract nature of the source of these bytes,streams might or might
not be able to provide a reasonable answer to such a direct question. For example, some
streams always return 0. Unless you use specific subclasses of InputStream that you
know will provide a reasonable answer to this question,it’s not a good idea to rely on
this method. Remember, multithreading eliminates many of the problems associated with
blocking while waiting for a stream to fill again. Thus,one of the strongest rationales for
the use of the available() method is considerably weakened.

In InputStream, the available() method is set to always return 0. To make it
do something useful, you must override it in a stream subclass.

Note

13.31318-9 CH10 9/24/98 1:32 PM Page 417

markSupported(), mark(), and reset()
Some streams support the notion of marking a position in the stream,reading some
bytes,and then resetting the stream to the marked position so you can re-read the bytes.
Clearly, the stream would have to “remember”all those bytes,so there is a limitation on
how far apart in a stream the mark and its subsequent reset can occur. There is also a
method that asks whether the stream supports the notion of marking at all. Here’s an
example:

InputStream s = getAnInputStream();
if (s.markSupported()) { //does s support mark and reset?

... // read the stream for a while
s.mark(1024);
... // read a limit of 1024 more bytes
s.reset();
... // now we can re-read those bytes

}
else {...} // no mark/reset support, so do something else

The markSupported() method checks to see whether this particular stream supports the
mark() and reset() methods. Because InputStream is an abstract class,the
markSupported() method returns false. The markSupported method must be overrid-
den in the stream subclass and set to return true to indicate support.

The mark() method takes an argument that specifies how many bytes you intend to allow
the read() method to look at before resetting. If the program reads further than this self-
imposed limit,the mark is invalidated, and a call to the reset() method throws an
exception; otherwise, the reset() method repositions the stream to the previously
marked position. These methods are only skeletons in the InputStream abstract class;
they must be overridden and defined in a subclass,although the reset() method can
throw an exception if you should call it directly from InputStream.

418 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

For an example of a subclass in which the markSupported() method is true
and in which the mark() and reset() methods are well defined, look at the
java.io.BufferedInputStream.java source code. The easiest way to do this
is to select File | Open / Create from the JBuilder menu and click the
Packages tab to open the Packages page in the File Open / Create dialog
box. Type java.io.BufferedInputStream into the Name text box or select
the BufferedInputStream class from the java.io package in the tree, and
click OK.

Tip

13.31318-9 CH10 9/24/98 1:32 PM Page 418

Streams and I/O 419

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

Marking and resetting a stream is most valuable when you are attempting to identify the
type of data coming through the stream,but to make a positive identification you must
consume a significant piece of it in the process. Often,this is because you have several
proprietary parsers that you can hand the stream to,but they will consume some
(unknown to you) number of bytes before deciding whether the stream is of their type.
Set a large size for the read limit,and let each parser run until it either throws an error or
completes a successful parse. If an error is thrown, call the reset() method and try the
next parser.

close()

Because you don’t necessarily know what resources an open stream represents,or how to
deal with them properly when you’re finished reading the stream,you should explicitly
close down a stream so that it can release those resources. Of course, garbage collection
and a finalization() method can do this for you,but what if you need to reopen that
stream or those resources before they have been freed by this asynchronous process? At
best,this is annoying or confusing; at worst, it introduces an unexpected, obscure, and
difficult-to-find bug. Because you’re interacting with external resources,it’s safer to be
explicit about when you’re finished using them:

InputStream s = alwaysMakesANewInputStream();
if (s != null) {

try {
... // use s until you’re through

}
finally {

s.close();
}

}

Using the finally block makes sure that closing the stream always gets done. To avoid
closing a stream that’s not open or wasn’t successfully created, this example checks to
make sure that null is not assigned to the s variable before attempting the try block.

In InputStream, the close() method does nothing; it should be overridden
in a stream subclass to be made functional.

Note

ByteArrayInputStream
The inverse of some of the previous examples would be to create an input stream from
an array of bytes. This is exactly what ByteArrayInputStream does:

byte[] myBuff = new byte[1024];
fillWithUsefulData(myBuff);
InputStream s = new ByteArrayInputStream(myBuff);

13.31318-9 CH10 9/24/98 1:32 PM Page 419

Readers of the new stream s see a stream 1,024 bytes long, containing the bytes in the
array myBuff. Just as the read() method has a form that takes an offset and a length,so
does this class’s constructor:

InputStream s = new ByteArrayInputStream(myBuff, 101, 300);

Here, the stream is 300 bytes long and consists of bytes 101 through 400 from the byte
array assigned to the myBuff variable.

420 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

At last, you’ve seen an example of the creation of a stream. These new
streams are attached to the simplest of all possible sources of data, an array
of bytes in the memory of the local computer.

Note

The ByteArrayInputStream class simply implements the standard set of methods that all
input streams can implement. Here, the available() method has an especially simple
job—it returns 1024 and 300, respectively, for the two instances of the
ByteArrayInputStream class you created earlier because it knows exactly how many
bytes are available by definition. Calling the reset() method in the
ByteArrayInputStream object resets the position to the beginning of the stream assigned
to the myBuff variable if no mark has previously been set (rather than throwing an excep-
tion). A ByteArrayInputStream object can also use the skip method.

FileInputStream
One of the most common uses of streams is to attach them to files in the file system.
Here, for example, is the creation of such an input stream:

InputStream s = new FileInputStream(“/some/path/and/filename”);

Although reading and writing files is not a problem for standalone Java
applications, attempting to open, read, or write streams based on files from
an applet can cause security violations (depending on the safety level set by
the browser’s user). When creating applets, don’t depend on files, but rather
use servers to hold shared information.

Caution

13.31318-9 CH10 9/24/98 1:33 PM Page 420

Streams and I/O 421

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

You can also create the stream from a previously opened file descriptor:

int fd = openInputFile();
InputStream s = new FileInputStream(fd);

In either case, because this type of stream is based on an actual (finite length) file, the
FileInputStream object can implement the available() method precisely, and it can
call the skip() method, as well. In addition, FileInputStream objects know a few more
tricks:

FileInputStream aFIS = new FileInputStream(“aFileName”);
int myFD = aFIS.getFD();
/* close() will automatically be called by garbage collection */

The second line of the preceding code fragment includes the getFD() method. The
getFD() method returns the file descriptor of the file on which the stream is based. The
second new thing is that you don’t need to do finalization or call the close() method
directly. The garbage collector will call the close() method automatically when it
notices that the stream is no longer in use but before actually destroying the stream.
Thus,you can go merrily along reading the stream,never explicitly closing it,and all
will be well.

You can get away with this because streams based on files tie up very few resources,and
these resources cannot be accidentally reused before garbage collection. (These were the
issues raised in the earlier discussion of finalization and the close() method.) However,
if you were also writing to the file, you would have to be more careful. Just because you
don’t have to close the stream doesn’t mean that you might not want to do so anyway.
For clarity, or if you don’t know precisely what type of an InputStream object you were
handed, you might choose to call the close() method yourself and leave the stream in a
known state.

FilterInputStream
This class simply provides a pass-through for all the standard methods of the
InputStream abstract class. It holds inside itself another stream,by definition one further
down the chain of filters, to which it forwards all method calls. It implements nothing
new but allows itself to be nested:

InputStream s = getAnInputStream();
FilterInputStream s1 = new FilterInputStream(s);
FilterInputStream s2 = new FilterInputStream(s1);

You must declare the stream variable aFIS to be of type FileInputStream
because the InputStream class doesn’t know about these new methods.

Caution

13.31318-9 CH10 9/24/98 1:33 PM Page 421

FilterInputStream s3 = new FilterInputStream(s2);
... s3.read() ...

Whenever a read() method is performed on the filtered stream s3, it passes along the
request to s2, then s2 does the same to s1, and lastly s is asked to provide the bytes.
Subclasses of the FilterInputStream class should, of course, do some nontrivial pro-
cessing of the bytes as they flow past. The rather verbose form of chaining in the preced-
ing example can be made more elegant because this style clearly expresses the nesting of
chained filters:

s3 = new FilterInputStream
(new FilterInputStream
(new FilterInputStream(s)));

Although this class does not do much on its own, it is declared public, not abstract.
This means that as useless as they are by themselves,you actually can instantiate them
directly. However, to do anything really useful,you should use one of the subclasses pre-
sented in the following subsections.

BufferedInputStream

The BufferedInputStream class is one of the most valuable of all the stream classes. It
implements the full complement of the InputStream class methods,but it does so by
using a buffered array of bytes that acts as a cache for future reading. This decouples the
rate and size of the chunks you’re reading from the larger block sizes in which streams
are read (for example, from peripherals,files,or networks). It also allows smart streams
to read ahead when they expect that you will want more data soon.

Because the buffering mechanism of the BufferedInputStream class is so valuable, and
it’s also the only subclass to fully implement the mark() and reset() methods,you
might wish that every input stream could somehow share its valuable capabilities.
Normally, you would be out of luck because they don’t descend from this InputStream
subclass. However, you already have seen a way that filter streams can wrap themselves
around other streams. The following is a buffered version of the FileInputStream class
that can handle marking and resetting properly:

InputStream s = new BufferedInputStream(new FileInputStream(“myfile”));

This gives you a buffered input stream based on myfile that can use the mark() and
reset() methods. Now you can begin to see the power of nesting streams. Any cap-
ability provided by a filter input stream (or output stream,as you see later today) can be
used by any other basic stream through nesting.

422 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 422

Streams and I/O 423

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

DataInputStream and DataInput
All the DataInputStream class methods are overrides of abstract methods defined in the
DataInput interface. This interface is general-purpose enough that you might want to use
it yourself in the classes you create.

When you begin using streams,you quickly discover that byte streams are not a terrif ic
format to force all your data into. In particular, the primitive types of the Java language
embody a rather nice way of looking at data,but with the streams you’ve been defining
thus far today, you could not read data of these types. The DataInput interface defines a
higher-level set of methods that, when used for both reading and writing, can support a
more complex, typed stream of data. Here are the method signatures that this interface
defines:

void readFully(byte buf[]) throws IOException;
void readFully(byte buf[], int off, int len) throws IOException;
int skipBytes(int n) throws IOException;
boolean readBoolean() throws IOException;
byte readByte() throws IOException;
int readUnsignedByte() throws IOException;
short readShort() throws IOException;
int readUnsignedShort() throws IOException;
char readChar() throws IOException;
int readInt() throws IOException;
long readLong() throws IOException;
float readFloat() throws IOException;
double readDouble() throws IOException;
String readLine() throws IOException;
String readUTF() throws IOException;

The first three methods are simply new names for forms of the read() and skip() meth-
ods that you’ve seen previously. Each of the next 10 methods reads in either a primitive
type or its unsigned counterpart. These last 10 methods must return an integer of a wider
size because integers are always signed in Java,and so the unsigned value will not fit in
anything smaller. The final two methods read a newline-terminated string of characters
(ending in \r, \n, or \r\n) from the stream. The readLine() method reads ASCII char-
acters; the readUTF() method readsUnicode.

The DataInputStream class implements the DataInput interface—that is, the
DataInputStream class provides concrete definitions for the DataInput interface abstract
methods. Now that you know what that interface looks like, let’s see it in action. In this
example, the first item in the stream is a long value that contains the size of the stream:

DataInputStream s = new DataInputStream(getNumericInputStream());
long size = s.readLong(); // the number of items in the stream
while (size-- > 0) {

if (s.readBoolean()) { // should I process this item?

13.31318-9 CH10 9/24/98 1:33 PM Page 423

int anInteger = s.readInt();
int magicBitFlags = s.readUnsignedShort();
double aDouble = s.readDouble();
if ((magicBitFlags & 010000) != 0) {

... // high bit set, do something appropriate
}
... // process anInteger and aDouble

}
}

A point about most of the methods provided by the DataInputStream class:When the
end of a stream is reached, most methods throw an EOFException object. This is actually
quite useful because you can catch the exception and do any end-of-stream processing
you need to do:

try {
while (true) {

byte b = (byte) s.readByte();
... // process the byte b

}
}
catch (EOFException e) { // reached end of stream
... // do end-of-stream cleanup here
}

This works just as well for all the methods in this class except for the skipBytes() and
readUTF() methods. The skipBytes() method does nothing when it reaches the end of
the stream. As for the readUTF() method, it might throw a UTFDataFormatException
object,if it notices the problem at all.

PushbackInputStream

The filter stream provided by the PushbackInputStream class is handy for “unreading”
data by pushing it back into the stream whence it came. You can have a one-byte push-
back buffer or specify the size of pushback buffer that you want. In addition to its read()
methods,the PushbackInputStream class provides three unread() methods and uses a
simplified version of marking and resetting to keep track of its position. Listing 10.1 is a
simple custom implementation of a readLine() method using the PushbackInputStream
class. The new class created in the listing can be imported by other classes wanting to
use the features of your custom implementation.

LISTING 10.1 SimpleLineReader.java.

1: package IO;
2: import java.io.*;

3: public class SimpleLineReader {
4: private FilterInputStream s;

424 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

TYPE

13.31318-9 CH10 9/24/98 1:33 PM Page 424

Streams and I/O 425

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

5:
6: public SimpleLineReader(InputStream anIS) {
7: s = new DataInputStream(anIS);
8: }
9:
10: // ... other read() methods using stream s
11:
12: public String readLine() throws IOException {
13: char[] buffer = new char[100];
14: int offset = 0;
15: byte thisByte;
16:
17: try {
18: lp: while (offset < buffer.length) {
19: switch (thisByte = (byte) s.read()) {
20: case ‘\n’:
21: break lp;
22: case ‘\r’:
23: byte nextByte = (byte) s.read();
24: if (nextByte != ‘\n’) {
25: if (!(s instanceof PushbackInputStream)) {
26: s = new PushbackInputStream(s);
27: }
28: ((PushbackInputStream)s).unread(nextByte);
29: }
30: break lp;
31: default:
32: buffer[offset++] = (char) thisByte;
33: break;
34: }
35: }
36: }
37:
38: catch (EOFException e) {
39: if (offset == 0)
40: return null;
41: }
42:
43: return String.copyValueOf(buffer, 0, offset);
44: }
45:
46: }

The SimpleLineReader class demonstrates various things. For the purpose of this exam-
ple, the readLine() method is restricted to reading the first 100 characters of the
line (see lines 12 and 13),rather than reading any size line, as it would in a gen-

eral-purpose line processor. It also reminds you how to break out of a loop (lines 18 to
35) and how to produce a String object from an array of characters (line 43). This
example also includes standard uses of the InputStream class read() method (line 19)

ANALYSIS

13.31318-9 CH10 9/24/98 1:33 PM Page 425

for reading bytes one at a time and for determining the end of the stream by enclosing it
in a DataInputStream object (line 7) and catching thrown EOFException objects (lines
38 to 41).

One of the more unusual aspects of the example is the way in which the
PushbackInputStream class is used. To be sure that \n is ignored following \r, you have
to look ahead one character; but if the character is not \n you must push it back (lines 22
to 30). Take a closer look at lines 25 and 26. First, the object assigned to the s variable is
checked to see whether it’s already an instance of a PushbackInputStream class (line
25). If it is, the program uses the object. Otherwise, the current object is enclosed inside
a new PushbackInputStream object,which is then used (line 26).

Following this,the unread() method is called (line 28). This presents a problem because
the s variable has a FilterInputStream object compile-time data type, so the compiler
doesn’t recognize the unread method. However, the previous lines of code (lines 25 and
26) have ensured that the s variable is assigned the PushbackInputStream object runtime
data type, so you can safely cast it to that type and then call the unread() method with-
out any problem. The SimpleLineReader class also supports the mark and reset meth-
ods; the markSupported() method returns true.

java.security.DigestInputStream

426 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

This example was written in an unusual way for demonstration purposes.
You could have simply declared a PushbackInputStream variable and always
assigned the DataInputStream enclosed object to it. Conversely, the
SimpleLineReader class constructor could have checked whether its argu-
ment was already of the right class—the way that the PushbackInputStream
class did—before creating a new DataInputStream object. The interesting
thing about the approach of “wrapping a class only as needed” as demon-
strated here is that it works for any InputStream class that you hand it, and
it does additional work only if it needs to. Both are good general design
principles.

Note

Although implemented in the java.security package, the DigestInputStream class is
descended from the FilterInputStream class found in the java.io package. This
stream class creates the input required by the java.security.MessageDigest object,
which is a byte array and can be turned on and off. When the stream is turned on,a
read() method will update the digest; when off, the digest is not updated. Its constructor
takes the form

DigestInputStream(anInputStream, aMessageDigest)

13.31318-9 CH10 9/24/98 1:33 PM Page 426

Streams and I/O 427

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

where the anInputStream parameter takes an InputStream object or descendant,and the
aMessageDigest parameter takes the MessageDigest object to be updated by this stream.
For more information about the MessageDigest class,refer to the Java API documenta-
tion for the java.security package.

java.util.zip.CheckedInputStream

Although implemented in the java.util.zip package, the CheckedInputStream class is
descended from the FilterInputStream class found in the java.io package. Its purpose
is to create a stream that also can maintain a checksum of the data being read. Its con-
structor takes the form

CheckedInputStream(anInputStream, aChecksum)

where the anInputStream parameter takes any InputStream object,and the aChecksum
parameter takes either a CRC32 or an Adler32 object. For more information on these
checksum classes,refer to the Java API documentation for the java.util.zip package.

java.util.zip.InflaterInputStream

Although implemented in the java.util.zip package, the InflaterInputStream class
is descended from the FilterInputStream class found in the java.io package. Its pur-
pose is to create a stream for uncompressing data that is in the deflate compression for-
mat. The InflaterInputStream class has three constructors, two of which take the
forms

InflaterInputStream(anInputStream, anInflater)
InflaterInputStream(anInputStream, anInflater, theSize)

where the anInputStream parameter takes any InputStream object,and the anInflater
parameter takes an Inflater object. The first constructor creates a stream with a default
buffer size; the second enables you to specify the buffer size by passing an integer to the
theSize parameter. The InflaterInputStream class also has two subclasses:
java.util.zip.GZIPInputStream, which reads data compressed in the GZIP format,
and java.util.zip.ZipInputStream, which reads data compressed in the ZIP file for-
mat (and implements java.util.zip.ZipConstants). Here are their constructors:

GZIPInputStream(anInputStream)
GZIPInputStream(anInputStream, theSize)
ZIPInputStream(anInputStream)

As you can see, these constructors do not have anInflater parameters. This is because
these classes manipulate data in particular compression formats and therefore they’re
automatically set to the correct Inflater objects (the first two to GZIP, and the last to
ZIP). The ZIPInputStream class does not have a constructor that enables you to specify
the buffer size.

13.31318-9 CH10 9/24/98 1:33 PM Page 427

For more information on inflaters, refer to the Java API documentation for the
java.util.zip package.

ObjectInputStream
The ObjectInputStream class implements both the java.io.ObjectInput and
java.io.ObjectStreamConstants interfaces and is used to deserialize (restore) primitive
data and graphs of objects that were previously stored using the ObjectOutputStream
class. These two classes are used to provide your application with persistent storage of
objects when used with the FileInputStream and FileOutputStream classes. Examples
of how the ObjectInputStream and ObjectOutputStream classes work in tandem are
presented later today in the “ObjectOutputStream” section.

PipedInputStream
The PipedInputStream class and its sibling, the PipedOutputStream class,are used
together to create a simple, two-way communication conduit between threads. These two
classes are covered later today in the “PipedOutputStream” section so that they can be
demonstrated together.

SequenceInputStream
Suppose that you have two separate streams and you would like to make a composite
stream that consists of one stream followed by the other, similar to concatenating two
String objects. This is exactly what the SequenceInputStream class was created to do:

InputStream s1 = new FileInputStream(“theFirstPart”);
InputStream s2 = new FileInputStream(“theRest”);
InputStream s = new SequenceInputStream(s1, s2);
... s.read() ... // reads from each stream in turn

You could have read each file in turn; but some methods expect to be handed a single
InputStream object,and using a SequenceInputStream object is the easiest way to pro-
vide the single stream required.

If you want to string together more than two streams,you could try the following:

Vector v = new Vector();
... // set up all the streams and add each to the Vector
/* now concatenate the vector elements into a single stream */
InputStream s1 = new SequenceInputStream(v.elementAt(0),

v.elementAt(1));
InputStream s2 = new SequenceInputStream(s1, v.elementAt(2));
InputStream s3 = new SequenceInputStream(s2, v.elementAt(3));
...

428 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 428

Streams and I/O 429

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

However, here’s an alternative, which uses a different constructor that the
SequenceInputStream class provides:

Vector v = new Vector();
... // set up all the streams and add each to the Vector
/* now concatenate the vector elements into a single stream */
InputStream s = new SequenceInputStream(v.elements());
...

This constructor takes an enumeration of all the streams you wish to combine and returns
a single stream that reads through the data of each in turn.

Output Streams
Output streams are, in almost every case, paired with a sibling input stream that you
already have learned about. If an InputStream class performs a certain operation, its sib-
ling OutputStream class performs the inverse operation. These are the output stream
classes discussed in this section:

● OutputStream (the abstract class)

● ByteArrayOutputStream

● FileOutputStream

● FilterOutputStream

● ObjectOutputStream

● PipedOutputStream

OutputStream Abstract Class
OutputStream is an abstract class that defines the fundamental ways in which a producer
writes a stream of bytes to some destination. The identity of the destination and the man-
ner of the transport and storage of the bytes are irrelevant. When using an output stream,
it is the source of those bytes,and that’s all that is necessary for your program to know.

All output streams descend from the abstract class OutputStream. All share the few
methods described in this section. The write() method provides basic default function-
ality in the abstract class; the flush() and close() methods are skeletons and must be

A Vector object is a dynamic array of objects that can be filled, referenced
(using the elementAt() method), and enumerated.

Note

13.31318-9 CH10 9/24/98 1:33 PM Page 429

overridden in an OutputStream subclass to do anything useful.

write()

The most important method to the producer of an output stream is the one that writes
bytes to the destination. The write() method comes in three flavors,and each of these
write() methods is defined to block (wait) until the first byte is written.

The first form of the write() method writes a single byte of data:

OutputStream s = getAnOutputStream ();
while (thereAreMoreBytesToOutput()) {

byte b = getNextByteForOutput();
s.write(b);

}

Here’s an example of the second form of the write() method, which takes a buffer name
as its only argument:

byte[] outBuff = new byte[1024]; // any size will do
fillInData(outBuff): // the data to be output
s.write(outBuff);

This form of the write() method attempts to output the entire buffer given to it. Because
a buffer is an array of bytes,you can specify an offset into the buffer and the number of
bytes as arguments to the write method:

s.write(outBuff, 101, 300);

This example writes bytes 101 through 400 and otherwise behaves exactly the same as
the second write() method just presented. In fact,the default implementation of that
write() method does exactly this,using 0 as the offset and b.length (buffer length) as
the number of bytes to write.

flush()

Because you don’t necessarily know what an output stream is connected to,you might be
required to flush your output through some buffered cache to get it written in a timely
manner (or at all). The OutputStream class version of the flush() method does nothing,
but it is expected that subclasses that require this functionality (for example, the
BufferedOutputStream and PrintStream classes) will override this method to some-
thing useful.

close()

Just as for objects created from the InputStream class,you should explicitly close down

430 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 430

Streams and I/O 431

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

an OutputStream object so that it can release any resources it might have reserved. The
notes and the example listed under the InputStream class close() method also apply
here. The InputStream class close() method does nothing; it should be overridden in a
stream subclass to be made functional.

ByteArrayOutputStream
The ByteArrayOutputStream class is the inverse of the ByteArrayInputStream class.
The following example uses a ByteArrayOutputStream object to write output to an array
of bytes:

OutputStream s = new ByteArrayOutputStream();
s.write(123);
...

The size of the internal byte array grows as needed to store a stream of any length. You
can provide an initial capacity to the class,if you like:

OutputStream s = new ByteArrayOutputStream(1024 * 1024); // one MB

After the ByteArrayOutputStream object assigned to the s variable has been filled, it can
be sent to another output stream using the writeTo() method:

OutputStream secondOutputStream = getFirstOutputStream();
ByteArrayOutputStream s = new ByteArrayOutputStream();
fillWithUsefulData(s);
s.writeTo(secondOutputStream);

It can also be extracted as a byte array or converted to a String object:

byte[] buffer = s.toByteArray();
String bufferString = s.toString();
String bufferEncodedString = s.toString(charEncoding);

This last method enables you to convert data to a String object by using the character
encoding specified by the String object passed to the charEncoding parameter.

The ByteArrayOutputStream class has two utility methods as well. The size() method
returns the number of bytes stored in the internal byte array; the reset() allows the

Now you’ve seen an example of the creation of an output stream. These
new streams are attached to the simplest of all possible data destinations,
an array of bytes in the memory of the local computer.

Note

13.31318-9 CH10 9/24/98 1:33 PM Page 431

stream to be reused without reallocating the memory:

int sizeOfMyByteArray = s.size(); // returns current size
s.reset(); // s.size() would now return 0
s.write(123);
...

FileOutputStream
One of the most common uses of streams is to attach them to files in the file system.
Here, for example, is the creation of such an output stream on a UNIX system:

OutputStream s = new FileOuputStream(“/some/path/and/filename”);

You can also create the stream from a previously opened file descriptor:

int fd = openOutputFile();
OutputStream s = new FileOutputStream(fd);

Because the FileOutputStream class is the inverse of the FileInputStream class,it
knows the same tricks:

FileOutputStream aFOS = new FileOutputStream(“aFileName”);
int myFD = aFOS.getFD();
/* close() will automatically be called by garbage collection */

The first part, the getFD() method returns the file descriptor of the file on which the
stream is based. Also, you don’t need to do finalization or call the close() method

432 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

To call the new methods, you must declare the stream variable aFOS to be a
FileOutputStream class data type because the OutputStream class doesn’t
know about these new methods.

Caution

directly. The garbage collector will call the close() method automatically when it
notices that the stream is no longer in use but before actually destroying the stream.
(See the “FileInputStream” section for more details on how this works.)

FilterOutputStream
The FilterOutputStream class simply provides a pass-through for all the standard
methods of the OutputStream class. It holds inside itself another stream,by definition
one further down the chain of filters, to which it forwards all method calls. It implements
nothing new but allows itself to be nested:

OutputStream s = getAnOutputStream();
FilterOutputStream s1 = new FilterOutputStream(s);
FilterOutputStream s2 = new FilterOutputStream(s1);

13.31318-9 CH10 9/24/98 1:33 PM Page 432

Streams and I/O 433

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

FilterOutputStream s3 = new FilterOutputStream(s2);
... s3.write(123) ...

Whenever a write() method is performed on the filtered stream s3, it passes along the
request to s2, then s2 does the same to s1, and lastly s is asked to output the bytes.
Subclasses of FilterOutputStream should, of course, do some nontrivial processing of
the bytes as they flow past. (See its sibling class “FilterInputStream” for more details.)

Although the FilterOutputStream class does not do much on its own, it is declared
public, not abstract. This means that, as useless as they are by themselves,you can
actually use FilterOutputSteam objects directly. However, to do anything really useful,
you should use one of the subclasses listed in the following sections.

BufferedOutputStream

The BufferedOutputSteam class is one of the most valuable of all the stream classes. It
implements the full complement of the OutputStream class methods,but it does so by
using a buffered array of bytes that acts as a cache for future writing. This decouples the
rate and size of the chunks you’re writing from the larger block sizes in which streams
are written (for example, to peripherals,files,or networks). It also enables smart streams
to read ahead when they expect that you will want more data soon.

Because the buffering of the BufferedOutputStream class is so valuable, and it’s also the
only subclass to fully implement the flush() method, you might wish that every output
stream could share its capabilities. Fortunately, you can surround any output stream with
a BufferedOutputStream object to do just that:

OutputStream s = new BufferedOutputStream(new FileOutputStream(“myfile”));

This gives you a buffered input stream based on myfile that can use the flush() method
properly. As with filtered input streams,any capability provided by a filter output stream
can be used by any other basic stream through nesting.

DataOutputStream and DataOutput
All the DataOutputStream class methods are overrides of abstract methods defined in the
DataOutput interface. This interface is general-purpose enough that you might want to
use it yourself in the classes you create.

In cooperation with its sibling inverse interface DataInput, the DataOutput interface
provides a higher-level set of methods that, when used for both reading and writing, can
support a more complex, typed stream of data. Here are the method signatures that the
DataOutput interface defines:

void write(int i) throws IOException;
void write(byte buf[]) throws IOException;
void write(byte buf[], int off, int len) throws IOException;

13.31318-9 CH10 9/24/98 1:33 PM Page 433

void writeBoolean(boolean b) throws IOException;
void writeByte(int i) throws IOException;
void writeShort(int i) throws IOException;
void writeChar(int i) throws IOException;
void writeInt(int i) throws IOException;
void writeLong(long l) throws IOException;
void writeFloat(float f) throws IOException;
void writeDouble(double d) throws IOException;
void writeBytes(String s) throws IOException;
void writeChars(String s) throws IOException;
void writeUTF(String s) throws IOException;

Most of these methods have counterparts in the DataInput interface. The first three
methods mirror the write() methods that you’ve seen previously. Each of the next eight
methods writes out a primitive type. The final three methods write a string of bytes or
characters to the stream. The writeBytes() method writes 8-bit bytes; the
writeChars() method writes 16-bit Unicode characters; the writeUTF() method writes a
special Unicode stream (readable by the DataInput interface readUTF() method).

The DataOutputStream class implements the DataOutput interface—that is,
DataOutputStream provides concrete definitions for DataOutput’s abstract methods.
Now that you know what the interface that the DataOutputStream class implements
looks like, let’s see it in action:

DataOutputStream s = new DataOutputStream(getNumericOutputStream());
long size = getNumberOfItemsInNumbericStream);
s.writeLong(); // the number of items in the stream
for (int i = 0; i < size; ++i) {

if (shouldProcessNumber(i)) { // should I process this item?
s.writeBoolean(true);
s.writeInt(theIntegerForItemNumber(i));
s.writeShort(theMagicBitFlagsForItemNumber(i));
s.writeDouble(theDoubleForItemNumber(i));

}
else

s.writeBoolean(false);
}

This is the inverse of the example that was given to demonstrate the DataInput interface.
Together they form a pair that can communicate a particular array of structured primitive
types across any stream (or transport layer). Use the pair of examples as a jumping-off
point whenever you need to do something similar.

In addition to the interface just presented, the class implements one utility method that
returns the number of bytes written at that point in time:

434 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 434

Streams and I/O 435

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

int theNumberOfBytesWrittenSoFar = s.size();

java.security.DigestOutputStream

Although implemented in the java.security package, the DigestOutputStream class is
descended from the FilterOutputStream class found in the java.io package. This
stream class creates the output required for the java.security.MessageDigest object
and can be turned on and off. When the stream is turned on,a write() method will
update the digest; when off, the digest is not updated. The form is

DigestOutputStream(anOutputStream, aMessageDigest)

where the anOutputStream parameter takes an OutputStream object,or descendant,and
the aMessageDigest parameter takes a MessageDigest object associated with this
stream. For more information about the MessageDigest class,refer to the Java API docu-
mentation for the java.security package.

java.util.zip.CheckedOutputStream

Although implemented in the java.util.zip package, the CheckedOutputSteam class is
descended from the FilterOutputStream class found in the java.io package. Its pur-
pose is to create a stream that can also maintain a checksum of the data being read. Its
constructor takes the form

CheckedOutputStream(anOutputStream, aChecksum)

where the anOutputStream parameter takes any OutputStream object,and the aChecksum
parameter takes either a CRC32 or an Adler32 object. For more information on these
checksum classes,refer to the Java API documentation for the java.util.zip package.

java.util.zip.DeflaterOutputStream

Although implemented in the java.util.zip package, the DeflaterOutputStream class
is descended from the FilterOutputStream class found in the java.io package. Its pur-
pose is to create a stream for compressing data into the deflate compression format. The
class provides three constructors, two of which take the forms

DeflaterOutputStream(anOutputStream, aDeflater)
DeflaterOutputStream(anOutputStream, aDeflater, theSize)

where the anOutputStream parameter takes any OutputStream object,and the aDeflater
parameter takes a Deflater object encapsulating the compressor to be used. The first
constructor creates an output stream with a default buffer size; the second enables you to
specify the size by passing an integer value to the theSize parameter. This class also has
two subclasses:java.util.zip.GZIPOutputStream, which writes compressed data in the
GZIP format, and java.util.zip.ZipOutputStream, which writes compressed data in
the ZIP file format (and implements java.util.zip.ZipConstants). Here are their con-

13.31318-9 CH10 9/24/98 1:33 PM Page 435

structors:

GZIPOutputStream(anOutputStream)
GZIPOutputStream(anOutputStream, theSize)
ZIPOutputStream(anOutputStream)

As you can see, these constructors do not have aDeflater as a parameter because they
are specific to a particular compression format and default to that deflater automatically
(the first two to GZIP, and the last to ZIP). The ZIPOutputStream class does not have a
constructor that enables you to specify the buffer size.

For more information on inflaters, refer to the Java API documentation for the
java.util.zip package.

ObjectOutputStream
The ObjectOutputStream class implements both the java.io.ObjectOutput and
java.io.ObjectStreamConstants interfaces and is used to serialize primitive data and
graphs of objects that can later be deserialized (restored) by an ObjectInputStream
object. Serialization causes the class and class signature of the object and all its nontran-
sient and nonstatic fields to be written,and any objects referenced are also traversed and
written. Used together, the ObjectOutputStream and ObjectInputStream classes can
provide your application with persistent storage of objects when used with the
FileOutputStream and FileInputStream classes. For example:

FileOutputStream FOS = new FileOutputStream(“myfile”);
ObjectOutputStream OOS = new ObjectOutputStream(FOS);
OOS.writeObject(“Today is: “);
OOS.writeObject(new Date());
OOS.flush()
FOS.close();

Here, the ObjectOutputStream object writes the phrase “Today is: “ and the system
date to myfile. When these data are read by an ObjectInputStream object,the date
retains its original format and is recognized as a Date object:

FileInputStream FIS = new FileInputStream(“myfile”);
ObjectInputStream OIS = new ObjectInputStream(FIS);
String today = (String).OIS.readObject();
Date date = (Date)OIS.readObject();
FIS.close();

PipedOutputStream
The PipedOutputStream class (along with the PipedInputStream class) supports a

436 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 436

Streams and I/O 437

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

UNIX-lik e pipe connection between two threads implementing all the careful synchro-
nization that allows this sort of shared queue to operate safely. To set up the connection,
use this code:

PipedInputStream sIn = PipedInputStream();
PipedOutputStream sOut = PipedOutputStream(sIn);

One thread writes to the object assigned to the sOut variable, and the other reads from
the object assigned to the sIn variable. By setting up two such pairs, the threads can
communicate safely in both directions.

Reader
The Reader class accomplishes the same goals as the InputStream class,but instead of
dealing with bytes,this class is optimized to deal with characters. There are three read()
methods that parallel those of the InputStream class:

read();
read(cBuff[]);
read(cBuff[], offset, length);

The first reads a single character; the second reads a character array cBuff; and the third
reads part of the character array cBuff, beginning at offset for length characters. The
skip() method for this class takes a long data type as its argument.

In addition, there is a new method added, the ready() method. This method returns true
if the next call by the read() method is guaranteed not to block for input; otherwise, it
returns false if the next call by the read() method isn’t guaranteed not to block.

BufferedReader
The BufferedReader subclass is similar to the BufferedInputStream class in functional-
ity and includes the ready() method inherited from the Reader superclass.

LineNumberReader
In an editor or a debugger, line numbering is crucial. To add this capability to your pro-
grams,use the LineNumberReader class,which keeps track of line numbers as its stream
flows through the LineNumberReader object. This class is even smart enough to remem-
ber a line number and later restore it, through calls by the mark() and reset() methods.
You might use this class like this:

LineNumberInputStream aLNIS;
aLNIS = new LineNumberInputStream(new FileInputStream(“source”));
DataInputStream s = newDataInputStream(aLNIS);
String line;
while ((line = s.readLine()) != null) {

... // process the line

13.31318-9 CH10 9/24/98 1:33 PM Page 437

System.out.println(“Just did line “ + aLNIS.getLineNumber());
}

Here, two streams are nested around the FileInputStream object actually providing the
data—one to read lines one at a time and another to track the line numbers as they go by.
You must explicitly assign the intermediate stream object to the aLNIS variable, because
if you did not,you wouldn’t be able to call the getLineNumber() method later. Note that
if you invert the order of the nested streams,reading from the DataInputStream object
does not cause the LineNumberReader object to track the lines. The stream pulling in the
data must be nested outside the LineNumberReader object for it to successfully monitor
the incoming data.

The LineNumberReader class can also call the setLineNumber() method for those few
times when it is necessary for you to do so explicitly.

CharArrayReader
The CharArrayReader class reads from a character array, similarly to the way that the
ByteArrayInputStream class works. It can read either the entire array or from a speci-
fied section of the array:

CharArrayReader(cBuff[]);
CharArrayReader(cBuff[], offset, length);

Here, the cBuff argument takes the character array from which to read, the offset argu-
ment takes the index of the first character to be read, and the length argument takes an
integer value that sets the number of characters to read. The CharArrayReader class also
implements the full complement of Reader class methods,including the mark(),
reset(), and ready() methods.

FilterReader
FilterReader is an abstract class for reading filtered character streams that supports the
mark() and reset() methods. Currently, the only subclass implemented is
PushbackReader.

The PushbackReader class is used for “unreading”data by pushing it back into the
stream whence it came, which is commonly useful in parsers. You can have a one-
character pushback buffer or specify the size of pushback buffer that you want. In addi-
tion to its read() methods,this subclass provides three unread() methods and uses a
simplified version of marking and resetting to keep track of its position.

InputStreamReader
The InputStreamReader class provides the connection between byte streams and charac-

438 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 438

Streams and I/O 439

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

ter streams. An InputStreamReader object reads each byte and translates it into a char-
acter based on the character encoding specified. If no character encoding is specified, the
platform’s default encoding is used. It’s best to wrap it within a buffered reader:

BufferedReader myBuffRead = new BufferedReader
(new InputStreamReader(System.in));

The InputStreamReader class,in addition to the other standard Reader class methods,
implements the getEncoding() method which returns the name of the encoding that the
stream is currently using.

FileReader
The FileReader class reads character files using the default character encoding and the
default buffer size. It has three constructors:

FileReader(aFileName);
FileReader(aFile);
FileReader(aFD);

Pass the aFileName argument a filename of type String, pass the aFile argument a file-
name of type File, and pass the aFD argument a FileDescriptor object.

PipedReader
PipedReader and its sibling class PipedWriter are used together to create a simple, two-
way communication conduit between threads. These two classes are very similar to the
PipedInputStream and PipedOutputStream classes,and they are covered later today in
the “PipedWriter” section so that they can be demonstrated together.

StringReader
The StringReader class reads from a String object. It can read either the entire string
encapsulated in a String object,or it can read a section of the string:

StringReader(aStr);
StringReader(aStr, offset, length);

Here, the aStr argument takes the String object to read from, the offset argument
takes the index of the first character to be read, and the length argument takes the num-
ber of characters to read. The StringReader class also implements the mark(), reset(),
ready(), and skip() methods.

Writer

13.31318-9 CH10 9/24/98 1:33 PM Page 439

The Writer class is the companion to the Reader class and accomplishes the same goals
as the OutputStream class. However, rather than using bytes,this class is optimized to
use characters. There are five write() methods,three that parallel those of the
OutputStream class and two more for dealing with String objects.

The following write() method will write the entire character array assigned to the cBuff
variable:

write(cBuff[]);

This write() method is declared abstract and is overridden in Writer subclasses (such
as the BufferedWriter class in the next subsection) to have a useful function:

write(cBuff[], offset, length);

In this version of the write() method, the anInt argument takes an integer argument
whose low-order 16 bits are written as a single character (the high-order 16 bits are
ignored):

write(anInt);

In this write() method, the aStr argument takes the String object to be written:

write(aStr);

String objects can also be accessed as arrays. The following version of the write()
method’s offset argument takes an integer value that specifies the first character in the
String object passed to the aStr argument to be written,and a length argument takes
an integer value that sets the number of characters that are to be written:

write(aStr, offset, length);

The close() and flush() methods are declared abstract and must be overridden by
those subclasses that need to implement their functionality. Now take a look at sub-
classes of the Writer class.

BufferedWriter
The BufferedWriter subclass is similar to BufferedOutputStream class in functionality.
It also overrides three of the write() methods inherited from its Writer superclass to
merge their functionality with the buffering that this class provides:

write(cBuff[], offset, length);
write(anInt);
write(aStr, offset, length);

The first write() method also provides basic functionality for writing a portion of the
character array because it is declared abstract in the Writer superclass.

440 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 440

Streams and I/O 441

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

In addition, this subclass overrides the flush() and close() methods to deal with
buffering. The output buffer will automatically grow to accommodate the characters writ-
ten.

CharArrayWriter
The CharArrayWriter class writes a character array, similarly to the way that the
ByteArrayOutputStream class works. It can write either the entire array or a specified
section of the array:

CharArrayWriter(cBuff[]);
CharArrayWriter(cBuff[], offset, length);
CharArrayWriter(aStr, offset, length);

Here, either the cBuff argument takes the character array to write or the aStr argument
takes the String object to write; the offset argument takes the index of the first charac-
ter to be written; and the length argument takes the number of characters to write.
Again, the output buffer grows automatically as needed.

The CharArrayWriter class implements an additional method:

writeTo(aWriter);

Here, the aWriter argument takes another Writer class character stream to which the
characters are to be written.

FilterWriter
FilterWriter is an abstract class for writing filtered character streams. Currently, no
subclasses are implemented. However, it declares a single variable out, which enables
you to define your own filtered stream subclasses using this variable to refer to the
underlying output stream. It overrides the flush() and close() methods and the follow-
ing three write() methods:

write(cBuff[], offset, length);
write(anInt);
write(aStr, offset, length);

OutputStreamWriter
The OutputStreamWriter class provides the output connection between character
streams and byte streams. This class reads each character and translates it into a byte
based on the character encoding specified. If no character encoding is specified, the plat-
form’s default encoding is used. It’s best to wrap an OutputStreamWriter object in a

13.31318-9 CH10 9/24/98 1:33 PM Page 441

buffered writer:

BufferedWriter myBuffWrite = new BufferedWriter
(new OutputStreamWriter(System.out));

The OutputStreamWriter class implements an additional method, the getEncoding()
method, which returns the name of the encoding that the stream is currently using.

FileWriter
The FileWriter class writes character files using the default character encoding and the
default buffer size. It has four constructors,

FileWriter(aFile);
FileWriter(aFD);
FileWriter(aStr);
FileWriter(aStr, aBool);

where the aFile argument takes a filename of type File, the aFD argument takes a file
descriptor, and the aStr argument takes a String object that represents a filename. The
aBool argument of the fourth constructor takes a boolean value; true directs the stream
to append; false directs it to overwrite.

PipedWriter
The PipedWriter class (along with the PipedReader class) supports a UNIX-like pipe
connection between two threads,carefully synchronized to safely operate this shared
queue. To set up the connection,use this code:

PipedReader sRead = PipedReader();
PipedWriter sWrite = PipedWriter(sRead);

One thread writes to the PipedWriter object assigned to the sWrite variable, and the
other reads from the PipedReader object assigned to the sRead variable. By setting up
two such pairs, the threads can communicate safely in both directions.

PrintWriter
The PrintWriter class supersedes the deprecated PrintStream class and implements all
its methods. Because it is usually attached to a screen output device of some kind, it pro-
vides an implementation of the flush() method. It also provides the familiar write()
and close() methods,as well as many choices for outputting primitive types and String
objects:

public void write(char buf[]);
public void write(char buf[], int off, int len);

442 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 442

Streams and I/O 443

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

public void write(int c);
public void write(String s);
public void write(String s, int off, int len);

public void close();
public void flush();

public void print(boolean b);
public void print(char c);
public void print(char s[]);
public void print(double d);
public void print(float f);
public void print(int i);
public void print(long l);
public void print(Object obj);
public void print(String s);

public void println(); // outputs a newline character only
public void println(boolean x);
public void println(char x);
public void println(char x[]);
public void println(double x);
public void println(float x);
public void println(int x);
public void println(long x);
public void println(Object x);
public void println(String x);

The first println() method simply outputs a newline character; the rest of the
println() methods call the corresponding print() method and then output a newline
character. PrintWriter objects can be wrapped around any output stream,just like a fil -
ter class:

PrintWriter s = new PrintWriter(new FileOutputStream(“myfile”));
s.println(“Here’s the first line of the text to write to myfile.”);

There are four constructors for this class:

public PrintWriter(Writer out);
public PrintWriter(Writer out, boolean autoFlush);
public PrintWriter(OutputStream out);
public PrintWriter(OutputStream out, boolean autoFlush);

The first constructor creates a new PrintWriter object without automatic line flushing.
The second constructor creates a new PrintWriter object by specifying, through the
boolean argument autoFlush, whether its println methods should flush the output
buffer. The third creates a new PrintWriter object from an existing OutputStream
object,which is passed to the out argument. The object is created without automatic line
flushing. The fourth creates a new PrintWriter object from an existing OutputStream

13.31318-9 CH10 9/24/98 1:33 PM Page 443

object,which is passed to the out argument. The autoFlush argument is passed a
boolean data type, which tells the object whether its println() methods should flush
the output buffer.

The PrintWriter class does not throw exceptions,so to find out the error state, you must
invoke the checkError() method. This method flushes the stream and then returns true
if an error was found on this or any previous call.

StringWriter
The StringWriter class writes a String object,character, or character array. It can write
either an entire string or a section of a string:

StringWriter(aStr);
StringWriter(aStr, offset, length);

Here, the aStr argument takes the String object to write, the offset argument takes the
index of the first character to be written,and the length argument takes the number of
characters to write. It can also write a single character,

StringWriter(anInt);

where the anInt argument takes an integer whose low-order 16 bits are written as a sin-
gle character (the high-order 16 bits are ignored). Additionally, it can write a section of a
character array,

StringWriter(cBuff[], offset, length);

where the cBuff argument takes the character array to write, the offset argument takes
the index of the first character to be written,and the length argument takes the number
of characters to write.

File Classes
The java.io package implements three classes that give Java an abstract definition,
which is intended to handle various aspects of platform-dependent file naming conven-
tions. These include the following:

● File (implements Serializable)

● FileDescriptor

● RandomAccessFile (implements DataOutput and DataInput)

File

444 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 444

Streams and I/O 445

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

The File class has three constructors:

File(aFile, aStr);
File(bStr);
File(cStr, dStr);

The first constructor creates a File object assigned the name encapsulated in a String
object passed to the aStr argument and assigned the directory file encapsulated in the
File object passed to the aFile argument. The second constructor creates a File object
assigned the name encapsulated in a String object passed to the bStr argument. The
third constructor creates a File object assigned the name encapsulated in a String object
passed to the dStr argument and assigned the directory encapsulated in the String
object passed to the cStr argument.

The File class defines four variables:separator, assigned a filename separator string;
separatorChar, assigned a filename separator character; pathSeparator, assigned a
pathname separator string; and pathSeparatorChar, assigned a pathname separator char-
acter. These variables enable you to handle system-specific separators.

The File class also defines a wide variety of methods that enable you to manipulate file
and pathnames. The canRead() and canWrite() methods are boolean methods that tell
you whether a file is readable or writable, respectively. The equals() method does an
object-level comparison. The exists() method is a boolean method that tells whether a
file exists,and the isDirectory() method tells whether a directory exists.

There are several methods that return pieces of file and pathnames,whose names are
self-explanatory: the getAbsolutePath(), getCanonicalPath(), getName(),
getParent(), and getPath() methods. There are other methods that return attributes of
the file: the isAbsolute() method tells whether the filename is absolute; the isFile()
method returns true if a normal file exists; the lastModified() method returns the mod-
if ication time stamp; and the length() method returns the length of the file.

Utility methods also abound. The mkDir() and mkDirs() methods create a directory or
several levels of directories,respectively. The renameTo() method attempts to rename a
file and returns a boolean value indicating whether it succeeded. The list() method
lists the files in a directory. The delete() method deletes a specified file from the sys-
tem. The hashCode() method computes the hashcode for the file. Lastly, the toString()
method returns a String object encapsulating the file’s pathname.

To redefine any of these methods or to provide additional methods,simply subclass the
File class,and override its methods or define your own.

FileDescriptor

13.31318-9 CH10 9/24/98 1:33 PM Page 445

The FileDescriptor class provides a mechanism for referring to an underlying system-
specific structure that represents an open file or socket. The Java documentation empha-
sizes that your application should not create its own file descriptors; the Java Virtual
Machine does this for you automatically. This class has one constructor,

FileDescriptor();

which is used by the Java interpreter to initialize the class variables in a system-
dependent manner. The four variables it initializes are fd, the file descriptor handle; in,
the standard input stream handle; out, the standard output stream handle; and err, the
standard error stream handle.

There are also two methods:the valid() method, which returns true if the file descrip-
tor references an actual open file or socket, and the sync() method, which forces all
down-stream buffers to synchronize with the physical storage medium,enabling you to
put the file system into a known state.

RandomAccessFile
The RandomAccessFile class’s main function is to provide a way to specify access to
read-write or read-only files along with the capability to skip around in the file by
manipulating a file pointer. It implements both the DataInput and the DataOutput inter-
faces described earlier today and their myriad read() and write() methods.

This class has two constructors,

RandomAccessFile(aStr, alaMode);
RandomAccessFile(aFile, alaMode);

where the aStr argument takes a String object encapsulating a filename; the aFile
argument takes a File object; and the alaMode argument takes a String object encapsu-
lating either rw, indicating a read-write file, or r, indicating a read-only file.

Besides the read and write methods provided by its implementation of the DataInput
and DataOutput interfaces,the RandomAccessFile class implements several utility meth-
ods:the getFD() method returns the file descriptor; the skipBytes() method specifies
the number of bytes to skip ahead in the file; the getFilePointer() method returns the
current location of the file pointer; the seek() method sets the location of the file pointer
to a specified position; the length() method returns the length of the file; and the
close() method closes the file. Interestingly, there is no open() method; the getFD()
method serves the purpose because it returns the file descriptor of an already open file.

Related Classes

446 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 446

Streams and I/O 447

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

There are a few interfaces and classes in the java.io package that have not been covered
yet, such as the Serializable class,which has been mentioned several times already. In
this section,the Serializable, Externalizable, FilenameFilter, and
ObjectInputValidation interfaces are discussed. Also, the ObjectStreamClass and
StreamTokenizer classes are covered.

Interfaces
The Serializable interface, as was implied earlier, has to do with preserving the state
of objects and data while streaming. If a class implements this interface, that class’s
objects and data will be serialized when streamed and deserialized when restored from a
stream. Any subclasses will also inherit this functionality. This interface specifies that
classes wanting to handle their own serialization and deserialization should implement
two private methods with these signatures:

void writeObject(ObjectOutputStream out)
throws IOException; {...}

void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException; {...}

The ObjectInput interface extends the DataInput interface and defines the
readObject() method so that it can read objects. The ObjectOutput interface extends
the DataOutput interface and defines the writeObject() method so that it can write
objects. Together, these interfaces provide functionality for the next interface,
Externalizable.

The Externalizable interface extends the Serializable interface and defines two
methods of its own. The writeExternal() method saves the contents of its
ObjectOutput interface type argument by using ObjectOutput interface’s
writeObject() method for objects or DataOutput interface’s methods (which are inher-
ited by the ObjectOutput interface) for primitive data. The readExternal() method
restores the contents of its ObjectOutput interface type argument by using
ObjectOutput interface’s readObject() method for objects or DataOutput interface’s
methods for primitive data,which accomplishes the inverse of the writeExternal()
method. Because strings and arrays are implemented in Java as objects,they are treated
as such by this interface.

ObjectInputValidation is a callback interface that allows validation of graphed objects,
and it allows an object to be called when the graphed object has completed deserializa-
tion. It defines a single abstract method, validateObject(), which throws an
InvalidObjectException object if the object cannot validate itself.

FilenameFilter is an interface whose purpose is to provide a filter interface for file-

13.31318-9 CH10 9/24/98 1:33 PM Page 447

names. It defines an abstract boolean method:

accept(aFile, aStr);

This returns true if the filename assigned to the aStr variable is in the file list assigned
to the aFile variable.

Classes
There are two java.io classes that you haven’t seen yet: the ObjectStreamClass and
StreamTokenizer classes.

The ObjectStreamClass class implements the Serializable interface and enables your
application to determine whether or not a specified class is serializable by using the
lookup method. If an instance of a class is serialized, you can use the
ObjectStreamClass class getSerialVersionUID() method to obtain the
serialVersionUID for the class that identifies in what format the class was serialized.

The StreamTokenizer class takes an InputStream or Reader object and converts it into a
stream of tokens. Each token can have any (or none) of five attributes:whitespace,
numeric, character, string (single- or double-quoted),and comment character.

Each StreamTokenizer instance has four flags indicating whether the instance returns
line terminators as tokens or whitespace, whether it recognizes C-style (/*) comments,
whether it recognizes C++-style (//) comments,and whether identifiers are converted to
all lowercase characters. You can create powerful lexical parsers by subclassing this class
and defining additional functionality of your own.

Summary
Today, you learned about the InputStream class and its subclasses that provide byte-
based input streams based on byte arrays, files,pipes,sequences of other streams,
objects,and string buffers,as well as input filters for buffering, typed data,and pushing
back characters. You also were introduced to the OutputStream class and its subclasses
that define byte-based output streams for byte arrays, files,pipes,and objects,and output
filters for buffering and typed data.

You saw how the Reader and Writer classes provide optimized handling for character-
based streams,including the unique output filter used for printing and many methods and
subclasses analogous to those of the InputStream and OutputStream classes.

Along the way, you became familiar with the fundamental methods all streams under-
stand, such as the read() and write() methods,as well as the unique methods many
streams add to this repertoire. You learned about catching IOException objects—espe-

448 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 448

Streams and I/O 449

10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

cially the most useful of them,EOFException, for determining when you’ve reached the
end of a stream.

You are now familiar with the three file classes in the java.io package, and you’ve been
introduced to the interfaces defined in the package, including the twice-useful DataInput
and DataOutput interfaces,which form the heart of operations for the DataInputStream,
DataOutputStream, and RandomAccessFile classes. Others allow objects and data to be
serialized (stored) and deserialized (restored) so that their state can be preserved and
restored. Last,but not least,you saw that the StreamTokenizer class enables you to cre-
ate lexical parsers.

Java streams provide a powerful base on which you can build multithreaded, streaming
interfaces of the most complex kind and the programs (such as HotJava) to interpret
them. The higher-level Internet protocols and future services that your applications and
applets can build upon this base are almost unlimited.

Q&A
Q What input str eams in java.io actually implement the mark(), reset(), and

markSupported() methods?

A These methods are first implemented as public methods in the InputStream and
Reader classes; however, the markSupported() method returns false, the mark()
method does nothing, and the reset() method simply throws an IOException
object with the message mark/reset not supported.

Of InputStream’s subclasses,BufferedInputStream and ByteArrayInputStream
implement the mark() and reset() methods,and the markSupported() method
returns true for instances of these subclasses. Also, the markSupported() method
returns true for an instance of the FilterInputStream class if its underlying input
stream supports it; however, FilterInputStream’s subclass,
PushbackInputStream, overrides the markSupported() method and returns false.

Of Reader’s subclasses,BufferedReader and CharArrayReader implement the
mark() and reset() method, and the markSupported() method returns true for
instances of these subclasses. Also, the markSupported() method returns true for
an instance of the FilterReader class if its underlying reader stream supports it;
however, FilterReader’s subclass,PushbackReader, overrides the
markSupported() method and returns false.

Q Why is the available() method useful if it sometimes gives the wrong

13.31318-9 CH10 9/24/98 1:33 PM Page 449

answer?

A First, for many streams,it does give the correct answer. Second, for some network
streams,its implementation might be sending a special query to discover some
information you couldn’t get any other way (for example, the size of a file being
transferred by ftp). If you were displaying a progress bar for network or file trans-
fers, for example, the available() method often will give you the total size of the
transfer, and when it doesn’t (usually returning 0), it will be obvious enough to you
and your users.

Q I didn’ t see any mention of the LineNumberInputStream subclass,which was
implemented in JDK 1.0. Is it still available? If not, what should I use instead?

A Yes,it is still defined, but it is not covered here because it is a deprecated class.
Java provides this class strictly for backward compatibility with JDK 1.0-based
applications,and it should not be used in new programs. Instead, use the
LineNumberReader class.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. True or False? Streams can make use of the methods in the DataInput and

DataOutput interfaces,but files cannot.

2. What does the term deprecatedmean?

3. Which of the following classes are byte-based, and which are character-based:
InputStream, OutputStream, Reader, Writer, and RandomAccessFile.

4. Which class should you use for screen output and printing, PrintStream or
PrintWriter?

Exercise
Create a program named Cat.java that echoes lines of keyboard input to the screen
using a DataInputStream with standard input (System.in) and the readLine() and
System.out.println() methods.

450 Day 10

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 10 Lp#3

13.31318-9 CH10 9/24/98 1:33 PM Page 450

DAY 11

WEEK 2

Compiling and
Debugging

Compiling your programs, resolving errors, and testing your logic must be
completed before you can distribute your programs. Although no development
product can guarantee you bug-free code, JBuilder provides you with the tools
to do your best to wring every last error out of your program.

Debugging is one of the more advanced topics, which is why it has not been
discussed until today. In this section, you’ll be introduced to the process of
debugging your Java programs from the JBuilder IDE using JBuilder’s integrat-
ed debugger. You’ll also learn about the various debugger views available in the
JBuilder IDE and how they assist you in creating bug-free code.

Today, you’ll take a look at these topics:

● Using the Build menu commands, Make and Rebuild, to compile your
Java programs in the JBuilder IDE

● How to get context-sensitive help for correcting errors in your code

14.31318-9 CH11 9/24/98 1:40 PM Page 451

● Examples that have been rigged with bugs so you can see what types of errors they
produce and how JBuilder responds to these errors

● JBuilder’s integrated debugger and the debugging views available in the
AppBrowser and other JBuilder IDE windows

To create a new project for today’s listings,select File |New Project,and modify the File
field so that it contains the following:

C:\JBUILDER2\myprojects\CompileDebug.jpr

Click the Finish button. All of today’s listings will be added to this project by selecting
the Add to Project icon above the Navigation pane in the AppBrowser.

Compiling
After your application files are created, the user interface modified, and the files saved,
you’re ready to compile the application. In the JBuilder IDE,this is accomplished by
selecting one of the choices on the Build menu: Make or Rebuild. You can also use com-
mands on the selected node’s pop-up menu in the AppBrowser window. For example, if
you have a .java node selected in the Navigation pane, right-clicking will display the
pop-up menu shown in Figure 11.1.

452 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.1.
Pop-up menu for a
.java file in the
Navigation pane.

These commands are available for both the individual selected node in the AppBrowser
window and for entire packages and projects,by selecting their nodes. The filename and
project name are dynamically added to the menu items for your convenience. If there are
no errors during compilation, the message Compiling successful. will appear in the
main window’s status bar.

In addition, the Run and Debug commands (both are available on the Run menu and the
pop-up menu for runnable nodes) will do an implicit Make before attempting to run or
debug the selected node by default.

Make
The Make menu item will compile any nodes that either don’t have a .class file yet or
whose .class file is older than the source file. This is known as a conditional compila-
tion.

14.31318-9 CH11 9/24/98 1:40 PM Page 452

Compiling and Debugging 453

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

In the case of a new project,either Build command will work because none of the
.class files has been created yet. However, you will normally use the Make command to
ensure that all your .class files for the project are up-to-date.

By selecting the Build|Make Project “ProjectName.jpr” command, you are instructing
the JBuilder IDE to conditionally compile, or make, any source files in the current pro-
ject. Alternatively, by selecting the Build|Make “FileName.java”, you are instructing the
JBuilder IDE to make only the currently selected source file. If there are no source files
with outdated or missing .class files,no compilation will occur.

Selecting a node and then choosing Make from the pop-up menu causes a conditional
compile of that node and of any source files on which it depends,such as imported class
files or packages.

Rebuild
The Rebuild menu item will compile all project files regardless of their status,doing
unconditional compilation. Rebuild is especially useful when you are getting ready to
distribute your application and you want to rebuild the entire project without debugging
information.

By selecting the Build|Rebuild Project “ProjectName.jpr” command, you are instructing
the JBuilder IDE to unconditionally compile, or rebuild, any source files in the current
project. Alternatively, by selecting the Build|Rebuild “FileName.java” you are instruct-
ing the JBuilder IDE to rebuild only the currently active source file. No matter what the
state of the associated .class files (or lack thereof), compilation will occur.

This command also causes all imported files and packages,for which source is available,
to be recursively compiled (excluding any packages that are marked as stable or
“libr aried”).

Typically, you frequently compile the individual .java file that you’re working
on to let the compiler catch any syntax errors that you inadvertently added
to the code. Less frequently, and only after the code forms a complete and
runnable application, you compile the entire project so that you can run it
and catch any runtime bugs that it might have.

Tip

14.31318-9 CH11 9/24/98 1:40 PM Page 453

Project Options
JBuilder provides a number of compiler options that enable you to control how your exe-
cutable files are created. These options can be set either for all projects as IDE-wide
options or for the current project as project-specific options. You can also set options for
Run and Debug sessions,which can affect your compilation because, by default, these
commands invoke Make.

Compiler Options
With a project open,select File |Project Properties to display the ProjectName.jpr
Properties dialog box. Figure 11.2 shows this dialog box for the Welcome project.

454 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Packages that are marked as stable or “libraried” include the Java, JBCL,
JGL, and Swing packages.

Note

FIGURE 11.2.
Project properties for
the Welcome project.

In this dialog box, you can set options that will affect all the files in your project. All the
drop-down lists in this dialog are history lists that enable you to select from previously
entered options.

The Paths page contains pathname settings for the compiler. You can either type path-
names manually or use the Browse button associated with each combo box to navigate
to the pathname that you want to include.

14.31318-9 CH11 9/24/98 1:40 PM Page 454

Compiling and Debugging 455

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

The Source Root Directory tells the compiler where to look for source files when you
compile the project. The Output Root Directory tells the compiler where to look for the
.class files during a Make so that it can determine which files need to be compiled. The
compiler can look in multiple paths for source files, so the Source Root Directory
accepts multiple pathnames separated by semicolons. The compiler can look in only one
path for .class files, so the Output Root Directory text box accepts only one path entry.
The Output Root Directory also tells the compiler where to deposit the compiled .class
files when the compilation has successfully been completed.

The Compiler page settings control how the executable file itself is created. The Include
Debug Information check box controls whether or not symbolic debug information is
added to the executable file. This must be checked for you to be able to use the inte-
grated debugger (covered later today).

The Show Warnings check box controls whether nonfatal warning messages are dis-
played during compilation. Your project will compile successfully even if it contains
errors at the warning level (such as deprecated methods). This check box controls only
the display of such warnings in the Message view.

The Check Stable Packages check box controls whether so-called “stable” packages
should be checked by the compiler to determine whether they should be included in a
Make. Packages such as java or jbcl are considered stable (rarely changed) by the com-
piler and so are not normally checked during a Make; this saves time during regular com-
piles. If you want to force the compiler to check stable packages,check this check box.

The Exclude Class combo box enables you tolist any .class files that you do not want
the compiler to compile. This can be useful if you are in the midst of changing the
source code for a class,rendering it uncompilable. A Make normally would include this
modified file, halting at compiler errors that you haven’t yet fixed. However, by entering
the filename of that class in this combo box, you can compile all the rest of the nodes by
selecting the Make command for the whole project,and the compiler will ignore the
listed class. You can also use the Browse button to interactively locate the class to
exclude.

The Encoding combo box gives you the option to specify an alternate encoding, control-
ling the way non-ASCII characters are interpreted. If this option is set to None, the
default platform encoding will be used.

The default pathnames that you see in a new project are originally determined during the

Setting the encoding option might limit the platforms on which your pro-
gram will properly work, so use this option with care.

Caution

14.31318-9 CH11 9/24/98 1:40 PM Page 455

JBuilder installation. You also can set IDE-wide project options by selecting the Tools|
Default Project Properties menu item and making your choices in the Default Project
Properties dialog box, which forms the basis for what appears in the ProjectName.jpr
Properties dialog box.

Compiler option settings in a project override the compiler option settings in the Default
Project Properties dialog box. You can think of the settings in the Default Project
Properties dialog box Compiler page as the starting point for all projects. Then customize
each project in the Compiler page of the ProjectName.jpr Properties dialog box.

Run/Debug Options
Click on the Run/Debug tab to open the Run/Debug page of the ProjectName.jpr
Properties dialog box. This page is shown in Figure 11.3.

456 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.3.
Run/Debug properties
for the Welcome pro-
ject.

In the Run/Debug page, you can set property-specific options that will control how the
program will be executed when you use the Run or Debug commands. In this page of the
ProjectName.jpr Properties dialog box, you can set options that will affect all the files in
your project. All the drop-down lists in this dialog are history lists that enable you to
select from previously entered options. In the default configuration, you can implicitly
Make a project by selecting either the Run or the Debug command.

The Run/Debug page contains several items that control which files are run,what para-
meters are provided to your program’s command line, and whether a node is compiled
before debugging.

14.31318-9 CH11 9/24/98 1:40 PM Page 456

Compiling and Debugging 457

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

The Default Runnable File option enables you to specify which file in the project will be
run by default when you select the Run command. If you use the Run command and a
file other than what you expected attempts to run, this is the place to check! If there is an
entry in this combo box and you select the Run command from the Run menu (or its
iconic representation on the toolbar),this option controls what file is run. However, if
this combo box is empty, or if you use the Run command from a node’s pop-up menu,
this option is ignored, and the selected node is run instead.

The Command Line Parameters combo box gives you a place to specify what your pro-
gram’s arguments will be for the current run. This enables you to try different arguments
when testing your program in the JBuilder IDE. If this combo box is empty, no argu-
ments will be passed to your program,which can be useful for testing how your program
handles a null parameter list.

The Java VM Parameters combo box enables you to specify command-line options to be
passed to the Java Virtual Machine itself. The valid parameters are platform-specific. The
easiest way to learn which parameters are valid on a platform is to go to a command
prompt,type java with no arguments,and press Enter. This will display a usage state-
ment that lists all the command-line options available for that platform. Options might
include setting heap size, setting stack size, and turning garbage collection on or off.

The Compile project before debugging check box controls whether invoking the Run or
Debug command does an implicit Make before attempting to run the program. This
check box is checked by default, but if you would rather the JBuilder IDE didn’t perform
a conditional compilation every time you choose the Run or Debug commands,uncheck
this option.

The Console I/O group of options control where standard output and standard error mes-
sages are displayed. The Send run output to Execution Log radio button will direct your
command-line program’s output to the Execution Log window, which you can view by
selecting View |Execution Log. The Send run output to Console Window radio button
will dir ect your program’s output to a console window, a DOS window in Microsoft
Windows.

Syntax Errors
When you make or build your project,unless you are a lot more careful than most of us,
you will have the occasional compiler error. One of the JBuilder Editor features,syntax
highlighting, can help you spot syntax errors before you compile your program,but other
errors are more subtle. In this section,you’ll look at a program that has been rigged with
errors so that you can see how these errors appear in both the AppBrowser window
Content pane Editor and in the Message view, a subpane of the Content pane.

14.31318-9 CH11 9/24/98 1:40 PM Page 457

With the CompileDebug.jpr project open,click the Add to Project button above the
Navigation pane in the AppBrowser window. Type HelloDebug.java in the File name
text box and then click the Open button. In the Content pane, enter the code including
syntax errors shown in Listing 11.1. The applet in Listing 11.1 will not compile without
errors.

LISTING 11.1. HelloDebug.java (WITH SYNTAX ERRORS).

1: import java.awt.*;
2:
3: public class HelloDebug extends java.applet.Applet {
4:
5: public void init() {
6: Font f = new Font(“Helvetica, Font.BOLD, 36);
7: setFont(f);
8: }
9:
10: public void paint(Graphics g) {
11: g.drawString(“Hello!”, 50, 50)
12: }
13:
14: }

Code Editor Options
In looking at Listing 11.1,you might already have spotted the two syntax errors. In line
6, the declaration of the Font object is missing the terminating double-quote at the end of
the font name. In line 11,the ending semicolon is missing—a common mistake.

However, the Editor’s syntax highlighting feature can be used to help you spot some syn-
tax errors. You can customize the syntax highlighting feature settings. Select the
HelloDebug.java node, then right-click on the Content pane and select the Properties
command from the pop-up menu. The Editor Properties dialog box appears. Click on the
Colors tab and then click on String in the Element list so that the dialog box looks as
shown Figure 11.4.

Assuming that you are using the default color scheme, the dialog has an FG in the upper-
left color box, which is black, and the Background check box is checked in the Use
Defaults For area. Left-click on the lower-left color box, which is bright blue, and click
the OK button. Back in the Content pane, it will be immediately obvious that the
Helvetica string isn’t terminated properly because the rest of the line is the same color
as the string.

458 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

TYPE

14.31318-9 CH11 9/24/98 1:40 PM Page 458

Compiling and Debugging 459

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Experiment with coloring different syntax elements. In addition to the text’s foreground
color, you can also change the background color. For example, you can make comments
appear as blue text on a yellow background to make them stand out. You can also change
font attributes (bold, italic, and underline).

At the top of the Color page of the Editor Properties dialog box you can select from four
Color SpeedSetting options that provide you with predefined color combinations. You
can use these as defined or use them as a starting point to create your own special color
scheme. The scroll box at the bottom of the Color page of the Editor Properties dialog
box displays each code element in a sample program. This enables you to click on an
element to choose it. That way, even if you don’t know what an element is called, you
can still change its syntax highlighting attributes. For example, clicking on void in the
sample box will show you that it is a reserved word which, by default, is displayed in
black bold text on the default background.

Compiler Errors
Other syntax errors are not so easily exposed. These syntax errors will show up when
you attempt to compile your program. Select the HelloDebug.java node in the
Navigation pane, right-click and select the Make command on the pop-up menu.

In theory, you might expect that one syntax error would produce one compiler error.
However, no one has yet devised a compiler with that much intelligence, as you will see
in just a moment—yet the JBuilder compiler is more intelligent than most.

When the compiler is finished, you should see three errors in the Message view, as
shown in Figure 11.5.

FIGURE 11.4.
The String element
selected in the Colors
page of the Editor
Properties dialog box.

14.31318-9 CH11 9/24/98 1:40 PM Page 459

If you have typed each example perfectly in the first 10 days, this might be the first time
you’ve seen an error message in the JBuilder IDE. The first part Error: identifies this
message as a syntax error rather than a warning. Errors are fatal—that is, your program
will not compile properly until the problem is fixed. The next part in parentheses tells
you which line of source code caused the problem. After the line number is the actual
error message itself, which gives you a brief explanation of the problem that needs to be
corrected. The first error message, in this case

Error: (6) unclosed character literal.

is telling you that there is a fatal error on line 6 and the problem is that there is an
unclosed character literal on that line.

There are several other things to note about Figure 11.5:

● In the Message view, the first error is highlighted.

● In the Content pane, the line of code referenced by that error is highlighted.

● The cursor is positioned at the origin of the problem in that line.

● The Status Bar in the main window is displaying the message Compiler: Failed,
with errors.

Now, back to the Message view. The first error message is saying that you forgot to put a
double-quote at the end of Helvetica to close the string. The cursor is positioned at the
beginning of the string, ready for you to review the problem. Why is it telling you that
you have an unclosed character literal when what you have is an unclosed string? The
compiler sees the first double-quote and a character, so it knows that it should expect
another double-quote. It doesn’t know whether you want a character literal or a string, it

460 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.5.
Errors produced by the
HelloDebug.java com-
pilation.

14.31318-9 CH11 9/24/98 1:40 PM Page 460

Compiling and Debugging 461

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

just knows there is no closing double-quote. This is the type of deduction you need to be
able to make in order to interpret some error messages.

Let’s look at the other two error messages. To do so,you can either click on the next
message with the mouse or use the View |Next Error Message command. The second
error message,

Error: (11) ‘;’ expected.

tells you that a semicolon was expected on line 11 and that the cursor is positioned at the
end of the line. This seems straightforward enough. The third and final error message is

Error: (6) constructor Font (<any>) not found in class java.awt.Font.

But why is there a third message when there are only two errors? This message is caused
by the fact that, after the syntax check, the compiler also does a referential check of
classes and methods. Because of the missing double-quote on line 6 (the first error), the
compiler cannot resolve the Font constructor statement because it is improperly formed,
and outputs another error.

Let’s go back and correct the first error. To do so,you can either double-click on the first
error with the mouse or use the View |Previous Error Message command twice. Position
the cursor at the end of the string Helvetica, and insert a double-quote before the
comma. Don’t fix anything else at this point. With the HelloDebug.java node selected,
right-click and then choose the Make command. The result is shown in Figure 11.6.

FIGURE 11.6.
The remaining error
produced by the
HelloDebug.java

compilation.

Notice that two of the errors were resolved with this one fix. Now that the string Hello!
is properly terminated, the Font constructor resolves properly, too. The cursor is now
positioned at the point in the source code where the missing semicolon should go. Insert
the semicolon,and recompile. The program should now compile without errors.

14.31318-9 CH11 9/24/98 1:40 PM Page 461

Getting Help with Errors
When an error is displayed in the Message view, note the line number and type (either
error or warning). To obtain more information on that error, select Help|Help Topics,
and refer to the “Error and warning messages” topic in the online Getting Started with
JBuilder book.

Let’s go back and take out the ending double-quote on line 6 and then make the file to
recreate the error message. Select Help|Help Topics. When the Help viewer appears,
select Getting Started with JBuilder from the Available books drop-down list. Expand the
Error and warning messages node, then click on the Error messages entry to display that
topic. Use either the links at the top of the page or scroll down to the error you want to
know more about. Figure 11.7 shows the help for the unclosed character literal syntax
error.

462 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.7.
Help for errors.

Using the Debugger
With a completed and successfully compiled application, you are ready to test your pro-
gram. Although all the different types of tests you can perform on an application are out-
side the scope of this book,you will want to perform certain basic tests to ensure that
your application can be run by all the users for whom it is intended.

14.31318-9 CH11 9/24/98 1:40 PM Page 462

Compiling and Debugging 463

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Basic tests include exercising each menu item,entering different values into input fields,
checking for proper display of graphical items,and testing output to various devices. You
can perform most of these tests from within the JBuilder IDE by running your applica-
tion. To run your project,select Run|Run,which will load your program and let you
interact with it as a user would. If something doesn’t work properly or you receive a run-
time error, you’ll want to debug your program using the JBuilder IDE integrated debug-
ger.

To debug your project,select Run|Debug, which will load your project into the inte-grat-
ed debugger, allowing you to step, trace, pause, and examine values and states of your
variables and objects.

The integrated debugger enables you to manipulate your code in a controlled manner. It
also enables you to try out different scenarios, find obscure bugs,and otherwise examine
values at any point in your program’s execution,enabling you to completely debug your
Java programs. You can go through your code line by line, stepping conditionally into
and over parts of your source code. You will use many of the Run menu and View menu
items during a debug session,both to set up the session and to control the execution of
your program during the session.

Debugging Options
Before you can begin debugging with the integrated debugger, ensure that certain pro-
ject options are enabled. Remember that the debugging options are specified in the
ProjectName.jpr Properties dialog box. When debugging, you’ll want to set your project
options to the values shown in Table 11.1.

TABLE 11.1. DEBUGGING PROJECT OPTIONS.

Dialog Page Compiler Option Setting

Compiler Include Debug Information Checked

Run/Debug Compile project before debugging Checked

Run/Debug Send run output to Execution Log Selected

Before you begin your debug session,you might also want to modify the parameters in
the Run/Debug page of the ProjectName.jpr Properties dialog box to try out different sets
of arguments to see how your program parses and uses those arguments.

Invoking the Debugger
To begin using the integrated debugger, select the Debug command, either from the
selected node’s pop-up menu, the Run menu, or by clicking its iconic representation on

14.31318-9 CH11 9/24/98 1:40 PM Page 463

the JBuilder toolbar (lightening bolt with a bug). If you have breakpoints set (which
you’ll learn about in the “Breakpoints”section),you can use the Run command to invoke
a debug session.

Invoking the debugger causes an implicit make to be performed on the selected node,
which can be a file, a package, or a project node. If the compile is successful,your pro-
gram will begin to run. As soon as any procedural code is called, the execution point is
displayed in the Editor pane, as shown in Figure 11.8.

464 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.8.
The execution point.

The execution pointis the line of code about to be executed during a debug ses-
sion.

The execution point is highlighted by a line of color and an arrowhead in the left margin
of the Editor pane. If you have yet to set any breakpoints or watches,you can do so any
time an execution point is displayed and your program is paused.

NEW TERM

If you have clicked on some other line of code and want to reposition the
cursor at the execution point, you can do so by selecting Run | Show
Execution Point.

Tip

14.31318-9 CH11 9/24/98 1:40 PM Page 464

Compiling and Debugging 465

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Pausing and Resuming
Whenever your program is awaiting user input,you can select the Run|Program Pause
command to temporarily stop the execution of the program in the integrated debugger.
This also will enable you to change debugging settings,such as breakpoints and watches.
To resume program execution,use one of four commands on the Run menu: Trace Into,
Step Over, Run to Cursor, or Run to End of Method.

Tracing into the code using the Trace Into commandcauses the debugger to execute each
line of code in turn, including all executable lines in called methods. When this com-
mand is used and the debugger encounters a method call,it executes the method call and
positions the execution point at the next line of code in the method itself.

Stepping over code using the Step Over command causes the debugger to execute each
line of code in turn, except in the case of called methods. When the debugger encounters
a line of code that calls a method, it executes all the statements in that method as a group
and then positions the execution point at the statement immediately following the method
call.

To use the Run to Cursor command, position the cursor in the Editor on the line of code
where you want to begin (or continue) debugging. This command will run your program
straight through until it reaches the source code line where your cursor is. When it
reaches that point, the execution point is positioned on that line of code, and you can
proceed by stepping or tracing from there.

The Run to End of Method command causes the debugger to run from the point where
the command is invoked through the rest of the current method, positioning the execution
point at the line immediately following the method call. This command is especially use-
ful if you have traced into a method and don’t want to trace through all its remaining
lines of code.

Breakpoints
When you run your program in the debugger, it runs at full speed unless you tell it to
stop at a particular point. Breakpoints tell the debugger that you want to pause execution
when it gets to the line of code that contains a breakpoint.

A breakpointis a line of source code marked so that the debugger will pause
program execution when that point in the program is reached.

Breakpoints are useful for pausing the program at a predetermined point,enabling you to
examine the state of variables (using watches or the Evaluate/Modify dialog box), the
call stack, and thread status. To set a breakpoint,right-click on the source code line in

NEW TERM

14.31318-9 CH11 9/24/98 1:40 PM Page 465

the Content pane where you want the program execution to pause and select Toggle
Breakpoint from the pop-up menu.

466 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

To indicate a breakpoint,a red sphere is placed in the Editor’s left margin adjacent to the
line of code, as shown in Figure 11.9.

A breakpoint can be set only on a line that generates actual executable
code. Breakpoints are not valid if set on blank lines, comments, or declara-
tions. You are not prevented from setting a breakpoint on these types of
lines, but the debugger will warn you that you have set a breakpoint on a
line that contains no code, producing an invalid breakpoint. Invalid break-
points will simply be ignored by the debugger. Breakpoints are valid, how-
ever, on return statements or on the closing brace of a method.

Note

FIGURE 11.9.
A breakpoint in the
Editor pane.

In addition to setting breakpoints from the Editor, you can also use the Run|Add
Breakpoint command to display the Breakpoint Options dialog box. In JBuilder, there
are two types of breakpoints:source and exception. Source breakpoints are those that are
set on a particular line in the source code, and they cause execution to pause when that
line of code is the next to be executed. Exception breakpoints are invoked and pause exe-
cution whenever a listed exception is thrown.

Setting Source Breakpoints
Figure 11.10 shows the Breakpoint Definition page for Source Breakpoint.

14.31318-9 CH11 9/24/98 1:40 PM Page 466

11

Compiling and Debugging 467

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.10.
The Breakpoint
Definition page for
Source Breakpoint.

Source breakpoints have a number of options that control how they are invoked. You can
set the filename and source code line for which the breakpoint is effective. The
Condition is an expression which, if satisfied, will cause the program to pause. On the
Action page, you can also name the breakpoint and assign it to a group of breakpoints.
The thread options control whether this particular breakpoint will stop the execution of
all threads or only a specified thread ID. The pass count controls how many times the
breakpoint will be ignored before pausing execution. For example, if you have a break-
point in a loop that executes 20 times,you might want the breakpoint to stop only the
last time through the loop. The pass count is decremented each time it encounters the
breakpointduring execution,pausing only when it reaches 1.

Setting Exception Breakpoints
Figure 11.11 shows the BreakpointDefinition page for Exception Breakpoint.

FIGURE 11.11.
The Breakpoint
Definition page for
Exception Breakpoint.

14.31318-9 CH11 9/24/98 1:40 PM Page 467

As you can see, for exception breakpoints,some of the options are different. Instead of
filename and line number, you specify for which type of exception you want the break-
point to pause. The default is All Handled Exception Throws,but you can alternatively
set it to stop for only an Unhandled Exception Throw, or for only Handled Throw of
Class and name a specific class. The rest of the options on this page are the same as for a
source breakpoint,except that they apply to the specified type ofexception.

Performing an Action at a Breakpoint
Figure 11.12 shows the Action page. This page contains the same options for both types
of breakpoints. You can specify any combination of actions that you want to occur when
a particular breakpoint is reached. One of the options,interestingly enough,allows you
to disable the Halt Execution option,which can be useful if you use some of the other
Enable/Disable options. The Dialog on breakpoint occurrence check box enables the dis-
play of a dialog when a breakpoint is reached. The Log breakpoint occurrence check box
causes a message to be written to the debug log; an Expression causes it to be written
only when the expression evaluates to true. The Enable/Disable another breakpoint
check boxes cause the named breakpoints to be enabled/disabled when the current break-
point is reached; the Enable/Disable a group of breakpoints check boxes cause a named
group of breakpoints to be enabled or disabled when the current breakpoint is reached.
These four options rely on the Name and Group Name options selected in the Breakpoint
Definition page for the current breakpoint.

468 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.12.
The Action page for
both types of break-
points.

Viewing Breakpoints
To see what breakpoints are set in the current debug session,use the View |Breakpoints
command to display the Breakpoints window, shown in Figure 11.13.

14.31318-9 CH11 9/24/98 1:40 PM Page 468

Compiling and Debugging 469

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

The Breakpoints window’s pop-up menu gives you easy access to the most commonly
used commands without your having to invoke the Breakpoints Options dialog box.
Figure 11.13 shows the pop-up menu commands that appear when a particular break-
point is selected. Most of the commands,such as Disable or Remove, are self-
explanatory. The Options command displays the Breakpoints Options dialog box with the
currently selected breakpoint’s information. The Add Breakpoint command invokes the
Breakpoints Options dialog box with the current execution point’s information displayed.

Watches
Watches are those identifiers,or expressions containing one or more identifiers, for
which you want to see the current value when the program pauses. The watch can “see”
only identifiers that are in the current scope. If an individual identifier or any identifier in
an expression goes out of scope, the watch will be undefined.

FIGURE 11.13.
The Breakpoints win-
dow and its pop-up
menu.

An expression can contain almost anything a regular assignment statement
can contain. The one exception is that a watch expression cannot contain a
method call on the right side of the assignment operator.

Caution

To examine watches while your program is running, choose the Watch tab in the
AppBrowser to put it into Watch mode. The left pane becomes the Watch pane and will
display the currently defined watches. To set a watch, select the Run|Add Watch com-
mand, which displays the Add Watch dialog box.

14.31318-9 CH11 9/24/98 1:40 PM Page 469

Threads and Stack
When the AppBrowser window is in Debug mode, clicking on the Debug tab reveals two
debugging views: the Threads and Stack pane and the Data pane.

The Threads and Stack pane appears in the upper-left pane, and displays the threads,
methods,and parameters called up to the current execution point. The Stack displays the
name of the currently executing method and all the methods that were called in prior
sequence. Each item lists the method names and the values of its calling parameters.
Threads are subprocesses in your application. Even if you haven’t designed your applica-
tion to be multithreaded, the default single thread for your program will be shown in this
window and its progress followed.

The Data pane in the lower-left pane lets you see what the current value is of an object’s
data. This enables you to examine the state of an object whenever your program is
paused.

You can also customize what types of information are shown in these panes. Right-click
in either the Thread and Stack pane or the Data pane, and select Properties to display the
Context Tree Properties dialog box, shown in Figure 11.14.

470 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

FIGURE 11.14.
The Context Tree
Properties dialog box.

In this dialog box, you can determine exactly what types of data are displayed in these
panes. Most of the choices are self-explanatory, but worth noting are the choices pre-
sented by the array of check boxes under the Display Data check box. These check boxes
control whether the associated data types are hidden from view or are displayed
in the pane.

14.31318-9 CH11 9/24/98 1:40 PM Page 470

Compiling and Debugging 471

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Other Debug Views
There are three other views and windows that are available to give you additional infor-
mation about your program during a debug session. The following sections give a brief
explanation of each.

Inspector Window
In the Inspector window you can examine a data element,such as a property value or
program data. The value will be updated as you step through your program in the debug
session. Invoke this window through the Inspect dialog box by selecting the Run| Inspect
command.

Evaluate/Modify Dialog Box
The Evaluate/Modify dialog box enables you to evaluate an expression or temporarily
change data elements,such as property values,while debugging. This dialog box is
invoked by selecting the Run|Evaluate/Modify command. In the Expression combo box,
either type the identifier, constant,or expression that you want to evaluate or choose a
previously evaluated expression from its history list. Click the Evaluate button to display
the result of the evaluation in the Result field. To modify a value, type the desired value
in the New Value combo box, and click the Modify button. This enables you to input a
desired value and continue debugging, either correcting a wrong value or specifying an
incorrect value in order to test your code to see whether it will handle the error correctly.

Loaded Classes Window
The Loaded Classes window displays a list of all the classes associated with the current
program in the debug session. This window is invoked by selecting the View |Loaded
Classes command.

Summary
Today, you’ve learned how to prepare your code for compilation, including using the
Editor’s syntax highlighting to spot errors prior to doing a syntax check. You should now
be able to decide whether to do a Make or a Rebuild, and you know how to invoke those
commands in a number of ways. You also learned that invoking Run or Debug does an
implicit Make and that you can use F1 to get help with those pesky compiler errors.

You’ve learned how to invoke the debugger, how to pause and reset,and the difference
between stepping and tracing. In addition, you’ve learned about breakpoints,watches,
how to examine thread status,the method call stack, and other program data during a

14.31318-9 CH11 9/24/98 1:40 PM Page 471

debug session. You’ve seen that you can look at which classes are loaded by the current
class and inspect the current value of data elements. Finally, you now know how to use
the Evaluate/Modify dialog box to see what values an identifier represents and to change
the current value of an identifier while debugging, to perform “what if” execution.

Q&A
Q What are some common errors that programmers new to Java should look

for?

A There are three common mistakes that result in compiler errors. Always check for
these things while entering your source code:

● Make sure that braces are balanced, matching opening braces with closing
braces. One technique that ensures this is to type the line of code and the
beginning brace, press the Enter key, and type the ending brace. Then insert
the code for that block between the two balanced braces—that way, you
won’t forget the one at the end. Also, because of the Editors “smart tabbing”
feature, entering the braces this way will automatically place the ending
brace at the proper level of indentation for you.

● Don’t forget the semicolon at the end of each statement. Remember that
semicolons are not required after an ending brace. Also, if a block statement
doesn’t ever seem to get executed, one of the first things to look for is an
extraneous semicolon before the block’s first brace.

● Case-sensitivity is the one mistake that gets all new Java programmers. If the
compiler claims that something isn’t declared, and you know that it is, check
the case and make sure that all occurrences of the identifier are identically
spelled and that the uppercase and lowercase characters match.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all the sections before continuing to the next day.

472 Day 11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

14.31318-9 CH11 9/24/98 1:40 PM Page 472

Compiling and Debugging 473

11

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

Quiz
1. What is the difference between a Make and a Rebuild?

2. How do you set a breakpoint on a particular line of source code?

3. What command enables you to execute each line of a method while debugging?

4. How can you change the value of a variable during execution?

5. True or False? The execution point indicates the line of code that was just exe-
cuted.

6. To make the debugger run your code until it encounters the line of code in which
the cursor is positioned in the Editor, what command would you use?

Exercise
Take any of the projects you’ve worked on earlier this week and set various types of
source code breakpoints. Try all the debug commands on the Run menu and see whether
they work like you think they will. Make a new project,and copy some working code
into it; then create syntax errors and see what types of error messages they produce.
Experiment with the syntax highlighting to see what combinations will show syntax
errors the best.

14.31318-9 CH11 9/24/98 1:40 PM Page 473

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 11 Lp#2

14.31318-9 CH11 9/24/98 1:40 PM Page 474

DAY 12

WEEK 2

Handling Events
Event handling is where most of the action in your application takes place. So
far, this book has concentrated on the graphical interface between your applica-
tion and its user. Now, it’s time to make that beautiful and carefully crafted
interface earn its keep.

Handling events is how your Java application responds to messages sent to it by
the system. When a user clicks on a button, selects a menu item, or types text,
the system transmits a message to your application.

An eventoccurs when the system transmits a message to your program.

Messages can also be transmitted in response to system events, such as another
program closing or a top-level window being minimized and exposing your
window. All these events must be handled, either implicitly or explicitly, by
your program. The methods in which you write the code to handle these events
are called event-handling methods, or event handlers.

An event handleris a method that contains code to respond to a system
event message.

NEW TERM

NEW TERM

15.31318-9 CH12 9/24/98 1:45 PM Page 475

Today, you’ll learn how to handle events and how to write event handlers using JBuilder.
In particular, you’ll learn how to respond to these user actions:

● Mouse clicks

● Mouse movements,including dragging

● Keypresses

The project for today is named HandlingEvents.jpr, to which all of today’s listings will
be added.

Creating Event Handlers
Creating event handlers,as you’ve seen in previous days, is simplicity itself. First, in UI
Designer mode, select the component in the UI Designer or Menu Designer for which
you want to handle an event—a menu-command item,a button,or the like.

To create a new event handler, click on the Events tab of the Inspector window, and then
select the event for which you want to write a method. Click once in the right column to
name a new method, and then double-click to transfer focus to the Source tab of the
AppBrowser window. The cursor will be positioned in the source code at your new
event-handling method, awaiting your commands. You first saw an example of how to
do this on Day 6, “User Interface Design,” when you created the menuFileSayHello’s
actionPerformed event-handling method.

If you want to use an existing event handler, click on the Events tab, and then select the
event for which you want to reuse the existing event-handler. Click on the right column
and type the existing method’s name. That’s it! Your component or menu-command item
will now reuse that method for its own events. You saw an example of how to do this on
Day 6 when you re-used the menuFileSayHello’s actionPerformed method for the
Button’s actionPerformed event. Both the menu item and the button performed exactly
the same action in response to the user’s action (selecting the menu item or clicking on
the button),so they were able to share the same event handler.

A quick way to create the default event handler for a component is to double-click the
component in the UI Designer. The event that is considered the default event is defined
for most components. For example, the default event for a Button component is
actionPerformed, and its default event handler is actionPerformed_buttonName. The
actionPerformed event is also the default for those components that don’t explicitly
define one.

When you create an event handler, in addition to the method stub, the JBuilder IDE auto-
matically generates all the code necessary to connect that method with the component

476 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 476

Handling Events 477

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

that needs to use it to respond to events. These include an EventAdapter and an
EventListener, which are created as new classes in your source code—be sure not to
edit this generated code. Explaining the how and why of these classes is beyond the
scope of this book,but they are mentioned here as another example of the ways in which
the JBuilder IDE simplifies the task of writing Java code. In addition, whenever you add
a Frame class to your project,the JBuilder IDE automatically adds the appropriate import
line,

import java.awt.event.*;

to your source code so that it can handle events properly when you add event-handling
code.

To delete an event handler, select the handler’s name in the right column of the event.
Then,with the entire method name highlighted, press the Delete key. This disconnects
the named event handler from that particular event but does not remove the event-
handling method itself. This is a safety feature so that a method is not erased simply
because you’ve momentarily removed the last reference to it. (Perhaps you intended to
connect it to some other component later.)

To remove the event-handling method from your source code entirely, remove the body
of the method, leaving the empty method signature. The next time your code is compiled,
all the code related to that handler (including the EventAdapter and EventListener gen-
erated code) will be removed from your source code file.

Managing Simple Events
Java events are part of the Abstract Windowing Toolkit package. An event is the way that
components communicate to you,as the programmer, and to other components that
something has happened. That something can be input from the user (mouse clicks,
mouse movements,keypresses),changes in the system environment (a window opening
or closing, the window being scrolled up or down), or a host of other things that might,
in some way, be relevant to the operation of the program.

In other words,whenever just about anything happens to a component,including an
applet,an event is generated. Some events are handled implicitly without your needing to
do anything. For example, paint method calls are generated and handled by the
browser—all you have to do is say what you want painted when it gets to your part of
the window. Some events,however, such as a mouse click inside the boundaries of your
applet,you will need to handle explicitly by writing code in an event-handling method.
Writing your Java programs to handle these kinds of events enables you to get input from
the user and have your program change its behavior based on that input.

15.31318-9 CH12 9/24/98 1:45 PM Page 477

Mouse Events
Mouse events come in two basic flavors,mouse clicks and mouse movements. Mouse
click events occur when a user presses and releases one of the mouse buttons; mouse
movement events occur when the mouse is moved from one position to another. If one of
the mouse buttons is pressed while the mouse is being moved, the movement is called
dragging.

Handling mouse events in your applet is easy; just select the appropriate event in the
Inspector pane; then double-click. When you do,a method stub is inserted into your
source code which looks something like this:

void this_mouseClicked(MouseEvent e) {...}

All the mouse events have as their argument an object of type MouseEvent, whose con-
structor method header is

public MouseEvent(Component source, int id, long when,
int modifiers, int x, int y,
int clickCount, boolean popupTrigger)

The source parameter is passed the Component object that triggered the event,such as a
Button or a MenuItem object. The id parameter is passed an integer defining the type of
mouse event that occurred (int constants:MOUSE_CLICKED, MOUSE_PRESSED,
MOUSE_RELEASED, MOUSE_MOVED, MOUSE_ENTERED, MOUSE_EXITED, or MOUSE_DRAGGED).
Each event has a unique when time stamp. The modifiers parameter is passed informa-
tion on whether or not one or more modifier keys (Shift,Alt, or Ctrl) were pressed while
the mouse event occurred. The x and y parameters are passed the x,y coordinate of the
mouse event relative to the source component. The clickCount parameter is passed the
number of mouse-button clicks (if any) that occurred. For example, a double-click would
result in 2 being passed to the clickCount parameter. The popupTrigger parameter is
passed true if the mouse event causes pop-up menus to occur on the platform, such as a
right-click in the Windows environment.

The MouseEvent object has several methods associated with it,which give you access to
its nonpublic instance variables:

● The getX() and getY() methods each return an int value containing the x and y
coordinates,respectively, which are relative to the source component generating
the event.

● The getPoint() method returns the same x,y coordinate in a Point object,
whereas the translatePoint(x, y) method adds the specified x and y values to
the x,y coordinate encapsulated by the Point object.

478 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 478

Handling Events 479

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

● The getClickCount() method returns the int value passed to the clickCount

parameter.

You can use these methods to obtain information about the MouseEvent instance in your
own mouse event-handling methods. Because the standard event handler generated by
JBuilder assigns MouseEvent objects to the e variable, you can refer to these methods as
e.getX() or e.getClickCount() in your event handler.

Mouse Clicks
Mouse click events occur when a user clicks the mouse somewhere in the body of your
applet,or within the boundaries of your application’s windows. You can intercept mouse
clicks to do very simple things—to toggle the sound on and off in your application, to
move to the next slide in a presentation, or to clear the screen and start over. Or you can
use mouse clicks in conjunction with mouse movements to perform more complex
actions in your program.

When you click the mouse, several events are generated. A mouseClicked event signals
that the mouse was pressed and released. But what about those times when you need to
discriminate between pressing the mouse button and releasing it? For example, consider
a pull-down menu. Pressing the mouse button extends the menu, and releasing the mouse
button selects a menu item (with mouse drags in between,which you’ll learn about in the
“Mouse Motions”section). If you had only one event for both,you could not implement
that sort of user interaction. So in addition to the mouseClicked event,clicking the
mouse also generates a mousePressed eventas the mouse button is pressed and a
mouseReleased event as the mouse button is released.

For example, here is a trio of simple Button component event handlers that print coordi-
nate information (relative to the Button component’s x,y origin) whenever a
mouseClicked, mousePressed, or mouseReleased event occurs:

void button1_mouseClicked(MouseEvent e) {
System.out.println(“A mouseClicked event occurred at “

+ e.getX() + “,” + e.getY());
}

void button1_mousePressed(MouseEvent e) {
System.out.println(“A mousePressed event occurred at “

+ e.getX() + “,” + e.getY());
}

void button1_mouseReleased(MouseEvent e) {
System.out.println(“A mouseReleased event occurred at “

+ e.getX() + “,” + e.getY());
}

15.31318-9 CH12 9/24/98 1:45 PM Page 479

Remember, to create the handler, select the event in the Events tab. Click in the right col-
umn to name the handler, and then double-click to create the method stub (or you can
just triple-click to do these two steps at once); then add the two lines of code for the
body of each method. Also, note that the MouseEvent instance variables are not public
and are accessible only through the MouseEvent methods described in the “Mouse
Events”section earlier.

If you try this out,you’ll see that for a simple mouse click, three lines are printed:

A mousePressed event occurred at 31,5
A mouseReleased event occurred at 31,5
A mouseClicked event occurred at 31,5

This looks fairly straightforward: The mouse button is pressed, it’s released, and so a
mouse click has been completed. However, if you click and then drag before releasing,
only two lines are printed:

A mousePressed event occurred at 9,8
A mouseReleased event occurred at 42,10

Why not a mouse click? The system knows that something happened (a mouse drag) in
between the press and release of the mouse button,so it cannot resolve the two into a
simple mouse click, and it doesn’t generate a mouseClicked event.

Spots Applet
In this section,you’ll create an applet that makes use of the mousePressed event. The
Spots applet starts with a blank screen and then sits and waits. When you click the mouse
on that screen,a blue dot is drawn.

Start by building the basic applet with the Applet Wizard. With the HandlingEvents.jpr
project open and active in the JBuilder IDE,select File |New to open the New dialog
box. Make sure that the New dialog box is open to the New page by clicking on the tab;
then double-click the Applet icon to start the Applet Wizard. When the Applet Wizard:
Step 1 of 3 dialog box appears,erase the text in the Package field, and type Spots in the
Class field. Then click the Finish button. This will generate skeleton code for the
Spots.java applet and also the Spots.html file with which to test your applet.

In the Structure pane, click on the Applet node (just below the Spots node) which will
highlight the Spots class declaration. Insert these lines of code just below that line in the
Content pane:

int x;
int y;

480 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

OUTPUT

OUTPUT

15.31318-9 CH12 9/24/98 1:45 PM Page 480

Handling Events 481

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

This code defines the class’s two instance variables: the x and y coordinates where the
current spot will be drawn.

This class doesn’t need to include implements Runnable in its class definition.
As you’ll see later as you build this applet, it also doesn’t have a run()
method. Why not? Because it doesn’t actually do anything on its own—all it
does is wait for input and then respond when input happens. There’s no
need for threads if your applet isn’t actively doing something all the time.

Note

Next, you want to set the background property for the applet to white. Click on the
Design tab to put the AppBrowser window into UI Design mode. The this(XYLayout)
object should be selected in the Structure pane, as shown in Figure 12.1. The
this(XYLayout) object represents your applet’s drawing area.

FIGURE 12.1.
The this(XYLayout)
object is highlighted in
the AppBrowser win-
dow Structure pane.

Click on the Properties tab of the Inspector pane, double-click on the background prop-
erty, and then click the ellipses button to display the background dialog box, shown in
Figure 12.2.

Click the drop-down arrow in the choice box at the top of the dialog and scroll up all the
way to the top of the list to select White, and then click OK. If you look at your source
code, in the jbInit() method, you will see that a new line of code has been added:

this.setBackground(Color.white);

You want to set the background property here, instead of in the paint() method,
because the paint() method is called each time a new spot is added. Because you really
only need to set the background once, putting it in the paint() method unnecessarily
slows down that method. Setting it here improves performance.

15.31318-9 CH12 9/24/98 1:45 PM Page 481

The main action of this applet occurs in the this_mousePressed() method. To add the
event handler, click on the Events tab in the Inspector pane, and then triple-click in the
mousePressed event’s right column to place the method stub in your source code. Add
these lines of code to the body of the newly created this_mousePressed method:

x = e.getX();
y = e.getY();
repaint();

When the mouse click occurs, the this_mousePressed() method sets the x and y vari-
ables to the coordinates returned by the MouseEvent object’s getX() and getY() meth-
ods. Then it calls the repaint() method.

482 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

FIGURE 12.2.
The background dialog
box.

Why respond to the mousePressed event instead of the mouseClicked event?
You really only care about the coordinates where the mouse button was
pressed, not where it was released. Consider what happens if the user is a
little “heavy-handed” and clicks and drags the mouse slightly before releas-
ing the mouse button, instead of making a nice discrete mouse click. If your
method responded only to mouseClicked events, you’d be out of luck; since
a mouse drag occurred, only a mousePressed and mouseReleased event
would be generated, so your method would not respond properly. By
responding to the mousePressed rather than the mouseClicked event, you
eliminate that potential problem in your code.

Tip

You also need to override the update() method to eliminate its internal call to the
repaint() method. Add the following code to your Spot.java source file:

public void update(Graphics g) {
paint(g);

}

15.31318-9 CH12 9/24/98 1:45 PM Page 482

Handling Events 483

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

This isn’t an animation, so why override the update() method? If you didn’t, you would
have to keep track of all the past spots in addition to the current spot so that you could
redraw them after the update() method’s internal call to the repaint() method cleared
your applet’s screen.

Now, on to your paint() method, in which you’ll draw the current spot in response to
your call to the repaint() method initiated by the mousePressed event:

public void paint(Graphics g) {
g.setColor(Color.blue);
g.fillOval(x - 10, y - 10, 20, 20);

}

Because the oval’s point of origin is the upper-left corner of the bounding rectangle, in
this paint() method, you paint the current spot a little to the left and upward so that the
spot is painted around the mouse pointer’s hotspot,rather than below and to the right of
it. Listing 12.1 shows the code for the Spots applet.

LISTING 12.1. Spots.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import borland.jbcl.layout.*;
5: import borland.jbcl.control.*;
6:
7: public class Spots extends Applet {
8: int x;
9: int y;
10: XYLayout xYLayout1 = new XYLayout();
11: boolean isStandalone = false;
12:
13: //Construct the applet
14:
15: public Spots() {
16: }
17: //Initialize the applet
18:
19: public void init() {
20: try {
21: jbInit();
22: }
23: catch (Exception e) {
24: e.printStackTrace();
25: }
26: }

TYPE

continues

15.31318-9 CH12 9/24/98 1:45 PM Page 483

LISTING 12.1. CONTINUED

27: //Component initialization
28:
29: private void jbInit() throws Exception {
30: this.setBackground(Color.white);
31: this.addMouseListener(new java.awt.event.MouseAdapter() {
32: public void mousePressed(MouseEvent e) {
33: this_mousePressed(e);
34: }
35: });
36: xYLayout1.setWidth(400);
37: xYLayout1.setHeight(300);
38: this.setLayout(xYLayout1);
39: }
40: //Get Applet information
41:
42: public String getAppletInfo() {
43: return “Applet Information”;
44: }
45: //Get parameter info
46:
47: public String[][] getParameterInfo() {
48: return null;
49: }
50:
51: void this_mousePressed(MouseEvent e) {
52: x = e.getX();
53: y = e.getY();
54: repaint();
55: }
56:
57: public void update(Graphics g) {
58: paint(g);
59: }
60:
61: public void paint(Graphics g) {
62: g.setColor(Color.blue);
63: g.fillOval(x - 10, y - 10, 20, 20);
64: }
65: }
66: }

That’s all you need to create an applet that can handle mouse clicks. Everything else is
handled for you. Figure 12.3 shows what the Spots applet looks like running in the
appletviewer after you’ve added numerous spots.

484 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 484

Handling Events 485

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

To clear the drawing area,just minimize and restore the appletviewer window to restart
the applet. You might notice that one circle remains in the upper-left corner of the applet,
even after you’ve minimized and restored the appletviewer. This is because the
fillOval() method is in the paint() method, which is called whenever the applet’s user
interface is refreshed.

Mouse Motions
Every time the mouse is moved, mouse move events are generated. Just how many events
are generated depends on the type of mouse move, of which there are four:

mouseMoved event The mouse is moved, but no buttons are
pressed.

mouseDragged event The mouse is moved while a mouse button is
pressed.

mouseEntered event The mouse is moved over the boundary going
into the specified object.

mouseExited event The mouse is moved over the boundary leav-
ing the specified object.

Consider the following four event handlers,based on these events:

void button1_mouseMoved(MouseEvent e) {
System.out.println(“A mouseMoved event occurred at “

+ e.getX() + “,” + e.getY());
}

void button1_mouseDragged(MouseEvent e) {
System.out.println(“A mouseDragged event occurred at “

+ e.getX() + “,” + e.getY());

FIGURE 12.3.
The Spots applet in
action.

15.31318-9 CH12 9/24/98 1:45 PM Page 485

}

void button1_mouseEntered(MouseEvent e) {
System.out.println(“A mouseEntered event occurred at “

+ e.getX() + “,” + e.getY());
}

void button1_mouseExited(MouseEvent e) {
System.out.println(“A mouseExited event occurred at “

+ e.getX() + “,” + e.getY());
}

When you run an applet with these event handlers, you’ll see that for a mouse move of
five pixels,five mouseMoved events are generated, one for each pixel the mouse flies
over:

A mouseMoved event occurred at 31,5
A mouseMoved event occurred at 31,6
A mouseMoved event occurred at 31,7
A mouseMoved event occurred at 31,8
A mouseMoved event occurred at 31,9

A mouse drag over five pixels fires off five mouseDragged events,again,one for each
pixel. In addition, a mouse drag involves a mousePressed event at the beginning and a
mouseReleased event at the end, so the output for a mouse drag of five pixels would look
like this:

A mousePressed event occurred at 48,7
A mouseDragged event occurred at 46,7
A mouseDragged event occurred at 45,8
A mouseDragged event occurred at 44,8
A mouseDragged event occurred at 43,8
A mouseDragged event occurred at 42,8
A mouseReleased event occurred at 42,8

Whenever the mouse crosses the border into an object,a mouseEntered event occurs.
Conversely, a mouseExited event occurs when the mouse crosses the border leaving the
object. For example, a slow vertical flyover of our sample button1 component produces
this output:

A mouseEntered event occurred at 112,78
A mouseMoved event occurred at 16,0
A mouseMoved event occurred at 16,1
A mouseMoved event occurred at 16,2
A mouseMoved event occurred at 16,2
A mouseMoved event occurred at 16,3
A mouseMoved event occurred at 16,4
A mouseMoved event occurred at 16,5

486 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

OUTPUT

OUTPUT

OUTPUT

15.31318-9 CH12 9/24/98 1:45 PM Page 486

Handling Events 487

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

A mouseMoved event occurred at 16,6
A mouseMoved event occurred at 16,7
A mouseMoved event occurred at 16,8
A mouseMoved event occurred at 16,9
A mouseMoved event occurred at 16,10
A mouseMoved event occurred at 16,11
A mouseMoved event occurred at 16,12
A mouseMoved event occurred at 16,13
A mouseMoved event occurred at 16,14
A mouseMoved event occurred at 16,15
A mouseMoved event occurred at 16,16
A mouseMoved event occurred at 16,17
A mouseMoved event occurred at 16,18
A mouseMoved event occurred at 16,19
A mouseMoved event occurred at 16,20
A mouseMoved event occurred at 16,21
A mouseMoved event occurred at 16,22
A mouseExited event occurred at 16,23

And that’s just for a small 23-pixel tall button—imagine all the events that occur as
the mouse traverses a 400×300 applet! Note that the mouseEntered event occurred at
112,78, which is clearly not within the button’s coordinate space. The entry coordinates
are those of the surrounding Frame object,at the point where the mouse leaves the Frame
object and enters the Button component assigned to the button1 variable. Handling
mouseEntered and mouseExited events is useful if you need to change the mouse cursor
when the mouse flies over a particular area of the screen,for example, or any time you
need to know when the mouse has entered your applet screen’s airspace.

All the previous examples assume that you are moving the mouse in a slow deliberate
manner. But what happens when you quickly fly over a component? Does the system
actually track the movement pixel by pixel? Here’s the output produced by a speedy
flyover of the same button1 component:

A mouseEntered event occurred at 133,89
A mouseMoved event occurred at 38,11
A mouseExited event occurred at 38,29

This demonstrates that the mouseMoved events are detected in discrete increments of sys-
tem time, not actually pixel by pixel.

Lines Applet
Examples always help to make concepts more concrete. In this section,you’ll create an
applet that enables you to draw up to 10 straight lines on the screen by dragging from the
startpoint to the endpoint. Figure 12.4 shows the Lines applet hard at work.

OUTPUT

15.31318-9 CH12 9/24/98 1:45 PM Page 487

With the HandlingEvents.jpr project open and active in the JBuilder IDE,select File |
New, and double-click the Applet icon in the New page of the New dialog box. When the
Applet Wizard: Step 1 of 3 dialog box appears,erase the text in the Package field, and
type Lines in the Class field. Then click the Finish button. This will generate the skele-
ton Lines.java applet source code and a Lines.html file.

In the Structure pane, click on the Applet node (just below the Lines node) which will
highlight the Lines class declaration. Insert these lines of code just below that line in the
Content pane:

int MAXLINES = 10;
Point starts[] = new Point[MAXLINES]; // startpoints
Point ends[] = new Point[MAXLINES]; // endpoints
Point anchor = null; // start of current line
Point currPoint = null; // current end of line
int currLine = 0; // number of lines

This code defines the Lines class instance variables:

● starts array holds the startpoints of lines already drawn.

● ends array holds the endpoints of the same lines.

● anchor holds the startpoint of the line being drawn, initialized to null.

● currPoint holds the current endpoint of the line being drawn, initialized to null.

● currLine holds the total number of lines drawn so far (to test against the constant
MAXLINES), initialized to 0.

Next, click the Design tab of the AppBrowser window, click the Properties tab of the
Inspector pane, and then set the background property to pink, which generates this line
of code in the jbInit() method:

this.setBackground(Color.pink);

488 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

FIGURE 12.4.
The Lines applet.

15.31318-9 CH12 9/24/98 1:45 PM Page 488

Handling Events 489

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

The three main events in this applet are mousePressed to set the anchor point for the cur-
rent line, mouseDragged to animate the current line as it’s being drawn, and
mouseReleased to set the endpoint for the new line. Given the instance variables that
you’ve just created, it’s merely a matter of plugging the right variables into the right
methods and testing to see whether you’ve exceeded MAXLINES along the way.

Click on the Design tab, click on the Events tab of the Inspector pane, and then triple-
click in the mousePressed event’s right column to place the method stub in your source
code. Add these lines of code to the body of the this_mousePressed method:

if (currLine <= MAXLINES)
anchor = new Point(e.getX(), e.getY());

When the mouse click occurs, the this_mousePressed method sets the Point object
anchor to the x and y variables to the coordinates returned by the getX() and getY()
methods.

Next, you want to create an animated rubber-banding effect so that the line follows the
mouse as the line is being drawn. Click the Design tab to switch back to Design mode,
triple-click the mouseDragged event,and add these lines of code to the
this_mouseDragged method stub:

if (currLine <= MAXLINES) {
currPoint = new Point(e.getX(), e.getY());
repaint();

}

The mouseDragged event contains the current point each time the mouse is dragged, so
use that event handler to keep track of the current point and repaint for each movement
so that the line animates.

The startpoint and endpoint for the new line don’t get added to the arrays until the mouse
button is released. You’ll do this in the addLine() method in a moment. Click on the
Design tab, triple-click on mouseReleased, and then add these lines of code to the body
of the this_mouseReleased method:

if (currLine <= MAXLINES)
addLine(e.getX(), e.getY());

When you’ve reached the maximum number of lines,you’ll see the white line when
drawing, but it won’t get added to the current list of lines. Here’s the addLine() method,
which you can add just after the this_mouseReleased() method:

void addLine(int x, int y) {
starts[currLine] = anchor;
ends[currLine] = new Point(x, y);
currLine++;

15.31318-9 CH12 9/24/98 1:45 PM Page 489

currPoint = null;
repaint();

}

This adds the anchor Point to the starts array, adds the Point object passed to the
addLine() method in the mouseReleased() method to the ends array, and increments the
number of lines assigned to the currLine variable. Setting the currPoint variable to
null indicates that you are finished drawing the current line, so you can test this variable
in the paint() method. Lastly, you call the repaint() method.

Painting the applet means drawing all the old lines whose endpoints are stored in the
starts and ends arrays,as well as drawing the current line in process,whose endpoints
are assigned to the anchor and currPoint variables. To show the animation of the cur-
rent line, draw it in white. Here’s the paint() method (add this code just below the
addLine() method):

public void paint(Graphics g) {

// draw existing lines
for (int i = 0; i < currLine; i++) {

g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
}

// draw current line
g.setColor(Color.white);
if ((currLine <= MAXLINES) & (currPoint != null))

g.drawLine(anchor.x, anchor.y, currPoint.x, currPoint.y);
}

In the paint() method, when you’re drawing the current line, in addition to the test for
MAXLINES, you test first to see whether the currPoint variable is assigned null. If it is,
the applet isn’t in the middle of drawing a line, so there’s no reason to repaint. By testing
the currPoint variable, you can paint only when you actually need to. By adding a few
lines of code to each event handler, and writing a few basic methods,you now have a
very basic drawing applet. Listing 12.2 contains the entire Lines applet code.

LISTING 12.2. Lines.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import borland.jbcl.layout.*;
5: import borland.jbcl.control.*;
6:
7: public class Lines extends Applet {

490 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

TYPE

15.31318-9 CH12 9/24/98 1:45 PM Page 490

Handling Events 491

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

8: int MAXLINES = 10;
9: Point starts[] = new Point[MAXLINES]; // startpoints

10: Point ends[] = new Point[MAXLINES]; // endpoints
11: Point anchor = null; // start of current line
12: Point currPoint = null; // current end of line
13: int currLine = 0; // number of lines
14: XYLayout xYLayout1 = new XYLayout();
15: boolean isStandalone = false;
16:
17: //Construct the applet
18: public Lines() {
19: }
20: //Initialize the applet
21:
22: public void init() {
23: try {
24: jbInit();
25: }
26: catch (Exception e) {
27: e.printStackTrace();
28: }
29: }
30: //Component initialization
31:
32: public void jbInit() throws Exception{
33: this.setBackground(Color.pink);
34: this.addMouseMotionListener(new

➥java.awt.event.MouseMotionAdapter() {
35: public void mouseDragged(MouseEvent e) {
36: this_mouseDragged(e);
37: }
38: });
39: this.addMouseListener(new java.awt.event.MouseAdapter() {
40: public void mousePressed(MouseEvent e) {
41: this_mousePressed(e);
42: }
43: public void mouseReleased(MouseEvent e) {
44: this_mouseReleased(e);
45: }
46: });
47: xYLayout1.setWidth(400);
48: xYLayout1.setHeight(300);
49: this.setLayout(xYLayout1);
50: }
51: //Get Applet information
52:
53: public String getAppletInfo() {

continues

15.31318-9 CH12 9/24/98 1:45 PM Page 491

LISTING 12.2. CONTINUED

54: return “Applet Information”;
55: }
56: //Get parameter info
57:
58: public String[][] getParameterInfo() {
59: return null;
60: }
61:
62: void this_mousePressed(MouseEvent e) {
63: if (currLine <= MAXLINES)
64: anchor = new Point(e.getX(), e.getY());
65: }
66:
67: void this_mouseDragged(MouseEvent e) {
68: if (currLine <= MAXLINES) {
69: currPoint = new Point(e.getX(), e.getY());
70: repaint();
71: }
72: }
73:
74: void this_mouseReleased(MouseEvent e) {
75: if (currLine <= MAXLINES)
76: addLine(e.getX(), e.getY());
77: }
78:
79: void addLine(int x, int y) {
80: starts[currLine] = anchor;
81: ends[currLine] = new Point(x, y);
82: currLine++;
83: currPoint = null;
84: repaint();
85: }
86:
87: public void paint(Graphics g) {
88:
89: // draw existing lines
90: for (int i = 0; i < currLine; i++) {
91: g.drawLine(starts[i].x, starts[i].y, ends[i].x, ends[i].y);
92: }
93:
94: // draw current line
95: g.setColor(Color.white);
96: if ((currLine <= MAXLINES) & (currPoint != null))
97: g.drawLine(anchor.x, anchor.y, currPoint.x, currPoint.y);
98: }
99: }
100: }

492 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 492

Handling Events 493

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

Testing Modifiers
There are three modifiers variables defined in the MouseEvent class’s parent class
InputEvent that apply specifically to mouse events. They are BUTTON1_MASK,
BUTTON2_MASK, and BUTTON3_MASK. Because these constants are stored as int values,you
can use them in a switch statement,after obtaining the value by calling the
getModifiers method, also inherited from the InputEvent class:

switch (e.getModifiers()) {
case BUTTON1_MASK:

// handle left-button press
break;

case BUTTON2_MASK:
// handle middle-button press
break;

case BUTTON3_MASK:
// handle right-button press
break;

}

If you don’t explicitly handle the button press,the left mouse button will be assumed. In
addition to these mouse-related constants,there are four additional constants:ALT_MASK,
CTRL_MASK, META_MASK, and SHIFT_MASK. To test for these modifier keys,use the
isAltDown(), isCtrlDown(), isMetaDown(), and isShiftDown() Boolean methods,
respectively (also defined in the InputEvent class). These last four modifiers can also be
used with keyboard events.

Key Events
Key events are generated whenever a user presses a key, or combination of keys,on the
keyboard. By using key events,you can grab the values of the keys pressed to perform an
action or merely to get character input from the users of your program.

Handling key events is just as easy as handling mouse events. Just create the appropriate
event handler. The method stub inserted in your source code will look something like
this:

void textField1_keyPressed(KeyEvent e) {...}

All the key events have as their argument an object of type KeyEvent, whose constructor
method header is

public KeyEvent(Component source, int id, long when,
int modifiers, int keyCode, char keyChar)

15.31318-9 CH12 9/24/98 1:45 PM Page 493

The source parameter is passed the Component object that triggered the event,such as a
TextField or TextArea object. The id parameter is passed an integer data type repre-
senting the kind of mouse event that occurred (int constants:KEY_PRESSED,
KEY_RELEASED, or KEY_TYPED). Each event has a unique time stamp passed to the when

parameter. The modifiers parameter is passed an integer value that indicates whether
one or more modifier keys (Shift,Alt, or Ctrl) were pressed at the same time that the key
event occurred. The keyCode parameter is passed the key’s ASCII value, whereas the
keyChar parameter is passed the Unicode character corresponding to the key.

The KeyEvent class defines methods that give you access to its nonpublic instance
variables:

● getKeyCode() returns the current int value of the keyCode instance variable;
setKeyCode(int) sets the keyCode.

● getKeyChar() returns the current char value of the keyChar instance variable;
setKeyChar(char) sets the keyChar.

● getKeyText(int) returns the String object that corresponds to the keyCode asso-
ciated with int, such as ENTER or F12.

● getKeyModifiers(int) returns the String object that corresponds to the
modifiers associated with int, such as Ctrl+Shift.

● getModifiers() (inherited from the InputEvent class) returns the int associated
with the modifiers variable; setModifiers(int) sets the modifiers variable to
int.

These methods can be used in your key event-handling methods to use the variables
instantiated when a KeyEvent object is created. Just as for MouseEvent objects,JBuilder
assigns KeyEvent objects to the e variable, so you can refer to these methods as
e.getKeyCode() or e.getKeyChar() in your event handler code.

As you can see from these method summaries,the keyCode variable is defined as an inte-
ger. Because this value is stored as an int value, it can be used in a switch statement,
just like the modifiers discussed in the “Testing Modifiers” section earlier. Table 12.1
gives a quick overview of the most often used keyCode constants.

TABLE 12.1. keyCode CONSTANTS.

Category Constant Corresponding Keyboard Key

Alphanumerics VK_0 through VK_9 0 through 9

VK_A through VK_Z a through z

CHAR_UNDEFINED [Returned when there is no corresponding
Unicode character]

494 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 494

Handling Events 495

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

Category Constant Corresponding Keyboard Key

Numeric Keypad VK_NUM_LOCK NumLock

VK_ADD +

VK_SUBTRACT -

VK_MULTIPLY *

VK_DIVIDE /

VK_DECIMAL .

VK_NUMPAD0 through 0 through 9
VK_NUMPAD9

Cursor Keypad VK_INSERT Insert

VK_DELETE Delete

VK_HOME Home

VK_PAGE_UP Page Up

VK_PAGE_DOWN Page Down

VK_END End

VK_UP Up [cursor arrow key]

VK_LEFT Left [cursor arrow key]

VK_DOWN Down [cursor arrow key]

VK_RIGHT Right [cursor arrow key]

Function Keys VK_ESCAPE Esc

VK_F1 through VK_F12 F1 through F12

VK_PRINTSCREEN Print Screen/SysRq

VK_SCROLL_LOCK Scroll Lock

VK_PAUSE Pause/Break

VK_ALT Alt

VK_BACK_SLASH \

VK_BACK_SPACE Backspace

VK_CAPS_LOCK Caps Lock

VK_ENTER Enter

VK_META Meta

VK_SHIFT Shift

VK_SLASH /

VK_SPACE Spacebar

VK_TAB Tab

VK_UNDEFINED [Returned by keyTyped event]

15.31318-9 CH12 9/24/98 1:45 PM Page 495

For a full list including symbol and punctuation constants,refer to the
java.awt.event.KeyEvent topic in the Java Reference help file.

Handling Key Events
To capture keypresses,there are three events,analogous to those for mouse clicks: the
keyPressed, keyReleased, and keyTyped events. Here is a trio of simple event handlers
which handle events that happen to a TextArea object. The event handlers print out the
event that occurred and the key that was pressed for each event,using the KeyEvent
object’s getKeyCode() and getKeyText() methods:

void textArea1_keyPressed(KeyEvent e) {
System.out.println(“A keyPressed event occurred.”);
System.out.println(“Keyboard Key: “ + e.getKeyText(e.getKeyCode()));

}

void textArea1_keyReleased(KeyEvent e) {
System.out.println(“A keyReleased event occurred.”);
System.out.println(“Keyboard Key: “ + e.getKeyText(e.getKeyCode()));

}

void textArea1_keyTyped(KeyEvent e) {
System.out.println(“A keyTyped event occurred.”);
System.out.println(“Keyboard Key: “ + e.getKeyText(e.getKeyCode()));

}

If you try this out,you’ll see that each time you press a character key, all three events are
generated: first a keyPressed event,followed by a keyTyped event,and finally a
keyReleased event:

A keyPressed event occurred.
Keyboard Key: A
A keyTyped event occurred.
Keyboard Key: Unknown keyCode: 0x0
A keyReleased event occurred.
Keyboard Key: A

The keyTyped event returns VK_UNDEFINED to the getKeyCode() method, which translates
as “Unknown keyCode:0x0” when the getKeyText() method is called. This is because
the keyTyped event is used simply to say whether an alphanumeric key has been typed. If
you don’t care what the alphanumeric key itself is,you can simply handle the keyTyped
event,and you’re done.

496 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

OUTPUT

15.31318-9 CH12 9/24/98 1:45 PM Page 496

Handling Events 497

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

If pressing a key always generates both a keyPressed and a keyReleased event,why
have two separate events? This is so that you can detect the order of keys pressed in mul-
tiple key combinations. Say, for example, you wanted to indent a block of text in a text
editor applet by allowing the user to use the key combination Ctrl+B+I. However, your
applet requires that the Ctrl key remain pressed while the B and I keys are pressed in
sequence because Ctrl+B by itself performs a different action. Assuming a block of text
was selected in the applet,the sequence would be as follows:

1. A keyPressed event for the Ctrl key

2. A keyPressed event for the B key

3. A keyReleased event for the B key

4. A keyPressed event for the I key

5. A keyReleased event for the I key

6. A keyReleased event for the Ctrl key

If those six events don’t happen in that sequence, the indent would not be performed.
Here’s what happens when you type the following sequence of keys in a program con-
taining our test methods:

Up+Down+Enter

A keyPressed event occurred.
Keyboard Key: Up
A keyReleased event occurred.
Keyboard Key: Up
A keyPressed event occurred.
Keyboard Key: Down
A keyReleased event occurred.
Keyboard Key: Down
A keyPressed event occurred.
Keyboard Key: Enter
A keyTyped event occurred.
Keyboard Key: Unknown keyCode: 0x0
A keyReleased event occurred.
Keyboard Key: Enter

This demonstrates that although all alphanumeric keys fire a keyTyped event,not all key-
presses do so. For example, the Up and Down keys do not,but the Enter key does. So be
careful about relying on keyTyped events when handling nonalphabetic keypresses.

TYPE

OUTPUT

15.31318-9 CH12 9/24/98 1:45 PM Page 497

KeyTest Applet
This section examines an applet that deals with keyboard events. This applet enables you
to type a character and display that character in the center of the applet’s window. You
can then move that character around on the screen by using the arrow cursor keys.
Typing another character at any time restarts the cycle.

This applet is actually less complicated than other applets you’ve built previously. This
one only requires a keyPressed event handler, a paint() method, two additions to the
init method, and two property settings.

With the HandlingEvents.jpr project open and active in the JBuilder IDE,select File |
New, and double-click the Applet icon in the New page of the New dialog box. When the
Applet Wizard: Step 1 of 3 dialog box appears,erase the text in the Package field, and
type KeyTest in the Class field. Then click the Finish button. This generates the skeleton
KeyTest.java applet and a KeyTest.html file. Insert these lines of code just below the
KeyTest class declaration:

char currKey = ‘A’;
int currX;
int currY;

This code defines the KeyTest class instance variables:currKey to track when the char-
acter changes (initialized to A), and currX and currY for the character’s x,y coordinate.

Next, click on the Design tab of the AppBrowser window, click on the Properties tab in
the Inspector pane, and set the background property to Green. Double-click on the font
property, and then click on its ellipses button to display the font dialog box (see Figure
12.5).

498 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

FIGURE 12.5.
The font dialog box.

Select Helvetica, Bold, and 36, and then click OK. These property settings generate the
following two lines of code in the jbInit() method:

this.setFont(new Font(“Helvetica”, 1, 36));
this.setBackground(Color.green);

15.31318-9 CH12 9/24/98 1:45 PM Page 498

Handling Events 499

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

You also need to add this next line of code to the very end of the jbInit() method, so
that the keypresses will be intercepted by your applet:

this.requestFocus();

Click on the Source tab to return to Project Browser mode, and set the beginning posi-
tion for the character (approximately the middle of the screen) by adding these lines to
the end of the init() method:

currX = (getSize().width / 2);
currY = (getSize().height / 2);

Because this applet’s behavior is based on keyboard input,the keyPressed event handler
is where most of the work of the applet takes place. Click on the Design tab, click on the
Events tab, and then triple-click the keyPressed event to insert the this_keyPressed
method stub and then add these lines of code to it:

switch (e.getKeyCode()) {
case e.VK_UP:

currY -= 5;
break;

case e.VK_DOWN:
currY += 5;
break;

case e.VK_LEFT:
currX -= 5;
break;

case e.VK_RIGHT:
currX += 5;
break;

default:
currKey = e.getKeyChar();

}
repaint();

This moves the character’s position five pixels each time an arrow key is pressed and
changes the character if any other key is pressed, ignoring any keys that are not charac-
ters or arrow keys. All that’s left now is to create the paint() method, which is fairly
trivial:

public void paint(Graphics g) {
g.drawString(String.valueOf(currKey), currX, currY);

}

It just paints the current character at the current position. Listing 12.3 contains the entire
KeyTest applet code.

15.31318-9 CH12 9/24/98 1:45 PM Page 499

LISTING 12.3. KeyTest.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import borland.jbcl.layout.*;
5: import borland.jbcl.control.*;
6:
7: public class KeyTest extends Applet {
8: char currKey = ‘A’;
9: int currX;
10: int currY;
11: XYLayout xYLayout1 = new XYLayout();
12: boolean isStandalone = false;
13:
14: //Construct the applet
15:
16: public KeyTest() {
17: }
18: //Initialize the applet
19:
20: public void init() {
21: try {
22: jbInit();
23: }
24: catch (Exception e) {
25: e.printStackTrace();
26: }
27: currX = (getSize().width / 2);
28: currY = (getSize().height / 2);
29: }
30: //Component initialization
31:
32: private void jbInit() throws Exception{
33: this.setFont(new Font(“Helvetica”, 1, 36));
34: this.addKeyListener(new java.awt.event.KeyAdapter() {
35: public void keyPressed(KeyEvent e) {
36: this_keyPressed(e);
37: }
38: });
39: this.setBackground(Color.green);
34: xYLayout1.setWidth(400);
35: xYLayout1.setHeight(300);
36: this.setLayout(xYLayout1);
37: this.requestFocus();
38: }
39: //Get Applet information
40:
41: public String getAppletInfo() {
42: return “Applet Information”;

500 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

TYPE

15.31318-9 CH12 9/24/98 1:45 PM Page 500

Handling Events 501

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

43: }
44: //Get parameter info
45:
46: public String[][] getParameterInfo() {
47: return null;
48: }
49:
50: void this_keyPressed(KeyEvent e) {
51: switch (e.getKeyCode()) {
52: case e.VK_UP:
53: currY -= 5;
54: break;
55: case e.VK_DOWN:
56: currY += 5;
57: break;
58: case e.VK_LEFT:
59: currX -= 5;
60: break;
61: case e.VK_RIGHT:
62: currX += 5;
63: break;
64: default:
65: currKey = e.getKeyChar();
66: }
67: repaint();
68: }
69:
70: public void paint(Graphics g) {
71: g.drawString(String.valueOf(currKey), currX, currY);
72: }
73: }

Standard Events
In addition to keyboard and mouse events,the Abstract Windowing Toolkit has various
other standard events to which you can respond in your interface. Most of the event han-
dlers for these events can be set through the Events tab of the Inspector pane, just as you
did for the mouse and keyboard events. Figure 12.6 shows a partial hierarchy of the
java.awt.AWTEvent class,corresponding to the categories these events fall into.

As you can see, the InputEvent subclasses form only a small part of the AWTEvent class
hierarchy. In each subsection that follows,you’ll see which event handlers in JBuilder
correspond to the events in each of these subclass categories. The methods defined in

15.31318-9 CH12 9/24/98 1:45 PM Page 501

these subclasses are also summarized, but keep in mind that each subclass also inherits
methods from its superclass. As before, the event handler generated by JBuilder assigns
the event object to the e variable; so,for example, you can refer to the getModifiers()
method as e.getModifiers() in your event handler.

502 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

FIGURE 12.6.
Selected AWTEvent sub-
classes.

FocusEventContainerEvent PaintEventInputEvent WindowEvent

KeyEvent MouseEvent

ComponentEvent

AdjustmentEvent

AWTEvent

ActionEvent ItemEvent TextEvent

Action Events
User interface components produce a special type of event known as an action event. In
JBuilder, to intercept an action by any user interface component,you define the
actionPerformed event handler. Here’s what the method header for an
actionPerformed event handler would look like for a component assigned to the
myButton variable:

void myButton_actionPerformed(ActionEvent e) {...}

These event handlers take as their argument an ActionEvent object. Here’s its construc-
tor method header:

public ActionEvent(Object source, int id,
String command, int modifiers)

The source parameter is passed the user interface component object that triggered the
event. The id parameter is passed an integer that defines the type of action that was

For full coverage of a class and its methods, be sure to explore the class doc-
umentation in the Java Reference help file, and use the links in the inheri-
tance tree at the top of the help topic to further explore its superclasses and
their method definitions.

Tip

15.31318-9 CH12 9/24/98 1:45 PM Page 502

Handling Events 503

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

performed (int constant:ACTION_PERFORMED). The modifiers parameter takes an integer
that indicates whether one or more modifier keys were also pressed when the event
occurred. The command parameter is passed the value of the component’s actionCommand
property.

The ActionEvent object’s methods include the following:

● getActionCommand() returns the String value of the actionCommand property.

● getModifiers() returns the int associated with the modifiers variable.

Say you want to create a simple applet that has six buttons labeled with the colors of the
rainbow. You could create an event handler for each button individually; however, in this
example you’ll create the actionPerformed() event handler method for the first button
and then reuse it for the other five buttons. In the event handler, the background color of
the applet is changed based on which button was clicked.

Add a new applet to today’s project named ActionTest. In Design mode, with
this(XYLayout) selected in the Structure pane, change the background property to Gray,
the layout property to FlowLayout, and then add six Button components. Select
flowLayout1 in the Structure pane and enter 4 for the hgap property and enter 2 for the
vgap property.

Select button1, and change its <name> property to redBtn and its label property to Red.
Note that as soon as you press Enter to complete the label property change, the
actionCommand property also changes to Red. By default, the actionCommand for a
Button component is the same as its label property. This makes it easy to test which
button was pressed using the getActionCommand() method later.

Select each button in turn, and change its <name> and label properties as shown in Table
12.2. Figure 12.7 shows the ActionTest applet user interface after these changes have
been made.

TABLE 12.2. PROPERTY CHANGES FOR ACTIONTEST APPLET.

Component <name> property label property

button1 redBtn Red

button2 orangeBtn Orange

button3 yellowBtn Yellow

button4 greenBtn Green

button5 blueBtn Blue

button6 purpleBtn Purple

15.31318-9 CH12 9/24/98 1:45 PM Page 503

To create the event handler for these six buttons,select the redBtn component,and then
click on the Events tab. If you triple-click to create a handler now, it would be named
redBtn_actionPerformed, based on the selected component. But you want to create a
handler that will deal with all six buttons—a shared handler—so it’s a good idea to name
it more generically. To do so,click once on the actionPerformed event,which inserts
redBtn_actionPerformed as the tentative method name. Press Home to move the cursor
to the beginning of the method name, and change red to color. Now, double-click to
create the method stub in the source code for your event handler.

In this event handler, you want to know which button caused the event to occur. By test-
ing the String object returned by the getActionCommand() method, you can set the
applet’s background to the appropriate color and then call the repaint() method.
Because the getActionCommand method returns a String object and not a primitive type,
you’ll have to use a set of nested if-else statements rather than a switch. Here’s the
body of the colorBtn_actionPerformed() event handler method:

String btnColor = e.getActionCommand();
if (btnColor.equals(“Red”))

this.setBackground(Color.red);
else if (btnColor.equals(“Orange”))

this.setBackground(Color.orange);
else if (btnColor.equals(“Yellow”))

this.setBackground(Color.yellow);
else if (btnColor.equals(“Green”))

this.setBackground(Color.green);
else if (btnColor.equals(“Blue”))

this.setBackground(Color.blue);
else if (btnColor.equals(“Purple”))

this.setBackground(Color.magenta);
repaint();

Well, magenta is as close as you’re going to get to purple! Remember that because
you’re dealing with a String object,you have to use the equals() method for object

504 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

FIGURE 12.7.
The ActionTest applet
displays several but-
tons for users to inter-
act with.

15.31318-9 CH12 9/24/98 1:45 PM Page 504

Handling Events 505

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

comparison. Now, all that’s left is to hook up the other buttons to this same event han-
dler. Click on each of the five remaining button components in the Structure pane in turn,
and set the actionPerformed event handler to colorBtn_actionPerformed. Every time
you click one of the six color buttons in this applet,this shared event handler will be exe-
cuted, and the applet’s drawing space will change color. Listing 12.4 shows the code list-
ing for the entire ActionTest applet.

LISTING 12.4. ActionTest.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import borland.jbcl.layout.*;
5: import borland.jbcl.control.*;
6:
7: public class ActionTest extends Applet {
8: boolean isStandalone = false;
9: FlowLayout flowLayout1 = new FlowLayout();

10: Button redBtn = new Button();
11: Button orangeBtn = new Button();
12: Button yellowBtn = new Button();
13: Button greenBtn = new Button();
14: Button blueBtn = new Button();
15: Button purpleBtn = new Button();
16:
17: //Construct the applet
18:
19: public ActionTest() {
20: }
21: //Initialize the applet
22:
23: public void init() {
24: try {
25: jbInit();
26: }
27: catch (Exception e) {
28: e.printStackTrace();
29: }
30: //Component initialization
31:
32: private void jbInit() throws Exception{
33: this.setBackground(Color.gray);
34: flowLayout1.setHgap(4);
35: flowLayout1.setVgap(2);
36: redBtn.setLabel(“Red”);
37: redBtn.addActionListener(new java.awt.event.ActionListener() {

TYPE

continues

15.31318-9 CH12 9/24/98 1:45 PM Page 505

LISTING 12.4. CONTINUED

38: public void actionPerformed(ActionEvent e) {
39: colorBtn_actionPerformed(e);
40: }
41: });
42: orangeBtn.setLabel(“Orange”);
43: orangeBtn.addActionListener(new java.awt.event.ActionListener() {
44: public void actionPerformed(ActionEvent e) {
45: colorBtn_actionPerformed(e);
46: }
47: });
48: yellowBtn.setLabel(“Yellow”);
49: yellowBtn.addActionListener(new java.awt.event.ActionListener() {
50: public void actionPerformed(ActionEvent e) {
51: colorBtn_actionPerformed(e);
52: }
53: });
54: greenBtn.setLabel(“Green”);
55: greenBtn.addActionListener(new java.awt.event.ActionListener() {
56: public void actionPerformed(ActionEvent e) {
57: colorBtn_actionPerformed(e);
58: }
59: });
60: blueBtn.setLabel(“Blue”);
61: blueBtn.addActionListener(new java.awt.event.ActionListener() {
62: public void actionPerformed(ActionEvent e) {
63: colorBtn_actionPerformed(e);
64: }
65: });
66: purpleBtn.setLabel(“Purple”);
67: purpleBtn.addActionListener(new java.awt.event.ActionListener() {
68: public void actionPerformed(ActionEvent e) {
69: colorBtn_actionPerformed(e);
70: }
71: });
72: this.setLayout(flowLayout1);
73: this.add(redBtn, null);
74: this.add(orangeBtn, null);
75: this.add(yellowBtn, null);
76: this.add(greenBtn, null);
77: this.add(blueBtn, null);
78: this.add(purpleBtn, null);
79: }
80: //Get Applet information
81:

506 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 506

Handling Events 507

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

82: public String getAppletInfo() {
83: return “Applet Information”;
84: }
85: //Get parameter info
86:
87: public String[][] getParameterInfo() {
88: return null;
89: }
90:
91: void colorBtn_actionPerformed(ActionEvent e) {
92: String btnColor = e.getActionCommand();
93: if (btnColor.equals(“Red”))
94: this.setBackground(Color.red);
95: else if (btnColor.equals(“Orange”))
96: this.setBackground(Color.orange);
97: else if (btnColor.equals(“Yellow”))
98: this.setBackground(Color.yellow);
99: else if (btnColor.equals(“Green”))
100: this.setBackground(Color.green);
101: else if (btnColor.equals(“Blue”))
102: this.setBackground(Color.blue);
103: else if (btnColor.equals(“Purple”))
104: this.setBackground(Color.magenta);
105: repaint();
106: }
107: }

MenuBar and PopupMenu components also use the label property to set the default
actionCommand value. Be sure to check the Java Reference documentation for the details
on actionCommand values for other Abstract Windowing Toolkit components.

Adjustment Events
The adjustmentValueChanged event is defined in the Abstract Windowing Toolkit for
increment and decrement adjustments for adjustable objects,such as Scrollbar. The
method header for an adjustmentValueChanged event handler might look like this:

void scrollbar1_adjustmentValueChanged(AdjustmentEvent e) {...}

These event handlers take as their argument an AdjustmentEvent object. Here’s its con-
structor method header:

public AdjustmentEvent(Adjustable source, int id,
int type, int value)

The source parameter takes the Adjustable object that triggered the event. The id para-
meter takes an integer value that indicates the type of adjustment event that occurred
(int constant:ADJUSTMENT_VALUE_CHANGED). The type parameter is passed an integer

15.31318-9 CH12 9/24/98 1:45 PM Page 507

value which indicates the kind of adjustment that caused the event,one of five constants:
UNIT_INCREMENT, UNIT_DECREMENT, BLOCK_INCREMENT, BLOCK_DECREMENT, or TRACK.
(Unit adjustments are triggered by arrow clicks,block adjustments by shaft clicks,and
track adjustments by moving the thumb.) The value parameter takes an integer repre-
senting the number of units of the adjustment.

The AdjustmentEvent object’s methods include the following:

● getAdjustable() returns the Adjustable object that caused the event.

● getValue() returns the int value of the adjustment.

● getAdjustmentType() returns the int value of the constant representing the type
of adjustment (UNIT_INCREMENT, UNIT_DECREMENT, BLOCK_INCREMENT,
BLOCK_DECREMENT, or TRACK).

To see this event in action,create an applet named ScrollTest. Add a Label and a
Scrollbar, and then change properties as indicated in Table 12.3.

TABLE 12.3. PROPERTY CHANGES FOR THE SCROLLTEST APPLET.

Component Property Value(s) Notes

label1 text 0

label1 font TimesRoman, Bold, 24 Use dialog

label1 alignment 2 Right aligned

label1 <name> valueLbl

scrollbar1 orientation 0 Horizontal

scrollbar1 <name> valueSbar

this(XYLayout) background Cyan

When you’re done setting the properties,click on valueSbar, click on the Events tab,
and triple-click the adjustmentValueChanged event. Then add the following lines to the
method stub in your source code:

int v = e.getValue();
valueSbar.setValue(v);
valueLbl.setText(String.valueOf(v));

The first line gets the value of the adjustment from the AdjustmentEvent object. The
second line then sets the value property of the valueSbar component. The third sets the
text of the valueLbl to String representation of that value. When you run the ScrollTest
applet,the current value of the scrollbar will be reflected in the valueLbl component,as
shown in Figure 12.8.

508 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 508

Handling Events 509

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

The interesting thing to note about this applet is that because the thumb is 10 units wide,
the value can’t actually go all the way up to the maximum of 100. This shows that the
value is actually designated by the trailing edge of the thumb, so you need to take that
into account when designing such scrollbars. The complete source code for ScrollTest is
shown in Listing 12.5.

LISTING 12.5. ScrollTest.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import borland.jbcl.layout.*;
5: import borland.jbcl.control.*;
6:
7: public class ScrollTest extends Applet {
8: XYLayout xYLayout1 = new XYLayout();
9: boolean isStandalone = false;
10: Label valueLbl = new Label();
11: Scrollbar valueSbar = new Scrollbar();
12:
13: //Construct the applet
14:
15: public ScrollTest() {
16: }
17: //Initialize the applet
18:
19: public void init() {
20: try {
21: jbInit();
22: }
23: catch (Exception e) {

FIGURE 12.8.
The ScrollTest applet.

TYPE

continues

15.31318-9 CH12 9/24/98 1:45 PM Page 509

LISTING 12.5. CONTINUED

24: e.printStackTrace();
25: }
26: }
27: //Component initialization
28:
29: private void jbInit() throws Exception {
30: this.setBackground(Color.cyan);
31: xYLayout1.setWidth(400);
32: xYLayout1.setHeight(300);
33: valueSbar.setOrientation(0);
34: valueSbar.addAdjustmentListener(new

➥java.awt.event.AdjustmentListener() {
35: public void adjustmentValueChanged(AdjustmentEvent e) {
36: valueSbar_adjustmentValueChanged(e);
37: }
38: });
39: valueLbl.setFont(new Font(“TimesRoman”, 1, 24));
40: valueLbl.setAlignment(2);
41: valueLbl.setText(“0”);
42: this.setLayout(xYLayout1);
43: this.add(valueLbl, new XYConstraints(192, 123, -1, -1));
44: this.add(valueSbar, new XYConstraints(215, 194, -1, -1));
45: }
46: //Get Applet information
47:
48: public String getAppletInfo() {
49: return “Applet Information”;
50: }
51: //Get parameter info
52:
53: public String[][] getParameterInfo() {
54: return null;
55: }
56:
57: void valueSbar_adjustmentValueChanged(AdjustmentEvent e) {
58: int v = e.getValue();
59: valueSbar.setValue(v);
60: valueLbl.setText(String.valueOf(v));
61: }

Component Events
Component events are defined in the Abstract Windowing Toolkit so that you can tell
whether a component has been hidden,shown, moved, or resized. The Abstract
Windowing Toolkit automatically handles the moving, resizing, and display of

510 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 510

Handling Events 511

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

components,but there are times when you might want to create additional functionality
based on these events. The ComponentEvent class constructor is simple:

public ComponentEvent(Component source, int id)

Here, the source parameter is passed the source Component object of the event,and the
id parameter is passed an integer identifying the event (int constants:COMPONENT_
HIDDEN, COMPONENT_MOVED, COMPONENT_RESIZED, COMPONENT_SHOWN). The
ComponentEvent class has a getComponent() method that returns the object t
hat created the event (the value passed to the source parameter).

All components have these four events listed on their Events page which are self-
explanatory: the componentHidden, componentMoved, componentResized, and
componentShown events,which correspond to the id parameter constants of the
ComponentEvent object. When you create an event handler method in your source
code, the method signature will look something like this:

void textarea1_ComponentResized(ComponentEvent e) {...}

So,as before, you can access ComponentEvent object methods (including inherited meth-
ods by using the e.methodName syntax.

Focus Events
Focus events are defined in the Abstract Windowing Toolkit so that you can tell whether
a component has gained focus (is the active component) or lost focus (becomes inactive).
Here is the FocusEvent class constructor:

public FocusEvent(Component source, int id,
boolean temporary)

The source parameter is passed the Component object that created the event,and the
id parameter is passed an integer value that identifies the event (int constants:
FOCUS_GAINED and FOCUS_LOST). In addition, the FocusEvent class constructor has a
temporary parameter that is passed true or false depending on whether the FocusEvent
object was created due to a temporary change. Temporary changes occur when compo-
nents get momentary focus during other operations. Permanent focus is gained, for exam-
ple, when a user tabs to a component in a dialog box.

Most components list the focusGained and focusLost events on their Events page,
which correspond to the id constants for the FocusEvent object. When you create an
event handler method in your source code, the method signature might look like this:

void checkbox1_focusGained(FocusEvent e) {...}

15.31318-9 CH12 9/24/98 1:45 PM Page 511

Once again, you can access ComponentEvent class methods (including inherited meth-
ods) by using the e.methodName syntax.

Item Events
The itemStateChanged event is defined in the Abstract Windowing Toolkit to indicate
whether an object is selected, such as items in a List or Choice component. The method
header for a List component’s itemStateChanged event handler would be

void list1_ itemStateChanged(ItemEvent e) {...}

These event handlers take as their argument an ItemEvent object. Here’s its constructor
method header:

public ItemEvent(ItemSelectable source, int id,
Object item, int stateChange)

The source parameter is passed the ItemSelectable object that triggered the event. The
id parameter is passed an int constant,ITEM_STATE_CHANGED, which corresponds to the
identity of the particular itemStateChanged event. The item parameter is passed the
object that caused the event by being selected or deselected. The stateChange parameter
is passed one of two integer constants:SELECTED or DESELECTED. The ItemEvent object’s
methods include the following:

● getItemSelectable() returns the ItemSelectable component (source) that
caused the event.

● getItem() returns the Object that was selected or deselected.

● getStateChange() returns the int value of the constant representing the current
state (SELECTED, or DESELECTED).

Method access is via the e.methodName syntax.

Window Events
Window events let you monitor the current state of your interface’s Frame object. Here is
the WindowEvent class constructor:

public WindowEvent(Window source, int id)

The source parameter is passed the Window object where the event originated, and the id
parameter is passed one of the following integer constants:

● WINDOW_ACTIVATED happens when the window gains focus.

● WINDOW_CLOSED occurs when the window has been closed due to a call to hide() or
destroy().

512 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 512

Handling Events 513

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

● WINDOW_CLOSING occurs by selecting “Quit” from the window’s system menu.

● WINDOW_DEACTIVATED happens when the window loses focus.

● WINDOW_DEICONIFIED happens when the window is restored.

● WINDOW_ICONIFIED happens when the window is minimized.

● WINDOW_OPENED occurs the first time a window becomes visible.

These constants correspond to the Frame object events,windowActivated,
windowClosed, windowClosing, windowDeactivated, windowDeiconified,
windowIconified, and windowOpened. The WindowEvent class defines a getWindow()
method that returns the Window object assigned to the source instance variable.

Summary
Handling events in JBuilder is easy, particularly because the Events tab of the Inspector
pane lists all the relevant events for any selected component. Triple-click on the event,
and a method stub is inserted for you, ready for you to add your event-handling code.
With the event handler method in place, your program automatically intercepts and han-
dles the event using the appropriate method.

All events in the Abstract Windowing Toolkit generate an instance of one of the
AWTEvent class’s descendants,such as a MouseEvent object for mouse events and an
AdjustmentEvent object for scrollbar adjustment events. Each object has accessor meth-
ods that enable you to obtain information about the event,such as x,y coordinate or
which key was pressed. For mouse and key events,you can also test for modifier keys
such as which button on the mouse was pressed or which of the Ctrl, Alt, Meta,or Shift
keys were being held down when the event occurred.

You also learned about the other Abstract Windowing Toolkit standard event categories:

● Action

● Adjustment

● Component

● Focus

● Item

● Window

Each category defines additional methods and constants that enable you to obtain infor-
mation about a wide variety of events in your Java programs. Tomorrow, you’ll learn
about an unanticipated type of event,called an exception,and how to handle those occur-
rences.

15.31318-9 CH12 9/24/98 1:45 PM Page 513

Q&A
Q In the Lines applet, the startpoint and endpoint coordinates are stored in

arrays,which have a limited size. How can I modify this applet so that it will
draw an unlimited number of lines?

A You can use the Vector class. The Vector class,part of the java.util package,
implements an array that is automatically growable—sort of like linked lists in
other languages. The disadvantage of the Vector class is that it requires its mem-
bers to be objects. This means you have to cast int values to Integer objects to
add them to the Vector object and then extract their values from the Integer
objects to treat them as int values once again. You can access and change elements
encapsulated by a Vector object easily through its methods. If you need an array of
indeterminate size, consider using the Vector class.

Q What’ s a Meta key?

A The Meta key is popular in UNIX systems and is mapped to Alt on most key-
boards. Because Alt, Shift, and Ctrl are much more widespread, it’s probably a
good idea to base your interfaces on those modifier keys instead, if you can.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. How do you create an event handler in the JBuilder IDE?

2. True or False? A MouseClicked event object is not generated when the mouse but-
ton is pressed and released, if a MouseDragged event object occurred in between.

3. For what event does the getKeyCode() method return the VK_UNDEFINED integer
constant?

4. What do you do to share an event handler method?

5. For what event would you create a handler to detect and do something whenever a
particular component receives focus?

6. What class is the superclass for all the Abstract Windowing Toolkit events?

514 Day 12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

15.31318-9 CH12 9/24/98 1:45 PM Page 514

Handling Events 515

12

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Chapter 12 Lp#3

Exercises
1. Take some of the sample applets you created today and add other components to

them so you can try out all the event handlers listed in their Events pages.
Experiment with shared handlers.

2. Explore the Java Reference for the java.awt.event package. Start with the topic
for a particular type of event listed, and then work your way up the hierarchy, not-
ing which methods are defined or overridden in the subclass and which methods
are inherited as defined in the superclasses.

15.31318-9 CH12 9/24/98 1:45 PM Page 515

15.31318-9 CH12 9/24/98 1:45 PM Page 516

DAY 13

WEEK 2

Exception Handling
Sometimes, even in debugged and tested applications, things can go wrong that
are beyond the control of the program. Problems can be caused by the environ-
ment in which your program is being run, or the user will do something your
program didn’t anticipate. Whatever the problem, a well-designed application
should be capable of either handling the unexpected or at least exiting grace-
fully.

An exceptionis an event or condition that, if it occurs, breaks the normal
flow of program execution.

Before exception handling was added to programming languages, programmers
were forced to try to anticipate every type of possible user error and environ-
mental condition. This led to the ubiquitous “error-handling function,” which
looked something like this:

int status = callSomethingThatAlmostAlwaysWorks();
if (status == ABNORMAL_RETURN_VALUE) {

. . . // something unusual happened, handle it
switch(someGlobalErrorIndicator) {

. . . // handle potential problem #1

. . . // handle potential problem #2

NEW TERM

16.31318-9 CH13 9/24/98 1:47 PM Page 517

. . . // handle potential problem #3

. . .

. . . // handle potential problem #n
}
else {

. . . // all is well, go your merry way
}

}

This could be a rather lengthy section of code, depending on how thorough the develop-
ers felt they needed to be. Aside from having to do a lot of work to handle what was
probably the rare case, it also plunked down the error-handling logic right in the middle
of the code in which the error was produced, creating readability and maintainability
problems. Handling multiple errors was difficult, if not impossible. Many times,the only
thing to be done was to attempt to shut down the program and make the user reload the
program and start over.

With exception handling, most of this has been solved. Exceptions allow your program to
deal with the exceptional case easily, and many times,your program can execute alter-
nate code instead of simply shutting down. The error-handling logic is segregated into an
exception-handling method and is replaced in your code by a simple method call,im-
proving readability and maintainability. Multiple errors can be dealt with efficiently, and
you have the opportunity to do cleanup tasks before closing down.

Today, you’ll learn about exceptions in Java,which are instances of the class Throwable
(or any of its subclasses):

● Declaring exceptions when you are expecting one, with the throws keyword

● Handling them in your code, using the try and catch keywords

● Using the throw keyword to create new exceptions

● Cleaning up afterward with the finally keyword

● Creating custom exception subclasses by extending the Throwable class

● What limitations are created by exceptions and how they increase your program’s
robustness

● The differences between runtime errors and exceptions

Exceptions by Design
When you begin to build complex programs in Java,you will discover that after design-
ing the classes and interfaces,and their method descriptions,you still have not defined
all the behaviors of your objects. After all, an interface describes the normal way to use

518 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 518

Exception Handling 519

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

an object and doesn’t include any strange, exceptional cases. In many systems,the docu-
mentation takes care of this problem by explicitly listing the distinguished values used in
error-handling methods,like the example in today’s introduction. Because the system
knows nothing about these methods,it cannot check them for consistency. In fact,the
compiler can do nothing at all to help you with these exceptional conditions,in contrast
to the helpful warnings and errors it produces if a method defined in the language is used
incorrectly.

More important,you have not captured in your design this crucial aspect of your pro-
gram. Instead, you are forced to make up a way to describe it in the documentation and
hope you have not made any mistakes when you implemented it. What’s worse, this re-
sults in not having a standard way of handling these exceptional cases,which means that
each Java programmer would have to make up his own way of describing the same cir-
cumstances. Clearly, you need some uniform way of declaring the intentions of classes
and methods with respect to these exceptional conditions.

Think of a method’s description as a contract between the designer of that method (or
class) and the caller of the method. Usually, this description tells the types of a method’s
arguments,what it returns,and the general semantics of what it normally does. It can
now also notify the caller, as well, what abnormal things it can do. Just like when a
method is designed to return a value of a certain type, this helps to make explicit all the
places where exceptional conditions should be handled in your program,making large-
scale design easier.

Because exceptions are instances of classes,they can be put into a hierarchy that natu-
rally describes the relationships among different types of exceptions. If you look at the
class hierarchy in the Help (Java Reference),you will see that the Throwable class actu-
ally has two large hierarchies of classes beneath it, called Error and Exception. These
hierarchies embody the rich set of relationships that exist between exceptions and errors
in the Java runtime environment.

Understanding the throws Keyword
When you know that a particular kind of error or exception can occur in your method,
you are supposed to either handle it yourself or explicitly warn potential callers (classes
or other methods that might call your method) about the possibility through the throws
clause. Here is a brief example of using the throws keyword:

public class MyFileClass {
. . .
public void aClassyMethod() throws EOFException,

FileNotFoundException {
FileInputStream aFIS = new FileInputStream(“IDoNotExist.txt”);

16.31318-9 CH13 9/24/98 1:47 PM Page 519

. . .
}

}

Here, you notify the compiler (and readers of your code) that the code in the
aClassyMethod() method might result in the creation (throwing) of predefined Java ex-
ception objects named EOFException and FileNotFoundException. For example, the
FileNotFoundException object is required because this method attempts to create a new
FileInputStream object by naming a particular file, which might or might not exist. By
declaring that this method throws FileNotFoundException, you tell the compiler that
your method uses code that might throw that type of exception object.

When code is written that calls the aClassyMethod method, this mechanism ensures that
the code will either catch the exception,or it, too,throws the exception. If it does not,
the compiler will complain that nothing is handling the exception that the code is liable
to throw.

Because exceptions are objects in a class hierarchy, you can also group exceptions by
their superclasses in throws clauses. In the previous example, because both
EOFException and FileNotFoundException are subclasses of the IOException class,
you could have done this:

public void aClassyMethod() throws IOException {...}

and covered both types of exceptions at once with their IOException superclass.
However, this prevents you from handling each type of exception discretely in the code
that called the aClassyMethod() class.

Understanding Error and RuntimeException
Not all errors and exceptions must be listed; instances of either class Error or
RuntimeException (or their subclasses) do not have to be listed in your throws clause.
They get special treatment because they can occur anywhere within a Java program and
are usually conditions that your code did not cause. One good example is the
OutOfMemoryError exception object,which can happen anywhere, at any time, and for
any number of reasons.

520 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 520

Exception Handling 521

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

Bearing in mind the exemption for errors and runtime exceptions,there are six top-level
types of exceptions in the java.lang package that must be listed in a throws clause:

● java.lang.ClassNotFoundException

● java.lang.CloneNotSupportedException

● java.lang.IllegalAccessException

● java.lang.InstantiationException

● java.lang.InterruptedException

● java.lang.NoSuchMethodException

There are exceptions declared in other packages as well. In the java.io package, for ex-
ample, theIOException class is defined, whose exception subclasses belong to several
different packages:

● java.io.EOFException

● java.io.FileNotFoundException

● java.io.InterruptedIOException

● java.net.MalformedURLException

● java.net.ProtocolException

● java.net.SocketException

● java.net.UnknownHostException

● java.net.UnknownServiceException

● java.lang.UTFDataFormatException

Also, in the java.awt package, the AWTException class is defined. Any time you use a
Java method that is defined as throwing one of these exceptions,you must include that
exception in the throws clause of your method.

You can choose to list these errors and runtime exceptions in your throws
clause if you want, but callers of your methods will not be forced to deal
with them; only non-runtime exceptions must be handled.

Whenever you see the word “exception” by itself, it almost always means
“exception or error”—that is, an instance of the Throwable class. The previ-
ous discussion makes it clear that the Exception and Error classes actually
form two separate hierarchies, but except for the throws clause rule, they
act exactly the same.

Note

16.31318-9 CH13 9/24/98 1:47 PM Page 521

The Java Class Library uses exceptions everywhere and to good effect. If you examine
the detailed API documentation in the JBuilder Help (Java Reference),you’ll see that
many of the methods in the library have throws clauses,and some even document (when
they believe it will clarify the situation) when they might throw one of the implicit errors
or runtime exceptions. This is just a nicety on the documenter’s part because you are not
required to catch those implicit conditions. If it wasn’t obvious that such a condition
could happen in that particular location and for some reason you really cared about
catching it, this would be useful information.

Handling Exceptions
Now that you have afeeling for how exceptions can help you design a program and a
class library better, how do you actually use exceptions? Let’s create a new class that
contains a method that throws a custom exception:

public class MyFirstClass {
. . .
public void aSpecialMethod() throws MyFirstException {

. . . // do something significant here
}

}

Somewhere else, you define another method:

public void anotherSpecialMethod() throws MyFirstException {
MyFirstClass aMFEC = new MyFirstClass()
. . .
aMFEC.aSpecialMethod();

}

Let’s examine this code more closely. Assuming that MyFirstException is a subclass of
the Exception class,it means that if you don’t handle it in the code of the
anotherSpecialMethod() method, you must warn callers of the
anotherSpecialMethod() method about it. Because your code simply calls the
aSpecialMethod() method without doing anything explicit about the fact that it might
throw a MyFirstException object,you must add that exception to the throws clause of
the anotherSpecialMethod() method. This is perfectly legal, but it does defer to the
caller something that perhaps you should be responsible for doing yourself. It depends on
the circumstances,of course.

Suppose that you feel responsible today and decide to handle the exception yourself. So,
you now declare the method without a throws clause, which means that you must do
something useful with the expected exception:

522 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 522

Exception Handling 523

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

public void aResponsibleMethod() {
MyFirstClass aMFEC = new MyFirstClass()
. . .
try {

aMFEC.aSpecialMethod();
}
catch (MyFirstException mfe) {

. . . // do something terribly responsible
}

}

Two new keywords are introduced here: try and catch. The try statement says basi-
cally, “Try running the code in this block, and if exceptions are thrown, we’ll handle
them.” The catch statement says, “I’ ll grab this particular exception and do something
about it.” You can have as many catch statements as you need.

Using try and catch
In the try block, you should put any code that might throw an exception. When using a
Java method for the first time, look up its definition in the Help or in the source code (if
it’s available). Look for the throws clause in the method signature. If the method throws
an exception, you must decide whether to include it in your method’s throws clause or
handle it. If you decide to handle it,enclose the call to that method in a try block.

In the catch block, you can handle all exceptions referred to in its argument list. These
include any instance of a named class or any of its subclasses and any class that imple-
ments a named interface. In the catch statement in the previous example, exceptions of
the class MyFirstException (or any of its subclasses) will be handled.

Using the throw Keyword
What if you want to combine both of the approaches shown so far? You want to handle
the exception yourself but also reflect it up to your method’s caller. This can be done by
explicitly rethrowing the exception,using the throw keyword:

public void responsibleExceptMethod() throws MyFirstException {
MyFirstClass aMFEC = new MyFirstClass()

. . .
try {

aMFEC.aSpecialMethod();
}
catch (MyFirstException mfe) {

. . . // do something responsible
throw mfe; // rethrow the exception

}
}

16.31318-9 CH13 9/24/98 1:47 PM Page 523

This works because exception handlers can be nested. Suppose that you handle the ex-
ception by doing something responsible with it but decide that it is important to give an
exception handler that might be in your caller the chance to handle it as well. Exceptions
percolate all the way up the chain of method callers this way (usually not being handled
by most of them) until,at last,the system itself handles any uncaught ones by aborting
your program and printing an error message. In a standalone program,this is not neces-
sarily a bad idea,but in an applet,it can cause the Web browser to crash. Most Web
browsers protect themselves from this disaster by catching all applet-generated excep-
tions themselves whenever they run an applet,but you cannot rely on that to be the case.
If it’ s possible for you to catch an exception and do something intelligent with it,you
definitely should do so.

You can also use the throw keyword to instantiate a new exception. Let’s take the
MyFirstClass class definition and flesh it out a bit more:

public class MyFirstClass {
. . .
public void aSpecialMethod() throws MyFirstException {

. . .
if (someUnusualThingHappened()) {

throw new MyFirstException();
// execution never gets past here
. . .

}
}

}

524 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

The throw keyword acts like a break keyword—nothing beyond the break
keyword within the method is executed.

Note

This is the fundamental way in which all exceptions are generated—someone, some-
where, has to create an exception object and throw it. In fact,the whole hierarchy under
the class Throwable would be worth much less if throw statements were not scattered
throughout the code in the Java library at just the right places. Because exceptions propa-
gate up from any depth inside methods,any method call you make might generate a
plethora of possible errors and exceptions. Luckily, only the ones listed in the throws

clause of a method need be considered; the rest travel silently past on their way to be-
coming an error message (or being caught and handled higher up in the system).

Here’s an unusual demonstration of this,in which the exception that is thrown and the
handler that catches it are very close together:

16.31318-9 CH13 9/24/98 1:47 PM Page 524

System.out.print(“Now “);
try {

System.out.print(“is “);
throw new MyFirstException();
System.out.print(“a “);

}
catch (MyFirstException m) {

System.out.print(“the “);
}
System.out.println(“time.”);

The output from this snippet shows the flow of control through the code:

Now is the time.

Falling Through
Exceptions are really a powerful way of partitioning the space of all possible error condi-
tions into manageable pieces. Because the first catch block that matches is executed, you
can build chains such as the following:

try {
someReallyExceptionalMethod();

}
catch (NullPointerException n) {

. . . // subclass of RuntimeException
}
catch (RuntimeException r) {

. . . // subclass of Exception
}
catch (MyFirstException m) {

. . . // your subclass of Exception
}
catch (IOException i) {

. . . // subclass of Exception
}
catch (Exception e) {

. . . // subclass of Throwable
}
catch (Throwable t) {

. . . // Error class errors, plus anything else

. . . // not yet caught by the previous catch blocks
}

By listing subclasses before their parent classes and custom exceptions before standard
exceptions,you create a hierarchy of error-handling that allows the more specific excep-
tions to have first crack at handling the problem and the more general classes of excep-
tions to grab whatever falls through the cracks. By juggling chains like these, you can ex-
press almost any combination of tests. If there’s some really obscure case you can’t han-

Exception Handling 525

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

OUTPUT

16.31318-9 CH13 9/24/98 1:47 PM Page 525

dle, perhaps you can use an interface to handle it instead. That would enable you to de-
sign your peculiar exceptions hierarchy simulating multiple inheritance. Catching an in-
terface rather than a class can also be used to test for a property that many exceptions
share but that cannot be expressed in the single-inheritance tree alone.

Suppose, for example, that a scattered set of your exception classes require a reboot after
being thrown. You create an interface called NeedsReboot, and all these classes imple-
ment the interface. (None of them needs to have a common parent exception class.)
Then,the highest level of exception handler simply catches classes that implement the
NeedsReboot interface and performs the task:

public interface NeedsReboot { } // needs no contents at all

try {
someMethodThatGeneratesExceptionsThatImplementNeedsReboot();

}
catch (NeedsReboot n) { // catch an interface

. . . // cleanup
SystemClass.reboot(); // reboot using a made-up system class

}

By the way, if you need truly unusual behavior during an exception, you can place the
behavior into the exception class itself! Remember that an exception is also a normal
class,so it can contain instance variables and methods. Although using them is a bit un-
usual,it might be valuable on a few occasions. Here’s what this might look like:

try {
someExceptionallyStrangeMethod();

}
catch (ComplexException e) {

switch (e.internalState()) { // may return an instance variable
case e.COMPLEX_CASE: // class variable of exception’s class

e.performComplexBehavior(myState, theContext, ...);
break;

. . . // the rest of the switch
}

}

Using a finally Block
Last of all,consider the finally block. Suppose there is some action that you absolutely
must do,no matter what happens. Usually, this is to free up some external resource after
acquiring it, to close a file after opening it,or something similar. To be sure that “no mat-
ter what” includes exceptions as well, you use the finally block designed for exactly
this sort of thing:

526 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 526

Exception Handling 527

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

SomeFileClass f = new SomeFileClass();
if (f.open(“/a/path/name/file”)) {
try {

someReallyExceptionalMethod();
}
finally {

f.close();
}

}

This use of the finally keyword behaves much as though you had written the following:

SomeFileClass f = new SomeFileClass();
if (f.open(“/a/path/name/file”)) {
try {

someReallyExceptionalMethod();
}
catch (Throwable t) {

f.close();
throw t;

}
}

The only difference is that the finally keyword can also be used to clean up not only
after exceptions but also after return, break, and continue statements. Listing 13.1 is a
complex (and rather convoluted) demonstration.

LISTING 13.1. MyExceptionalClass.java.

1: public class MyExceptionalClass {
2: public static void main(String args[]) {
3: int mysteriousState = Integer.parseInt(args[0]);
4: while (true) {
5: System.out.print(“Who “);
6: try {
7: System.out.print(“is “);
8: if (mysteriousState == 1)
9: return;
10: System.out.print(“that “);
11: if (mysteriousState == 2)
12: break;
13: System.out.print(“strange “);
14: if (mysteriousState == 3)
15: continue;
16: System.out.print(“but kindly “);
17: System.out.print(“not at all “);
18: }
19: finally {

TYPE

continues

16.31318-9 CH13 9/24/98 1:47 PM Page 527

LISTING 13.1. CONTINUED

20: System.out.print(“amusing man?\n”);
21: }
22: System.out.print(“I’d like to meet the man.”);
23: }
24: System.out.print(“Please tell me.\n”);
25: }
26: }

The output produced depends on the value assigned to the mysteriousState

variable. When mysteriousState = 1, the output is as follows:

Who is amusing man?

Here, the output reflects the print() method statement before the return statement. The
return statement is put on “hold” while the print() method statement in the finally
block is executed. Then the main() method is exited. When mysteriousState = 2:

Who is that amusing man?
Please tell me.

The print() method statements before the break statement are executed—the print()
method statement in the finally block, followed by the print() method statement after
the end of the while loop. When mysteriousState = 3:

Who is that strange amusing man?
Who is that ...

The print() method statements before the continue statement are executed and then the
print() method statement in the finally block. Because the continue statement causes
execution to begin again at the top of the while loop, this is an unending cycle, and you
must press Ctrl+C to break the output. When mysteriousState = 4:

Who is that strange but kindly amusing man?

The print() method statements before the throw statement are executed and then the
print() method statement in the finally block. In fact,when mysteriousState = 5
(or any integer value other than 1 through 3):

Who is that strange but kindly not at all amusing man?
I’d like to meet the man. Who is that strange but kindly not ...

The print() method statements before the finally block are all executed and then the
print() method statement in the finally block. Because the while loop always evalu-
ates to true, this is an unending cycle, and you must press Ctrl+C to break the output.

528 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

ANALYSIS

OUTPUT

OUTPUT

OUTPUT

OUTPUT

OUTPUT

16.31318-9 CH13 9/24/98 1:47 PM Page 528

Exception Handling 529

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

Although this is a rather contrived example, it does illustrate how the finally block can
be used by all these statements to perform housekeeping tasks.

Limitations
As powerful as this all sounds,isn’t it a little limiting? For example, suppose that you
want to override one of the standard methods of the Object class,the toString()
method, to be smarter about how the Object object and its class prints:

public class MyIllegalClass {
public String toString() {

someReallyExceptionalMethod();
. . . // returns some String

}
}

Because the superclass Object defined the method declaration for the toString()
method without a throws clause, any implementation of it in any subclass must obey this
restriction. In other words,you cannot use a throws clause in your method definition that
overrides the toString() method because the original method definition didn’t have one.

In particular, you cannot just call the someReallyExceptionalMethod() method within
the overriding definition as you just did because it will generate a host of errors and ex-
ceptions,some of which are not exempt from being listed in a throws clause (such as
IOException and MyFirstException exception classes). If all the exceptions thrown
were exempt,you would have no problem. However, as it is,you cannot use throws to
pass them on,so you have to catch at least those few exceptions for this to be legal Java:

public class MyLegalClass {
public String toString() {

try {
someReallyExceptionalMethod();

}
catch (IOException e) {
}
catch (MyFirstException m) {
}
. . . // returns some String

}
}

In both cases,you elect to catch exceptions and do absolutely nothing with them.
Although this is legal, it is not always the right thing to do. You might need to think for a
while to come up with the best,nontrivial behavior for any particular catch block. The
toString() method of the MyIllegalClass class would produce a compiler error to
remind you to reflect on these issues. This extra care will reward you richly as you reuse

16.31318-9 CH13 9/24/98 1:47 PM Page 529

your classes in later projects and in larger and larger classes. It will make your programs
more robust,better able to handle unusual input,and more likely to work correctly when
used by multiple threads. Of course, the Java Class Library has been written with this
same degree of care, which is one of the reasons it’s robust enough to be used in con-
structing all your projects.

Creating Custom Exceptions
Sometimes you will need to create your own classes of exceptions. This is a straightfor-
ward task in Java. Simply extend the Exception class and define the behavior that you
want your exception to have:

class MyFirstException extends Exception {
MyFirstException() {

super();
. . . // error-handling here

}
MyFirstException(String errMsg) {

super(errMsg);
. . . // error-handling here

}
}

In this example, MyFirstException is defined as a subclass of the Exception class,in-
heriting all its attributes and behaviors. This exception can be called without arguments,
or it can be supplied a String argument. Call the superclass’s constructor and add your
error-handling code. It’s just that simple.

Summary
Today, you learned about how exceptions improve your program’s design and robustness.
This knowledge, coupled with the information on Day 8, “Applets,Applications,and
Wizards,” in which exceptions were first introduced, gives you a solid understanding of
exceptions.

You also learned about the vast collection of exceptions defined and thrown in the Java
Class Library, how to use the throws clause to defer exception handling, how to throw a
new exception,and how to rethrow a handled exception. You also know how to use the
try block to attempt to execute methods while using catch blocks to handle any of a hi-
erarchically ordered set of possible exceptions and errors. The finally block is used to
unconditionally perform cleanup tasks,and you saw that it can be used for the same pur-
pose with return, break, and continue statements,as well.

530 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 530

Exception Handling 531

13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

Java’s reliance on strict exception handling does place some restrictions on the program-
mer, but you learned that these restrictions are light compared to the rewards:more re-
silient and robust programs. You also learned that you can create your own hierarchies of
error-handling exceptions by extending the Exception class.

Q&A
Q I’m still a bit unsur e about the differences between the Error, Exception, and

RuntimeException classes. Could you explain it another way?

A Error faults are caused by dynamic linking or virtual machine problems and are
thus too low-level for most programs to care about (although sophisticated devel-
opment libraries and environments probably care a great deal about them).

RuntimeException faults are generatedby the normal execution of Java code and
usually reflect a coding mistake by the programmer. Thus they simply need to print
an error message to help flag that mistake.

Exception faults that are not RuntimeException faults (IOException, for example)
are conditions that should be explicitly handled by any robust and well-thought-out
program. The Java Class Library has been written using only a few of these, but
those few are extremely important to using the system safely and correctly. The
compiler reminds you to handle these exceptions properly through its throws
clause checks and restrictions.

Q Is there a way to get around the strict restrictions placed on methods by the
throws clause being present?

A Yes. Suppose that you thought long and hard and then decided that you need to cir-
cumvent this restriction. This is almost never the case because the right solution is
to go back and redesign your methods to reflect the exceptions that you need to
throw. Imagine, however, that for some reason a system class has you in a straight-
jacket. Your first solution is to subclass RuntimeException to make up a new, ex-
empt exception of your own. Now you can throw it to your heart’s content because
the throws clause that was annoying you does not need to include this new excep-
tion.

If you need a lot of such exceptions,an elegant approach is to mix in some novel
exception interfaces to your new RuntimeException classes. You’re free to choose
whatever subset of these new interfaces you want to catch (because they’re sub-
classes of RuntimeException), and any leftover RuntimeException errors can go
through that otherwise annoying standard method in the library.

16.31318-9 CH13 9/24/98 1:47 PM Page 531

Q Given how annoying it can sometimes be to handle exceptional conditions
properly, what’ s to stop me from surrounding any method as follows and sim-
ply ignoring all exceptions?

try { anyAnnoyingMethod(); } catch (Throwable t) { }

A Nothing, other than your own conscience. In some cases,you shoulddo nothing
because it’s the right thing to do given your method’s implementation. Otherwise,
you should work through the annoyance and gain experience. Good style can
sometimes be a struggle even for the best of programmers,but the rewards are rich
indeed.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. How many catch blocks can legally follow a try statement?

2. Can you have both catch blocks and finally blocks following a try block?

3. What keyword do you use when you want to do something no matter what else
happens?

4. Explain the difference between the throws and throw keywords.

5. True or False? When you catch an exception, you must always do something to
handle it.

Exercise
Create a hierarchy of custom exceptions to go with the project that you completed as the
exercise for Day 6, “User Interface Design.”

532 Day 13

P2/V2 TY JBuilder in 21 Days 31318-9 dietsch Chapter 13 Lp#2

16.31318-9 CH13 9/24/98 1:47 PM Page 532

DAY 14

WEEK 2

JBuilder Database
Architecture

Today, you’ll explore JBuilder’s database architecture, the JDBC architecture,
and the database component hierarchy. You’ll learn about the classes and inter-
faces that form the basis of these architectures and see what each has to offer.
Specifically, you’ll learn about the following topics:

● Different database models, types, and their purposes

● JBuilder’s database architecture

● JDBC and how it affects applet and application development

● Four types of JDBC drivers and a brief introduction to RMI and CORBA

● JDBC’s classes and interface and its Application Programming Interface
(API)

● JBuilder’s data-aware components and an introduction to the DataBroker

17.31318-9 CH14 9/24/98 1:50 PM Page 533

Database Basics
Spend a few moments reviewing database terminology and some information about dif-
ferent database models and types before you begin to learn about JBuilder’s database
architecture. Read this section if you haven’t yet worked much with databases or if you’d
like a brief refresher on database technology. (If you do database development every day,
you can skip this section.)

Tables and Terms
Throughout the day, you’ll be inundated by database terminology, so let’s begin by defin-
ing how those terms are used in this book. Some of these terms are specific to JBuilder
or Java; some are general database terms. Table 14.1 summarizes these terms and gives a
brief explanation of each.

TABLE 14.1. SELECTED DATABASE TERMS.

Term Description

Client A programthat is asking for access

Client/Server A system that distributes its processing between server and client
machines

Column A field or an attribute containing a vertical column of data

Concurrency The capability to prioritize and process multiple access requests

Data-access control A control that connects other controls to databasetables

Data-aware control A control that has the capability of displaying and modifying data by
way of data access controls

Database One or more tables of data

DBMS DatabaseManagement System,such as Sybase, Oracle, or InterBase

DBMS Driver An executable that connects with a DBMS platform

Field A discrete piece of data, such as a name or customer ID

Multiuser Enabled to handle concurrency

Row A single record containing a horizontal row of one or more columns
(fields) of data

534 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

The JBuilder data-aware components discussed today are located on the
Data Express tab of the Component Palette. This tab is available only in the
Professional (Pro) and Client/Server (C/S) Editions of JBuilder. However, the
JDBC classes are included in the standard Java Development Kit, so even if
you have the Standard Edition, most of today’s information will still be of
interest.

Note

17.31318-9 CH14 9/24/98 1:50 PM Page 534

JBuilder Database Architecture 535

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Term Description

SQL Structured Query Language, a standard language used for interrogating
databases

Server A program that provides access

Table A collection of rows (records) and columns (fields) in a database

With these terms defined, let’s move on to the types of databases and database models.

Database Models
There are many applications that use databases,but which database model should your
programs use? That depends on the type of program you’re developing.

Relational Model
Most databases today are relational databases. A relational database stores information in
logical tables made up of rows and columns. The tables can have columns in common
that relate the information in one table to the information in another. Suppose you’ve just
opened a wholesale photography supply, and you have one table with information about
a customer and another table with customer invoices. After the first month,your tables
might look something like Tables 14.2 and 14.3.

TABLE 14.2. THE CUSTOMERS TABLE.

ID Customer City State ZipCd

2345 Diamond Head Photography Honolulu HI 96815

3458 Deep-Sea Cameras Hilo HI 96721

7857 Pretty as a Picture Lahaina HI 96761

TABLE 14.3. THE INVOICES TABLE.

ID TransDate InvDate Qty Item Price

2345 19970404 19970531 1 34756 43.99

7857 19970406 19970531 2 38756 19.99

2345 19970412 19970531 1 14333 48.99

7857 19970414 19970531 2 38756 19.99

2345 19970416 19970531 10 38756 19.99

7857 19970423 19970531 2 32875 562.99

3458 19970428 19970531 7 12387 5.55

17.31318-9 CH14 9/24/98 1:50 PM Page 535

Well, business is kind of slow, but you get the idea. The ID field relates these two tables.
This is an example of a one-to-many relationship. In other words,for every one record in
the Customers table, there can be many related records in the Invoices table.

Flat-File Model
Unlike a relational database, a flat-file database has all its information within each
record. For example, in the example just given,if the same information were to be kept
in a flat-file database table, there would be no customer table, and the invoice table
would have to include the customer’s name and address in each record. This wastes a
tremendous amount of space because of the redundancy of the information. For this rea-
son,most databases today are relational.

536 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

If you’ve ever used the term “database” when you meant “table,” it’s prob-
ably because in the days when only flat-file databases existed, there could
be only one table to a database. People who learned about databases often
used the terms interchangeably. However, this is incorrect when you’re refer-
ring to relational tables. In the relational world, tables that are related to
one another form a database.

Tip

Database Types
In addition to the two basic database models,flat-file and relational, there are various
other types of databases from which you can choose. Again, the decision depends on the
type of application you’re developing and how it will be used.

Standalone
A standalone database has its tables stored on the local file system,and the program to
access it also resides on the same machine. This type of database might be appropriate
for Java programs that are meant for single-user access. That is, only one person (the one
using the local machine) is accessing the data at any one time. This is the simplest sce-
nario because you don’t have to worry about multiuser access (concurrency), network
traffic, or other client/server issues. For example, if you want to create a program to track
your personal business expenditures and don’t intend to share this information with any-
one else, a standalone database program might meet your requirements.

File-Share
A file-share database is a distributed form of database that enables multiple users to
access the same tables. Generally, the users have a program to access the tables on their
local machine on the network, and the database itself is on a central machine. The type

17.31318-9 CH14 9/24/98 1:50 PM Page 536

JBuilder Database Architecture 537

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

of network is unimportant because the local machine simply accesses the database as a
shared file on the network. When a user accesses the file, it is locked until that user is
finished with the query, update, or other processing. Each user, therefore, must wait his
or her turn to access the file, so this solution is best reserved when there is not a large
number of potential users of the database’s tables.

Client/Server
A client/server database (also known as a two-tier system) is one that has been optimized
to handle many concurrent requests. Part of the processing is done on the local machine
(client), and part is done on the central machine (server). Although the file access is still
one request at a time, the client can do something else while the server is processing the
client’s request (via SQL queries or stored procedures). Other clients can also queue up
their requests instead of receiving a “Tabled Locked” message.

How much processing does the client do,and how much is done by the server? That is a
balancing act that requires detailed work up front when designing the solution,taking
into account the number of potential users,network traffic, and the types of requests and
their frequency, among other considerations. Client/server systems also require a protocol
(unlike file-sharing systems),such as TCP/IP, creating additional configuration and
administrative tasks. Although client/server is typically a more expensive solution,when
there are many potential concurrent users, it might be the one you need.

Multitier
Multitier systems are client/server systems that split up the processing even further,
sometimes adding a middle layer called “middleware” that does additional processing
and takes some of the load from the server. This frees the server to handle more requests,
increasing capacity and throughput. The middleware is usually multithreaded to handle
multiple concurrent requests and can be configured to handle requests to multiple data-
bases.

JDBC Architecture
The JDBC opens up a whole new world in client/server technology. If you thought con-
figuring client/server on the local network was interesting, you can now work with
clients and servers thousands of miles apart, and you’ll also have to consider traffic on
the Internet!

JDBC is a JavaSoft trademark and not an acronym. However, it is usually associ-
ated with Java Database Connectivity. JDBC is JavaSoft’s standard API, which

uses SQL statements to access databases in Java programs.

NEW TERM

17.31318-9 CH14 9/24/98 1:50 PM Page 537

JDBC might sound familiar if you have done any work with ODBC. ODBC is Open
Database Connectivity, a standard promulgated by Microsoft to provide a way to access
the multitude of databases that exist with a single API. So why didn’t Java just use
ODBC? The major reason is that ODBC is C-centric and uses lots of pointers. Also,
ODBC is mainly implemented only for Microsoft platforms. So,keeping their goals in
mind (simplicity, robustness,and portability), the Java team decided to create an API that
would work with databases no matter what the native language of their platform.

Like ODBC,JDBC is based on the X/Open SQL CLI (Call Level Interface),but unlike
ODBC, the JDBC is an all-Java API that is cross-platform and vendor-neutral. The JDBC
API uses SQL (Structured Query Language) to access data across the Internet and so can
access almost any data your application needs to use. The JDBC is also object-oriented
and so is easier to learn and implement. Finally, JDBC supports client/server and multi-
tier systems.

Using JDBC with Applets
Applets have made a big splash on the Internet,and just as there are security concerns
with applets,so there are with database access across the Internet. In this section,you’ll
learn about the processes,the issues,and some of the security concerns that are dealt
with by JDBC.

When you develop an applet with access to a database on the Internet,there are some
obvious security concerns. As you learned in Week 1,a Java applet is restricted in almost
every way, from accessing the client’s hard disk to making network connections other
than to its own server. For many businesses,data is their most important asset,so when
you’re considering database access across the Internet,security concerns are multiplied.
So how does the JDBC address these concerns?

JDBC-enabled applets cannot access data from a local database unless they are digitally
signed. Due to applet security, calls to files on the machine aren’t allowed unless the
applet is signed. The JDBC applet will be able to connect only to a database that resides
on the server from which it was downloaded. However, if the applet is trusted by the Java
Virtual Machine (by using an encoded password, or if the client specifies that applets
from a particular site are considered safe), the applet is treated just like an application as
far as security is concerned.

Using JDBC with Applications
Java applications are now being used as solutions for more than just the Internet.
Corporate intranets and extranets are growing exponentially, and JDBC enables you to
create applications that take full advantage access of them.

538 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 538

JBuilder Database Architecture 539

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

An intranetis a network that takes advantage of Internet-related technology to
give access to corporate data and can involve local area networks (LANs),wide

area networks (WANs), and remote access (via modems or ISDN lines). In essence, an
intranet is a private version of the Internet,allowing access from clients on different plat-
forms.

An extranetis an intranet that has been expanded to include the corporation’s
business partners, such as suppliers and customers. An extranet connects several

corporations with mutual interests and data that they want to share.

Unlike groupware, intranets and extranets are using the ubiquitous Web browser as a
familiar user interface that requires little training. This interface makes use of legacy data
without requiring conversion to a proprietary format; it also allows users to access data
from a mixture of Windows,Macintosh,and UNIX machines. It’s no wonder this tech-
nology is becoming increasingly popular with corporations.

With Java applications,because of firewall technology, security is not as much of a con-
cern. Applications that are loaded locally are assumed to be trusted. Another solution is
to use a multitiered system,in which the middleware is responsible for security and
access,and acts as a security enforcer between the client and server. As you’ll see
shortly, JDBC supports all these security answers.

Database Connectivity
JDBC provides an API that supports drivers for Informix, InterBase, Microsoft SQL
Server, Oracle, Paradox, Sybase, and Xbase, among others. It provides this support
through four types of connectivity:

● JDBC-ODBC Bridge: This driver, provided in the Java Development Kit by
JavaSoft,allows existing ODBC drivers to be used. However, this is not the best
solution because it requires the installation of ODBC drivers and client libraries.
ODBC drivers are also implemented natively, which compromises cross-platform
support and applet security.

NEW TERM

NEW TERM

The JDBC-ODBC Bridge is win32 only and usually can’t be used in applets
due to applet security.

Note

● Native API to Java: This type of driver translates the JDBC calls into native API
calls to the DBMS. It also requires native C-language code on the client machine
and so does not provide cross-platform support. However, if your target environ-
ment is homogeneous with respect to the platform being used, it might provide
some performance enhancements.

17.31318-9 CH14 9/24/98 1:50 PM Page 539

● Neutral Network Protocol: This type of driver uses DBMS-neutral network proto-
cols to translate the JDBC calls into native DBMS API calls. This driver is typi-
cally used with middleware to facilitate access from pure Java clients to DBMS
servers,and it might be provided as part of the middleware package.

● Native Network Protocol: This type of driver translates JDBC calls into DBMS-
proprietary network protocol calls that the DBMS can use directly. This driver is
typically used for intranet access and, being DBMS-proprietary, is obtained from
the database vendor.

The last two protocol solutions are recommended by JavaSoft as the preferred ways to
access databases from JDBC.

540 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

For the latest information from JavaSoft regarding JDBC drivers, connect to
http://www.javasoft.com/products/jdbc/.

Tip

JDBC Classes
To understand more about how the JDBC works, let’s explore the interfaces and classes
that the JDBC comprises,which are all located in the java.sql package. (Don’t forget to
import this package in your code when using these classes.) Retrieving data with the
JDBC is based on four simple steps:

1. Obtain a driver from those drivers that are currently instantiated.

2. Using the driver, establish a connection to the database.

3. Send a SQL statement to the database.

4. Assign the results to local variables.

The first step is usually done automatically by a DriverManager object,which you’ll
look at in the next section.

This section is not meant to be an exhaustive coverage of the JDBC methods;
rather, it is meant to highlight the most commonly used methods. For more
detailed information on the JDBC classes, interfaces, and methods, be sure
to select Help | Java Reference and read the full documentation online.

Note

17.31318-9 CH14 9/24/98 1:50 PM Page 540

JBuilder Database Architecture 541

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Understanding the DriverManager Class
The DriverManager class contains various methods for managing, registering, and dereg-
istering drivers. However, most of the time, you will only need to call the getConnection
method, and the DriverManager object will automatically load the most appropriate dri-
ver for the database being accessed. Table 14.4 gives a summary of the key methods
defined in this class.

TABLE 14.4. DriverManager CLASS METHODS.

Method Signature Summary

deregisterDriver(Driver) Removes specified Driver object from the
DriverManager object’s list of registered drivers

getConnection(String) Returns a Connection object that encapsulates a
connection to the database located at the URL
encapsulated in the String object passed to the
method

getConnection(String, Properties) Returns a Connection object that encapsulates a
connection to the database located at the URL
encapsulated by the String object passed to the
method, with the connection properties encapsu-
lated in the Properties object

getConnection(String, String, String) Returns a Connection object that encapsulates a
connection to the database located at the URL
encapsulated by the first String object passed to
the method and logs in using the login encapsu-
lated in the second String object and the password
encapsulated in the third String object

getDrivers() Returns an Enumeration object encapsulating a list
of the available drivers

registerDriver(Driver) Adds the Driver object passed to the method to the
DriverManager object’s registered drivers list

The registerDriver() and deregisterDriver() methods allow the calling class to add
or delete drivers from the class loader’s Driver object list; the getDrivers() method
returns a list of all the drivers available to the calling class.

The overloaded getConnection() method gives you several ways to establish the con-
nection,all requiring the use of a URL. For databases,the URL syntax might look a bit
different than what you’re used to seeing. The basic format is this:

protocol:subprotocol:subname

17.31318-9 CH14 9/24/98 1:50 PM Page 541

The most common protocols are http: and ftp:, and subnames usually look like
//www.microsoft.com/ or //www.javasoft.com/. When you’re using JDBC,the
protocol is jdbc:, the subprotocol represents a particular type of database mechanism,
and the subname is the information actually used to connect to the database (including
port). Here are some typical JDBC URLs:

jdbc:odbc:mydata
jdbc:odbc:mydata;UID=mylogin;PWD=mypasswd
jdbc:dbprot://testsite:321/mytables/mydata

The first example listed shows how to connect to a database named mydata by using the
JDBC-ODBC bridge via the odbc subprotocol. The second example shows the same con-
nection with ODBC login (UID) and password (PWD) attributes added. The third example
shows how to use a particular database subprotocol (dbprot:) logging in to port :321 on
a Web site named testsite, where the database mydata is located in the mytables direc-
tory.

542 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Typically, connection URLs are documented and provided as part of the JDBC
driver.

Tip

To use the getConnection() method, simply assign the appropriate URL to a String
variable and then call the getConnection() method using that String object:

String myURL = (“jdbc:dbprot://testsite:321/mytables/mydata”);
getConnection(myURL, “myUID”, “myPWD”);

In URLs, you will see the forward slash (/) used in pathnames, the standard
form on the World Wide Web. Even though the Windows platforms use the
backslash (\) character, JBuilder allows you to use the forward slash (/) in
Java code, so you don’t have to change your URLs before your code will run
properly over the Internet.

Note

After you’ve made a successful connection,a Connection object is returned. Here’s a
line of code showing how this is usually done:

Connection dbConn = DriverManager.getConnection
(“jdbc:odbc:dbname”, “mylogin”, “mypasswd”);

Next, you’ll look at the Connection interface.

17.31318-9 CH14 9/24/98 1:50 PM Page 542

JBuilder Database Architecture 543

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Understanding the Connection Class
A class that implements the java.sql.Connection interface can override methods that
deal with locking tables,committing and rolling back changes,and closing connections.
It also has methods for preparing certain types of calls and statements. Table 14.5 sum-
marizes some of this interface’s more commonly overridden methods.

TABLE 14.5. java.sql.Connection INTERFACE METHODS.

Method Signature Summary

close() Provides a way to immediately close a connection and release
JDBC resources

commit() Permanently updates the table with all modifications made since
the last commit/rollback; releases connection locks on the database

createStatement() Returns a new Statement object

getAutoCommit() Returns boolean: true if the AutoCommit object is enabled; false if
the AutoCommit object is disabled

getMetaData() Returns a DatabaseMetaData object that contains information about
the tables,stored procedures,and supported SQL grammar for the
current connection database

isClosed() Returns boolean: true if the connection is closed; false if the con-
nection is open

prepareCall(String) Returns a new CallableStatement object with optional OUT or
INOUT parameters; the String object passed to the method encapsu-
lates a SQL statement

prepareStatement(String) Returns a new PreparedStatement object containing a precompiled
simple SQL statement or one with IN parameters; the String object
passed to the method encapsulates a SQL statement

rollback() Drops all modifications made to the table since the last
commit/rollback; releases connection locks

setAutoCommit(boolean) Passes the boolean argument true to enable the AutoCommit object;
passes false to disable

You can use the isClosed() method to determine whether the connection is still open; if
it is, use the Close() method to immediately release the connection,if desired.

The getMetaData() method returns all the information that is available about the proper-
ties of the current connection’s database in a DatabaseMetaData object. This information
includes a list of the database’s stored procedures,the SQL grammar that it supports,

17.31318-9 CH14 9/24/98 1:50 PM Page 543

access rights for the table columns,primary and foreign keys, indexes,the database prod-
uct name and version number, the driver version number, schema,and literally dozens of
pieces of information about the database itself. For a complete list of all the methods in
the DatabaseMetaData class that return information about the DatabaseMetaData object,
be sure to look in the Java Reference online help.

What a transaction comprises depends on the state of the auto-commit mode. By default,
the auto-commit mode is set to true, which means that each statement is a transaction
that will get committed as soon as the statement is executed. If the auto-commit mode is
set to false, all statements since the last commit/rollback are grouped together into a
single transaction.

The getAutoCommit() method tells you whether the connection’s auto-commit mode is
currently set to true. To group statements,pass a false value to the setAutoCommit
method, and use the commit() and rollback() methods to manage the transactions.

The createStatement() method creates a new Statement object; the prepareCall()
and prepareStatement() methods create CallableStatement and PreparedStatement
objects. These objects are used to store simple and precompiled SQL statements,which
the connection can then execute. JDBC statements form the core of database transac-
tions,and you’ll examine them next.

Understanding the Statement Class
The class that implements the Statement interface can override methods,which enable
you to handle and execute several types of SQL statements. Table 14.6 summarizes some
of this interface’s more commonly overridden methods.

TABLE 14.6. java.sql.Statement INTERFACE METHODS.

Method Signature Summary

cancel() Cancels a statement being executed in another thread

close() Provides a way to immediately close the connection and release
JDBC resources

execute(String) Executes the SQL statement encapsulated in the String object passed
to the method; returns true if the first result is a ResultSet object
and false if the result is an int value

executeQuery(String) Executes the SQL statement encapsulated in the String object passed
to the method; returns the ResultSet object containing the query
results

544 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 544

JBuilder Database Architecture 545

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Method Signature Summary

executeUpdate(String) Executes the SQL UPDATE, INSERT, DELETE, or no-return statement
(such as the DDL statement) encapsulated by the String object
passed to the method; returns an int value representing the number
of rows that were affected (0 for no-return statements)

getCursorName() Returns a String object containing the identifier of the current row
(set by a SQL UPDATE or DELETE statement)

getMoreResults() Returns a true value if the next result is a ResultSet object and
false value if the next result is an int value

getQueryTimeout() Returns an int value representing the number of seconds the Driver

object will wait for a SQL statement to execute

getResultSet() Returns a ResultSet object if there are current results; if no more
results or an update count,returns null

setCursorName(String) Sets the identifier of the current row (set by a SQL UPDATE or DELETE
statement) to the value encapsulated by the String object passed to
the method

setQueryTimeout(int) Sets the number of seconds the Driver object will wait for a SQL
statement to execute to the int value passed to the method

There are many other methods in the Statement interface. For details,be sure to study
the “Statement Interface”topic in the Java Reference online help.

A SQL statement is the actual instruction that enables you to communicate
with the database. A formal introduction to SQL is definitely beyond the
scope of this book, but the Sams book Teach Yourself SQL in 14 Days,
Premier Edition, gives you an excellent introduction to the SQL language.

Note

In addition to the Statement interface, there are two other interfaces to be considered.
The CallableStatement interface inherits from the PreparedStatement interface,
which, in turn, inherits from the Statement interface. At each level, additional abstract
methods specific to the type of SQL statement being handled are provided.

The PreparedStatement interface is used when you want to precompile a simple SQL
statement to execute it multiple times or when the SQL statement has IN parameters and
has to be precompiled. This provides a more efficient way of calling the precompiled
statement.

17.31318-9 CH14 9/24/98 1:50 PM Page 545

The CallableStatement interface is usually a precompiled stored procedure statement
that must be used with stored database procedures containing OUT or INOUT parameters.

Here’s a typical code snippet that shows a query to myTable:

Connection dbConn = DriverManager.getConnection
(“jdbc:odbc:dbname”, “mylogin”, “mypasswd”);

Statement sqlStmt = dbConn.createStatement();
ResultSet rSet = sqlStmt.executeQuery

(“SELECT xInt, yString FROM myTable”);

This example uses an instance of the Connection interface assigned to the dbConn vari-
able and creates an instance of the Statement interface assigned to the sqlStmt variable.
Then,using sqlStmt, it executes the SQL query using the Statement interface’s
executeQuery() method and returns it to an instance of the ResultSet interface
assigned to the rSet variable. The ResultSet abstract class is the final piece of the
JDBC architecture, which you’ll examine next.

Understanding the ResultSet Class
Implementation of the java.sql.ResultSet abstract class methods controls access to
the row results from a given SQL statement. It is through this class that you are able to
access the results of all your queries. Table 14.7 summarizes some of this interface’s key
methods.

TABLE 14.7. java.sql.ResultSet abstract METHODS.

Method Signature Summary

close() Provides a way to immediately close a Connection object and
release JDBC resources

findColumn(String) Returns an int value representing the column index corresponding
to the column name encapsulated in the String object passed to the
method

getAsciiStream(int) Returns an InputStream object containing the ASCII values in the
LONGVARCHAR value from the current row; the int value passed to
the method represents the column index

getAsciiStream(String) Returns an InputStream object encapsulating the ASCII values in
the LONGVARCHAR value from the current row; the String object
passed to the method encapsulates the column name

getBinaryStream(int) Returns an InputStream object containing the ASCII values in the
LONGVARBINARY value from the current row; the int value passed to
the method represents the column index

546 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 546

JBuilder Database Architecture 547

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Method Signature Summary

getBinaryStream(String) Returns an InputStream object containing the ASCII values in the
LONGVARBINARY value from the current row; the String object
passed to the method encapsulates the column name

getCursorName() Returns a String object containing the identifier of the current row
(set by a SQL UPDATE or DELETE statement)

getMetaData() Returns a ResultSetMetaData object containing the number of
columns,data types,and other properties of the rows in the current
ResultSet object

getUnicodeStream(int) Returns an InputStream object containing the ASCII values in the
LONGVARCHAR value from the current row; the int value passed to
the method represents the column index

getUnicodeStream(String) Returns an InputStream object containing the ASCII values in the
LONGVARCHAR value from the current row; the String object passed
to the method represents the column name

getXxxx(int) Returns a data type represented by Xxxx (for example, int, long,
String, Object, and so on) containing the value in the current row;
the int value passed to the method represents the column index

getXxxx(String) Returns a data type represented by Xxxx (for example, int, long,
String, Object, and so on) containing the value in the current row;
the String object passed to the method encapsulates the column
name

setCursorName(String) Sets the identifier of the current row (set by a SQL UPDATE or
DELETE statement) to the value encapsulated by the String object
passed to the method

next() Returns true if the next row is a valid row and false if there are no
more rows

wasNull() Returns true if the value just read was null and false if the value
wasn’t null

There are two getXxxx() methods for each Java type, one that uses a column index and
one that uses a column name. For example, to get a String object from the second col-
umn of the current row, you would use the following statement:

getString(2);

This statement returns the value in that field encapsulated in a String object. To get a
character value from the column named Gender, you would use the following statement:

getChar(Gender);

17.31318-9 CH14 9/24/98 1:50 PM Page 547

The findColumn() method returns the column number associated with the specified
column name.

The cursor in a ResultSet object is positioned just before the first row when the
ResultSet object is created. To iterate the cursor through the ResultSet object,call the
next() method. Before attempting to read the data in the row, however, you should test
the next() method’s returned value to see whether you have landed on a valid row or
whether there are no more rows left to examine. The following code snippet combines
the previous sample snippets with a while loop that iterates through the ResultSet
object assigned to the rSet variable:

Connection dbConn = DriverManager.getConnection
(“jdbc:odbc:dbname”, “mylogin”, “mypasswd”);

Statement sqlStmt = dbConn.createStatement();
ResultSet rSet = sqlStmt.executeQuery

(“SELECT xInt, yString FROM myTable”);
while (rSet.next()) {

int xIntVal = getInt(“xInt”);
String yStrVal = getString(“yStr”);

}

The getMetaData() method returns a ResultSetMetaData object that contains informa-
tion about the ResultSet object,such as the number of columns. It also returns informa-
tion about individual columns (fields) such as the name, label (for headers),maximum
width, data types,precision (decimal digits), scale (decimal points),and other pertinent
information. For a complete list of all the methods in the ResultSetMetaData class that
return information about the ResultSetMetaData object,be sure to look in the Java
Reference online help.

Mapping Types
Simply stated, there are data types specific to SQL that need to be mapped to Java data
types if you expect Java to be able to handle them. This conversion falls into three cate-
gories:

● Certain SQL types have direct equivalents in Java and can be read directly into
Java types. For example, a SQL INTEGER is a direct equivalent of the Java int data
type.

548 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Unlike Java indices, SQL column indexes begin at 1, not 0. Also unlike Java,
SQL column names are not case-sensitive. If you use column names to access
fields in the current row, there might be more than one column with the
same name due to case-insensitivity. If that happens, the first matching
column name will be used.

Caution

17.31318-9 CH14 9/24/98 1:50 PM Page 548

JBuilder Database Architecture 549

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

● Several SQL types can be converted to a Java equivalent. For example, the SQL
CHAR, VARCHAR, and LONGVARCHAR can all be converted to the Java String data type.
This means that it is not necessary for Java to have a data type for every SQL data
type.

● A few SQL data types are unique and require a special Java data object to be cre-
ated specifically for their SQL equivalents. For example, the SQL DATE is con-
verted to the Java Date object that is defined in the java.sql package especially
for this purpose.

Don’t confuse java.sql.Date used for converting SQL DATE information with
the internal java.util.Date that is used as a Java Date object. The latter will
not accept a SQL DATE field.

Caution

There are tables in the Java API Documentation online Help file that explicitly define the
conversions that occur, going in both directions (from SQL to Java, from Java to SQL).
To locate this topic, select Help|Java Reference. Choose JDK 1.x.x Documentation
from the Help viewer’s “Available books”drop-down list. Click the JDK Guide to New
Features link, and then click the JDBC-Connecting Java and Databases link. In that
topic, click the Getting Started link; scroll down to the 8 Mapping SQL and Java
Types link and click it. Be sure to examine this topic for exact details on how types are
mapped.

The DECIMAL and NUMERIC data types need to be converted using a special class because
absolute precision is necessary (as in dealing with currency values). Before the JDBC,
there were no data types for exactly what was needed. So the JDBC API includes the
java.sql.Numeric class,which enables you to convert the SQL DECIMAL and NUMERIC
values to Java.

The SQL DATE consists of day, month,and year; TIME is hours,minutes,and seconds;
TIMESTAMP combines DATE and TIME and adds a nanosecond field. Because the
java.util.Date does not have a one-to-one correspondence with these SQL types,the
java.sql.Date class is defined to handle the SQL DATE and TIME values,whereas
java.sql.Timestamp is defined to handle the SQL TIMESTAMP.

A JDBC API Example
Building on the earlier examples,here is a complete listing showing a typical JDBC con-
nection,querying a database, pulling results from a ResultSet object,and printing the
data. Although you can’t actually run Listing 14.1 (unless you happen to have a table

17.31318-9 CH14 9/24/98 1:50 PM Page 549

named myTable with the required data), it is here to give you a complete example of
what such a program would look like using the JDBC API.

LISTING 14.1. QueryMyTable.java.

1: import java.net.URL;
2: import java.sql.*;
3:
4: public class QueryMyTable {
5:
6: public static void main(String args[]) {
7:
8: try {
9:
10: // connect to the database
11: String theUrl = “jdbc:odbc:dbname”;
12: Connection dbConn = DriverManager.getConnection
13: (theUrl, “mylogin”, “mypasswd”);
14:
15: // execute the SELECT statement
16: Statement sqlStmt = dbConn.createStatement();
17: ResultSet rSet = sqlStmt.executeQuery
18: (“SELECT xInt, yString FROM myTable”);
19:
20: // iterate through the result rows and
21: // print out the values obtained
22: System.out.println(“Return results”);
23: while (rSet.next()) {
24: int xIntVal = rSet.getInt(“xInt”);
25: String yStrVal = rSet.getString(“yStr”);
26: System.out.print(“xIntVal = “ + xIntVal);
27: System.out.print(“yStrVal = “ + yStrVal);
28: System.out.print(“/n”);
29: }
30:
31: sqlStmt.close();
32: dbConn.close();
33: }
34:
35: catch (Exception e) {
36: System.out.println(“EXCEPTION: “ + e.getMessage());
37: }
38:
39: }
40:
41: }

Most of this code should look familiar by now. However, a few bits of it warrant
explanation:

550 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

TYPE

ANALYSIS

17.31318-9 CH14 9/24/98 1:50 PM Page 550

JBuilder Database Architecture 551

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

● In line 11,the URL is a String object assigned to the theUrl variable, and then in
line 13,the String object is passed to the getConnection() method. This is a use-
ful device for uncluttering the getConnection() method that makes it easier to
read. You can either do it this way or insert the URL as an argument directly in the
getConnection() method, as you saw in the earlier code snippets.

● The entire connection is in a try block because many of the methods presented up
to this point throw exceptions. In particular, a SQLException object is thrown if a
database access error occurs.

● The catch block uses the getMessage() method (defined in the
java.lang.Throwable class),which returns a String object containing the excep-
tion’s detail message (if any). Line 36 prints this String.

Now that you have a good grounding in the JDBC API, it’s time to look at the data-
aware components in JBuilder that provide you with higher-level access to the JDBC
classes and methods.

JBCL and DataBroker
In JBuilder, the DataBroker approach to data access and update of JDBC data sources
uses three phases:

● The first phase is called providing, in which the data from a JDBC ResultSet
object is provided as input to a JBCL DataSet component.

● In the second phase, you can navigate through the rows of data in the DataSet
object and edit the data.

● The third phase is called resolving, in which the data in the DataSet object is
posted back to the originating database.

Potential edit conflicts are automatically reconciled. This approach, as implemented in
the DataBroker architecture, enables you to deal with data access at a very high level
using drag-and-drop JBCL components and hooking them up to JBCL data-aware com-
ponents in your user interface.

A data-accesscomponent is one that you can attach (via properties) to a data
source, such as a database.

A data-aware component is one that can accept data using a data-access compo-
nent as its conduit.

The DataBroker architecture is based on the DataSet class hierarchy in the JBCL. This
enables you to use already-tested components,ready to customize by setting properties

NEW TERM

NEW TERM

17.31318-9 CH14 9/24/98 1:50 PM Page 551

and creating event handlers. This architecture also includes Resolver and DataFile
interfaces (which you’ll learn about a bit later). Figure 14.1 shows the DataBroker
architecture.

552 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

FIGURE 14.1.
JBuilder’s DataBroker
architecture.

DataSet
JBuilder
DataExpress
Architecture

Client
Application

User Interface
(JBCL Data-Aware Controls)

StorageDataSet

DataStoreMemoryStore

JBDC TextDataFile
GenericDataSource

TableDataSetQueryDataSet ProcedureDataSet

Data
FileDatabase

Server

Oracle
Sybase

Informix
InterBase

DB2

dBASE
Paradox
FoxPro
MS Access
MS SQL Server

LEGEND

Inheritance

Data Flow

DataSetView

The DataSet and StorageDataSet classes are abstract, whereas DataSetView,
QueryDataSet, ProcedureDataSet, TableDataSet, and TextDataFile are components
on the Data Express tab of the Component Palette that you can use in your Java pro-
grams. Figure 14.2 shows the Data Express tab with each component called out.

No special driver installation or Registry settings are required with an all-Java JDBC dri-
ver. This allows applications built with the DataBroker to be run as an application or as
an applet.

DataBroker handles type mapping through the use of Variant data types. Variant is a
class that has static int identifiers that enumerate the data types supported. For the most
part, the mapping from JDBC types to Variant types is one-to-one and is documented in
the JBCL Reference.

17.31318-9 CH14 9/24/98 1:50 PM Page 552

borland.jbcl.dataset.ParameterRow

JBuilder Database Architecture 553

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

In the area of error handling, all DataBroker exception classes are either a
DataSetException or a subclass. DataBroker exceptions can also catch other types of
exceptions (such as IOException and SQLException objects).

Data Access
Now, let’s look at each of the classes and components that you’ll use to create database
applications in JBuilder.

DataSet

DataSet is an abstract class,and all navigation, data access,and update methods for a
DataSet object are provided in this class,as well as support for master-detail relation-
ships,ordering, and filtering. Data-aware JBCL controls have a DataSet property that
allows those controls to set their DataSet properties to any of the components derived
from DataSet, such as DataSetView, QueryDataSet, ProcedureDataSet, and
TableDataSet.

StorageDataSet

StorageDataSet is an abstract class that manages the storage of DataSet data and view
indices. It also provides methods for adding, deleting, changing, and moving data,and it
is where all row updates,inserts, and deletes are automatically recorded.

DataSetView

DataSetView is used to provide a cursor with ordering and filtering, by setting the
StorageDataSet property. You can also use this component to switch multiple
DataSetView components to a new DataSet by changing their StorageDataSet proper-
ties.

FIGURE 14.2.
The Data Express tab
of the Component
Palette.

borland.sql.dataset.Database

borland.jbcl.dataset.TableDataSet

borland.jbcl.dataset.TextDataFile

borland.sql.dataset.QueryDataSet

borland.sql.dataset.QueryResolver

borland.sql.dataset.ProcedureDataSet

borland.sql.dataset.ProcedureResolver

borland.jbcl.dataset.DataSetView

borland.datastore.DataStore

17.31318-9 CH14 9/24/98 1:50 PM Page 553

QueryDataSet

QueryDataSet is a JDBC-specific subclass of DataSet, which manages a JDBC data
provider, as specified in the Query property (a SQL statement).

ProcedureDataSet

ProcedureDataSet (C/S only) is also a JDBC-specific subclass of DataSet, which man-
ages a JDBC data provider, as specified in the Procedure property (a stored procedure).

QueryResolver

A QueryResolver is used to control how updates occur and how conflicts are resolved by
setting a DataSet component’s Resolver property to your QueryResolver component.

TableDataSet

TableDataSet is a DataSet component without any built-in provider; however, it can still
resolve its changes back to a data source.

DataModule

The DataModule is a nonvisual container for components,such as DataSet and Database
components,and is available from the New page of the New dialog box (File |New).
Although other containers such as frames and applets can contain data-access compo-
nents,it is usually better to gather them into a DataModule object. This enables you to
separate application logic from the user interface components (such as frames and data-
aware controls). If you use the following line of code as a template for how you should
refer to the DataModule object in your code,

DataModule myDMod = DataModule.getDataModule();

you can reference the DataModule object you just created in other frames or applets,
enabling you to reuse its components as a group.

Database

Multiple DataSet components (such as QueryDataSet and ProcedureDataSet objects)
can share the same Database object by setting their Database properties. The Database
Connection property specifies the URL,login name, password, and optional JDBC
driver.

Providing Data
DataSet components can obtain data from any JDBC data source. The Database prop-
erty is used to specify what Connection to run the query against. The Query property is a
String object encapsulating the SQL statement. The ParameterRow property is where

554 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 554

JBuilder Database Architecture 555

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

you can set optional query parameters. The executeOnOpen event causes the
QueryDataSet object to execute the query when it is first opened, which is useful for pre-
senting live data at design time. The AsynchronousExecution property causes DataSet
object rows to be obtained in a separate thread, allowing the data to be accessed and dis-
played while the QueryDataSet object is obtaining rows from the Connection.

The QueryDataSet component can be used in three ways to get data:

● Unparameterized Query: The query is executed, and rows are retrieved into the
QueryDataSet object.

● Parameterized Query: The ParameterRow property is used to set the Query para-
meters,and there is a getParameterRow method as well. If named parameters are
used, name matching will be used to set parameters; if question markers are used,
setting is left-to-right.

● Dynamic Retrieval of Detail Groups: The MasterLinkDescriptor property of a
DataSet object contains a FetchAsNeeded property. If this property is set for a
QueryDataSet object,the first time a new master row is navigated, the Detail
query is executed.

In general, by setting the Query property and calling the executeQuery() method of a
QueryDataSet object,the query is executed.

Navigating and Editing Data
After data has been retrieved into a DataSet object,it can be navigated. Navigation can
be relative (next, prior, first, and last) either by position using the goToRow() method or
by value using the locate() or lookup() methods. If the DataSet object is connected to
a data-aware control in the user interface, that control will track the current row in the
DataSet object. If this is not desired, you can use a DataSetView object instead, which
has an independent cursor, row ordering, and filtering.

A DataSet object also has methods for adding, deleting, and updating rows inside itself.
Posting a new row to an unordered DataSet object sends the row to the end of the
DataSet; if the DataSet object is ordered, the row goes to its properly sorted position.
There is also a getStatus() method in the DataSet object that returns a bit mask indi-
cating status information. The bit settings are defined in the RowStatus class.

Sorting and Filtering
Each DataSet object canhave its own column ordering, specified by its Sort property.
The SortDescriptor object also specifies non–case-sensitive and descending orderings,
maintained with indexes. Indexes are freed by calling the freeAllIndexes() method

17.31318-9 CH14 9/24/98 1:50 PM Page 555

(defined in the StorageDataSet class). Filtering is accomplished by defining the
DataSet component’s RowFilter event. If a RowFilter event handler is parameterized,
the DataSet object can be forced to recalculate the filter by calling its recalc() method.

Master-Detail Support
You enable master-detail support by setting the detail DataSet component’s MasterLink
property, linking column values from the master DataSet object to the detail DataSet
object. As the master is navigated, the detail will show only the associated group of
details that have matching link column values. A master row cannot be deleted, and a
master link column cannot be modified if it has detail rows associated with it. A master
DataSet object can have multiple detail DataSet components associated with it,and a
detail DataSet object can be a master for another detail DataSet object.

There are two approaches to using master-detail functionality with QueryDataSet com-
ponents:

● Set the MasterLink property, and then execute the queries for all DataSet objects
that have master-detail relationships in the same transaction,which provides a con-
sistent view of all the related DataSet objects.

● If the detail DataSet object is parameterized, you can set the fetchAsNeeded prop-
erty in the MasterLink property. However, because detail groups are retrieved in
separate transactions,they might be inconsistent in relation to each other.

Resolving a DataSet
The DataBroker architecture has extensive built-in support for saving DataSet object
changes to a JDBC data source and resolving any conflicts that might occur. Automatic
resolution calls the saveChanges() method (defined in the Database class) for the
DataSet objects (or any DataSet subclass),causing all the inserts, deletes,and updates to
be saved to the JDBC data source in a single transaction by default. Custom resolution
involves using the DataSet component’s Resolver property. (Any DataSet object that
descends from the StorageDataSet class has this property.) You can also instantiate a
QueryResolver class,set its properties and event handlers,and then set the DataSet
component’s Resolver property to your QueryResolver component. By using a
Resolver in this way, you can control how updates occur and how conflicts are resolved
(using error handlers).

The saveChanges() method delegates the work of actually saving changes to a subclass
called SQLResolutionManager. Here is a code snippet that shows what the
saveChanges() method actually does:

556 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 556

JBuilder Database Architecture 557

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

SQLResolutionManager resolutionManager = new SQLResolutionManager();
resolutionManager.setDatabase(this);
resolutionManager.setDoTransactions(true);
resolutionManager.savechanges(DataSets);

Data-Aware Controls
In this section,each data-aware control is listed with a brief explanation of how it relates
to underlying data-access components. To connect each of these components to its
related data-access component,click the drop-down arrow in the DataSet property, and
simply select one of the DataSet subclass components available in the list.

GridControl

When a grid column header is clicked, data will be sorted in ascending order by that col-
umn. If clicked a second time, the column will be sorted in descending order. The grid
notifies the DataSet object when it switches columns,and the LocatorControl object
uses the information so that it knows what column to search.

StatusBar

When the StatusBar object’s DataSet property is set,it makes the StatusBar a
StatusListener of the DataSet. This causes the StatusBar to show information about
DataSet navigation, editing, query execution progress,and other status messages.

NavigatorControl

If this component’s DataSet property is set,the NavigatorControl’s buttons can control
navigation, row replication, refresh (providing), and save (resolving) of the related
DataSet. Refresh and save buttons are enabled only for QueryDataSet and
ProcedureDataSet components.

LocatorControl

The LocatorControl component has DataSet and ColumnName properties to bind an
interactive locator to a column. If the column is not specified, the first column in the
DataSet will be located. If connected to a GridControl, the last column visited will be
located. Incremental search is supported for columns of String type, which is not case-
sensitive if all lowercase characters are typed.

ChoiceControl

Setting this control’s DataSet property allows use of the ColumnComponent’s
PickListDescriptor property to fill in its choice list and so can be used as a simple pick
list control.

17.31318-9 CH14 9/24/98 1:50 PM Page 557

Summary
Today, you learned about the JDBC as a low-level solution for connecting to a SQL data-
base, noting that performance and security can become an issue when you’re connecting
your Java programs to a SQL back end. Also, you had a chance to look at the JDBC API
and an example of how a Java program might connect to a SQL database, query informa-
tion, and return the results.

You also learned about the JBuilder data-access components as a high-level solution for
connecting to SQL databases and using the underlying JDBC API. The DataBroker
architecture was also introduced. Each data-access component’s key properties were
reviewed. The data-aware components were also discussed as they relate to the data-
access components.

This is only an introduction to the overall capabilities of the JDBC and JBuilder’s data-
access components. Tomorrow, you’ll look at how to design and build a large database
application using these concepts. Day 15,“Building Database Applications,” begins
Week 3,which will also cover multithreading, persistence, building JavaBeans,deploy-
ing Java programs,network communications,and, on the final day, called “Inside Java,”
bytecodes and garbage collection.

Q&A
Q Might the JDBC pose any new security r isks to the current Java security

structure as described earlier in this book?

A The JDBC has been painstakingly designed to conform to the same security model
that Java follows. One added security risk that might pose a problem,however,
involves dealing with BLOBs (Binary Large Objects). The BLOB, also known as
data type LONG RAW in SQL, is typically used to store binary data, including graph-
ics and sounds. This could pose a potential loophole for passing viruses or native
code to the client’s system.

Q By using the ODBC,I am able to execute a SQL statement asynchronously.
Does Java have something equivalent?

A Actually, Java has something better:multithreading. The DriverManager can have
several connections to a database at one time, and each of these connections can
execute more than one statement as well. Just like when you created animations,
you can use put SQL statements in their own threads.

558 Day 14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

17.31318-9 CH14 9/24/98 1:50 PM Page 558

JBuilder Database Architecture 559

14

P2/VB/swg1 TY JBuilder in 21Days 31318-9 dietsch Chapter 14 Lp2

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. What are the four major types of JDBC connectivity?

2. What are the advantages of using a DataModule?

3. What property links a master DataSet to a detail DataSet?

4. Which property must be set in a data-aware component to connect it to its underly-
ing data-access component?

Exercise
Using Listing 14.1 as a base, experiment with a table of your own, accessing and print-
ing various rows of data based on a SQL query.

17.31318-9 CH14 9/24/98 1:50 PM Page 559

17.31318-9 CH14 9/24/98 1:50 PM Page 560

At a Glance
Day 15 Building Database Applications

16 Multithreading

17 Persistence

18 Building JavaBeans

19 Deploying Java Programs

20 Java Network Communications

21 Inside Java

P2/VB/swg1 TY JBuilder in 21 Days 31318-9 dietsch Wk3AAG Lp#1

WEEK 3 15

16

17

18

19

20

21

18.31318-9 Wk3AAG 9/24/98 1:54 PM Page 561

P/V TY Generic in 14/21/Week ISBN# Name Part Lp#

18.31318-9 Wk3AAG 9/24/98 1:54 PM Page 562

DAY 15

WEEK 2

Building Database
Applications

Yesterday you were introduced to the underlying architecture that JBuilder
implements to support building Java database applications. Today you’ll create
several database applications using the data-aware components and the
DataBroker components. These components are found on the JBCL and the
Data Express pages of the Component Palette, respectively.

Today, you’ll learn about various aspects of creating a database application,
such as these:

● Setting up Local InterBase and data sources

● Creating, updating, and deleting tables

● Designing the database application’s user interface

● Handling dataset exceptions

● Building and testing the database application

You’ll explore these topics by creating a simple table-editing utility application.

19.31318-9 CH15 9/24/98 2:01 PM Page 563

Today’s project will be a member of a package. To create a new project for this applica-
tion, select File |New Project. In the Project Wizard dialog box, select untitled\
untitled1.jpr in the File field and type DBApps\TableEdit.jpr in its place. Click the
Finish button to close the dialog box and generate the project files.

Installing and Configuring Local InterBase
Before you work with any of today’s examples,you’ll want to be sure that Local
InterBase is properly installed and configured. It’s best if you install Local InterBase
after installing JBuilder so that you can set up the data source easily.

To install Local InterBase, click theLocal InterBase 5.11 button in the Borland JBuilder
2.0 Installation dialog box, shown in Figure 15.1.

564 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.1.
The Borland JBuilder
2.0 Installation dialog
box.

The InterBase Server Setup prepares the InstallShield Wizard, and then the InterBase
Server Setup dialog box appears,as shown in Figure 15.2.

Click the Next> button and read the software license agreement in the Software License
Agreement dialog box. Click the Yes button (if you click No, you abort the installation
process),and the Important Installation Information dialog box appears.

Read last-minute installation information in the Important Installation Information dialog
box, and then click the Next> button. The License Certif icate dialog box appears,as
shown in Figure 15.3.

Enter your Certif icate ID and Certif icate Key into the appropriate text boxes,and then
click the Next> button.The Select InterBase Components dialog box appears,as shown
in Figure 15.4.

19.31318-9 CH15 9/24/98 2:01 PM Page 564

Building Database Applications 565

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

It’s recommended that you install most of the components listed for working through
this. Make sure that the InterBase ODBC Driver option is checked. Also, be sure to
check the InterBase SQL Tutorial, InterBase Example Programs,and InterBase Example
Database components. You use a database provided in the SQL tutorial and example
components in this chapter. These components are also helpful if you’re a SQL novice.
You don’t need the InterBase SDK Support component for this chapter. Use the
InterBase SDK Support component for developing native InterBase applications in C or
C++. After you’ve selected the components that you want installed, click the Next> but-
ton,and the InterBase TCP/IP Support dialog box appears,as shown in Figure 15.5.

FIGURE 15.2.
The InterBase Server
Setup dialog box.

FIGURE 15.3.
The License Certificate
dialog box requests an
ID and a Key value.

19.31318-9 CH15 9/24/98 2:01 PM Page 565

566 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.4.
Select the InterBase
components to install.

FIGURE 15.5.
InterBase TCP/IP sup-
port can be completed
automatically.

FIGURE 15.6.
The ODBC
Configuration
dialog box.

Select one of the two options provided in the InterBase TCP/IP Support dialog box. It’s
recommended that you let the installation program modify your TCP/IP services file for
you. Then click the Next> button and the Ready to Copy Files dialog box appears,as
shown in Figure 15.6.

If you’re happy with the list of files that will be installed, click the Install button.
Otherwise, you can go back and make modifications by clicking the <Back button.

19.31318-9 CH15 9/24/98 2:01 PM Page 566

Building Database Applications 567

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.7.
The ODBC
Configuration
dialog box.

FIGURE 15.8.
Use the ODBC Data
Source Administrator
dialog box to add and
remove data sources.

FIGURE 15.9.
The Create New Data
Source dialog box lists
the available drivers.

Click the Next> button to display the ODBC Data Source Administrator dialog box,
shown in Figure 15.8.

Add an InterBase data source to the User Data Sources list on the User DSN page of the
ODBC Data Source Administrator dialog box. Click the Add button to open the Create
New Data Source dialog box, shown in Figure 15.9.

After the files are copied to disk,the ODBC Configuration dialog box shown in Figure
15.7 appears.

19.31318-9 CH15 9/24/98 2:01 PM Page 567

Select InterBase 5.x Driver by Visigenic (*.gdb) from the list on the Create New Data
Source dialog box, and then click the Finish button. The InterBase ODBC Configuration
dialog box appears. Type DataSet Tutorial into the Data Source Name text box. Make
sure that <local> is selected from the Network Protocol drop-down list. Type
C:\Program Files\InterBase Corp\InterBase\Examples\employee.gdb into the
Database text box. Enter SYSDBA into the Username text box and Masterkey into the
Password text box. The InterBase ODBC Configuration dialog box should look as shown
in Figure 15.10. Click the OK button.

568 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

C:\Program Files\InterBase Corp\InterBase\Examples\employee.gdb is the
most common place to find the file when you use the default InterBase
installation. Nevertheless, the folder where you find the employee.gdb file
might vary depending on where you installed InterBase.

Note

DataSet Tutorial should now be included in the User Data Sources list on the ODBC
Data Source Administrator dialog box, as shown in Figure 15.11.

FIGURE 15.10.
The InterBase ODBC
Configuration dialog
box with your database
information entered.

FIGURE 15.11.
The ODBC Data
Source Administrator
dialog box with your
new data source added
to the list.

19.31318-9 CH15 9/24/98 2:01 PM Page 568

Building Database Applications 569

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

Basic Requirements
To introduce you to some of the most basic database components on the Data Express
page of the Component Palette, this section shows you how to create a table editing utili-
ty application. The focus of this exercise is to demonstrate how easy it is to create,
update, and delete tables using JBuilder. You’ll also design the utility application’s user
interface using data-aware components from the JBCL page of the palette.

To create the main source files for the application, select File |New. In the New page of
the New dialog box, double-click the Application icon. The Application Wizard dialog
box appears. In the Application Wizard: Step 1 of 2 dialog box, type TableEditor in the
Class field and check the Generate header comments option. Click the Next> button.

In the Application Wizard: Step 2 of 2 dialog, type TEFrame in the Class field and Table
Editor in the Title field. Click the options Center frame on-screen and Generate status
bar, and then click the Finish button. Select File |Save All.

To create your table-editing application, you will need to provide the following:

● A table connection to access data, called providing

● A display of existing and modified data

● A device for navigating the rows

● A mechanism for saving changes,called resolving

Some of these elements involve visual data-aware JBCL components,and some rely on
nonvisual Data Express components. Let’s look at each element in turn.

FIGURE 15.12.
The InterBase Server
setup complete dialog
box.

Click the OK button. The InterBase Server setup complete dialog box appears,as shown
in Figure 15.12. Click the Finish button to complete the InterBase setup.

19.31318-9 CH15 9/24/98 2:01 PM Page 569

Providing Data
In the Navigation pane, select TEFrame.java and then click the Content pane’s Design
tab. In the UI Designer, a Frame object containing a BevelPanel object and a StatusBar
object is displayed.

The first item you want to add is a Database component,which supplies the JDBC con-
nectionto the SQL server. Choose the Data Express tab of the Component Palette, and
then click the Database component. Because this is a nonvisual component (it has no
runtime representation, and it is represented only by an icon during design time),you can
place it into the project by clicking anywhere in the Content pane or Structure pane. The
entry for this component will appear as a member of the Data Access folder in the
Structure pane, so click there. An entry for database1 will appear.

With database1 selected in the Structure pane, click on the Properties tab to open the
Inspector pane to the Properties page. Click the connection property in the Properties
page of the Inspector pane, and then click its ellipsis (…) button to display the
connection property’s editor. Figure 15.13 shows the connection dialog box that
appears.

570 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.13.
The connection dialog
box.

On the General page of the connection dialog box, click the Choose URL button. The
Choose a Connection URL dialog box appears,as shown in Figure 15.14.

Click the Show Data Sources button in the ODBC Drivers area of the Choose a
Connection URL dialog box. Scroll down in the list created in the dialog box to the
following entry:

jdbc:odbc:Dataset Tutorial <sun.jdbc.odbc.JdbcOdbcDriver>

19.31318-9 CH15 9/24/98 2:01 PM Page 570

Building Database Applications 571

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

Select this entry and then click the OK button. Back in the connection dialog box, type
SYSDBA in the Username field and masterkey in the Password field, and then click the
Test Connection button.

Just below the Test Connection button,a message should appear:Connecting. This
should be followed by another message: Success. If not, go back through the preceding
steps,rechecking everything carefully. When you have successfully connected, click the
OK button to close the property editor. Your connection is now established, giving you
access to all the InterBase tables in that database data source.

In addition to a database connection,you need to add a component that can read the data
from a table and provide the rows to the visual components of your user interface. For
this, you’ll need to add a QueryDataSet component from the Component palette’s Data
Express page. Click the QueryDataSet component and then drop it onto the Structure
pane to add queryDataSet1 to your program.

With queryDataSet1 selected, click its query property, and then click the ellipsis button
to display its property editor, the query dialog box shown in Figure 15.15.

FIGURE 15.15.
Modify database
queries in the query
dialog box.

FIGURE 15.14.
The Choose a
Connection URL
dialog box.

19.31318-9 CH15 9/24/98 2:01 PM Page 571

In the Database choice menu on the Query page of the query dialog box, select
database1 from the drop-down list. In the SQL Statement edit field, type this:

select * from COUNTRY

Now click the Test Query button. Below the button will appear the text Running... and
then Success. Click OK to close the dialog box. The Create ResourceBundle dialog box
appears,as shown in Figure 15.16.

572 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.16.
The Create
ResourceBundle
dialog box.

Use the Create ResourceBundledialog box to create a ResourceBundle object encapsu-
lating special-purpose text, in this case SQL statements.

You have two choices for the type of resource bundle—you can select the
ListResourceBundle or PropertyResourceBundle class. Each is a subclass of the
ResourceBundle class. A ListResourceBundle object provides the better performance,
and a PropertyResourceBundle object provides easier access to and modification of the
data. Select ListResourceBundle this time from the Type drop-down list. Click the OK
button.

The following new class,SqlRes, is added to your project:

package DBApps;

import java.util.*;

public class SqlRes extends java.util.ListResourceBundle {
static final Object[][] contents = {
{ “COUNTRY”, “select * from COUNTRY” }};

public Object[][] getContents() {
return contents;

}
}

The SqlRes class is the resource bundle—a SQL resource bundle to be exact—and it’s
extended from the ListResourceBundle class. Your connection and query are completed
and ready to provide data to the data-aware components that you will use in your user
interface.

19.31318-9 CH15 9/24/98 2:01 PM Page 572

Building Database Applications 573

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

User Interface
For your user interface, you already have a Frame object that displays a bordered win-
dow, a StatusBar object on which to display messages,and a BevelPanel object as a
background for the rest of your user interface. You still need to display the data to pro-
vide a way for users to navigate through the data and to provide a way to load other
tables.

On the Control palette’s JBCL page, click the NavigatorControl component and drop it
onto bevelPanel1. The navigatorControl1 will appear in its default size in the upper-
left corner of the panel,but you can use the grab handles to stretch it across the top of
the panel. Also, you should move it down about the same distance as the control is thick.
You’ll be adding a couple of controls at the top later. Next, click the GridControl com-
ponent(also on the JBCL page) and click just below the left side of the
navigatorControl1 component. Hold down the left mouse button while you drag the
mouse cursor to the lower-right corner of the panel,and then let go to create
gridControl1. If it didn’t come out quite the right size, use the grab handles to resize.
Arrange these components as shown in Figure 15.17.

To connect your user interface elements to the query object,click navigatorControl1,
Shift+click gridControl1, and Shift+click statusBar. As you do this,note that the
properties these controls have in common are displayed in the Inspector pane. Now, click
the dataset property and select queryDataSet1 from the list. When you do,you should
see the grid populate with records from the COUNTRY table, and the status bar will display
Record 1 of 14, as shown in Figure 15.17.

FIGURE 15.17.
The user interface is
connected with the
query.

19.31318-9 CH15 9/24/98 2:01 PM Page 573

This takes care of displaying the data and navigation, but you still need to have a way to
load other tables. You will use a ChoiceControl component with a Label component to
indicate its purpose. Choose the AWT tab of the Component Palette, click the Label
component,and then click the upper-left portion of bevelPanel1. Change its text prop-
erty to Currently Editing: and its alignment property to 2.

Click the ChoiceControl componenton the palette’s JBCL page and drop it on
bevelPanel1 just to the right of label1. Double-click choiceControl1’s items property.
Click the ellipsis button. The items dialog box appears,as shown in Figure 15.18.

574 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.18.
The items dialog box.

Add the following list of items to the items dialog box:

COUNTRY
CUSTOMER
DEPARTMENT
EMPLOYEE
EMPLOYEE_PROJECT
JOB
PROJECT
PROJ_DEPT_BUDGET
SALARY_HISTORY
SALES
PHONE_LIST

This is a list of all the tables in the employee.gdb database. You add each item by click-
ing the Add button and then double-clicking on the newly added item. Type the name of
the item from the list. Repeat this procedure until you’ve added all 11 items. Click the
OK button to save the list of selectable items.

The last item for the user interface is a message dialog to confirm that you want to load
the new table selection. Choose the Control palette’s JBCL Containers tab, click the
Message component,and click anywhere on the Structure pane to add message1 to the
Component Tree. Select message1 in the Structure pane, and set its buttonSet property
to OkCancel and its frame property to this. Type Load new table? into its message
property field, and type Load Confirmation into its title property field. Click the

19.31318-9 CH15 9/24/98 2:01 PM Page 574

Building Database Applications 575

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

Inspector pane’s Events tab to change to the Events page, and then triple-click the
actionPerformed event and add the code shown in Listing 15.1.

LISTING 15.1 THE switch STATEMENT.

1: switch (message1.getResult()) {
2: case Message.OK:
3: try {
4: String newSelect = (String)choiceControl1.get();
5: queryDataSet1.close();
6: queryDataSet1.setQuery(new

➥borland.sql.dataset.QueryDescriptor(database1,
7: “select * from “ + newSelect, true));
8: queryDataSet1.executeQuery();
9: statusBar.setDataSet(queryDataSet1);
10: navigatorControl1.setDataSet(queryDataSet1);
11: gridControl1.setDataSet(queryDataSet1);
12: prevSelect = newSelect;
13: }
14: catch (Exception me) {
15: borland.jbcl.dataset.DataSetException.handleException(me);
16: }
17: break;
18: case Message.CANCEL:
19: choiceControl1.select(prevSelect);
20: default:
21: // just close dialog
22: }

If the user clicks the OK button in the message dialog box, you need to handle
the table selection. This should always be done inside a try block because query

operations can throw a DataSetException object,which must be handled or rethrown. In
the try block, newSelect is set to the choiceControl1 selection by calling the get()
method (which returns the int index of the selection) and then casting it to a String

object. Then you close the current query and set the new query using code similar to that
inserted for the original query. This sets up the SQL statement by concatenating “select
* from “ and newSelect. Execute the query by calling queryDataSet1.executeQuery()
and set your three data-aware controls to the newly updated queryDataSet1. The last line
in this block sets the variable prevSelect to the current selection. The catch block calls
the handleException() method to handle the DataSetException object.

If the user clicks the Cancel button in the message dialog box, you need only reset the
selection in choiceControl1 to its original selection,keeping it in sync with the loaded
table. You do this by selecting the value preserved in prevSelect.

TYPE

ANALYSIS

19.31318-9 CH15 9/24/98 2:01 PM Page 575

Well, you’ve used prevSelect twice, so you’d better declare it somewhere! You’ll want
to declare it as a variable in the TEFrame class,so add this line of code just under the
class declaration:

String prevSelect = “COUNTRY”;

It is set to “COUNTRY” to match the original table loaded by the query in the jbInit()
method. Now, if the user cancels his selection,you can do the reset. If he selects a new
table, this variable is updated to reflect the currently loaded table. You also want
choiceControl1 to display “COUNTRY” as its initial selection,so add this line of code to
the jbInit() method:

choiceControl1.select(“COUNTRY”);

There’s one last piece to tie all this together, because you want the message dialog to be
displayed whenever the user makes a selection in choiceControl1. Switch back to UI
Designer mode, select the choiceControl1 object in the Structure pane, and then click
the Events page of the Inspector pane. Triple-click the itemStateChanged event. Type
this line of code in the method stub:

message1.show();

That should do it. Be sure to save your work by selecting File |Save All. Click the Run
button in the toolbar to compile and run the new application. Figure 15.19 shows the
completed application user interface.

576 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

FIGURE 15.19.
The user interface for
Table Editor.

Resolving Changes
Because of the built-in features of the grid, you can resize the columns by dragging their
left and right borderlines,reorder (sort) the entries by clicking a column header, and
scroll both horizontally and vertically to display more columns and rows. Because it is
hooked to the same dataset as the grid, the navigator control is fully functional. The sta-
tus bar, also hooked to the same dataset,displays messages as you navigate through the

19.31318-9 CH15 9/24/98 2:01 PM Page 576

Building Database Applications 577

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

rows. The status bar also displays messages when you insert or delete rows using the
navigator control buttons. So,much of the functionality you need for your table editor is
already here.

This includes saving changes,called resolving. The next-to-last button on the navigator
control, the Save button,saves your changes to the database when it is clicked. You can
also explicitly save changes to the table by adding this line of code where necessary:

database1.saveChanges(queryDataSet1);

This should always be done inside a try block, just like the earlier query-related opera-
tions.

Listing 15.2 shows the completed source code for TEFrame.

LISTING 15.2. TEFrame.java.

1: //Title: Your Product Name
2: //Version:
3: //Copyright: Copyright (c) 1998
4: //Author: Your Name
5: //Company: Your Company
6: //Description:Your description
7: package DBApps;
8:
9: import java.awt.*;

10: import java.awt.event.*;
11: import borland.jbcl.control.*;
12: import borland.jbcl.layout.*;
13: import borland.sql.dataset.*;
14: import java.util.*;
15:
16: public class TEFrame extends DecoratedFrame {
17: String prevSelect = “COUNTRY”;
18: ResourceBundle sqlRes = ResourceBundle.getBundle(“DBApps.SqlRes”);
19:
20: //Construct the frame
21: BorderLayout borderLayout1 = new BorderLayout();
22: XYLayout xYLayout2 = new XYLayout();
23: BevelPanel bevelPanel1 = new BevelPanel();
24: StatusBar statusBar = new StatusBar();
25: Database database1 = new Database();
26: QueryDataSet queryDataSet1 = new QueryDataSet();
27: NavigatorControl navigatorControl1 = new NavigatorControl();
28: GridControl gridControl1 = new GridControl();
29: Label label1 = new Label();
30: ChoiceControl choiceControl1 = new ChoiceControl();

TYPE

continues

19.31318-9 CH15 9/24/98 2:01 PM Page 577

31: Message message1 = new Message();
32:
33: public TEFrame() {
34: try {
35: jbInit();
36: }
37: catch (Exception e) {
38: e.printStackTrace();
39: }
40: }
41: //Component initialization
42:
43: private void jbInit() throws Exception {
44: this.setLayout(borderLayout1);
45: this.setSize(new Dimension(400, 300));
46: this.setTitle(“Table Editor”);
47: statusBar.setDataSet(queryDataSet1);
48: database1.setConnection(new

➥ borland.sql.dataset.ConnectionDescriptor(
➥ “jdbc:odbc:DataSet Tutorial”, “SYSDBA”, “masterkey”, false,
➥ “sun.jdbc.odbc.JdbcOdbcDriver”));

49: queryDataSet1.setQuery(new borland.sql.dataset.QueryDescriptor(
➥ database1, sqlRes.getString(“COUNTRY”), null, true, Load.ALL));

50: navigatorControl1.setDataSet(queryDataSet1);
51: gridControl1.setDataSet(queryDataSet1);
52: gridControl1.setDefaultColumnWidth(1000);
53: label1.setAlignment(2);
54: label1.setText(“Currently Editing:”);
55: choiceControl1.setItems(new String[] {“COUNTRY”, “CUSTOMER”,

➥ “DEPARTMENT”, “EMPLOYEE”, “EMPLOYEE_PROJECT”, “JOB”, “PROJECT”,
➥ “PROJ_DEPT_BUDGET”, “SALARY_HISTORY”, “SALES”, “PHONE_LIST”});

56: choiceControl1.addItemListener(new java.awt.event.ItemListener() {
57: public void itemStateChanged(ItemEvent e) {
58: choiceControl1_itemStateChanged(e);
59: }
60: });
61: choiceControl1.select(“COUNTRY”);
62: message1.setFrame(this);
63: message1.setMessage(“Load new table?”);
64: message1.setTitle(“Load Confirmation”);
65: message1.addActionListener(new java.awt.event.ActionListener() {
66: public void actionPerformed(ActionEvent e) {
67: message1_actionPerformed(e);
68: }
69: });
70: message1.setButtonSet(Message.OK_CANCEL);
71: bevelPanel1.setLayout(xYLayout2);

578 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

LISTING 15.2. CONTINUED

19.31318-9 CH15 9/24/98 2:01 PM Page 578

Building Database Applications 579

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

72: this.add(statusBar, BorderLayout.SOUTH);
73: this.add(bevelPanel1, BorderLayout.CENTER);
74: bevelPanel1.add(navigatorControl1, new XYConstraints(0, 25, 390,

➥-1));
75: bevelPanel1.add(gridControl1, new XYConstraints(0, 51, 390,

➥197));
76: bevelPanel1.add(label1, new XYConstraints(48, 1, -1, -1));
77: bevelPanel1.add(choiceControl1, new XYConstraints(160, 0, 227,

➥19));
78: }
79:
80: void message1_actionPerformed(ActionEvent e) {
81: switch (message1.getResult()) {
82: case Message.OK:
83: try {
84: String newSelect = (String)choiceControl1.get();
85: queryDataSet1.close();
86: queryDataSet1.setQuery(new

➥borland.sql.dataset.QueryDescriptor(
87: database1, “select * from “ + newSelect, true));
88: queryDataSet1.executeQuery();
89: statusBar.setDataSet(queryDataSet1);
90: navigatorControl1.setDataSet(queryDataSet1);
91: gridControl1.setDataSet(queryDataSet1);
92: prevSelect = newSelect;
93: }
94: catch (Exception me) {
95: borland.jbcl.dataset.DataSetException.handleException(me);
96: }
97: break;
98: case Message.CANCEL:
99: choiceControl1.select(prevSelect);
100: default:
101: // just close dialog
102: }
103: }
104:
105: void choiceControl1_itemStateChanged(ItemEvent e) {
106: message1.show();
107: }
108: }

Creating Tables
In any project where you have a QueryDataSet component,you can use it to create a
new SQL table. Now, let’s create one using today’s project.

19.31318-9 CH15 9/24/98 2:01 PM Page 579

With queryDataSet1 selected, click its query property, and then click the ellipsis button
to display its property editor. In the Database choice menu, select database1 from the
drop-down list. In the SQL Statement edit field, type the following:

create table SAMPLETABLE (
firstField char(10),
nextField numeric(5));

Now click the Test Query button. Below the button will appear the text Running... and
then Failed. The error is caused by the fact that the query doesn’t return a result set,
which is actually the desired behavior. An Error dialog box states:

Execution of query failed.

Click the Next> button,and a second message appears:

No ResultSet was produced.

This is what you expected, so dismiss this dialog by clicking OK. Now, click the Browse
Tables button. You should see SAMPLETABLE in the list of tables. When you click SAM-
PLETABLE in the left list box, the right list box displays two columns:FIRSTFIELD and
NEXTFIELD. Click Cancel. Now you can use your table editor to add records to your new
table.

To delete this table from employee.gdb, use this SQL query:

drop table SAMPLETABLE

Summary
Today you created a simple utility application that demonstrated some of the very basic
operations needed to create a database application. You learned about setting up the
Local InterBase Server, and you connected to its sample employee.gdb database. You
also saw how JBuilder makes it easy to create and test new queries using the
QueryDataSet component’s query property.

By using data-aware JBCL components and hooking their dataset properties to the
appropriate QueryDataSet component,you were able to provide data to these compo-
nents. This allowed you to display the data in a grid, navigate through the table rows,and
automatically show table-related messages in a status bar. Resolving changes was also
briefly discussed. You saw that by using the NavigatorControl component’s Save but-
ton, changes were saved to the table’s disk file, and you learned about the
saveChanges() method as well.

580 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

19.31318-9 CH15 9/24/98 2:01 PM Page 580

Building Database Applications 581

15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

This chapter only scratched the surface of what you can do with Java database program-
ming, but hopefully it has whetted your appetite to explore this area of programming.

Q&A
Q Where can I learn more about SQL statements?

A The Local InterBase Server installation includes an excellent tutorial that will teach
you about SQL statements. To go through this tutorial, load the InterBase Help file.
On the Contents page, double-click Getting Started, and then double-click
Windows ISQL Tutorial.

Q I keep tr ying to get my Data Sources set up,but I k eep getting Connection
Failed. I’ ve installed both JBuilder and InterBase. What could be wrong?

A For the connection to be made, the Local InterBase Server must be running.
Normally, when you complete the installation, you should restart your machine or
manually load the Local InterBase Server. After the Local InterBase Server is
loaded, you should see a graphic in the Windows system tray that looks like a serv-
er with a green wedge behind it (the Local InterBase Server logo). Try your con-
nection again; it should work correctly now.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all of these before continuing to the next day.

Quiz
1. Where is the icon for configuring the Local InterBase Server data sources?

2. Where do nonvisual components appear at design time?

3. Which property of a data-aware component needs to be hooked up to the data-
providing component?

4. What one thing must you do before attempting to set and execute a new query?

5. Why do query-related operations need to be put inside a try block?

6. What method can you use to resolve changes to a database?

19.31318-9 CH15 9/24/98 2:01 PM Page 581

Exercises
1. Explore the sample database applications in the c:\jbuilder2\samples\

borland\samples\tutorial\dataset subdirectory. Go through the tutorials in
Part I of the Programmer’s Guide (paper manual) and create some of these samples
from scratch.

2. Convert an existing database application that you have programmed in some other
language (such as C++ or Pascal).

582 Day 15

P2/VB TY JBuilder 2 in 21 Days 31318-9 dietsch Chapter 15 Lp#3

19.31318-9 CH15 9/24/98 2:01 PM Page 582

DAY 16

WEEK 3

Multithreading
Today, you’ll look at threads—what they are and how they can make your pro-
grams work better with other programs and with the Java system in general.
You’ll see how to:

● Think multithreaded thoughts

● Protect your methods and variables from unintended thread conflicts

● Create, start, and stop threads and threaded classes

You’ll also learn how the scheduler works in Java.

Let’s begin by understanding the motivation for threads, which are a relatively
recent innovation in the world of computer science.

Why Use Threads?
Although processes have been around for decades, threads have only recently
been adopted and accepted into the mainstream. This is odd because threads are
extremely valuable, and programs written with them have better performance,
noticeable even to the casual user. In fact, some of the best individual efforts

20.31318-9 CH16 9/24/98 2:03 PM Page 583

over the years have involved implementing a threadlike facility by hand to give a pro-
gram a friendlier feel.

Imagine that you’re using your favorite editor on a large file. When it starts up,does it
need to examine the entire file before it lets you edit? Does it need to make a backup
copy of the file first? If the file is huge, this can make the file load seem to take forever.
Wouldn’t it be better for your editor to show you the first page, let you begin editing, and
somehow (in the background) complete the slower tasks necessary for initialization?
Threads allow exactly this kind of parallelism within a program.

Perhaps the best example of threading (or the lack thereof) is a Web browser. Can your
browser download an indefinite number of files and Web pages at one time while still let-
ting you continue browsing? While pages are downloading, can your browser download
all the pictures and sounds in parallel, interleaving the fast and slow download times of
multiple Internet servers? HotJava can do all these things—and more—by using the
built-in threading features of the Java language.

When a nonmultithreaded program runs,it begins by executing its initialization code,
and then it calls methods and continues processing until it’s either complete or the pro-
gram has exited. This program comprises a single thread, which is the program’s locus of
control. On the other hand, a multithreaded program allows several different execution
threads in a program to run in parallel by trading timeslices so that the threads appear to
be running simultaneously. Whenever you have a complex calculation, anticipate a
lengthy load time, or have anything that takes a long time to execute, it’s a good candi-
date for a new thread.

Applet Threads
You were first introduced to simple threads on Day 9, “Graphics,Fonts,and
Multimedia,” as a necessary part of creating animations. Let’s review those basic con-
cepts as they relate to applets. You need to make five modifications to create an applet
that uses threads:

● Change the signature of your applet class to include the words implements
Runnable.

● Include an instance variable to hold this applet’s thread.

● Modify your start() method to do nothing but spawn a thread and start it run-
ning.

● Create a run() method that contains the actual code that begins your applet’s exe-
cution.

● Create a stop() method to kill the thread and release its memory.

584 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

20.31318-9 CH16 9/24/98 2:03 PM Page 584

Multithreading 585

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

First, change the first line of your class definition to implement the Runnable interface:

import java.applet.*;
public class MyAppletClass extends Applet implements Runnable {...}

Remember that the Runnable interface defines the behavior your applet needs to run a
thread, giving you a default definition for the run() method. By implementing the
Runnable interface, you notify others that they can call the run() method on your
instances.

Second, add an instance variable of type Thread to hold this applet’s thread. In this
example, the instance variable is named runner:

Thread runner;

Third, add a start() method or modify the existing one so that it does nothing but cre-
ate and spawn a new thread. For example:

public void start() {
if (runner == null); {

runner = new Thread(this);
runner.start();

}
}

This example assigns a new thread to the runner instance variable declared earlier and
then calls the Thread class’s start() method to spawn the runner thread.

Fourth, declare the run() method to hold the body of your applet,containing anything
that needs to run in its own thread:

public void run() {
... // the body of your applet’s working code

}

Finally, add a stop()method to suspend execution of that thread whenever the reader
leaves the page. For example:

public void stop() {
if (runner != null); {

runner.stop();
runner = null;

}
}

The stop() method stops the thread from executing and sets the thread’s variable runner
to null to make the Thread object available for garbage collection.

That’s it! With five basic modifications,you have an applet that runs in its own thread.

20.31318-9 CH16 9/24/98 2:03 PM Page 585

Parallelism Problems
If threading is sowonderful,why doesn’t every system have it? Many modern operating
systems have the basic primitives needed to create and run threads,but they are missing a
key ingredient. The rest of the environment is not thread-safe.

Thread-safe denotes a system that can automatically handle potential conflicts
among running threads.

Imagine that you’re running a thread, one of many, and each of these threads is sharing
some important data managed by the system. If your thread were managing the data, it
could take steps to protect it (as you’ll see later today in the “Thinking Multithreaded”
section),but the system is managing it. Now imagine a piece of code in the system that
reads some crucial value, considers what to do for a while, and then increments the
value:

if (crucialValue < 10) {
. . . // consider what to do for a while
crucialValue += 1;

}

Remember that any number of threads might be calling this part of the system at once.
The disaster occurs when two threads have both executed the if test before either has
incremented the value. In this case, the value is clobbered by both threads with the same
increment,so one increment is lost in the process. In this way, mouse or keyboard events
can be dropped, database commits or rollbacks can be lost,and screen displays can be
updated incorrectly.

This is known as the synchronization problem, and it’s inescapable if any significant part
of the system hasn’t been written with threads in mind. Therein lies the barrier to a
threaded environment—the great effort required to rewrite existing libraries for thread
safety. Luckily, Java was written from scratch with thread safety in mind, and every Java
class in its library is thread-safe. Thus,you now have to worry only about your own syn-
chronization and thread-ordering problems because you can assume that the Java system
will do the right thing.

586 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

NEW TERM

20.31318-9 CH16 9/24/98 2:03 PM Page 586

Multithreading 587

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

Consider the single line that follows:

crucialValue += 1;

This line involves three steps:Get the current value, add 1 to it,and store it. (Using
++crucialValue doesn’t help.) All three steps need to happen “all at once”(atomically)
to be safe. Special Java primitives,and the lowest levels of the language, provide you
with the basic atomic operations you need to build safe, threaded programs.

In addition to Java’s thread-safe methods,however, you must also think about how to
make your own methods thread-safe. This requires a new way of thinking.

Thinking Multithreaded
Getting used to threads takesa little while and a new way of thinking. Rather than imag-
ining that you always know exactly what’s happening when you look at a method you’ve
written, you have to ask yourself some additional questions. What will happen if more
than one thread calls into this method at the same time? Do you need to protect it in
some way? What about your class as a whole? Are you assuming that only one of its
methods is running at a time?

Often such assumptions are made without really being considered, and a local instance
variable gets corrupted as a result. Let’s make a few mistakes and then try to correct
them. First, examine Listing 16.1,which shows the simplest case.

You might be wondering about the fundamental synchronization problem.
Can’t you just make the “consider what to do” area in the example smaller
and smaller to reduce or eliminate the problem? Without atomic operations,
the answer is no. (Atomic operations are a series of instructions that can’t be
interrupted by another thread. They make the operations appear to happen
instantaneously, as if they were a single operation.) Even if the “consider
what to do” took zero time, it’s still at least two operations: First, look at
some variable to make a decision, and then change something to reflect
that decision. These two steps can never be made to happen “at the same
time” without an atomic operation. To use an atomic operation, you must
be provided with one by the system; it’s literally impossible to create one on
your own.

Note

20.31318-9 CH16 9/24/98 2:03 PM Page 587

LISTING 16.1. ThreadCounter.java.

1: public class ThreadCounter {
2: int crucialValue;
3:
4: public void countMe() {
5: crucialValue += 1;
6: }
7:
8: public int getCount() {
9: return crucialValue;
10: }
11: }

This code suffers from the purest form of the synchronization problem: The += takes
more than one step, and you might miscount the number of threads as a result. (Don’t be
too concerned about the thread specifics at this point. Just imagine that a whole bunch of
threads can call countMe() at slightly different times.) Java lets you fix this, as shown in
Listing 16.2.

LISTING 16.2. SafeThreadCounter.java.

1: public class SafeThreadCounter {
2: int crucialValue;
3:
4: public synchronized void countMe() {
5: crucialValue += 1;
6: }
7:
8: public int getCount() {
9: return crucialValue;
10: }
11: }

The synchronized keyword tells Java to make the block of code in the method thread-
safe. Only one thread will be allowed inside this method at any one time; others must
wait until the currently running thread is finished with it before they can begin running it.
Basically, this atomizes the method, making it appear to happen instantaneously.

However, this implies that synchronizing a large, long-running, commonly called method
is almost always a bad idea. All your threads would end up stuck in a queue at this bot-
tleneck, waiting single-file to get their turn at this one slow method. So be sure to break
the parts that really need protecting into small,atomizable methods.

588 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

TYPE

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 588

Multithreading 589

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

The synchronization problem is even worse than you might think for unsynchronized
variables. Because the interpreter can keep them around in registers during computations,
and because a thread’s registers can’t be seen by other threads (especially if they’re on
another processor in a true multiprocessor computer),a variable can be corrupted in such
a way that no possible order of thread updates could have produced the result. To avoid
this bizarre case, you can label a variable volatile, meaning that you know it will be
updated asynchronously by multiprocessor-like threads. Java then loads and stores the
variable each time it’s needed instead of using registers. This forces the program to use
the “master copy” of the variable each time the variable’s value is requested.

In earlier releases of Java, variables that were safe from these odd effects
were labeled threadsafe. Because most variables are safe to use, they are
now assumed to be thread-safe unless you mark them volatile. Using the
volatile keyword is such a rare event, however, that it was not used any-
where in the Java Class Library.

Note

Points About Points
The howMany() methodin Listing 16.2 doesn’t need to be synchronized because it sim-
ply returns the current value of the instance variable. A method higher in the call chain
might need to be synchronized, though—one that uses the value returned from the called
method. Listing 16.3 shows an example.

LISTING 16.3. Point.java.

1: public class Point { // redefines Point from java.awt package
2: private float x, y; // OK since this is a different package
3:
4: public float getX() { // needs no synchronization
5: return x;
6: }
7:
8: public float getY() { // needs no synchronization
9: return y;
10: }
11: . . . // methods to set and change x and y
12: }
13:
14: public class UnsafePointPrinter {
15: public void print(Point p) {
16: System.out.println(“The point’s x is “ + p.getX()
17: + “ and y is “ + p.getY() + “.”);
18: }
19: }

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 589

The howMany() method is analogous to the getX() and getY() methods shown previ-
ously. They don’t require synchronization because they just return the values of instance
variables. It is the responsibility of the caller of the getX() and getY() methods to
decide whether the caller needs to synchronize itself—and in this case, it does. Although
the print() method simply reads values and prints them,it reads two values. This means
that there is a chance that some other thread, running between the call to p.getX() and
p.getY(), could have changed the values assigned to the x and y variables encapsulated
in Point p. Remember, you don’t know how many other threads have a way to reach
and call methods on this Point object! “Thinking multithreaded”comes down to being
careful anytime you make an assumption that something has not happened between two
parts of your program (even two parts of the same line, or the same expression,such as
the string + concatenation in this example).

Understanding the TryAgainPointPrinter Class
You could try to make a safe version of the print() method by simply adding the
synchronized keyword modifier to it, but instead, let’s try a slightly different approach,
which is shown in Listing 16.4.

LISTING 16.4. TryAgainPointPrinter.java.

1: public class TryAgainPointPrinter {
2: public void print(Point p) {
3: float safeX, safeY;
4:
5: synchronized(this) {
6: safeX = p.getX(); // these two lines now
7: safeY = p.getY(); // occur atomically
8: }
9: System.out.println(“The point’s x is “ + safeX
10: + “ and y is “ + safeY + “.”);
11: }
12: }

The synchronized statement takes an argument that says what object you want to lock
to prevent more than one thread from executing the enclosed block of code at the same
time. Here, you use this (the instance itself),which is exactly the object that would have
been locked if you had modified the whole print() method by adding the synchronized
keyword. You have an added bonus with this new form of synchronization:You can spec-
ify exactly what part of a method needs to be protected, and the rest can be left alone.

Notice that you took advantage of this freedom to make the protected part of the method

590 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 590

Multithreading 591

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

as small as possible while leaving the string creations,concatenations,and printing
(which together take a small but nonzero amount of time) outside the “safe” area. This is
both good style (as a guide to the reader of your code) and more efficient because fewer
threads get stuck waiting to execute the protected area.

Understanding the SafePointPrinter Class
You might still be concerned about the TryAgainPointPrinter example. It seems as if
you made sure that nothing executes internal calls to the getX() and getY() methods out
of order; but have you prevented Point p from changing out from under you? The
answer is no. You still haven’t solved that part of the problem because between the time
that the TryAgainPointPrinter() method is called (and grabs the current Point object
assigned to the p variable) and its synchronized statement method is executed, another
thread could have changed Point p. You really need the full power of the synchronized
statement here. Listing 16.5 shows how to provide this.

LISTING 16.5. SafePointPrinter.java.

1: public class SafePointPrinter {
2: public void print(Point p) {
3: float safeX, safeY;
4:
5: synchronized(p) { // nothing can change p
6: safeX = p.getX(); // while these two lines
7: safeY = p.getY(); // occur atomically
8: }
9: System.out.println(“The point’s x is “ + safeX
10: + “ and y is “ + safeY + “.”);
11: }
12: }

Now you’ve got it. You actually needed to protect the Point object assigned to the p vari-
able from changes,so you lock it by giving it as the argument to your synchronized
statement. Now when the getX() and getY() methods are executed at the same time,
they can be sure to get the current values assigned to the x and y variables encapsulated
by the Point object assigned to the p variable when the synchronized statement
executes.

A Safe Point Class
You’re still assuming, however, that the Point object assigned to the p variable has
properly protected itself. You can always assume this about system classes,but you
redefined the Point class,so now it’s your worry. You can make sure by writing and syn-

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 591

chronizing the only method that can change the values assigned to the x and y variable
inside the Point object yourself, as shown in Listing 16.6.

LISTING 16.6. Point.java.

1: public class Point {
2: private float x, y;
3:
4: public float getX() {
5: return x;
6: }
7:
8: public float getY() {
9: return y;
10: }
11:
12: public synchronized void setXandY(float newX, float newY) {
13: x = newX; // these two lines
14: y = newY; // occur atomically
15: }
16: }

By making the only set method in the Point object synchronized, you guarantee that any
other thread trying to grab a Point object and change it out from under you has to wait.
You’ve locked the Point object assigned to the p variable with your synchronized(p)
statement,and any other thread has to try to lock the same Point object (the same
instance) via the implicit synchronized(this) statement that the Point object now exe-
cutes upon entering the setXandY() method. Thus,at last you are thread-safe.

If Java had some way of returning more than one value at a time, you could

592 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

TYPE

write a synchronized getXandY() method for the Point class that returned
both values safely. In the current Java language, such a method could return
a new, unique Point object to guarantee to its callers that no one else has a
copy that might be changed. This sort of trick could then be used to mini-
mize the parts of the system that needed to be concerned with synchroniza-
tion.

Note

Understanding the ReallySafePoint Class
An added benefit of the use of the synchronized modifier on methods (or of
synchronized(this) {...}) is that only one of these methods (or blocks of code) can

20.31318-9 CH16 9/24/98 2:03 PM Page 592

Multithreading 593

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

run at a time. You can use that knowledge to guarantee that only one of several crucial
methods in a class will run at a time. Consider Listing 16.7.

LISTING 16.7. ReallySafePoint.java.

1: public class ReallySafePoint {
2: private int x, y;
3:
4: public synchronized Point getUniquePoint() {
5: // replaces getX and getY methods
6: return new Point(x,y); // can be less safe because
7: } // only the caller has it
8:
9: public synchronized void setXandY(int newX, int newY) {
10: x = newX;
11: y = newY;
12: }
13:
14: public synchronized void scale(int scaleX, int scaleY) {
15: x *= scaleX;
16: y *= scaleY;
17: }
18:
19: public synchronized void add(ReallySafePoint aRSP) {
20: Point p = aRSP.getUniquePoint();
21:
22: x += p.x;
23: y += p.y;
24: // Point p is soon thrown away by GC; no one else ever saw it
25: }
26: }

This example combines several ideas mentioned earlier. To avoid callers having to
synchronize(p) whenever getting the values assigned to the x and y variables,you’ve
given them a synchronized way to get a unique Point object (such as returning multiple
values). Each method then modifies the object’s instance variables and is also
synchronized to prevent the methods from running between the references to the values
assigned to the x and y variables in the getUniquePoint() method and from stepping on
each other as they modify the values assigned to the local x and y variables. Note that the
add() method itself uses the getUniquePoint() method to avoid having to say
synchronized(aRSP).

Classes that are this safe are a little unusual. It is more often your responsibility to pro-
tect yourself from other threads using a commonly held object (such as a Point object).
You can only fully relax if you created the object yourself and nothing else has access to
it. Otherwise, always consider thread safety.

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 593

Class Variable Protection
Suppose that you want a class variable to collect some information across all of a class’s
instances,as shown in Listing 16.8.

LISTING 16.8. StaticCounter.java.

1: public class StaticCounter {
2: private static int crucialValue;
3:
4: public synchronized void CountMe() {
5: crucialValue += 1;
6: }
7: }

Is this safe? If crucialValue were an instance variable, it would be. Because it’s a class
variable, however, and there is only one copy of it for all instances,you can still have
multiple threads modifying it by using different instances of the class. (Remember, the
synchronized modifier locks the object this—an instance.) Luckily, you already have
the tools you need to solve the problem. Listing 16.9 shows the solution.

LISTING 16.9. StaticCounter.java.

1: public class StaticCounter {
2: private static int crucialValue;
3:
4: public void CountMe() {
5: syncrhonized(getClass()) { // can’t directly name StaticCounter
6: crucialValue += 1; // the (shared) class is now locked
7: }
8: }
9: }

The trick is to lock on a different object—not on an instance of the class,but on the class
itself. Because a class variable is “inside” a class,just as an instance variable is inside an
instance, this shouldn’t be all that surprising. Similarly, classes can provide global
resources that any instance (or other class) can access directly using the class name and
lock using that same class name. In the preceding example, the crucialValue variable
was used from within an instance of the StaticCounter class,but if the crucialValue
variable were declared public instead, from anywhere in the program,it would be safe
to say this:

594 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

TYPE

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 594

Multithreading 595

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

synchronized(Class.for.Name(“StaticCounter”)) {
StaticCounter.crucialValue +=1;

}

The direct use of another class’s (or object’s) variable is really not good style.
It’s used here simply to demonstrate something quickly. The StaticCounter
class would normally provide a countMe()-like class method of its own to do
this sort of dirty work.

Note

You can now begin to appreciate how much work the Java team has done for you by con-
sidering all these eventualities for each and every class (and method) in the Java class
library to make it thread-safe.

Creating and Using Threads
Now that you understand the power (and dangers) of having many threads running simul-
taneously, you’ll see how those threads are actually created.

The system itself always has a few so-called daemon threads running, one of
which is constantly doing the tedious task of garbage collection for you in
the background. There is also a main user thread that listens for events from
your mouse and keyboard. If you’re not careful, you can sometimes lock up
this main thread. If you do, no events are sent to your program, and it
appears to be dead. A good rule to keep in mind is that whenever you’re
doing something that can be done in a separate thread, it probably should
be. Threads in Java are relatively cheap to create, run, and destroy, so don’t
use them too sparingly.

Caution

Because there is a class java.lang.Thread, you might guess that you can create a thread
of your own by subclassing it—and you’re right:

public class MyFirstThread extends Thread { // i.e. java.lang.Thread
public void run() {

. . . // do something useful
}

}

You now have a new type of Thread class called MyFirstThread, which does something
useful (unspecified) when its run() method is called. Of course, no one has created this
thread or called its run() method, so it does absolutely nothing at the moment. To actu-
ally create and run an instance of your new thread class,you write the following:

20.31318-9 CH16 9/24/98 2:03 PM Page 595

MyFirstThread aMFT = new MyFirstThread();

aMFT.start(); // calls the run() method

You create a new instance of your thread class and then ask it to start running. What
could be simpler? Stopping a thread:

aMFT.stop();

Besides responding to the start() and stop() methods,a thread can also be temporarily
suspended and later resumed:

Thread t = new Thread();
t.suspend();
. . . // do something special while t isn’t running
t.resume();

A thread will automatically call the suspend() method when it’s first blocked at a
synchronized statement,and then it’ll call the resume() method when it’s later
unblocked (when it’s that thread’s turn to execute the statement).

The Runnable Interface
This is allwell and good if every time you want to create a thread you have the luxury of
being able to place it under the Thread class in the single-inheritance class tree. What if
it more naturally belongs under some other class,from which it needs to get most of its
implementation? Interfaces come to the rescue:

public class ImportantThreadedSubclass extends ImportantClass implements
➥Runnable {

public void run() {
. . . // do something useful

}
}

By implementing the Runnable interface, you declare your intention to run in a separate
thread. In fact,the Thread class itself implements the Runnable interface. As you also
might guess from this example, the Runnable interface specifies only one method:the
run() method. As in the MyFirstThread class,you expect something to create an
instance of a thread and somehow call your run() method. Here’s how that is accom-
plished:

ImportantThreadedSubclass anITS = new ImportantThreadedSubclass();
. . .
Thread aThread = new Thread(anITS);
. . .
aThread.start(); // calls the run() method indirectly

596 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

20.31318-9 CH16 9/24/98 2:03 PM Page 596

Multithreading 597

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

First you create an instance of the ImportantThreadedSubclass class. Then,by passing
this instance to the constructor making the new Thread object,you assign the thread to
the aThread variable. Whenever the Thread object assigned to the aThread variable starts
up, its run() method calls the run() method of the target it was given (assumed by the
Thread object to be an object that implements the Runnable interface). Therefore, when
aThread.start() is executed, it indirectly calls your run() method. You can stop the
thread assigned to the aThread variable by calling the stop() method, of course.

If you don’t need to talk to the Thread object explicitly or to the instance of
the ImportantThreadedSubclass class, here’s a one-line shortcut:

new Thread(new ImportantThreadedSubclass()).start();

Tip

Understanding the ThreadTester Class
Listing 16.10 shows a longer, more involved example.

LISTING 16.10. SimpleRunnable.java.

1: public class SimpleRunnable implements Runnable {
2: public void run() {
3: System.out.println(“Currently in thread named ‘“
4: + Thread.currentThread().getName() + “‘.”);
5: } // any other methods run() calls are in current thread as well
6: }
7:
8: public class ThreadTester {
9: public static void main(String args[]) {
10: SimpleRunnable aSR = new SimpleRunnable();
11:
12: while (true) {
13: Thread t = new Thread(aSR);
14: System.out.println(“new Thread() “
15: + (t == null ? “fail” : “succeed”)
16: + “ed.”);
17: t.start();
18: try {
19: t.join();
20: }
21: catch (InterruptedException ignored) {}
22: // waits for thread to finish its run() method
23: }
24: }
25: }

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 597

You might be concerned that only one instance of the class SimpleRunnable is created,
but many new threads are using it. Don’t they get confused? Remember to separate in
your mind the instance (and the methods it understands) from the various threads of exe-
cution that can pass through it. The methods provide a template for execution,and the
multiple threads created share that template. Each remembers where it is executing and
whatever else it needs to make it distinct from the other running threads. They all share
the same instance and the same methods. That’s why, when adding synchronization, you
need to imagine numerous threads running rampant over each of your methods.

The currentThread() class method can be called to get the thread in which a method is
currently executing. If the SimpleRunnable class were a subclass of Thread, its methods
would know the answer already (it is the running thread). Because the SimpleRunnable

class implements the Runnable interface, however, and counts on something else (the
ThreadTester class main() method) to create the thread, its run() method needs an
alternative way to get its hands on that thread. Often you’ll be deep inside methods
called by your run() method when suddenly you need to get the current thread. The
class method shown in the example works,no matter where you are.

598 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

You can do some reasonably dangerous things with your knowledge of
threads. For example, suppose that you’re running in the main thread of the
system and, because you think you’re in a different thread, you accidentally
do this:

Thread.currentThread().stop();

This has unfortunate consequences for your soon-to-be-deceased program!

Caution

The example then calls the getName() method on the current thread to get the thread’s
name (usually something helpful,such as Thread-23) so that it can tell the world in
which thread the run() method is running.

The final thing to note is the use of the join() method, which, when sent to a thread,
means “I’m planning to wait forever for you to finish your run() method.” You don’t
want to do this lightly. If you have anything else important you need to get done in your
thread anytime soon,you can’t count on how long the joined thread might take to com-
plete. In the example, the run() method is short and finishes quickly, so each loop can
safely wait for the previous thread to die before creating the next one. (Of course, in this
example, you didn’t have anything else you wanted to do while waiting for the join()
method anyway.)

20.31318-9 CH16 9/24/98 2:03 PM Page 598

Multithreading 599

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

Here’s the output produced:

new Thread() succeeded.
Current in thread named ‘Thread-1’.
new Thread() succeeded.
Current in thread named ‘Thread-2’.
new Thread() succeeded.
Current in thread named ‘Thread-3’.
^C

Ctrl+C was pressed to interrupt the program because otherwise it would continue forever.

Understanding the NamedThreadTester Class
If you want your threads to have specific names,you can assign them yourself by using a
two-argument form of the Thread class constructor, as shown in Listing 16.11.

LISTING 16.11. NameThreadTester.java.

1: public class NamedThreadTester {
2: public static void main(String args[]) {
3: SimpleRunnable aSR = new SimpleRunnable();
4:
5: for (int i = 1; true; ++i) {
6: Thread t = new Thread(aSR, “” + (100 - i)
7: + “ threads on the wall...”);
8: System.out.println(“new Thread() “
9: + (t == null ? “fail” : “succeed”)
10: + “ed.”);
11: t.start();
12: try {
13: t.join();
14: }
15: catch (InterruptedException ignored) {}
16: // waits for thread to finish its run() method
17: }
18: }
19: }

This constructor takes a target object,as before, and a String object,which names the
new thread. Here’s the output produced:

new Thread() succeeded.
Current in thread named ‘99 threads on the wall...’.
new Thread() succeeded.
Current in thread named ‘98 threads on the wall...’.
new Thread() succeeded.
Current in thread named ‘97 threads on the wall...’.
^C

OUTPUT

TYPE

OUTPUT

20.31318-9 CH16 9/24/98 2:03 PM Page 599

Naming a thread is one easy way to pass it some information. This information flows
from the parent thread to its new child. It’s also useful,for debugging purposes,to give
threads meaningful names (such as networkInput) so that when they appear during an
error—in a stack trace, for example—you can easily identify which thread caused the
problem.

Thread Groups
You might alsothink of using names to help group or organize your threads,but Java
actually provides a ThreadGroup class to perform this function. To set up the
ThreadGroup object itself, two constructors are provided:

public ThreadGroup(aThreadGroupNameString)

public ThreadGroup(parentThreadGroup, aThreadGroupNameString)

The first constructor creates a new thread group named aThreadGroupNameString, and
its parent is the currently running thread’s ThreadGroup object. The second constructor
creates a new thread group named aThreadGroupNameString, and its parent is the
parentGroupThread.

A ThreadGroup object lets you organize threads into named groups and hierarchies,to
control them all as a unit,and to keep them from being able to affect other threads (use-
ful for security). Here are the three constructors with which you can assign a new thread
to a ThreadGroup object:

Thread(aThreadGroup, aRunnableTarget)

Thread(aThreadGroup, aThreadNameString)

Thread(aThreadGroup, aRunnableTarget, aThreadNameString);

The first constructor creates the thread as a member of aThreadGroup and has as its
target aRunnableTarget. The second constructor creates the thread as a member of
aThreadGroup and names the thread aThreadNameString. The third constructor does
it all.

Knowing When a Thread Has Stopped
Let’s imagine a different version of the NamedThreadTester example, one that creates a
thread and then hands the thread off to other parts of the program. Suppose that it would
then like to know when that thread is killed (the stop method is called) so that it can per-
form a cleanup operation. If SimpleRunnable were a subclass of the Thread class,you

600 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

20.31318-9 CH16 9/24/98 2:03 PM Page 600

Multithreading 601

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

might try to catch the stop method whenever it’s sent—but look at the Thread class dec-
laration of the stop method:

public final void stop() {...}

The final keyword means that you can’t override this method in a subclass. In any
event,SimpleRunnable isn’t a subclass of the Thread class,so how can this imagined
example possibly catch the untimely death of its thread? The answer is in Listing 16.12.

LISTING 16.12. SingleThreadTester.java.

1: public class SingleThreadTester {
2: public static void main(String args[]) {
3: Thread t = new Thread(new SimpleRunnable());
4: try {
5: t.start();
6: someMethodThatMightKillTheThread(t);
7: }
8: catch (ThreadDeath aTD) {
9: . . . // do some required cleanup
10: throw aTD; // re-throw the error
11: }
12: }
13: }

All you need know is that if the thread created in the example is killed, it throws an error
of class ThreadDeath. The code catches that error and performs the required cleanup. It
then rethrows the error, allowing the thread to finally die. The cleanup code isn’t called if
the thread dies a natural death (its run() method completes),but that’s fine; the example
asserted that cleanup was needed only when the stop() method was used on the thread.

Threads can die in other ways—for example, by throwing uncaught exceptions. In these
cases,the stop() method is never called, and the code in Listing 16.12 wouldn’t be suf-
ficient. (If the cleanup must occur no matter how the thread dies,you can always put it in
a finally clause.) Because unexpected exceptions can come out of nowhere to kill a
thread, multithreaded programs that carefully handle all their exceptions are more pre-
dictable, robust,and easier to debug.

Thread Scheduling
You might be wondering in exactly what order your threads are run by the Java system
scheduler.

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 601

The scheduleris the part of the system that decides the real-time ordering of
threads.

The scheduler orders threads based on default and assigned priorities, requirements of
other running threads,current availability of system resources,and a number of other
considerations,so there’s no way to precisely answer this question in advance. On the
other hand, if you’re wondering how you can control that order, although it’s a lot of
work, it can certainly be done.

Preemptive Versus Nonpreemptive
Normally, any scheduler has two fundamentally different ways of looking at its job:pre-
emptive scheduling and nonpreemptive timeslicing.

In preemptive timeslicing, the scheduler runs the current thread until it has used
up a set amount of time. Then the scheduler interrupts the thread, suspends it,

and resumes the next thread in line for another set amount of time. The set amount of
time is usually a tiny fraction of a second—so tiny that as each thread uses its slice of
time in turn, all threads appear to be running simultaneously.

In nonpreemptive scheduling, the scheduler runs the current thread forever,
requiring that the thread tell the scheduler when it’s safe to start a different

thread. Each thread appears to have control of the system until it explicitly gives up that
control.

Nonpreemptive scheduling always asks for permission to schedule and is valuable in
time-critical real-time applications in which being interrupted at the wrong moment,or
for too long, could have dire consequences. However, most modern schedulers use pre-
emptive timeslicing because, except for a few time-critical cases,it has turned out to
make writing multithreaded programs much easier. For example, it doesn’t force each
thread to decide exactly when it should yield control to another thread. Instead, every
thread can just run on blindly, knowing that the scheduler will be judicious about giving
all the other threads their chance to run.

This approach is still not the ideal way to schedule threads. You’ve given up a bit too
much control to the scheduler. The final touch that many modern schedulers add is to
allow you to assign each thread a priority. This creates a total ordering of all threads,
making some threads more “important” than others. Being higher priority might mean
that a thread gets a timeslice more often (or gets more time in its timeslice),but this
always means that the thread can interrupt other, lower-priority threads,even before their
timeslice has expired.

602 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

NEW TERM

NEW TERM

NEW TERM

20.31318-9 CH16 9/24/98 2:03 PM Page 602

Multithreading 603

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

Java doesn’t precisely specify scheduler behavior. Threads can be assigned priorities,and
when a choice is made between several threads that all want to run, the highest-priority
thread wins. However, Java doesn’t specify what happens when threads of the same pri-
ority want to run. In fact,tugs-of-war between threads with the same priority are
resolved differently, depending on the underlying platform. Some platforms cause Java to
behave more like preemptive timeslicing, and others more like a nonpreemptive sched-
uler.

Not knowing the fine details of how scheduling occurs is perfectly all right,
but not knowing whether equal-priority threads must explicitly yield or face
running forever is not a good thing. For example, all the threads you’ve
created so far are equal-priority threads, so you don’t know their cross-
platform scheduling behavior.

Note

Testing Your Scheduler
To find out what kind of scheduler you have on your system,try the code in Listing
16.13 and Listing 16.14.

LISTING 16.13. RunningInIdaho.java.

1: public class RunningInIdaho implements Runnable {
2: public void run() {
3: while (true)
4: System.out.println(Thread.currentThread().getName());
5: }
6: }

LISTING 16.14. PotatoThreadTester.java.

1: public class PotatoThreadTester {
2: public static void main(String args[]) {
3: RunningInIdaho aRII = new RunningInIdaho();
4: new Thread(aRII, “one potato”).start();
5: new Thread(aRII, “two potato”).start();
6: }
7: }

TYPE

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 603

For a nonpreemptive scheduler, the output will look like this:

one potato
one potato
...
one potato
^C

This would go on forever, until you interrupted the program by pressing Ctrl+C. For a
preemptive timeslicing scheduler, this program alternates between the two threads:

one potato
one potato
...
one potato
two potato
two potato
...
two potato
one potato
^C

It will k eep alternating like this until you once again interrupt it using Ctrl+C. What if
you want to ensure that the two threads will take turns,no matter what the system sched-
uler wants to do? You can rewrite the RunningInIdaho class to match Listing 16.15.

LISTING 16.15. RunningInIdaho.java.

1: public class RunningInIdaho implements Runnable {
2: public void run() {
3: while (true)
4: System.out.println(Thread.currentThread().getName());
5: Thread.yield(); // let another thread run for a while
6: }
7: }

604 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

OUTPUT

OUTPUT

TYPE

Normally, you would have to write:

Thread.currentThread().yield()

to get your hands on the current thread and then yield. However, because
this usage is so common, the Thread class provides the method call:

Thread.yield()

as a shortcut alternative to the longer method call.

Tip

20.31318-9 CH16 9/24/98 2:03 PM Page 604

Multithreading 605

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

The Thread.yield() method explicitly gives any other threads that are waiting a chance
to begin running. If no other threads are waiting to run, the thread that called the
yield() method simply regains control and continues running. In the current example,
another thread is just dying to run. So when you now execute the class ThreadTester, it
should output the following:

one potato
two potato
one potato
two potato
one potato
two potato
one potato
^C

Even if your system scheduler is nonpreemptive and would never normally run the sec-
ond thread, calling the yield() method will do the trick.

Understanding the PriorityThreadTester Class
To see whether priorities are working on your system,try the code in Listing 16.16.

LISTING 16.16. PriorityThreadTester.java.

1: public class PriorityThreadTester {
2: public static void main(String args[]) {
3: RunningInIdaho aRII = new RunningInIdaho();
4: Thread t1 = new Thread(aRII, “one potato”);
5: Thread t2 = new Thread(aRII, “two potato”);
6:
7: t2.setPriority(t1.getPriority() + 1);
8: t1.start(); // at priority Thread.NORM_PRIORITY
9: t2.start(); // at priority Thread.NORM_PRIORITY + 1
10: }
11: }

OUTPUT

TYPE

The values representing the lowest, normal, and highest priorities that
threads can be assigned are stored in class variables of the Thread class:
MIN_PRIORITY, NORM_PRIORITY, and MAX_PRIORITY. By default, the system as-
signs new threads the priority NORM_PRIORITY. Priorities in Java are currently
defined in a range from 1 to 10, with 5 being normal, but you shouldn’t
depend on these numerical values. Always use the class variables or some
expression that relies on the class variables.

Tip

20.31318-9 CH16 9/24/98 2:03 PM Page 605

If two potato shows up as the first line of output,your system preempts using priorities.
What actually happens here? Imagine that the first thread (t1) has just begun to run.
Before it has a chance to print anything, along comes a higher-priority thread (t2) that
wants to run right away. That higher-priority thread preempts (interrupts) the first and
prints two potato before t1 prints anything. In fact,if you use the RunningInIdaho
class from Listing 16.13,t2 stays in control forever, printing two potato lines,because
it has higher priority than t1 and never yields control. If you use the RunningInIdaho
class from Listing 16.15,the output consists of alternating lines as before, but always
starting with two potato.

Understanding the ComplexThread Class
Listing 16.17 is a good example of how complex threads behave.

LISTING 16.17. ComplexThread.java.

1: public class ComplexThread extends Thread {
2: private int delay;
3:
4: ComplexThread(String name, float seconds) {
5: super(name);
6: delay = (int) seconds * 1000; // delays are in milliseconds
7: start(); // start your engines!
8: }
9:
10: public void run() {
11: while (true) {
12: System.out.println(Thread.currentThread().getName());
13: try {
14: Thread.sleep(delay);
15: }
16: catch (InterruptedException e) {
17: return;
18: }
19: }
20: }
21:
22: public static void main(String args[]) {
23: new ComplexThread(“one potato”, 1.1F);
24: new ComplexThread(“two potato”, 1.3F);
25: new ComplexThread(“three potato”, 0.5F);
26: new ComplexThread(“four”, 0.7F);
27: }
28: }

This example combines the thread and its tester into a single class. Its constructor takes
care of naming and starting itself because it is now a Thread object. The main() method

606 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

TYPE

20.31318-9 CH16 9/24/98 2:03 PM Page 606

Multithreading 607

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

creates new instances of its own class because that class is a subclass of Thread. The
run() method is also more complicated because it now uses,for the first time, a method
that can throw an unexpected exception.

The Thread.sleep() method forces the current thread to call the yield() method and
then waits for at least the specified amount of time to elapse before allowing that thread
to run again. However, another thread might interrupt the sleeping thread. In such a case,
it throws an InterruptedException object. Now, because the run() method isn’t
defined as throwing this exception, you must “hide” this fact by catching and handling it
yourself. Because interruptions are usually requests to stop,you should exit the thread,
which you can do by simply returning from the run() method.

This program should output a repeating but complex pattern of four different lines,where
every once in a great while you see the following:

...
one potato
two potato
three potato
four
...
^C

Study the pattern output to prove to yourself that true parallelism is going on inside Java
programs. You might also begin to appreciate that, if even this simple set of four threads
can produce such complex behavior, many more threads must be capable of producing
near chaos if not carefully controlled. Luckily, Java provides the synchronization and
thread-safe libraries you need to control this chaotic but powerful feature.

Summary
Today, you saw that although parallelism is desirable and powerful, it introduces many
new problems that must be considered and controlled. For example, methods and vari-
ables need to be protected from thread conflicts.

By “thinking multithreaded,” you can detect the places in your programs that require
synchronization (statements or modifiers) to make them thread-safe. A series of Point
object examples demonstrated the various levels of safety you can achieve, and thread
tester examples showed how subclasses of Thread or classes that implement the
Runnable interface are used to create multithreaded programs.

You also learned how to use the yield(), start(), stop(), suspend(), and resume()
methods in your threads and how to catch the dreaded ThreadDeath object whenever it
happens. You were also introduced to thread naming and thread grouping.

OUTPUT

20.31318-9 CH16 9/24/98 2:03 PM Page 607

Finally, you learned about preemptive timeslicing and nonpreemptive scheduling, both
with and without priorities. Several examples showed you how to test the Java system to
see which type of scheduling it performs on a particular platform.

You now know enough to begin writing the most complex type of programs:multi-
threaded. As you get more comfortable with threads,you may begin to use the
ThreadGroup class or the enumeration methods of the Thread class to get your hands on
all the threads in the system and manipulate them. Don’t be afraid to experiment; you
can learn only by trying.

Q&A
Q If thr eads are so important to Java, why haven’t they appeared throughout

the entire book?

A Actually, they have. Every standalone program written so far has created at least
one thread—the one in which it is running. Of course, in those instances,the sys-
tem created that thread automatically. Now you have learned how to create your
own threads explicitly.

Q Exactly how do these system-created threads get created and run? What about
applets?

A When a simple standalone Java program starts up,the system creates a main
thread, and its run() method calls your application’s main() method to execute
your program—you do nothing to get that thread. Similarly, when a simple applet
loads into a Java-capable browser, a thread has already been created by the
browser, and that thread’s run() method calls your applet’s init() and start()
methods to start your program—again, you do nothing to get that thread. In both
cases,a new thread was created by the Java system itself.

Q The ThreadTester class has an infinite loop that creates threads and then joins
with them. Is it really infinite?

A In theory, yes. In actuality, how far the loop runs is determined by the resource lim-
its (and the stability) of the threads package and garbage collector in your Java sys-
tem.

608 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

20.31318-9 CH16 9/24/98 2:03 PM Page 608

Multithreading 609

16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

Q I know Java is still a bit fuzzy about the scheduler’s behavior, but can you tell
me more?

A Here are the details,relayed by Arthur van Hoff at Sun:How Java schedules
threads “...depends on the platform. It is usually preemptive, but not always time-
sliced. Priorities are not always observed, depending on the underlying implemen-
tation.” This last clause gives you a hint that, in some future release, the design and
implementation might be made clearer with regard to scheduling behavior.

Q Does Java support more complex multithr eaded concepts, such as sema-
phores?

A The Object class in Java provides methods that can be used to build up condition
variables,semaphores,and any higher-level parallel construct you might need. The
wait() method (and its two variants with time-outs) causes the current thread to
wait until some condition has been satisfied. The notify() (or notifyAll())
method, which must be called from within a synchronized method or block, tells
the thread (or all threads) to wake up and check that condition again because some-
thing has changed. By carefully combining these two primitive methods,any data
structure can be manipulated safely by a set of threads,and all the classical parallel
primitives needed to implement published parallel algorithms may be built.

Q My parallel fr iends tell me I should worry about something called “deadlock.”
Should I?

A Not for simple multithreaded programs. However, in more complicated programs,
one of the biggest concerns is avoiding a situation in which one thread has locked
an object and is waiting for another thread to finish,while that other thread is
waiting for the first thread to release the sameobject before it can finish. That’s a
deadlock—both threads are stuck forever. Mutual dependencies like this involving
multiple threads can be intricate, convoluted, and difficult to locate—much less
rectify. They are one of the primary challenges in writing complex multithreaded
programs.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned today. The Quiz
section poses questions to help you solidify your understanding of the material covered.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”
The Exercises section provides you with experience in using what you have learned. Try
to work through all these before continuing to the next day.

20.31318-9 CH16 9/24/98 2:03 PM Page 609

Quiz
1. With what keyword can you atomize a block or method?

2. True or false:The word synchronized can be used as both a method and a key-
word in Java.

3. What method call takes place as the implicit first statement in any synchronized
method?

4. When you subclass a class other than Thread, what interface must be implemented
to make that new subclass capable of running threads?

5. What is the difference between preemptive and nonpreemptive timeslicing?

Exercises
1. Create an applet that displays a digital clock with the system time (HH:MM) using

multiple threads and the sleep method to update its display once a minute.

2. Write an application that simulates a bank account whose current balance is being
updated with withdrawals and deposits from multiple ATMs.

610 Day 16

P2/VB TY JBuilder in 21 Days 31318-9 dietsch CH16 Lp#3

20.31318-9 CH16 9/24/98 2:03 PM Page 610

DAY 17

WEEK 3

Persistence
Today, you’ll explore the topic of Java object persistence through serialization
and deserialization. Specifically, you’ll learn about:

● Creating serializable and externalizable objects

● Writing and reading object streams

● Using object input and output streams

● Catching persistence-related exceptions

● Dealing with persistence security issues

For today’s examples to work, you must remember to add the fol-
lowing line at the top of each source code file you create:

import java.io.*

If you forget, you’ll get a compiler error because Java won’t know
where classes that belong to the java.io package are defined.

Caution

21.31318-9 CH17 9/24/98 2:04 PM Page 611

Let’s begin with some term definitions:

Persistenceis a mechanism for preserving object states across program sessions.
It is also used when transmitting or receiving objects from one system to another

across a network using streams.

Serialization is the process by which object state information is preserved when
writing data out to a stream.

Deserialization is theprocess by which object state information is restored when
reading data in from a stream.

Normally, when you close a Java program,the objects in that program cease to exist. You
could save the data to a file, but that would only save the data bytes and wouldn’t pre-
serve the object states. In fact,unless your object implements either the Serializable or
Externalizable interface, there is no way to preserve those states.

This same problem occurs when you attempt to transmit objects from one Java Virtual
Machine to another—for example, when objects are used as arguments to a remote
object’s method. Normally, an object’s state would cease to exist when its data was trans-
mitted to a second Java Virtual Machine. However, with persistence, the object’s state
can be transmitted as well, allowing the object to be restored in the destination Java
Virtual Machine’s memory space. Without this capability, Remote Method Invocation
(RMI) wouldn’t be possible. (You’ll learn more about RMI on Day 20,“Java Network
Communications.”)

With persistence, Java provides automated mechanisms for preserving the current state of
objects. This important information can then be restored the next time the program is
invoked, or, in the case of network operations,it can be restored to or from a remote sys-
tem after transmission via object streams.

The main foundations of the persistence framework comprise four interfaces:the
Serializable, Externalizable, ObjectOutput, and ObjectInput interfaces. In addi-
tion, you’ll learn about the ObjectOutputStream and ObjectInputStream classes,which
are based on OutputStream and InputStream abstract classes,respectively. (You learned
about these two abstract classes on Day 10,“Streams and I/O.”)

612 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

NEW TERM

NEW TERM

NEW TERM

Because the classes used in serialization and deserialization depend on
classes defined in the java.io package, the methods you will explore today
are declared to throw an IOException object. There are also persistence-
specific exceptions, and we’ll examine them later today in the section
“Persistence Exceptions.”

Note

21.31318-9 CH17 9/24/98 2:04 PM Page 612

Persistence 613

17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

In addition to encoding objects,serialization recursively searches the object for refer-
ences to other objects and preserves them as well. The structure of the encoded object
and its supporting objects is called an object’s graph.

An object’s graph is the structure created by recursively mapping out that
object’s dependencies on other objects. The graph is preserved with the objects

and is then used to assist in restoring the objects in the graph.

So in addition to preserving the objects explicitly named in your program,persistence
preserves all the objects (and their states) that your object depends on to reconstitute
itself. For all this to work, the object must implement either the Serializable or
Externalizable interface, as do many classes that form the core of the Java Class
Library.

The Externalizable Interface
By implementing the Externalizable interface, a class can specify the methods for
writing and reading objects. The Externalizable interface defines two such methods:
the writeExternal() and readExternal() methods. You can implement these methods
in your class to manage the contents of objects and their graphs,saving and restoring this
information. The class must also contain a default (no-argument) constructor to imple-
ment the Externalizable interface.

When an object implementing the Externalizable interface is being saved, the
writeExternal() method is called, and the object is saved to the output stream. When
an object implementing the Externalizable interface is being restored, the default con-
structor is used to initialize the object instance, and then the readExternal() method is
called to restore the data from the input stream.

Although some of the work of saving and restoring your objects is handled for you,
unless you really need to micromanage your objects,you will be better off using the
Serializable interface instead. Objects implementing the Externalizable interface
also present some security concerns,which are discussed in the later section “Security
Issues.”

The writeExternal() Method
If your object’s class implements the Externalizable interface, it must also implement
the writeExternal() method to preserve the state of the object. This method takes an
object implementing the ObjectOutput interface as its argument.

The ObjectOutput interface provides the writeObject() method, which is used by
the writeExternal() method to preserve arrays, strings,and objects. (This method is

NEW TERM

21.31318-9 CH17 9/24/98 2:04 PM Page 613

discussed later today.) For primitive data types,your writeExternal() method imple-
mentation can call any of the following methods provided by the DataOutput class:

void writeBoolean(boolean b) throws IOException;
void writeByte(int i) throws IOException;
void writeShort(int i) throws IOException;
void writeChar(int i) throws IOException;
void writeInt(int i) throws IOException;
void writeLong(long l) throws IOException;
void writeFloat(float f) throws IOException;
void writeDouble(double d) throws IOException;

These methods were discussed on Day 10,but their signatures are listed here for your
reference.

The readExternal() Method
If your object’s class implements the Externalizable interface, it must also implement
the writeInternal() method to restore the state of the object. This method takes an
object implementing the ObjectInput interface as its argument.

The ObjectInput interface provides the readObject() method, which is used by the
readExternal() method to restore arrays, strings,and objects. (This method is discussed
later today.) For primitive data types,your readExternal() method implementation can
call any of the following methods provided by the DataInput class:

boolean readBoolean() throws IOException;
byte readByte() throws IOException;
int readUnsignedByte() throws IOException;
short readShort() throws IOException;
int readUnsignedShort() throws IOException;
char readChar() throws IOException;
int readInt() throws IOException;
long readLong() throws IOException;
float readFloat() throws IOException;
double readDouble() throws IOException;

These methods were discussed on Day 10,but their signatures are listed here for your
reference.

The Serializable Interface
For Java to know that an object instance of your class can be serialized, it must imple-
ment the Serializable interface:

public class MyClass implements Serializable {...}

614 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

21.31318-9 CH17 9/24/98 2:04 PM Page 614

Persistence 615

17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

The Serializable interface doesn’t define any methods. It’s used by Java to designate
classes that can be serialized. If your class extends a superclass that doesn’t implement
the Serializable interface, that superclass must have a default (no-argument) construc-
tor available to initialize the state of the superclass during restoration. If the superclass
doesn’t have such a default constructor, you can’t serialize any of its subclasses. If you
attempt to do so,an InvalidClassException object will be thrown.

When the object is being serialized, all its dependencies are checked recursively. In other
words,if the object depends on other objects,those objects are added to the object graph
and serialized as well. However, if during this process one of the objects farther down in
the graph is discovered to be nonserializable, a NotSerializableException object will
be thrown.

Serialization takes place using a special output stream class,ObjectOutputStream,
which implements the ObjectOutput interface. When it’s time to restore the object
graph,deserialization takes place using the ObjectInputStream class,which implements
the ObjectInput interface. These stream classes provide methods for writing and reading
the objects to and from the streams for serialization and deserialization.

The ObjectOutput Interface
The ObjectOutput interface extends the DataOutput interface by defining an abstract
method for writing out arrays, strings,and objects called the writeObject() method.
The ObjectOutputStream class implements theObjectOutput interface, which is
responsible for writing out the serialized data. The serialized data can then be read back
in using an ObjectInputStream object.

The ObjectOutputStream Class
The ObjectOutputStream class descends from the OutputStream class and implements
both the ObjectOutput and ObjectStreamConstants interfaces. It is used to serialize
primitive data and object graphs that can later be restored using an ObjectInputStream
object. This class can preserve data to an instance of FileOutputStream, making it per-
sistent. It can also preserve objects passed as parameters to an output stream during a
Remote Method Invocation.

For primitive data,DataOutput class methods are overridden,but they perform essen-
tially the same operations:

void close() throws IOException
void flush() throws IOException
void write(int data) throws IOException
void write(byte b[]) throws IOException

21.31318-9 CH17 9/24/98 2:04 PM Page 615

void write(byte b[], int off, int len) throws IOException
void writeBoolean(boolean data) throws IOException
void writeByte(int data) throws IOException
void writeShort(int data) throws IOException
void writeChar(int data) throws IOException
void writeInt(int data) throws IOException
void writeLong(long data) throws IOException
void writeFloat(float data) throws IOException
void writeDouble(double data) throws IOException
void writeBytes(String data) throws IOException
void writeChars(String data) throws IOException
void writeUTF(String data) throws IOException

This stream class also defines a number of additional serialization-specific methods,
including the writeObject() method, which is described next.

The writeObject() Method
The writeObject() method writes an object’s nontransient and nonstatic members to an
ObjectOutputStream object. (Static members don’t change, so it only makes sense not to
serialize them. Transient members are so marked to prevent them from being serialized.)
For example, assuming that you had assigned an ObjectOutputStream object to the
anOOS variable, you could write a Date object assigned to the someDate variable to the
ObjectOutputStream object with this method call:

anOOS.writeObject(someDate);

If static or transient fields are in the object’s class,they are ignored because these fields
can’t be serialized. Any objects referenced by the object being preserved are then tra-
versed recursively until the entire object graph is written to the output stream.

Here is the writeObject() method’s signature:

void writeObject(Object obj) throws IOException

The IOException is needed because this method writes to a stream.

The ObjectInput Interface
The ObjectInput interface extends the DataInput interface by defining an abstract
method for reading in arrays, strings,and objects called the readObject() method. The
ObjectInputStream class implements the ObjectInput interface, and it is responsible
for reading in serialized data that had previously been written out by an
ObjectOutputStream object.

616 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

21.31318-9 CH17 9/24/98 2:04 PM Page 616

Persistence 617

17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

The ObjectInputStream Class
The ObjectInputStream class descendsfrom the InputStream class and implements
both the ObjectInput and ObjectStreamConstants interfaces. It is used to deserialize
primitive data and object graphs that were previously serialized using an
ObjectOutputStream object. This class can restore persistent data from an instance of
FileInputStream. It can also restore objects used as parameters,which are obtained
from an input stream during a Remote Method Invocation.

During restoration of the persistent objects,the ObjectInputStream instantiates each
object in the graph as a new object. In other words,it doesn’t overwrite any existing
objects in memory but creates new instances based on the persistent data in the stream.
As each new object is instantiated, the appropriate classes required are loaded by the
Java Virtual Machine. If the required class can’t be found, an InvalidClassException
object is thrown.

For primitive data, the familiar methods from the DataInput interface are overridden in
this class,but they perform essentially the same operations:

int available() throws IOException
void close() throws IOException
int read() throws IOException
int read(byte data[], int offset, int length) throws IOException
boolean readBoolean() throws IOException
byte readByte() throws IOException
char readChar() throws IOException
double readDouble() throws IOException
float readFloat() throws IOException
void readFully(byte data[], int offset, int size) throws IOException
void readFully(byte data[]) throws IOException
int readInt() throws IOException
String readLine() throws IOException
long readLong() throws IOException
short readShort() throws IOException
int readUnsignedByte() throws IOException
int readUnsignedShort() throws IOException
String readUTF() throws IOException
int skipBytes(int len) throws IOException

This stream class also defines a number of additional serialization-specific methods,the
most important of which is the readObject() method, described next.

The readObject() Method
The readObject() method reads an object from an ObjectInputStream object. Because
arrays and strings are treated as objects for purposes of serialization, you must use cast-
ing to specify which object type you expect from the stream. For example, assuming that

21.31318-9 CH17 9/24/98 2:04 PM Page 617

you had assigned an ObjectInputStream object to the anOIS variable, you could restore
a Date object with this method call:

Date restoredDate = (Date)anOIS.readObject();

When the object is read, a new instance is created, as if you had called the object’s class
constructor. The default constructors of the object’s superclasses are called first, and then
down the chain of inheritance to the object’s constructor.

After memory is allocated for the object by calling this chain of constructors, the object’s
state and data are read from the stream. Fields are restored starting with the highest-level
serializable superclass,working down through the inheritance chain to the current serial-
izable object’s fields.

If static or transient fields are in the object’s class,they are initialized to their default val-
ues because these fields aren’t serialized. Any objects referenced by the object being
restored are themselves restored until the entire object graph is reconstituted.

Here is the readObject() method’s signature:

Object readObject() throws OptionalDataException,
ClassNotFoundException, IOException

The IOException is necessary, of course, when dealing with streams. The
ClassNotFoundException object is thrown when the readObject() method attempts to
instantiate the object and it can’t find a matching class in the Java Virtual Machine or the
client machine’s CLASSPATH environmental variable. The OptionalDataException object
is thrown when you try to read an object,but there is still primitive data in the stream.

A Serialized Example
Used together, the ObjectOutputStream and ObjectInputStream classes can provide
your application with persistent storage of objects when used with the
FileOutputStream and FileInputStream classes. For example:

FileOutputStream aFOS = new FileOutputStream(“myfile.ser”);
ObjectOutputStream anOOS = new ObjectOutputStream(aFOS);
anOOS.writeObject(“This data was preserved on: “);
anOOS.writeObject(new Date());
anOOS.flush()
aFOS.close();

Here, the ObjectOutputStream object writes the phrase This data was preserved on:

and the current system date to myfile.ser. When an ObjectInputStream object reads
these data, the date retains its original format:

618 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

21.31318-9 CH17 9/24/98 2:04 PM Page 618

Persistence 619

17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

FileInputStream aFIS = new FileInputStream(“myfile.ser”);
ObjectInputStream anOIS = new ObjectInputStream(aFIS);
String theStr = (String).anOIS.readObject();
Date preserveDate = (Date)anOIS.readObject();
aFIS.close();

Remember that although reading or writing files isn’t a problem for stand-
alone Java applications, attempting to open, read, or write streams based
on files from an applet can cause security violations (depending on the
browser’s current user safety level). Of course, applets can open URL streams
and pull objects from the server that the applets were served from.

Caution

Persistence Exceptions
Most persistence-related exceptions descend from the IOException class and its subclass
ObjectStreamException. Some of these exceptions were mentioned earlier today, but
they are all summarized in Table 17.1 for easy reference.

TABLE 17.1. PERSISTENCE-RELATED EXCEPTIONS.

Exception Purpose

InvalidClassException Thrown if the class of the object being restored isn’t public or
doesn’t have a default (no-argument) constructor.

InvalidObjectException Thrown if the restored object can’t be validated.

NotSerializableException Thrown by serialization methods when they encounter an object in
the graph that doesn’t implement the Serializable interface.

OptionalDataException Thrown when the readObject() method finds a primitive but was
expecting an object in the stream.

SecurityException The class being restored is not a trusted class.

StreamCorruptedException Thrown when the stream data or stream header is invalid.

WriteAbortedException Thrown when reading a stream that had an exception thrown when
it was written.

In addition, any of the DataInput or DataOutput class exceptions can be thrown by
using the primitive read and write methods descended from those classes.

21.31318-9 CH17 9/24/98 2:04 PM Page 619

Security Issues
The purpose of serialization is to preserve an object outside the Java system. However,
this also means that serialized data are preserved outside the boundaries of Java’s secu-
rity system. In particular, because the readExternal() method is public,
Externalizable classes are vulnerable to being overwritten. This section addresses ways
that you can protect your sensitive data,either by marking it so that it isn’t preserved
externally or by encrypting it.

The transient Keyword
When data are serialized, only nonstatic and nontransient object class members are writ-
ten out. When you mark class members with the transient keyword, you prevent those
members from being serialized, keeping them safe from the outside world.

In addition, references to system-specific items (such as file handles) that refer to the
object’s current address in memory should never be serialized. When the object is deseri-
alized, it is allocated new memory even if it is restored to the same system from which it
came, so file handle information would be redundant at best. At worst, it could give the
new object access to system resources that it shouldn’t be given.

Using Encryption
Of course, there are times when sensitive data must be written out for one reason or
another. For these circumstances,encryption is the answer. Because serialization is
accomplished using streams,you can direct the output of serialization streams to encryp-
tion streams,which were introduced on Day 10. This process can then be reversed when
the sensitive data must be restored. First, push the data through the de-encryption stream
and then pass the data to a deserialization stream.

Summary
Today, you were introduced to the Externalizable interface and its two methods,the
writeExternal() and readExternal() methods. You were also introduced to the
Serializable interface, which, when implemented by a class,can be serialized. The
ObjectOutput and ObjectInput interfaces are implemented by the ObjectInputStream
and ObjectOutputStream classes. These classes provide the writeObject() and
readObject() methods with which an object’s state is preserved and restored. You also
learned that many of the methods defined in the DataInput and DataOutput interfaces
are implemented by these classes to handle the preservation and restoration of primitive
data during serialization and deserialization.

620 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

21.31318-9 CH17 9/24/98 2:04 PM Page 620

Persistence 621

17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

Persistence-related exceptions were summarized, and you learned that your serializable
objects must also handle any input/output exceptions that can be thrown by primitive
methods. Security issues were briefly explored, and you learned that sensitive informa-
tion should either be marked transient so that it can’t be serialized or encrypted using
streams.

Without persistence, after your program ended, the object state information would be
lost. Object state information would also be lost when the object was used as a parameter
to a remote method invocation because the destination system wouldn’t have access to
the sender’s memory address space. Persistence in Java gives your programs a way to
preserve necessary object state information across program sessions and across the net-
work and then restore that state information in a new program session or on a destination
system.

Q&A
Q When should I use Externalizable rather than Serializable?

A The Externalizable interface should be implemented only when you need to do
special handling of your data, for two reasons:1) It requires you to implement the
writeExternal() and readExternal() methods,defining exactly how your data
should be preserved and restored. 2) The writeExternal() method is public,
which, as mentioned earlier, presents a security concern. You’re really much better
off using Serializable if at all possible, but Externalizable is there if you really
need it.

Q Can’t I just wr ite my own methods for preserving my data to a file? Why
should I bother with serialization?

A You couldwrite out all the information necessary to save an object’s state to a file
yourself. You would need to write methods to write each object and data type out
to the file. Then you would need to manually create the object’s graph and preserve
all the objects that it relied on,and all the objects those objects relied on,and so
on,. Then you also would have to write methods to restore all the data and objects
from your homemade graph, restoring each object’s state, keeping track of all the
objects you had restored so far so that you didn’t duplicate objects. When you
think about it,serialization is much less troublesome than doing all this yourself!

Q What happens if I decide to use one of the JBCL classes to derive my own
beans? Can I serialize my subclasses?

A Yes,as long as the JBCL classes that you subclass (and all of their superclasses)
have default (no-argument) constructors, you will be able to implement the
Serializable interface in your subclasses.

21.31318-9 CH17 9/24/98 2:04 PM Page 621

Workshop
The Workshop provides two ways for you to affirm what you’ve learned today. The Quiz
section poses questions to help you solidify your understanding of the material covered.
You can find answers to the quiz questions in Appendix A, “Answers to Quiz Questions.”
The Exercises section provides you with experience in using what you have learned. Try
to work through all these before continuing to the next day.

Quiz
1. True or false:Streams can make use of the methods in the ObjectInput and

ObjectOutput interfaces,but files can’t.

2. Which interface requires you to define your object’s external format:
Externalizable or Serializable?

3. Which method is used for serializing objects? Which method is used for deserializ-
ing objects?

Exercise
Create a drawing application that lets the user click and drag the mouse to draw rectan-
gles on the screen. When the user closes the program,save the rectangles already drawn
on the screen to a file and then restore those rectangles the next time the drawing pro-
gram is invoked.

622 Day 17

P2/VB TY JBuidler in 21 Days 31318-9 dietsch Chapter 17 Lp#3

21.31318-9 CH17 9/24/98 2:04 PM Page 622

DAY 18

WEEK 3

Building JavaBeans
JavaBeansis the specification for Java components, which are known as beans.
Beans are reusable components that application developers use to build their
applications. For example, all the controls on the Component Palette are beans.
Beans allow you as a component writer to distribute the functionality of your
code without distributing the source code itself. For developers working in
teams, beans are a handy way to provide all members of the team with stan-
dardized project pieces without having multiple copies of the underlying source
code lying around. You can create both visual and nonvisual beans in JBuilder.

Not only can you reuse a bean without having its source code available, but you
also can modify the bean’s behavior. Beans provide properties and events that
can be modified at design time. In other words, they allow these elements to be
read by a visual development environment, such as JBuilder. A properly con-
structed bean displays modifiable properties and events in the JBuilder
Inspector pane during Design mode.

Borland was one of the companies that closely participated in creating the
JavaBeans specification that Sun published. This specification gives guidelines
on how beans should be constructed and how properties and events should be
displayed in visual tools, such as JBuilder.

22.31318-9 CH18 9/24/98 2:05 PM Page 623

Today you’ll learn how JBuilder helps you create beans that conform to the JavaBeans
specification, Sun’s specifications for cross-platform reusable Java components.
Specifically, you’ll explore these topics:

● Basic bean requirements

● BeansExpress components

● Creating beans using the JavaBean Wizard

In JBuilder, beans expect to be created as members of a package, so for today’s project,
you’ll use BuildBeans\NewBeans.jpr and then add each class to that package or project
as you create your new beans. The basic steps for creating a bean are simple:

1. Open a project and add a bean class or classes. Each must have a default (no-
argument) constructor.

2. Design your new bean’s user interface if it is a visual bean. (Of course, this is un-
necessary for nonvisual beans.)

3. Add properties,methods,and events to your bean to define its design time and run-
time functionality.

4. If needed, add a BeanInfo class for each bean to assist your bean in presenting it-
self to visual tools such as JBuilder.

5. Choose an icon to represent your bean (or use JBuilder’s default icon),add the
bean to the Component Palette, and test it. (After the bean is added to the palette, if
you change it, you’ll need to restart JBuilder to have the changes take effect.)

After testing your bean,you can deploy it in an archive, just like any other Java program.
(You’ll learn about archives on Day 19,“Deploying Java Programs.”)

Before getting into the details of each step, let’s examine some of the requirements and
guidelines for creating beans.

Meeting Bean Requirements
The JavaBean componentmodel specifies several requirements for acomponent to qual-
ify as a bean. There are also several guidelines that help make your bean easier to use in
visual environments:

624 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Current JavaBeans information is available from the Sun Web site at
http://java.sun.com/beans/.

Tip

22.31318-9 CH18 9/24/98 2:05 PM Page 624

Building JavaBeans 625

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

● A bean must be written as a public class.

● A bean’s class must declare a public default (no-argument) constructor.

That’s it! If your bean does these two things,it will w ork in the JBuilder Integrated
Development Environment. However, without specifying properties and events,the de-
veloper using your bean will be unable to modify any of the bean’s attributes or tell it to
react to any events. This isn’t usually what you want,so there are other guidelines you
must follow to create a bean’s properties and events. Also, you will probably want to
specify methods that developers can call in their own source code to manipulate your
bean at runtime.

Properties and events are displayed in visual tools automatically, if they follow certain
naming conventions,through introspection.

Introspectionis aprocess that allows JBuilder to recognize appropriately named
accessor and registration methods so that when a bean is installed on the

Component Palette and subsequently used in Java program design,those properties and
events will be displayed in the AppBrowser window Design mode Inspector pane.

These naming requirements are straightforward. The property get and set accessor
method names must be of the form getProperty() and setProperty(). For boolean
properties,the get accessor method is named isProperty(), where Property represents
the property’s identifier. For events,the registration methods are named
addEventListener() and removeEventListener(), where Event represents the event’s
identifier. Being aware of these naming conventions will help you read the code that is
generated by JBuilder when creating beans using BeansExpress.

Using BeansExpress
TheJBuilder IDE,in an effort to make building beans easier, provides some basic starter
beans and code snippets. To access these, select File |New to display the New dialog box,
and then click on the BeansExpress tab to open the BeansExpress page, shown in Figure
18.1.

On this page are several sample beans and code snippets to help you on your way to cre-
ating your first bean.

New Bean
The NewBean component is a very simple skeleton bean that has sample placeholders
where the properties,events,and their methods belong. To add a NewBean to today’s pro-
ject, select File |New. In the New dialog box, choose the BeansExpress tab and double-
click the New Bean icon.

NEW TERM

22.31318-9 CH18 9/24/98 2:05 PM Page 625

First, click NewBean.java in the Navigation pane, select File |Rename, and give it a new
name. In the Save As dialog box, type MyNewBean.java in theFile name field and click
the Save button. Next, click the Content pane and select Search|Replace. In the Replace
Text dialog box, type NewBean in the Text to find field and type MyNewBean in the
Replace with field. In the Origin radio-button group,click the Entire scope radio button.
The Replace Text dialog box should look as shown in Figure 18.2.

626 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

FIGURE 18.1.
The BeansExpress
page of the New dialog
box.

When you’re creating a bean with the NewBean component, the generated
filename, its class name, and its default constructor are all named NewBean
by default. To change these default names, you need to do two things: re-
name the file itself, and search and replace to rename the class and con-
structor.

Note

FIGURE 18.2.
The filled-out Replace
Text dialog box.

After you’ve filled in the Replace Text dialog box correctly, click the Multiple button so
that multiple text replacements are performed. TheConfirm dialog box appears,as
shown in Figure 18.3.

22.31318-9 CH18 9/24/98 2:05 PM Page 626

Building JavaBeans 627

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Click the All button in the Confirm dialog box to tell JBuilder to automatically carry out
all the text replacements without asking for conformation each time. This operation
changes both the class-name declaration and the default-constructor declaration to the
new bean name. Be sure to save your changes.

Listing 18.1 shows the source code for MyNewBean.java after the search-and-replace op-
eration and file renaming have been completed.

LISTING 18.1. MyNewBean.java.

1: // This snippet creates a new, empty bean
2: //
3: //Title:
4: //Version:
5: //Copyright:
6: //Author:
7: //Company:
8: //Description:
9:
10: package BuildBeans;
11:
12: import java.awt.*;
13: import java.awt.event.*;
14: import borland.jbcl.layout.*;
15: import borland.jbcl.control.*;
16: import borland.jbcl.view.*;
17: import borland.jbcl.util.BlackBox;
18:
19: public class MyNewBean extends BeanPanel implements BlackBox {
20: BevelPanel bevelPanel1 = new BevelPanel();

FIGURE 18.3.
The Confirm dialog
box.

TYPE

continues

22.31318-9 CH18 9/24/98 2:05 PM Page 627

LISTING 18.1. CONTINUED

21: BorderLayout borderLayout1 = new BorderLayout();
22: XYLayout xYLayout1 = new XYLayout();
23:
24: public MyNewBean() {
25: try {
26: jbInit();
27: }
28: catch (Exception e) {
29: e.printStackTrace();
30: }
31: }
32:
33: public void jbInit() throws Exception {
34: bevelPanel1.setLayout(xYLayout1);
35: this.setLayout(borderLayout1);
36: this.add(bevelPanel1, BorderLayout.CENTER);
37: }
38:
39: // Example properties
40: private String example = “Example1”;
41:
42: public void setExample(String s) {
43: example=s;
44: }
45: public String getExample(){
46: return example;
47: }
48:
49: // Example event
50: public static final String EXAMPLE_EVENT = “ExampleEvent”;
51: protected void fireExampleActionEvent() {
52: //Args: event source, event ID, event command
53: processActionEvent(new ActionEvent(this,

➥ActionEvent.ACTION_PERFORMED,
➥EXAMPLE_EVENT));

54: }
55: }

Lines 1 through 8 are comments that identify the generated code and allow you
to fill in some internal documentation for the bean. Line 10 declares the project’s

package affiliation.

Lines 12 through 17 declare imports for the bean. A bean inherits from a number of
classes,most of which you’ve seen or used already. However, two imports warrant
further explanation. The borland.jbcl.view.* import is necessary because your
class extends the BeanPanel class,which resides in that package. The

628 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

ANALYSIS

22.31318-9 CH18 9/24/98 2:05 PM Page 628

Building JavaBeans 629

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

borland.jbcl.util.BlackBox import is required because your class implements the im-
portant BlackBox interface, which prevents developer users of your bean from messing
around with your bean’s design. In other words,this is the class that ensures that the
bean is modified only by changing properties,creating event handlers,and using public
methods,as its designer intended. No matter how many widgets you add to your bean,it
will always be selected and treated as a unit.

Line 19 is the public class declaration, which every bean requires. Your bean’s class im-
plements the BlackBox interface that was imported on line 17. It also extends the
BeanPanel class that was imported on line 16. The BeanPanel class itself extends the
Panel class and handles focus,key, and mouse events,as well as managing action listen-
ers. Lines 20 through 22 set up the initial user interface for the new bean.

Lines 24 through 31 declare the public default (no-argument) constructor, which is re-
quired of every bean. (This body of this constructor should look familiar to you from
working with previous generated project code.) Lines 33 through 37 do the required user
interface initialization.

Lines 39 through 47 pertain to properties and their methods. On line 40,a property
named example, which can be assigned a String object,is declared. Note that the
example property is declared private, which prevents users from changing the property
variable directly. Access to properties is intended to be accomplished only through the
accessor methods. The setExample() accessor method declared in lines 42 through 44
shows how you might create set accessor methods for the example property. The
getExample() accessor method declared in lines 45 through 47 outlines a get accessor
method for the example property. You can copy and paste these sample lines of code to
create various properties of all data types and use the accessor method examples as tem-
plates for your own accessor methods.

Lines 49 through 54 form a template for an action event. The EXAMPLE_EVENT event com-
mand is declared public, but the method is declared protected. The
fireExampleActionEvent() method calls the processActionEvent() method, which
takes three parameters: the event source this, the event ID ActionEvent.ACTION_
PERFORMED, and the event command EXAMPLE_EVENT. This is the information necessary to
notify event listeners that this bean’s action event has occurred. (The
processActionEvent() method and the listener registration methods are declared in the
BeanPanel superclass.) If your bean needs to generate more than one event,you can use
the NewEventBean object,which you’ll learn about later today.

That was quite a whirlwind tour of a bean,but the point is that this skeleton code is al-
most all you need to create a basic user interface bean. To modify the bean’s user inter-
face, choose the Design tab of the Content pane in the AppBrowser window and make

22.31318-9 CH18 9/24/98 2:05 PM Page 629

the necessary changes,and then fill out the skeleton code for the properties and events.
After you have everything filled in, save your changes and compile the code. After de-
bugging, you can add the bean to the Component Palette and test your new design.
(You’ll learn about adding beans to the Component Palette later today in the section
“Testing Beans.”)

Ok Cancel Bean
The OkCancelBean component is a bean that has OK,Cancel,and Help buttons on a
panel. To add an OkCancelBean to today’s project,select File |New. In the New dialog
box, choose the BeansExpress tab and double-click the Ok Cancel Bean icon.

The generated filename and all references to the class in the source code are named
OkCancelBean by default, so you’ll need to rename these references and the file. Do a
search-and-replace to change all instances of OkCancelBean to MyOkCancelBean in the
source code, save your changes,and rename the file MyOkCancelBean.java. Listing 18.2
shows the source code for MyOkCancelBean.java after all the renaming has been done.

LISTING 18.2. MyOkCancelBean.java.

1: // This snippet creates a bean with OK, Cancel, and Help buttons
2: // The listener responds to a single action event and checks the
3: // event object to determine which button was pressed.
4: // Additional behavior for each button can be added if desired.
5: // For example: the Help button can launch help without firing an
6: // action event.
7: //
8: //Title:
9: //Version:

10: //Copyright:
11: //Author:
12: //Company:
13: //Description:
14:
15: package BuildBeans;
16:
17: import java.awt.*;
18: import java.awt.event.*;
19: import borland.jbcl.layout.*;
20: import borland.jbcl.control.*;
21: import borland.jbcl.view.*;
22: import borland.jbcl.util.BlackBox;
23:
24: public class MyOkCancelBean extends BeanPanel implements BlackBox{
25: // Use these constants in the event listener.
26: public final static String OK_EVENT = “OkEvent”;

630 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 630

Building JavaBeans 631

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

27: public final static String CANCEL_EVENT = “CancelEvent”;
28: public final static String HELP_EVENT = “HelpEvent”;
29:
30: private BorderLayout borderLayout1 = new BorderLayout();
31: private Panel panel1 = new Panel();
32: private FlowLayout flowLayout1 = new FlowLayout();
33: private Button ok = new Button();
34: private Button cancel = new Button();
35: private Button help = new Button();
36:
37: public MyOkCancelBean() {
38: try {
39: jbInit();
40: }
41: catch (Exception e) {
42: e.printStackTrace();
43: }
44: }
45:
46: public void jbInit() throws Exception{
47: ok.setLabel(“ OK “);
48: ok.addActionListener(new

➥MyOkCancelBean_ok_actionAdapter(this));
49: cancel.setLabel(“Cancel”);
50: cancel.addActionListener(new

➥MyOkCancelBean_cancel_actionAdapter(this));
51: help.setLabel(“ Help “);
52: help.addActionListener(new

➥MyOkCancelBean_help_actionAdapter(this));
53: panel1.setLayout(flowLayout1);
54: this.setLayout(borderLayout1);
55: this.add(panel1, BorderLayout.CENTER);
56: panel1.add(ok, null);
57: panel1.add(cancel, null);
58: panel1.add(help, null);
59: }
60:
61: // The action listener for this bean should check the ActionEvent
62: // to determine which button was pressed.
63: // The Help button could be handled entirely inside this bean
64: // if desired.
65: void ok_actionPerformed(ActionEvent e) {
66: //Args: event source, event ID, event command
67: processActionEvent(new ActionEvent(this,

➥ActionEvent.ACTION_PERFORMED, OK_EVENT));
68: }
69: void cancel_actionPerformed(ActionEvent e) {
70: processActionEvent(new ActionEvent(this,

➥ActionEvent.ACTION_PERFORMED, CANCEL_EVENT));

continues

22.31318-9 CH18 9/24/98 2:05 PM Page 631

LISTING 18.2. CONTINUED

71: }
72: void help_actionPerformed(ActionEvent e) {
73: processActionEvent(new ActionEvent(this,

➥ActionEvent.ACTION_PERFORMED, HELP_EVENT));
74: }
75: }
76:
77: class MyOkCancelBean_ok_actionAdapter

➥implements java.awt.event.ActionListener {
78: MyOkCancelBean adaptee;
79:
80: MyOkCancelBean_ok_actionAdapter(MyOkCancelBean adaptee) {
81: this.adaptee = adaptee;
82: }
83:
84: public void actionPerformed(ActionEvent e) {
85: adaptee.ok_actionPerformed(e);
86: }
87: }
88:
89: class MyOkCancelBean_cancel_actionAdapter

➥implements java.awt.event.ActionListener {
90: MyOkCancelBean adaptee;
91:
92: MyOkCancelBean_cancel_actionAdapter(MyOkCancelBean adaptee) {
93: this.adaptee = adaptee;
94: }
95:
96: public void actionPerformed(ActionEvent e) {
97: adaptee.cancel_actionPerformed(e);
98: }
99: }
100:
101: class MyOkCancelBean_help_actionAdapter

➥implements java.awt.event.ActionListener {
102: MyOkCancelBean adaptee;
103:
104: MyOkCancelBean_help_actionAdapter(MyOkCancelBean adaptee) {
105: this.adaptee = adaptee;
106: }
107:
108: public void actionPerformed(ActionEvent e) {
109: adaptee.help_actionPerformed(e);
110: }
111: }

632 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

22.31318-9 CH18 9/24/98 2:05 PM Page 632

Building JavaBeans 633

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Lines 1 through 13 are internal documentation. Line 15 declares the package.
Lines 17 through 22 import the same classes as the NewBean class.

Line 24 declares the MyOkCancelBean class that extends the BeanPanel class and imple-
ments the BlackBox interface. Lines 26 through 28 declare constants that are used later
when the processActionEvent() method is called. Lines 30 through 35 contain the dec-
larations for this bean’s standard user interface elements,including its three buttons.

Lines 37 through 44 declare this bean’s default (no-argument) constructor. Lines 46
through 59 do the user interface initialization. In the case of the MyOkCancelBean class,
labels are set for the threebuttons in lines 47,49,and 51. (An interesting trick used here
is the extra spaces in the shorter labels to center them on the buttons and make them
closer to the same size.) The buttons’action listeners are added to the bean in lines 48,
50,and 52. Also, in lines 56 through 58,the buttons themselves are added to the bean’s
panel. Any user interface additions you make to this bean will show up in this section as
well.

Lines 65 through 68 define the ok_actionPerformed() method, a listener method that is
invoked whenever the OK button is pressed. This method is just like the stub methods
created when you’re creating a program and you triple-click the actionPerformed event
to create anew event handler. In this case, the event handler called the
processActionEvent() method using the previously defined constant,OK_EVENT, to
identify the event command to be processed. Also, in lines 77 through 87,this listener’s
actionAdapter is created. Again, this is similar to the adapter created each time you
generate a new event handler in your own programs. This set of functionality is repeated
for the Cancel button in lines 69 through 71 for the event handler and in lines 89 through
99 for its adapter, and for the Help button in lines 72 through 75 for the event handler
and lines 101 through 111 for its adapter.

The bean is now ready for you to make any additions or changes that you might want.
Perhaps you would like to add or remove a button or have the Help button do some addi-
tional processing (such as launch a Help topic in a viewer). When you’re done with this
bean’s user interface and have added whatever additional functionality you wish,remem-
ber that you can use the NewEventBean object to create additional events. Save your
changes,compile your code, and add the bean to the Component Palette as described in
the “Testing Beans”section. Then test your new design.

DB Bean
The DBBean component is a bean that provides a status bar, a grid, and a navigator so that
it can be used as the basis for database operation beans. To add a DBBean to today’s pro-
ject, select File |New. In the New dialog box, click on the BeansExpress tab and double-
click the DB Bean icon.

ANALYSIS

22.31318-9 CH18 9/24/98 2:05 PM Page 633

The generated filename and all references to the class in the source code are named
DBBean by default, so be sure to rename these references and the file. Do a search and re-
place to change all instances of DBBean to MyDBBean in the source code, save your
changes,and rename the file MyDBBean.java. Listing 18.3 shows the source code for
MyDBBean.java after all the renaming has been done.

LISTING 18.3. MyDBBean.java.

1: // This snippet creates a sample database bean
2: // that has a grid, navigator, and status bar.
3: // Properties for userName, password, etc are surfaced.
4: // An entirely new dataset can also be specified.
5: //
6: //Title:
7: //Version:
8: //Copyright:
9: //Author:

10: //Company:
11: //Description:
12:
13: package BuildBeans;
14:
15: import java.awt.*;
16: import java.awt.event.*;
17: import borland.jbcl.layout.*;
18: import borland.jbcl.control.*;
19: import borland.jbcl.view.*;
20: import borland.jbcl.dataset.*;
21: import borland.jbcl.util.BlackBox;
22:
23: public class MyDBBean extends BeanPanel implements BlackBox {
24: private BorderLayout borderLayout1 = new BorderLayout();
25: private NavigatorControl navigatorControl1 = new

➥NavigatorControl();
26: private GridControl gridControl1 = new GridControl();
27: private Database database1 = new Database();
28: private QueryDataSet queryDataSet1 = new QueryDataSet();
29: private StatusBar statusBar1 = new StatusBar();
30: private String userName = “SYSDBA”;
31: private String password = “masterkey”;
32: private String query = “select * from employee”;
33: private String connectionURL = “jdbc:odbc:dataset tutorial”;
34:
35: public MyDBBean() {
36: try {
37: jbInit();
38: }
39: catch (Exception e) {
40: e.printStackTrace();

634 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 634

Building JavaBeans 635

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

41: }
42: }
43:
44: public void jbInit() throws Exception{
45: navigatorControl1.setDataSet(queryDataSet1);
46: gridControl1.setDataSet(queryDataSet1);
47: database1.setConnection(new

➥borland.jbcl.dataset.ConnectionDescriptor(
48: connectionURL, userName, password, false,

➥”sun.jdbc.odbc.JdbcOdbcDriver”));
49: queryDataSet1.setQuery(new borland.jbcl.dataset.QueryDescriptor(
50: database1, query, null, true, false));
51: statusBar1.setDataSet(queryDataSet1);
52: this.setLayout(borderLayout1);
53: this.add(navigatorControl1, BorderLayout.NORTH);
54: this.add(gridControl1, BorderLayout.CENTER);
55: this.add(statusBar1, BorderLayout.SOUTH);
56: }
57:
58: // Example properties
59:
60: public void setPassword(String s) {
61: password=s;
62: database1.getConnection().setPassword(s);
63: }
64:
65: public String getPassword() {
66: password=database1.getConnection().getPassword();
67: return password;
68: }
69:
70: public void setUserName(String s) {
71: userName=s;
72: database1.getConnection().setUserName(s);
73: }
74:
75: public String getUserName() {
76: userName=database1.getConnection().getUserName();
77: return userName;
78: }
79:
80: //!To do: Trigger update of other prop when qds changes
81: public void setQueryDataSet(QueryDataSet qds) {
82: navigatorControl1.setDataSet(qds);
83: gridControl1.setDataSet(qds);
84: statusBar1.setDataSet(qds);
85: queryDataSet1 = qds;
86: }
87:
88: public QueryDataSet getQueryDataSet() {

continues

22.31318-9 CH18 9/24/98 2:05 PM Page 635

LISTING 18.3. CONTINUED

89: return queryDataSet1;
90: }
91:
92: public void setQuery(String s) {
93: try {
94: query=s;
95: queryDataSet1.close();
96: queryDataSet1.setQuery(new

➥borland.jbcl.dataset.QueryDescriptor
➥(database1, query));

97: queryDataSet1.open();
98: }
99: catch (Exception e) {
100: e.printStackTrace();
101: }
102: }
103:
104: public String getQuery() {
105: query=queryDataSet1.getQueryString();
106: return query;
107: }
108:
109: public void setConnectionURL(String s) {
110: connectionURL=s;
111: database1.getConnection().setConnectionURL(s);
112: }
113:
114: public String getConnectionURL() {
115: connectionURL=database1.getConnection().getConnectionURL();
116: return connectionURL;
117: }
118:
119: // Example events
120: public static final String EXAMPLE_EVENT = “ExampleEvent”;
121: protected void fireExampleActionEvent() {
122: //Args: event source, event ID, event command
123: processActionEvent(new ActionEvent(this,

➥ActionEvent.ACTION_PERFORMED, EXAMPLE_EVENT));
124: }
125: }

Lines 1 through 11 are the internal documentation. Line 13 declares the package.
Lines 15 through 21 import the same classes as previous beans,with one new ad-

dition. On line 20,borland.jbcl.dataset.* is imported to support the database func-
tionality of this bean.

636 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

ANALYSIS

22.31318-9 CH18 9/24/98 2:05 PM Page 636

Building JavaBeans 637

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Line 23 declares the class,which extends the BeanPanel class and implements the
BlackBox interface. The declarations for this bean’s private variables are found in lines
24 through 33.

Lines 35 through 42 are the default constructor, and lines 44 through 56 do the initializa-
tion. Note that the accessor methods are used to set the initial values for the bean’s con-
trols.

Various property accessor methods are predefined for this bean. Lines 60 through 68 de-
fine the setPassword() and getPassword() methods. Lines 70 through 78 define the
setUserName() and getUserName() methods. Lines 80 through 90 deal with the
setQueryDataSet() and getQueryDataSet() methods. Lines 92 through 107 define the
setQuery() and getQuery() methods,which deal with query strings. Lines 109 through
117 declare the setConnectionURL() and getConnectionURL() methods.

The last section of code, lines 119 through 124,provides a sample event identical to the
one provided by the NewBean class.

To use the DBBean bean,you will need to have installed a JDBC-accessible database. By
default, the grid attaches to the default data source available when you follow the normal
instructions for installing Local InterBase with JBuilder. Because of this requirement,
you might get this error when you click the Design tab for this bean:

[Microsoft][ODBC Driver Manager] Data source name not found and no
default driver specified.

If this happens,it means that you didn’t set up a data source when you installed Local
InterBase. Click the OK button to clear the error and make sure you’ve saved everything
in the current project. Close JBuilder, and then follow these steps to rectify the situation:

1. Double-click the 32bit ODBC icon in the Windows Control Panel.

2. In the ODBC Data Source Administrator dialog box, click the Add button. The
Create New Data Source dialog box appears.

3. Choose InterBase 5.x Driver by Visigenix (*.gdb) from the list of installed
ODBC drivers,and then click the Finish button.

4. In the InterBase ODBC Configuration dialog box, fill out the fields as shown here:

22.31318-9 CH18 9/24/98 2:05 PM Page 637

Field Value

Data Source Name DataSet Tutorial

Network Protocol <local>

Database C:\Program Files\InterBase Corp\InterBase\

Examples \employee.gdb

Username SYSDBA

Password masterkey

5. To test the connection,click the Test Connect button. When you receive the
Connection Successful message, click OK to close the InterBase ODBC
Configuration dialog box. Click the OK button in the ODBC Data Source
Administrator dialog box.

After you’ve completed these steps,reload JBuilder and reopen your project. Click
MyDBBean in the Structure pane and choose the Design tab to switch your AppBrowser
window to Design mode. JBuilder will take a minute or two to load the user interface
and make the database connection. When it is finished loading, you should see data from
the employee.gdb database file populating the grid. You now have a live connection to
the InterBase database in your bean,and developers who use it will experience the same
thing when using this bean in their designs.

Bean Info
Bean information is provided to visual environments such as JBuilder through introspec-
tion. For elements that don’t follow the naming conventions,and therefore can’t be sur-
faced using introspection,you can use the code in the BeanInfo class to manually expose
these elements. The bean information code can also hide elements that are properly
named and that would normally be exposed by introspection in visual development envi-
ronments,such as runtime-only methods.

To add the BeanInfo class to today’s project,select File |New, click on the BeansExpress
tab, and double-click the Bean Info icon. The BeanInfo class is provided as a code snip-
pet. The Paste Snippet [Bean Info] dialog box appears,as shown in Figure 18.4.

The Paste Snippet [Bean Info] dialog box gives you the opportunity to change the name
of the MyComponentBeanInfo class extended from the BeanInfo class and also,therefore,
to change the name of the MyComponentBeanInfo.java file.

Click the Parameters button and theParameters dialog box appears,as shown in Figure
18.5.

638 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

22.31318-9 CH18 9/24/98 2:05 PM Page 638

Building JavaBeans 639

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Change the name of the bean information class in the Name for bean info class text box
to MyDBBeanInfo, and change the name of the bean class in the Bean class text box to
MyDBBean. Click the OK button to return to the Paste Snippet [Bean Info] dialog box.
Note that references to MyComponentBeanInfo have been changed to MyDBBeanInfo, and
references to MyComponent have been changed to MyDBBean. Click the OK button to add
this new class to today’s project.

Listing 18.4 shows the resulting source code for MyDBBeanInfo.java.

FIGURE 18.4.
The Paste Snippet
[Bean Info] dialog
box.

FIGURE 18.5.
The Parameters dialog
box.

22.31318-9 CH18 9/24/98 2:05 PM Page 639

LISTING 18.4. MyDBBeanInfo.java.

1: // This snippet creates a bean info shell for the specified class.
2: // Example descriptors can be commented out to enable specific
3: // bean info functionality.
4: //
5: // Snippet Note: Use the parameter button to change the name

➥of the bean class.
6:
7: package BuildBeans;
8:
9: import java.beans.BeanInfo;

10: import borland.jbcl.util.BasicBeanInfo;
11:
12: public class MyDBBeanInfo extends BasicBeanInfo {
13: public MyDBBeanInfo() {
14: beanClass = MyDBBean.class;
15:
16: /*
17: customizerClass=null; //Optional customizer class
18: */
19:
20: /**
21: * The event information for your JavaBean.
22: * Format: {{“EventSetName”, “EventListenerClass”,

➥”AddMethod”, “RemoveMethod”}, ...}
23: * Example: {{“ActionListener”, “java.awt.event.ActionListener”,

➥”addActionListener”, “removeActionListener”}, ...}
24: */
25: /*
26: eventSetDescriptors = new String[][] {
27: {“ActionListener”, “java.awt.event.ActionListener”,

➥”addActionListener”, “removeActionListener”},
28: };
29: */
30:
31: /**
32: * The names of each event set’s listener methods.
33: * Format: {{“listener1Method1”, “listener1Method2”,

➥”listener1Method3”, ...}, ...}
34: * Example: {{“actionPerformed”}, ...}
35: */
36: /*
37: eventListenerMethods = new String[][] {
38: {“actionPerformed”},
39: };
40: */
41:
42: /**
43: * The index of the default event for your JavaBean.
44: */

640 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 640

Building JavaBeans 641

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

45: defaultEventIndex = -1;
46:
47: // Property Info
48:
49: /**
50: * The property information for your JavaBean.
51: * Format: {{“PropertyName”, “”PropertyDescription”,

➥”ReadMethod”, “WriteMethod”}, ...}
52: * Example: {{“fontSize”, “Get the font size (points)”,

➥”getFontSize”, “setFontSize”}, ...}
53: */
54: /*
55: propertyDescriptors = new String[][] {
56: {“fontSize”, “Get the font size (points)”,

➥”getFontSize”, “setFontSize”},
57: };
58: */
59:
60: /**
61: * The index of the default property for your JavaBean.
62: */
63: defaultPropertyIndex = -1;
64:
65: // Method Info
66:
67: /**
68: * The method names (nonproperties) for your JavaBean.
69: * Format: {“method1”, “method2”, “method3”, ...}
70: * Example: {“fillRect”, “eraseRect”, “close”, “open”}
71: */
72: methodNames = new String[] {“fillRect”, “eraseRect”,

➥”close”, “open”};
73:
74: /**
75: * The method parameters for each of your JavaBean’s methods.
76: * Format: {{“method1Parameter1”, “method1Parameter2”, ...},

➥...}
77: * Example: {{“java.awt.Graphics”, “java.awt.Rectangle”, ...},

➥...}
78: */
79: /*
80: methodParameters = new String[][] {
81: {“java.awt.Graphics”, “java.awt.Rectangle”},
82: };
83: */
84:
85: // Icon Info
86:
87: /**
88: * A 16x16 color icon for your JavaBean.

continues

22.31318-9 CH18 9/24/98 2:05 PM Page 641

LISTING 18.4. CONTINUED

89: */
90: iconColor16x16 = null;
91:
92: /**
93: * A 32x32 color icon for your JavaBean.
94: */
95: iconColor32x32 = null;
96:
97: /**
98: * A 16x16 monochromatic icon for your JavaBean.
99: */
100: iconMono16x16 = null;
101:
102: /**
103: * A 32x32 monochromatic icon for your JavaBean.
104: */
105: iconMono32x32 = null;
106:
107: // Additional Info
108:
109: /**
110: * Any additional BeanInfo for this JavaBean.
111: */
112: /*
113: additionalBeanInfo = new BeanInfo[0];
114: */
115: }
116: }

Lines 1 through 5 form the internal documentation for this class. Line 7 declares
the package. Lines 9 and 10 import the java.beans.BeanInfo and

borland.jbcl.util.BasicBeanInfo classes necessary to support this class,which inher-
its its initial values from the BasicBeanInfo class. Line 12 declares the MyDBBeanInfo
class,which extends the BasicBeanInfo class.

The remainder of this listing comprises the declaration for the MyDBBeanInfo() class
constructor (lines 13 through 115). Note that most of the lines of code defining the
MyDBBeanInfo class constructor are commented out,as often as javadoc comments.
There are, however, several default values and a statement that sets the association to the
underlying bean (line 14) that aren’t commented out.

By uncommenting and modifying the lines you need to expose your bean’s properties
and events,you can use this class to provide nonstandard bean information to any visual
environment that can handle the JavaBeans standard. There is also a method available to

642 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

ANALYSIS

22.31318-9 CH18 9/24/98 2:05 PM Page 642

Building JavaBeans 643

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

hide properties and events that follow the standard naming conventions that would nor-
mally be exposed through introspection. To use this method, simply write

propertyName.setHidden(true);

eventName.setHidden(true);

where propertyName represents a property’s identifier, and eventName represents an
event’s identifier. This will keep the property or event from being accessible in visual de-
sign environments such as JBuilder. For example, a property or event that called
setHidden() would not be displayed in the Inspector pane at design time. This is espe-
cially useful if the property should be changed only at runtime, or if the event shouldn’t
be handled by developers using your bean.

New Event Bean
There is a codesnippet called NewEventBean that you can use to create new events. To
add one to today’s project,select File |New, click the BeansExpress tab, and double-click
the New Event Bean icon. The Paste Snippet [New Event Bean] dialog box appears.
Click the Parameters button to open the Parameters dialog box. Change the event class
name in the Name for new event class text box to MyCustomEvent. Click the OK button.
The appropriate references in the code snippet are renamed. Click the OK button in the
Paste Snippet [New Event Bean] dialog box.

The MyCustomEvent.java file, as generated, actually contains three classes that have to
be separated into three separate files before compilation: the
MyCustomEventExampleBean.java, MyCustomEventListener.java, and
MyCustomEvent.java files.

To create the first file, click the Add to Project icon in the Navigation pane. In the File
name field of the File page in the File Open / Create dialog box, type
MyCustomEventExampleBean.java and click the Open button. Click
MyCustomEvent.java in the Navigation pane. Click the Content pane, select lines 37
through 80 (remember, the selected line number is displayed in the status bar at the bot-
tom of the AppBrowser window), and select Edit|Cut. Click
MyCustomEventExampleBean.java in the Navigation pane and then click in the Content
pane. Select Edit|Paste. You will also need to add the following lines of code near the
top of the file (just after the opening comments):

package BuildBeans;
import java.util.*;

The resulting file is shown in Listing 18.5.

22.31318-9 CH18 9/24/98 2:05 PM Page 643

LISTING 18.5. MyCustomEventExampleBean.java.

1: // This is an example of a nonvisual bean that fires the new events
2: //
3:
4: package BuildBeans;
5:
6: import java.util.*;
7:
8: public class MyCustomEventExampleBean {
9: MyCustomEventExampleBean() {
10: }
11:
12: // The add/remove methods provide the signature for the IDE to

➥recognize
13: // these events and show them in the event list
14: public synchronized void addMyCustomEventListener

➥(MyCustomEventListener l) {
15: listenerList.addElement(l);
16: }
17: public synchronized void removeMyCustomEventListener

➥(MyCustomEventListener l){
18: listenerList.removeElement(l);
19: }
20:
21: // A single process method keeps all event dispatching in one place.
22: // Separate processEVENT1, processEVENT2 methods could also be used.
23: protected void processMyCustomEvent(MyCustomEvent e) {
24: switch (e.getID()) {
25: case MyCustomEvent.EVENT1:
26: for (int i=0; i<listenerList.size(); i++)
27: //Send event to all registered listeners
28: ((MyCustomEventListener)listenerList.elementAt(i)).event1(e);
29: break;
30: case MyCustomEvent.EVENT2:
31: for (int i=0; i<listenerList.size(); i++)
32: ((MyCustomEventListener)listenerList.elementAt(i)).event2(e);
33: break;
34: case MyCustomEvent.EVENT3:
35: for (int i=0; i<listenerList.size(); i++)
36: ((MyCustomEventListener)listenerList.elementAt(i)).event3(e);
37: break;
38: }
39: }
40:

644 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 644

Building JavaBeans 645

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

41: // A test method to fire all three example events
42: public void testMyCustomEvent () {
43: processMyCustomEvent (new MyCustomEvent

➥(this, MyCustomEvent.EVENT1));
44: processMyCustomEvent (new MyCustomEvent

➥(this, MyCustomEvent.EVENT2));
45: processMyCustomEvent (new MyCustomEvent

➥(this, MyCustomEvent.EVENT3));
46: }
47:
48: private Vector listenerList = new Vector();
49: }

To create the second file, click the Add to Project icon in the Navigation pane. In the File
name field of the File page in the File Open / Create dialog box, type
MyCustomEventListener.java and then click the Open button. Click
MyCustomEvent.java in the Navigation pane. Click the Content pane, select lines 29
through 37,and select Edit|Cut. Click MyCustomEventListener.java in the Navigation
pane and then click in the Content pane. Select Edit|Paste. Again, you must add these
lines near the top of the file:

package BuildBeans;
import java.util.*;

The resulting file is shown in Listing 18.6.

LISTING 18.6. MyCustomEventListener.java.

1: // This defines a listener interface for the set of events that
2: // are generated by MyCustomEvent
3: //
4:
5: package BuildBeans;
6:
7: import java.util.*;
8:
9: public interface MyCustomEventListener extends EventListener {
10: public void event1(MyCustomEvent e);
11: public void event2(MyCustomEvent e);
12: public void event3(MyCustomEvent e);
13: }

The remainder can stay in MyCustomEvent.java, as shown in Listing 18.7.

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 645

LISTING 18.7. MyCustomEvent.java.

1: // This snippet takes advantage of JBuilder’s ability to define
2: // multiple public classes in a single source file. This is not
3: // recommended, and is only used here as an example.
4: // Each class should be pasted into its own .java file.
5: // You will see warnings to remind you when you compile.
6: //
7: // Snippet Note: Use the parameter button to change the name of the

➥event class.
8:
9: package BuildBeans;
10:
11: import java.util.*;
12:
13: // This defines a new event, with minimum state.
14: public class MyCustomEvent extends EventObject {
15: static final int EVENT1=1;
16: static final int EVENT2=2;
17: static final int EVENT3=3;
18: private int id=0;
19:
20: public int getID() {return id;};
21:
22: MyCustomEvent(Object source,int i) {
23: super(source);
24: id=i;
25: }
26: }

After making all these changes,be sure to select File |Save All and File |Save Project.
These three files present you with an event object class,event registration methods,an
event notification mechanism,and a method for sending event notifications to listeners.

After modifying these classes and methods to suit your needs and compiling them,you
will need to import the MyCustomEventExampleBean class into the bean class that needs
to use its functionality.

JavaBean Wizard
You can create a bean by using the JavaBean Wizard. Create a bean using the JavaBean
Wizard named DigiTime that displays the time digitally. Start by selecting File |New to
open the New dialog box, click on the New tab to open the New page of the New dialog
box if it’ s not already open,and double-click the JavaBean icon. The JavaBean Wizard
dialog box appears,as shown in Figure 18.6.

646 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

TYPE

22.31318-9 CH18 9/24/98 2:05 PM Page 646

Building JavaBeans 647

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Type the nameof the bean,DigiTime, into the Name of new JavaBean text box. Leave
all the other settings with their default values. Click the OK button to create the
DigiTime class.

First, add a component to display the output of your bean—the date and time. Click on
the AppBrowser window Design tab to switch to the Design mode. Select the JBCL tab
in the Component Palette and click on the TextControl icon. Click in the DigiTime user
interface in the Content Pane to add the TextControl component. Select the
TextControl component in the Structure pane (most likely named textControl1). Click
on the text property in the Property page of the Inspector pane. Type the name of your
new bean,The DigiTime Bean, in the text property text box. Now you’re ready to add
some code to your new bean. Switch back into Edit mode by clicking on the AppBrowser
window Source tab. Modify the DigiTime class declaration so that it implements the
Runnable interface. Change the class declaration to the following:

public class DigiTime extends BeanPanel implements Runnable{

The Runnable interface allows you to run the class in its own thread. Add the following
statement after the first import statement to import the Date class into your bean:

import java.util.Date;

Declare the thread, running, and theDate variables by adding the following three lines
of code just under the textControl1 variable definition:

Thread thread = null;
private boolean running = false;
private Date theDate = null;

The running variable is the running property for the DigiTime bean. Add a getter
method for the Boolean running property. The isRunning() getter method is as follows:

public boolean isRunning() {
return running;

}

FIGURE 18.6.
The JavaBean Wizard
dialog box.

22.31318-9 CH18 9/24/98 2:05 PM Page 647

Use the isRunning() getter method to retrieve the state of the running property. If the
bean’s thread is running, the isRunning() method returns true. Otherwise, it returns
false.

Now you’re ready to create a setter method for the DigiTime bean. Add the setter
method, setRunning(), to the DigiTime class as shown here:

public void setRunning(boolean running) {
this.running = running;
if(running && thread == null) {

thread = new Thread(this);
thread.start();

}
else if(!running && thread != null) {

thread.stop();
thread = null;

}
}

You or another programmer can set the DigiTime bean’s running property programmati-
cally through the setRunning() method. Pass true or false to the method depending on
whether you want to start or stop the bean’s clock. The method checks the Boolean value
that was passed and whether or not a thread is already running. Based on this informa-
tion, the method either creates a new thread and starts it running, or stops an existing
thread and assigns null to the thread variable.

Finally, it’s time to create the clock’s engine, which is located in the run() method. Add
the following run() method to your DigiTime class:

public void run() {
while (true) {

theDate = new Date();
textControl1.setText(theDate.toString());
try {

Thread.sleep(1000);
}
catch (InterruptedException e) {
}

}
}

You’re finished coding your DigiTime bean. The complete DigiTime bean source code is
provided in Listing 18.8. Build your DigiTime bean so that you can test it in the next
section.

648 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

22.31318-9 CH18 9/24/98 2:05 PM Page 648

Building JavaBeans 649

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

LISTING 18.8. DigiTime.java.

1: //Title: Your Product Name
2: //Version:
3: //Copyright: Copyright (c) 1998
4: //Author: Your Name
5: //Company: Your Company
6: //Description: Your description
7:
8: package BuildBeans;
9:
10: import java.awt.*;
11: import java.util.Date;
12: import borland.jbcl.view.BeanPanel;
13: import borland.jbcl.control.*;
14:
15: public class DigiTime extends BeanPanel implements Runnable{
16: BorderLayout borderLayout1 = new BorderLayout();
17: TextControl textControl1 = new TextControl();
18: Thread thread = null;
19: private boolean running = false;
20: private Date theDate = null;
21:
22: public DigiTime() {
23: try {
24: jbInit();
25: }
26: catch (Exception ex) {
27: ex.printStackTrace();
28: }
29: }
30:
31: private void jbInit() throws Exception {
32: textControl1.setText(“The DigiTime Bean”);
33: this.setLayout(borderLayout1);
34: this.add(textControl1, BorderLayout.CENTER);
35: }
36:
37: public boolean isRunning() {
38: return running;
39: }
40:
41: public void setRunning(boolean running) {
42: this.running = running;
43: if(running && thread == null) {
44: thread = new Thread(this);
45: thread.start();
46: }
47: else if(!running && thread != null) {

continues

22.31318-9 CH18 9/24/98 2:05 PM Page 649

LISTING 18.8. CONTINUED

48: thread.stop();
49: thread = null;
50: }
51: }
52:
53: public void run() {
54: while (true) {
55: theDate = new Date();
56: textControl1.setText(theDate.toString());
57: try {
58: Thread.sleep(1000);
59: }
60: catch (InterruptedException e) {
61: }
62: }
63: }
64: }

Testing Beans
To test your bean,you must first add it to the Component Palette. After you have suc-
cessfully compiled your bean’s class file (and any auxiliary files it requires),you’re ready
to install your new bean for testing. Select Tools|Configure Palette to display the Palette
Properties dialog box, shown in Figure 18.7.

650 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

FIGURE 18.7.
The Palette Properties
dialog box.

Open the Palette Properties dialog box to the Pages page by clicking on the Pages tab. In
the Pages list,click Other and then click on the Add from Package tab to display the Add
from Package page of the Palette Properties dialog box, shown in Figure 18.8.

22.31318-9 CH18 9/24/98 2:05 PM Page 650

Building JavaBeans 651

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Click the Browse button to display the Select File dialog box. Navigate to the
myclasses\BuildBeans package subdirectory, select a bean to install—in this case,
DigiTime.class—and click the Open button.

Back on the Add from Package page, with BuildBeans.DigiTime selected, click the
Install button. When you see the message Installation Complete, click the Pages tab.
You should see the BuildBeans.DigiTime component listed in the Components list box,
as shown in Figure 18.9.

FIGURE 18.8.
The Add from Package
page of the Palette
Properties dialog box.

FIGURE 18.9.
The
BuildBeans.DigiTime

bean is listed in the
Components list box.

Click the OK button in the Palette Properties dialog box. Your DigiTime bean should be
added to the Other page of the Component Palette.

22.31318-9 CH18 9/24/98 2:05 PM Page 651

Now that you have the new bean on the palette, you can try it out. Start a new project
and create a new application. When Frame1.java appears in the Navigation pane, click
the Design tab and then click bevelPanel1. Click the DigiTime bean and then click in
the Content pane. The DigiTime bean is added to your application interface. Change the
bean’s font size in the font property editor. (Change the font size to 24,for instance.)
Then click and drag the handles surrounding the DigiTime bean’s graphical representa-
tion to resize it in the user interface. Finally, click on the bean’s running property on the
Property page in the Inspector pane and select True from the drop-down list. You should
see your digital clock hard at work, as shown in Figure 18.10.

652 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Changes made to beans that have been placed on the palette do not take
effect until JBuilder has been closed and restarted.

Caution

FIGURE 18.10.
The DigiTime bean
shows the date and
time in an application
displayed in the
AppBrowser window
Design mode.

That’s it for this bean. It has been added to the palette, and you’ve used it in a new appli-
cation. With other beans,you might want to try setting properties,creating event han-
dlers—all the things you would want to do with the bean. After it’s fully tested, you can
deploy the bean using an archive file. (You’ll learn more about archiving tomorrow.)

If you decideto deploy your bean as an archive (a JAR or ZIP file), first select Tools|
Configure Palette and select the unarchived bean that you tested. Click the Remove but-
ton to remove the test bean. Archive the bean’s class file(s) and then select Tools|

22.31318-9 CH18 9/24/98 2:05 PM Page 652

Building JavaBeans 653

18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

Configure Palette to install the archived bean. Click Other in the Pages list box, and then
choose the Add from Archive tab. Navigate to the subdirectory where the archive resides
(which must be on your CLASSPATH), and click the Install button. Your archived bean is
now installed on the Component Palette. Other developers in your group (or customers)
can install it in their visual environments and use your bean as well.

Summary
Today you became familiar with developing JavaBeans components,reusable compo-
nents that you can create and distribute for use in any compliant visual development en-
vironment,such as JBuilder. Bean requirements were discussed, and some guidelines
were introduced. You got a thorough overview of JBuilder’s BeansExpress and its various
beans and code snippets,including NewBean, OkCancelBean, DBBean, BeanInfo, and
NewEventBean. You also learned how to create beans using the JavaBean Wizard.

Testing beans is an important last step toward ensuring that your beans work properly,
that properties can be set,that event handlers can be created, and that all the kinks are
worked out before deployment. You also learned how to add beans to your development
environment.

Q&A
Q What about dialog boxes? There are some on JBuilder’s Component Palette,

but I didn’ t read anything about creating dialog box beans.

A Creating dialog boxes as beans is a somewhat advanced topic, because the Dialog
subclass requires a parent Frame object as a parameter. However, recall that one of
the requirements of beans is that they have a parameterless default constructor.
Because of this conflict, dialog boxes must be wrapped, but this process is difficult.
For a solid introduction to accomplishing this task,check out the BeansExpress
help topic “Making a Bean from a Dialog.”

Q I’ ve added my bean to the Component Palette and used it in an applet, but I
keep getting Cannot instantiate xxx.class errors. What’ s going on here?

A When you run applets locally (on your client machine),all the class files on which
they depend must be available on your browser’s CLASSPATH for testing. You’ll
learn more about the details of why this is true tomorrow. For now, just be aware
that either the class files must be on the existing CLASSPATH or you must add the
subdirectory to the CLASSPATH. If you’re using archived beans,the archive’s fully
qualified pathname and filename must be added to the CLASSPATH.

22.31318-9 CH18 9/24/98 2:05 PM Page 653

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercises section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. What are the two basic requirements for creating beans?

2. How should accessor methods be named in order for JBuilder to expose them using
introspection?

3. You’ve added a DBBean to your project,but when you choose the Design tab, you
get an ODBC Driver Manager error. What is probably wrong?

4. What are the two main uses of the BeanInfo class?

5. What method is used to hide bean elements?

Exercises
1. Create new beans from some of the applets you created during the first two weeks.

2. Explore the BeansExpress tutorials accessible from the Help menu by selecting
Help|BeansExpress.

654 Day 18

P2/VB/swg1 TY JBuilder in 14/21/Week 31318-9 dietsch Chapter 18 Lp3

22.31318-9 CH18 9/24/98 2:05 PM Page 654

DAY 19

WEEK 3

Deploying Java Programs
After you’ve created and tested your Java programs on your computer, you’ll
want to deploy them in such a way that users have access to the files necessary
to run the program.

Deploymentis the preparation and placement of program files so that the
program will work properly in its intended environment. Often, deploy-

ment involves the optimization of file sizes so that the programs load rapidly
across networks and other information traffic bottlenecks.

For applications, deployment can be on individual machines or across Local
Area Networks (LANs). For applets, deployment will usually be to a Web
server, although you can also deploy applets locally, perhaps on an intranet or
extranet.

NEW TERM

Internet Service Providers (ISPs) have differing requirements for
uploading applets and associated files to their Web servers, so be
sure to check with yours before attempting to do so.

Note

23.31318-9 CH19 9/24/98 2:11 PM Page 655

For Java programs created with JBuilder, you will generally need your project’s class
files and auxiliary files (HTML, image, audio,and so on). Before you can distribute your
program to end users or customers, you need to learn about the following to make sure
that the proper files are deployed:

● Preparing your projects for deployment

● Creating JAR and ZIP archive files

● Using the Deployment Wizard

● Deploying applets and applications

In addition to your program files, you might need to include the JBCL or JGL archives,
which are located in the c:\jbuilder2\redist\ subdirectory. Today, you’ll learn when
these files need to be redistributed. To follow the examples in this chapter, create a pro-
ject file named DeployJava.jpr.

656 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

Java is backward compatible so the Java 1.1 virtual machine runs applica-
tions developed using Java 1.0. However, the Java 1.0 virtual machine does
not necessarily run applications developed using Java 1.1. Different browser
versions implement different versions of the Java Virtual Machine. Check
into the compatibility of the browsers that you want to use your Java pro-
gram. Make sure that the browser supports Java 1.1 applications if that’s the
version of Java you developed the application in. Using the Java Plug-in,
available from the Java Web site at http://www.javasoft.com, can solve
much of the browser compatibility problem.

Caution

Project Preparation
Before bundling up your program files, you need to prepare your JBuilder project so that
it is in its final form. There are various considerations you should take into account:

● Directory structure and relative paths

● Adding auxiliary files

● Resourcing strings

● Doing a final build

Let’s look at each aspect of project preparation in turn.

Directories and Paths
Typically, you’ll want to keep auxiliary files in separate subdirectories. On Day 9,
“Graphics,Fonts,and Multimedia,” for example, the images were kept in a subdirectory

23.31318-9 CH19 9/24/98 2:11 PM Page 656

Deploying Java Programs 657

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

named myimages, and the sounds were deposited in a subdirectory names mysounds. If
you use this type of structure, be sure to use relative pathnames to these subdirectories in
your program source.

For example, say you have a line of code like this in your source:

play(getCodeBase(), “mysounds/meow.au”);

Your program will then look for the meow.au file in the mysounds subdirectory.
Therefore, for proper execution of your program,you must make sure that this exact
same subdirectory structure is in place, with the proper files deposited in it,when de-
ploying your program.

Java is a case-sensitive language. Directory names, for instance, must exactly
match the string in the code.

Caution

You’ll be using the Neko applet created on Day 9 as your sample deployment project,so
copy the Neko.java and Neko.html files into your myprojects subdirectory. In the
myprojects directory, create a subdirectory named myimages, and then copy the nine
Neko images (*.gif) into the new myimages subdirectory.

With these files in place, you’re ready to begin adding them to today’s project. With the
AppBrowser window open to DeployJava.jpr, click the Add to Project icon in the
Navigation pane. Select both the Neko.java and Neko.html files,and click the Open but-
ton. Select File |Save Project. At this point,you should test the applet by selecting
Neko.html in the Structure pane, clicking your right mouse button,and selecting the Run
command.

Auxiliary Files
If you will be creating an archive file, such as a JAR or ZIP archive file, you will need to
add any auxiliary files to the project before archiving. To make these files members of
the project,use the Add to Project icon in the AppBrowser window Navigator pane.
You’ll learn how to make an archive file later today, so let’s prepare the DeployJava pro-
ject for archiving by adding the files in the myimages subdirectory to the project.

Click the Add to Project icon in the AppBrowser window Navigation pane. When the
File Open / Create dialog box appears,open it to the File page by clicking on the File tab
and then double-click on the myimages folder. Select all nine Neko images in the
myimages folder and then click the Open button. The project’s Navigation pane should
now include a list of the nine Neko images,as shown in Figure 19.1.

23.31318-9 CH19 9/24/98 2:11 PM Page 657

Any other files that you might want to include in your archive should also be added to
the project,such as audio or text files. When you’re finished adding files,be sure to se-
lect File |Save Project.

Accessing Auxiliary Files
You must use special methodsfor accessing auxiliary files from Java archives. The meth-
ods available from the classes in the java.io package typically don’t work, and the
Applet class getImage() method doesn’t work. Use the getResource() method in the
Class class instead.

Currently, your Neko applet loads images in its init() method with the following lines
of code:

for (int i=0; i < nekopics.length; i++) {
nekopics[i] = getImage(getCodeBase(), “myimages/” + nekosrc[i]);

}

When you put all of your applet’s auxiliary files into a JAR file, everything that applet
needs is stored in one place. This makes finding the files needed by the applet (or other
Java program) relatively easy because you know they’re in the applet’s JAR. The
getResource() method, shown here, takes advantage of this fact:

public URL getResource(String name)

The getResource() method was added to the Class class for accessing auxiliary files
from a JAR. When you call the getResource() method from your program,it returns a
URL object encapsulating the URL to your program’s resources or, in other words,the
URL to your program’s JAR file. The Class class is part of the java.lang package,

658 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

FIGURE 19.1.
The DeployJava pro-
ject AppBrowser win-
dow with the Neko
images added.

23.31318-9 CH19 9/24/98 2:11 PM Page 658

Deploying Java Programs 659

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

which is automatically imported into all Java programs. You get a class’s Class object
through the Object class’s getClass() method, shown here:

public final Class getClass()

You can get the Class object for any Java class using the getClass() method because all
Java classes are ultimately derived from the Object class. In the Neko applet’s init
method, add the following line of code just before the for loop that loads the applet’s
images:

Class myClass = getClass();

This statement gets the Neko applet’s Class object and assigns it to the myClass vari-
able. Next, you need to modify the body of the for loop so that it uses the
getResource() method to load the Neko images. First, create a new variable that you
can assign URL objects to and place the declaration, shown next, just before the for loop:

URL url = null;

Don’t forget to import java.net.URL into your code.

It’s good practice to initialize all new variables. Assign object variables a
null value if there is no initial object assigned to them. Likewise, numeric
variables should be assigned a 0; string variables, an empty string (“”).

Note

The body of the for loop should be changed so that the statement is identical to the fol-
lowing:

for (int i=0; i < nekopics.length; i++) {
url = myClass.getResource(“myimages/” + nekosrc[i]);
try{

nekopics[i] = createImage((ImageProducer) url.getContent());
}
catch (IOException ioe) {

System.out.print(ioe.toString());
}

}

Caution

Don’t forget to import java.awt.image.ImageProducer and
java.io.IOException into your code.

Caution

23.31318-9 CH19 9/24/98 2:11 PM Page 659

The first statement in the body of the for loop, reproduced in the following code line,
gets the URL object encapsulating the URL to the Neko applet’s image resource using the
getResources() method, and assigns it to the url variable:

url = myClass.getResource(“myimages/” + nekosrc[i]);

The Neko applet can load and create an image for display now that it has the location
of its image file resource. The image file is zipped together into the same JAR file as
Neko.class, which is at the location encapsulated by the URL object held by the url vari-
able. Using the line of code reproduced next, the Neko applet gets the data contained in
the image file and calls the Component class’s createImage() method to create an image
from the data:

nekopics[i] = createImage((ImageProducer) url.getContent());

The call to the URL class getContent() method gets the data from the image file lo-
cated in the Neko applet JAR file. The getContent() method signature is shown here:

public final Object getContent() throws IOException

The getContent() method returns an Object object. This means that any class of data
can be loaded through the getContent() method because the Object class is the super-
class for all Java classes. The Toolkit createImage() method takes an ImageProducer
object. The createImage() method signature is shown here:

public abstract Image createImage(ImageProducer producer)

You need to cast the object returned from a call to the getContent() method to an
ImageProducer object. ImageProducer is an interface found in the java.awt.image
package. The data are run through the createImage() method and are returned as an
Image object,which is assigned to the nekopics[i] variable array. Now the Neko applet
can load images from a JAR file. Use the same methods for loading any kind of auxiliary
file into all of your Java programs that use Java archives. The modified source code for
the Neko applet is shown in Listing 19.1.

LISTING 19.1. Neko.java.

1: package GraphicsFontsEtc;
2: import java.applet.*;
3: import java.awt.*;
4: import java.net.URL;
5: import java.awt.image.ImageProducer;
6: import java.io.IOException;
7:
8: public class Neko extends Applet implements Runnable {
9:

660 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

23.31318-9 CH19 9/24/98 2:11 PM Page 660

Deploying Java Programs 661

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

10: Image nekopics[] = new Image[9];
11: Image currentimg;
12: Thread runner;
13: int xpos;
14: int ypos = 50;
15:
16: public void init() {
17: String nekosrc[] = { “right1.gif”, “right2.gif”,
18: “stop.gif”, “yawn.gif”,
19: “scratch1.gif”, “scratch2.gif”,
20: “sleep1.gif”, “sleep2.gif”,
21: “awake.gif” };
22: Class myClass = getClass();
23: URL url = null;
24: for (int i=0; i < nekopics.length; i++) {
25: url = myClass.getResource(“myimages/” + nekosrc[i]);
26: try {
27: nekopics[i] = createImage((ImageProducer) url.getContent());
28: }
29: catch (IOException ioe) {
30: System.out.print(ioe.toString());
31: }
32: }
33: setBackground(Color.white);
34: }
35:
36: public void start() {
37: if (runner == null) {
38: runner = new Thread(this);
39: runner.start();
40: }
41: }
42:
43: public void stop() {
44: if (runner != null) {
45: runner.stop();
46: runner = null;
47: }
48: }
49:
50: public void run() {
51:
52: // run from one side of the screen to the middle
53: nekorun(0, getSize().width / 2);
54:
55: // stop and pause
56: currentimg = nekopics[2];
57: repaint();
58: pause(1000);

continues

23.31318-9 CH19 9/24/98 2:11 PM Page 661

LISTING 19.1. CONTINUED

59:
60: // yawn
61: currentimg = nekopics[3];
62: repaint();
63: pause(1000);
64:
65: // scratch four times
66: nekoscratch(4);
67:
68: // sleep for 5 seconds
69: nekosleep(5);
70:
71: // wake up and run off
72: currentimg = nekopics[8];
73: repaint();
74: pause(500);
75: nekorun(xpos, getSize().width + 10);
76:
77: }
78:
79: void nekorun(int start, int end) {
80: currentimg = nekopics[0];
81: for (int i = start; i < end; i+=10) {
82: xpos = i;
83: // swap images
84: if (currentimg == nekopics[0])
85: currentimg = nekopics[1];
86: else currentimg = nekopics[0];
87: repaint();
88: pause(150);
89: }
90: }
91:
92: void nekoscratch(int numtimes) {
93: for (int i = numtimes; i > 0; i--) {
94: currentimg = nekopics[4];
95: repaint();
96: pause(150);
97: currentimg = nekopics[5];
98: repaint();
99: pause(150);
100: }
101: }
102:
103: void nekosleep(int numtimes) {
104: for (int i = numtimes; i > 0; i--) {
105: currentimg = nekopics[6];
106: repaint();
107: pause(250);

662 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

23.31318-9 CH19 9/24/98 2:11 PM Page 662

Deploying Java Programs 663

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

108: currentimg = nekopics[7];
109: repaint();
110: pause(250);
111: }
112: }
113:
114: void pause(int time) {
115: try { Thread.sleep(time); }
116: catch (InterruptedException e) { }
117: }
118:
119: public void paint(Graphics g) {
120: if (currentimg != null)
121: g.drawImage(currentimg, xpos, ypos, this);
122: }
123:
124: }

Resource Wizard
If you’re planning on deploying your program in more than one language or locale,
you’ll want to consider using the Resource Wizard to convert any hard-coded strings into
identifiers. To do this,select the .java source code file for which you want to bundle re-
source strings,and then select Wizards|Resource Strings. The Resource Wizard dialog
box appears,as shown in Figure 19.2.

FIGURE 19.2.
The Resource Wizard
dialog box.

Create a new resource bundle by clicking the New button. The Create ResourceBundle
dialog box appears,as shown in Figure 19.3.

23.31318-9 CH19 9/24/98 2:11 PM Page 663

By default, the resource file is named Res.java, but you can change this name if you
like in the Name text box of the Create ResourceBundle dialog box. (The name without
the .java extension is displayed in the Name text box. Don’t enter the extension.) Select
the bundle type in the Type drop-down list. When you’re satisfied with the entries,click
the OKbutton.

As the Resource Wizard finds each hard-coded string in your source code, that string is
shown under the For String label, and the block that contains it appears under the Found
in: label. As each string is presented, you have the opportunity to assign it an identifier
called a key. If you then click the Convert button,the identifier replaces the string in your
source code, and the string is pulled out into the resource file. Alternatively, you can skip
the string if it isn’t one you intend to localize later (such as a product name).

After you’ve gone through all the strings presented, the Res.java file is automatically
added to the current project. The resource strings are now bundled in the resource file,
which can be translated and relinked with your project as required to create localized
versions of your project.

Final Build
Now that you’ve added all the auxiliary files and bundled your hard-coded strings,you’re
ready to do the final build of your project. First, select File |Project Properties to open
the DeployJava.jpr Properties dialog box. Open the Compiler page by clicking on the
Compiler tab, and uncheck the Include Debug Information check box, which is checked
by default. This will create a class file without the extra symbolic information that the in-
tegrated debugger requires but that your program doesn’t require when running on its
own. This also makes the class files smaller and faster to load.

664 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

FIGURE 19.3.
The Create
ResourceBundle
dialog box.

23.31318-9 CH19 9/24/98 2:11 PM Page 664

Deploying Java Programs 665

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

You might also need to uncheck Show Warnings if you’ve purposely used any deprecated
methods. (Using deprecated methods is not recommended.) Select Build|Rebuild Project
to create all new class files for your project,and then test-run your project one more
time. If you don’t intend to archive, your project is now ready to deploy.

Unarchived Projects
To deploy an unarchived project,all you really need to do is duplicate your basic direc-
tory structure on your intended platform. For example, say you have a subdirectory on
your Web server directory at http://www.mysite.org/homepage/applets/ where you
want to put Neko. Copy Neko.html to that directory. Recall that the Neko.class is part of
the GraphicsFontsEtc package. You need to put the Neko.class file in a subdirectory
named after the package. Create a subdirectory named GraphicsFontsEtc and place the
Neko.class inside it. Finally, create a subdirectory named myimages inside the
GraphicsFontsEtc subdirectory, and deposit the Neko images into the new
applets/GraphicsFontsEtc/myimages subdirectory.

That’s it! Test-run the applet from the Web site, and Neko is off and running. If you have
many class files associated with an applet,you could create a myclasses subdirectory
and deposit the class files there. If you do this,just be sure that you adjust the CODEBASE
attribute in the <APPLET> tag of the HTML file so that it reflects that relative path. If you
used packages in your program,be sure to duplicate that directory structure as well.

Another aspect of this simple deployment is that it involves an applet that didn’t make
use of any beans from the JavaBeans Class Library, so therefore it doesn’t require the
JBCL classes to be present to run. If your program uses any of the components on the
Component Palette, you’ve used JBuilder beans,so if your Web site or user doesn’t al-
ready have access to the JBCL class archives,your program won’t run. You’ll need to
copy the jbcl2.0-rt.jar file from the c:\jbuilder2\redist\ directory to your user’s
machine or your Web site to make the archives available in order for your program to run
properly.

Many JBCL classes rely on classes and interfaces in the Java Generic Library
(JGL). In addition to deploying the JBCL archive, it might be necessary to in-
clude the JGL archive, the jgl3.1.0.jar file residing in the
c:\jbuilder2\redist\ directory, when you deploy applications using the
JBCL class.

Note

If you’ve used any of the KL Group beans or any of the Java Generic Library (JGL)
classes,you might also need to copy one or more of the jcbwt.jar, jcchart.jar,

23.31318-9 CH19 9/24/98 2:11 PM Page 665

jctable.jar, or jgl3.1.0.jar files from the c:\jbuilder2\redist\ directory. These
redistributable Java Archive (JAR) files contain the dependency classes that the KL
Group beans and JGL methods require in order to run in Java.

Run the deployed application by using the Java Runtime Environment utility program,
jre.exe and jrew.exe under Windows. You can find both in the C:\JBuilder2\java\
bin\, or equivalent,directory. Be sure to use the –cp option so that the utility knows the
path and filename of each archive needed to run your application. The command line
should look something like the following:

jre -cp MyJar.jar;OtherJar.jar;YetAnotherJar.jar myPackage.myClass

666 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

Your applets run in browsers, which provide their own Java runtime environ-
ment. Your applet users don’t need to worry about including directory and
filenames to necessary archive files because you provide the appropriate
archive files available to the Web server on which you place your applets.
The user’s browser downloads the archive files specified in the HTML file.

Note

Archives
Archiving your project isn’t absolutely necessary, but it’s highly recommended. It’s prob-
ably okay to deploy small applets (such as Neko) as unarchived projects. However, when
users download your applet into their browsers, the associated unarchived files (class,
audio,image, and so on) are downloaded separately, each causing an additional http con-
nection to be made for the download. If your Internet Service Provider charges you by
the connection,or hit, this can add up to a lot of money in no time. An archived pro-
gram,on the other hand, downloads all its files in a single HTTP connection.

Four types of archives are supported in Java:

● JAR uncompressed

● JAR compressed

● ZIP uncompressed

● ZIP compressed

If you are deploying an applet that you know will be distributed only to
users of Microsoft’s Internet Explorer, you can also compress files using the
.CAB cabinet file format.

Tip

23.31318-9 CH19 9/24/98 2:11 PM Page 666

Deploying Java Programs 667

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

JARstands for Java Archive, a portable ziplike archive that contains the files and
directory structure of a Java program.

JAR files can be created as compressed or uncompressed archives. In an uncompressed
archive, the files are stored in a single archive but remain their original size.
Compression decreases the size of the archive file and therefore decreases download time
and increases performance. JAR files also automatically preserve the subdirectory struc-
ture of the program being archived. They are the cross-platform solution of choice for
creating archives.

For example, the Microsoft Internet Explorer supports JAR and CAB file formats for ap-
plets,with JAR support in the ARCHIVE attribute and CAB support in the CABBASE at-
tribute of the <APPLET> tag. (CAB is Microsoft’s proprietary file compression scheme,
used by Microsoft’s installation programs.) However, the Netscape Navigator supports
both JAR and ZIP files in the ARCHIVE attribute. It appears that only the JAR file format
will be universally available to browser users, so you might want to eschew ZIP files un-
less your program will be run exclusively on a platform that supports them (perhaps on
your company intranet,for example).

In addition to program files,a JAR file must contain a manifest file listing its contents
and signature files for authentication. For more information on manifest (.MF) and signa-
ture (.SF) files, select Help|Java Reference and choose the JDK Documentation node.
Under the JDK Guide to New Features topic, locate and click the JAR File Format link,
and then click the Manifest Format Specification link to view the details.

You can create JAR files manually by using the JAR.EXE command-line utility (see
Appendix B, “JBuilder and Java Utilities”). ZIP files can be created with any one of a
number of ZIP creation utilities,such as PKZIP.EXE and WinZip32. However, the easi-
est way to create your program’s archive is by using JBuilder’s Deployment Wizard.

NEW TERM

Be sure that you are using a recent version of PKZIP.EXE or WinZip. They
must be the 32-bit versions that allow long filenames.

Note

Deployment Wizard
The JBuilder IDE provides a wizard to automate the task of archiving your program
files. After you’ve prepared your project,select Wizards|Deployment Wizard to invoke
this utility, which is shown in Figure 19.4.

23.31318-9 CH19 9/24/98 2:11 PM Page 667

The Deployment Wizard dialog box’s Select Files to Deploy list box automatically dis-
plays all the files that are members of the current project. The .class files are implicitly
referenced by the .java source code files that are members. All other file types must be
explicitly selected. (This is why it is necessary to add the auxiliary files to the project be-
fore attempting to archive.)

In this list box, be sure to deselect any of the HTML files,because they shouldn’t be part
of the archive. Note that the JPR isn’t listed; it should never be deployed because it has
significance only in the JBuilder development environment. Also, the JDK should never
need to be deployed; your users should already have the Java VM installed on their client
machine.

The Dependency Options section has three check boxes. The Include JBCL and Include
JGL check boxes control whether the JBCL and JGL class files are included in the
archive. If you know that the user already has these files available on his client machine,
or if you already have them available on your Web site for your applet,you can keep
these options unchecked to exclude these files. Check the Include all others check box if
you want the Deployment Wizard to review the current project to determine whether it
requires any additional class files in order to run. If others are found, they are included in
the archive.

668 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

FIGURE 19.4.
The Deployment
Wizard dialog box.

It’s recommended that you deploy both JBCL and JGL all the time. This pre-
vents conflicts if an older or a newer version conflicts with the version you
built your application with.

Caution

23.31318-9 CH19 9/24/98 2:11 PM Page 668

Deploying Java Programs 669

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

The Delivery Options area includes mostly radio buttons because most options in the
area are mutually exclusive. Choose one of the three formats offered:No Archive, Zip, or
JAR. If you select a Zip or a JAR format, you can choose between having the file com-
pressed or uncompressed by checking or clearing the Compressed check box. Selecting a
JAR format will cause the Deployment Wizard to generate a manifest file if necessary. If
you’ve already created a manifest file and want that one used instead, you should add it
to the project before invoking the wizard and then select it in the Manifest File list box.
The generated manifest file is deposited in the meta-inf subdirectory (also created by
the wizard as needed) and is always named manifest.mf.

The Archive Output Path edit box contains the pathname specified in the project’s Out
Path option by default. The archive filename is set to either Untitled1.jar or
Untitled1.zip, depending on the archive format chosen. You can change the pathname
and filename manually or use the Browse button to locate an appropriate path or existing
archive to replace.

When you click the Finish button,the wizard creates the JAR or ZIP file. Both JAR and
ZIP archive files can then be viewed using WinZip32 or another zip file viewer. When
you examine the archive, you’ll see that the subdirectory structures are included in the
Path column,including the meta-inf subdirectory for the manifest.mf manifest.

Applets and Applications
Because applets are run in a browser and applications are standalone programs,they have
slightly different deployment requirements. For example, it isn’t necessary to create an
install procedure for applets,but it’s a necessity for applications. Also, there are differ-
ences in distributing archived and unarchived programs. These differences are discussed
in the following sections.

However, for all Java programs,if you have used any of the JBuilder beans,KL Group
beans,or JGL classes,you will need to deploy one or more of the JAR files in the
c:\jbuilder2\redist\ subdirectory. Your license agreement allows these files to be re-
distributed, but be sure to read the agreement for all the details. Where these files are
placed changes depending on whether your program is deployed as an applet on a server
or as an application on a client machine or network. These differences are discussed in
the following sections.

Deploying Applets
Deploying applets is fairly straightforward. It’s accomplished mainly by copying the ap-
plet’s project files to your Web server. Some requirements must be fulfilled for your ap-

23.31318-9 CH19 9/24/98 2:11 PM Page 669

plet to run correctly. For applets,some of these requirements have already been men-
tioned, but let’s review them here.

If you deploy an unarchived applet project,you will need to duplicate the project’s direc-
tory structure on the Web server, including any subdirectories containing auxiliary files
(images,audio,and so on) and any package subdirectory structures. If you keep your
class files in a directory separate from your HTML file, you must also be sure to include
this relative pathname in the <APPLET> tag’s CODEBASE attribute where the class file is
called.

For archived applets,in addition to copying the archive files to the Web server, you will
also need to specify their relative location in the ARCHIVE attribute of the <APPLET> tag in
your HTML file. For example, let’s assume that you have archived your classes and
sound files in separate JAR files. Your <APPLET> tag’s ARCHIVE attribute might look
something like this:

ARCHIVE=”myclasses.jar, mysounds.jar”

Note that each archive must be listed individually in a comma-delimited list enclosed in
double quotation marks. If the JAR files are kept in a subdirectory relative to your
HTML f ile, you must include the relative pathname in the ARCHIVE attribute. For exam-
ple, if you decided to keep myclasses.jar and mysounds.jar in a subdirectory named
archives. Here’s how the ARCHIVE attribute would need to be adjusted:

ARCHIVE=”archives/myclasses.jar, archives/mysounds.jar”

670 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

When placed on a Web server, an archive’s directory is located relative to
the current directory that the .html file is served from.

Caution

If your applet uses any of theJBuilder beans,KL Group beans,or JGL classes,their re-
spective archive files must be deposited on your Web server. They must also be specified
in the ARCHIVE attribute. Continuing with the preceding example, let’s surmise that you
have used components from both the JBCL and the KL Group pages of the Component
Palette and have also used several of the JGL classes to create an optimized hash table.
Because your applet depends on redistributable JAR files, they must be mentioned in the
ARCHIVE attributeas well:

ARCHIVE=”archives/myclasses.jar, archives/mysounds.jar,
archives/jbcl2.0-rt.jar, archives/jctable.jar,
archives/jgl3.1.0.jar”

23.31318-9 CH19 9/24/98 2:11 PM Page 670

Deploying Java Programs 671

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

Be sure to copy the archives from c:\jbuilder2\redist\ to the archives subdirectory
on your Web server so that the HTML file will be able to find them when the applet is
run. Although each archive is downloaded as a separate HTTP connection,this is still
preferable to downloading each of their constituent files individually.

Even if the main applet class file is in myclasses.jar, you must still include the CODE at-
tribute naming that main applet class:

CODE=”myApplet.class”

Remember that JBCL depends on JGL in many places. Sometimes you need
both.

Caution

When you deploy code that is in a package, the package must be indicated
in the CODE parameter: CODE=”myPackage.myApplet.class”.

Note

Because you’ve specified the ARCHIVE attribute, the browser will look in the
myclasses.jar file for that class,but it must still be named explicitly as a
starting point for the execution of your applet program. The completed
<APPLET> tag for this example might look like this:

<APPLET CODE=”myApplet.class”
ARCHIVE=”archives/myclasses.jar, archives/mysounds.jar,

archives/jbcl2.0-rt.jar, archives/jctable.jar,
archives/jgl3.1.0.jar”

WIDTH=400 HEIGHT=300>
</APPLET>

After you’re satisfied that all the files and archives have been copied to your Web server
location and that the appropriate entries have been made to the <APPLET> tag, you should
once again test your applet as a “li ve” program. Be sure to try it from several popular
browsers. Sun HotJava,Microsoft Internet Explorer, and Netscape Communicator are
highly recommended. You may also want to try it from different types of net connec-
tions,such as modem and T1, and from behind a firewall to expose any performance
problems that these connections might uncover.

23.31318-9 CH19 9/24/98 2:11 PM Page 671

Deploying Applications
For applications,you need to add a few niceties to make the deployment complete:an in-
stall procedure and run instructions. For the install procedure, you can use an installation
program generator for your target platforms,or you can simply create a platform-specific
batch file. Creating an install procedure that works properly (that doesn’t overwrite exist-
ing files without asking, that allows the user to restore original settings,and so on) is a
lot of work but worth the effort in reduced technical support costs. Your install procedure
will need to create the duplicate subdirectory structure that your program requires and
deposit the files in those subdirectories.

Once again, you will need to make the jbcl2.0-rt.jar, jctable.jar, and
jgl3.1.0.jar archive files available to the user if you have used any of the JBCL beans,
KL Group beans,or JGL classes. When you run a Java application, use the Java Runtime
Environment utility program,jre.exe and jrew.exe under Windows. Be sure to use the
–cp option so that the utility knows the path and filename of each archive needed to run
your application. The command line should look something like the following:

jre -cp MyJar.jar;OtherJar.jar;YetAnotherJar.jar myPackage.myClass

You should create a README file to instruct your users how to run the Java application. If
your users are running your program in a windowed environment,perhaps you’ve pro-
vided an icon for them to double-click to execute your program. If so,be sure to include
this information in your README. If your users will be running your program from a com-
mand prompt,they should be instructed to run the jre.exe or jrew.exe program from
the prompt with your program’s class name as its argument:

jre –cp archive.jar myPackage.newprog

672 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

The Java Runtime Environment (JRE) is available for a wide variety of plat-
forms. Different platforms have different file-naming conventions, so exe-
cutables might not end in .exe as they do on the Windows platforms.
Con-sult your operating system’s documentation for the appropriate form
of its executable filenames.

Note

In this example, your program’s class name is newprog.class, and the Java jre.exe
utility is in the user’s path. Your program depends on the archive.jar archive.

23.31318-9 CH19 9/24/98 2:11 PM Page 672

Deploying Java Programs 673

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

Summary
Although there are several requirements for deploying your Java programs,none of them
is particularly difficult. Create a checklist and carefully test each step of the way.

Today you learned that both applets and applications require that their subdirectory struc-
tures are exactly duplicated or preserved in archive files in order for your Java programs
to run properly when deployed. In addition, archives present several of their own require-
ments.

For applets,archives must be named in the ARCHIVE attribute of the <APPLET> tag. In con-
trast,you provide archive information for your Java applications by using the Java
Runtime Environment utility’s –cp flag.

You saw how archives can save your users time when downloading and improve your
programs’performance. They might also save you money if your Internet Service
Provider charges you by the hit,because archives can download multiple files in a single
HTTP connection.

You learned how to prepare your programs for archiving and deployment,including how
to add auxiliary files such as images,sounds,and text files to your project before archiv-
ing. The Resource Wizard was demonstrated as an automated way to substitute identi-
fiers for hard-coded strings in your programs,making them easier to localize. You should
now be able to do a final build to produce class files without symbolic debugging infor-
mation. In addition, you were introduced to the Deployment Wizard—JBuilder’s easy-to-
use utility that helps you select the appropriate files for your project archives.

Finally, you examined some of the differences between deploying applets and applica-
tions. You were introduced to the requirements of installation programs and how to in-
struct your users to execute your Java programs.

Although you have used java.exe to run programs during development, it
isn’t part of the standard redistributable Java VM that your users should
have installed on their machines. Therefore, instruct your users to run your
programs using the jre.exe or jrew.exe utility instead, which is the stan-
dard Java VM redistributable runtime environment.

Note

23.31318-9 CH19 9/24/98 2:11 PM Page 673

Q&A
Q Where can I get more information on deploying Java programs?

A Inprise promises to put updates concerning deployment on its Web site at
http://www.inprise.com/jbuilder/ as needed. Be sure to check there for addi-
tional tips and techniques. Other places to check are the various browser Web sites
for browser-specific information on the <APPLET> tag and its attributes,as well as
which archive formats are supported by the browser. Those sites are listed here:

HotJava (by Sun) http://java.sun.com/products/hotjava/

Microsoft Internet Explorer http://www.microsoft.com/ie/

Netscape Communicator http://www.netscape.com/communicator/

Q How many archives can I list in the ARCHIVE attr ibute? Is there a limit?

A There isn’t a hard limit, but remember that the more archives you list, the more
connections your user’s browser will need to make to download all your files.
However, depending on which version of HTML your user’s browser supports,
there might be a limit on how long the <APPLET> tag itself can be. Check the
browser Web sites for more information on their HTML support.

Q I’m not absolutely certain which class files I may use in my applets. Can I just
mention all the redistributables in the ARCHIVE attr ibute to be safe?

A As long as you’ve put them up on your Web server where your applets can locate
them,this will work. However, if your program doesn’t actually require those
archives,your applet will take the performance hit for downloading files that are
unnecessary for its operation. You might also be charged for those additional hits
each time your applets are executed. This isn’t recommended as a standard prac-
tice.

It’s fairly simple to know which archive files you’ve used. If you added any of the
beans from the Component Palette from the standard JBCL pages,add jbcl2.0-
rt.jar and jgl3.1.0.jar to the ARCHIVE tag. If you’ve used beans from the KL
Group page, add the jcbwt.jar, jcchart.jar, or jctable.jar archive. If you’ve
used any of the JGL optimized data structures or methods,add the jgl3.1.0.jar
archive. The best way to remember to do this is to update your HTML file when
you add the first bean or method that requires it to your program. Then check the
HTML f ile to see which archives you need to upload to your Web site, and you’re
done.

674 Day 19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

23.31318-9 CH19 9/24/98 2:11 PM Page 674

Deploying Java Programs 675

19

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 19 Lp2

Q I forgot to do a final build before archiving my project, and now my program
still has debugging information in it. Do I have to go through the whole
process of archiving again?

A Yes. You will need to re-archive and replace the old archive files. The archive does-
n’t simply reference the file; it also includes the compressed or uncompressed files
themselves.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. Which option do you need to uncheck before doing a final build?

2. True or false:You always need to add auxiliary files to your project.

3. True or false:Although you can’t create JAR files with a zip utility, you can use a
zip utility to view a JAR file’s contents.

4. How can you include the jbcl2.0-rt.jar and/or jgl3.1.0.jar archive files in
your own archives? Under what circumstances is this necessary?

5. True or false:If you include your applet’s main class file in an archive referenced
by the ARCHIVE attribute, you don’t need to use the CODE attribute in the <APPLET>
tag.

6. What is the one semantic difference between adding archive files to the <APPLET>
tag’s ARCHIVE attribute and adding them to the CLASSPATH?

Exercise
Take one of the multimedia projects created on Day 9, “Graphics,Fonts,and
Multimedia,” and deploy it (using a JAR file) on another machine that has the Java
VM installed. Don’t forget to add image and/or audio files to the project.

23.31318-9 CH19 9/24/98 2:11 PM Page 675

23.31318-9 CH19 9/24/98 2:11 PM Page 676

DAY 20

WEEK 3

Java Network
Communications

Networking is the capability to make connections from your applet or applica-
tion to a system over the network, perhaps a Local Area Network (LAN) or the
Internet. You’ll need to know how to load HTML files, how to retrieve files
from Web sites, and how to work with generic sockets in Java. Today’s net-
working topics include the following:

● Creating networking links in applets

● Locating and opening Web connections (URLs)

● How the URLConnection class is used

● Using the Socket and SocketServer classes

● How to handle network-related exceptions

Remote Method Invocation (RMI) is also an important part of Java networking
that allows your applet or application to call methods on objects that reside on
another system on the network. Today, you’ll learn about these RMI topics:

24.31318-9 CH20 9/24/98 2:13 PM Page 677

● How Remote Method Invocation works

● Defining interface and implementation classes

● Stubs,skeletons,servers,and clients

● Registering the server and testing the client

● Where to find additional RMI documentation

To create a new project,select File |New Project,and then modify the File field so that it
says this:

C:\jbuilder2\myprojects\JavaNetworking.jpr

Click the Finish button. You’ll add today’s listings to this project.

Networking
Networking in Java involves classes in the java.net package that provide cross-platform
abstractions for simple networking operations,including connecting and retrieving files
by using common web protocols and creating basic UNIX-like sockets. When these
classes are used in conjunction with input and output streams,reading and writing to
files over the network becomes as easy as reading and writing to files on the local disk.

Of course, some restrictions apply. Java applets can’t read or write to the disk on the
client machine that’s running the applets without its express permission—or, depending
on the browser, perhaps not at all. In most situations,Java applets might not be able to
connect to systems other than the server from which they were originally invoked. But
even given these restrictions,you can accomplish a great deal and take advantage of the
Web to read and process information over the Internet.

Creating Links in Applets
Probably the easiest way to use networking inside an applet is to tell the browser running
the applet to load a new page. For example, you can create animated image maps by
telling the browser to load a particular page when a certain location is clicked.

To link to a new page, you create a new instance of the URL class. You might remember
some of this from your work with images on Day 9, “Graphics,Fonts,and Multimedia.”
TheURL class represents a Uniform Resource Locator that lets you access particular sites
and files on the web. To create a new URL object,you can use one of the following four
constructors:

● URL(String, String, int, String): This constructor takes four argumentsand
creates a new URL object. The first argument (String) takes a String object encap-
sulating a protocol name such as http, ftp, gopher, or file. The second argument

678 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 678

Java Network Communications 679

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

(String) takes a String object encapsulating a hostname such as
www.borland.com or ftp.netcom.com. The third argument (int) takes an integer
value representing a port number—80 for http. The fourth argument (String)
takes a String object encapsulating a filename or pathname.

● URL(String, String, String): This constructor takes three arguments and per-
forms the same function as the preceding constructor, minus the port number (int)
argument.

● URL(URL, String): This constructor creates a URL object given a base path (URL)
encapsulated in a URL object and a relative path (String) encapsulated in a
String object. For the base path argument,you can use the getDocumentBase()
method to return the URL of the current HTML file, or the getCodeBase() method
to return the URL of the Java applet class file. The relative path (String) argument
is concatenated onto the last directory in the base URL (just as was done when you
worked with images and sounds).

● URL(String): This constructor creates a URL object from a String object that
encapsulates a fully-qualified URL name (one that includes the protocol,hostname,
optional port number, and pathname or filename).

When creating a URL object using String arguments,you must catch the exception that
occurs when there is a typo or error in the name of the URL,so be sure to surround the
URL class constructor call with try...catch blocks:

String someURLString = “http://www.microsoft.com/”;
try {

theURL = new URL(someURLString);
}
catch (MalformedURLException e) {

System.out.println(“Bad URL: “ + someURLString);
}

This way, if the value of the String object doesn’t pass as a fully-qualified URL address,
the catch block handles the error and prints the offending string.

Getting the URL object is the hard part. After you have a valid one, all you have to do is
pass it to the browser. This is done using a single line of code, in which theURL is
assigned the URL object encapsulating the URL you want the applet to link to:

getAppletContext().showDocument(theURL);

The browser that contains your applet and then loads and displays the document that
resides at that URL address. To try this out,in JBuilder, select File |New. In the New
page of the New dialog box, double-click the Applet icon. In the Applet Wizard: Step 1
of 3 dialog box, erase the Package: field, change the Class:field to Bookmarks, and click
the Finish button.

24.31318-9 CH20 9/24/98 2:13 PM Page 679

You want to add several buttons to this new applet,but before you do,you need to make
some property changes to the applet’s drawing area. With Bookmarks.java selected in
the Navigation pane, choose the Design tab in the AppBrowser window under the
Content pane and make the changes outlined in Table 20.1.

TABLE 20.1. INITIAL PROPERTY CHANGES.

Component Property Value

this(XYLayout) layout GridLayout

gridLayout1 rows 3

Click on this(GridLayout) in the Structure pane, and then add three Button compo-
nents from the AWT page of the Component Palette. Your AppBrowser window should
currently look something like what’s shown in Figure 20.1.

680 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

FIGURE 20.1.
The AppBrowser win-
dow after three Button
components have been
added to the
Bookmarks applet.

Change the labels and names of the three buttons. Table 20.2 shows the property changes
needed for these buttons.

TABLE 20.2. ADDITIONAL PROPERTY CHANGES.

Component Property Value

button1 name btnJBuilder

button1 label JBuilder

button2 name btnSamsnet

button2 label Sams.net

button3 name btnJavaSoft

button3 label JavaSoft

24.31318-9 CH20 9/24/98 2:13 PM Page 680

Java Network Communications 681

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

Now you’re ready to create event handlers for each button. Click btnJBuilder in the
Structure pane. Then,in the Events page of the Inspector pane, triple-click on the right
column of the actionPerformed event row to create a method stub, and add the follow-
ing code:

linkTo(“JBuilder”);

Choose the Design tab, click btnSamsnet, triple-click its actionPerformed event,and
add this line of code:

linkTo(“Sams.net”);

Repeat this process for btnJavaSoft, adding this line of code:

linkTo(“JavaSoft”);

If you don’t think you’ve seen the linkTo method before, you’re right. Now that the
Bookmarks applet user interface is complete, it’s time to add the Java code that performs
the central functions of the applet,including the linkTo method and a private class
named Bookmark.

First, create the new Bookmark class at the end of the source code in the Bookmarks.java
file. A Bookmark object encapsulates the name and address of a web site. The Bookmark
class constructor takes the web site name encapsulated in a String object and passed to
the theName parameter, and it takes the Web site address encapsulated in a String object
and passed to the theURL parameter. As you can see in the following code listed, the
Bookmark class is made up of just its class constructor and two class variables. The class
constructor assigns the web name to the name class variable, and it assigns the web
address to the url class variable.

class Bookmark {
String name;
URL url;
Bookmark(String theName, String theURL) {

this.name = theName;
try {

this.url = new URL(theURL);
}
catch (MalformedURLException e) {

System.out.println(“Bad URL: “ + theURL);
}

}
}

The Bookmarks applet uses classes from the java.io package. Therefore, add the
following line of code to the import statements already listed at the top of the
Bookmarks.java file:

import java.net.*;

24.31318-9 CH20 9/24/98 2:13 PM Page 681

Three bookmarks are hard-coded into the Bookmarks applet,one for each button.
Therefore, the applet needs an array of three Bookmark objects. Add the following line of
code under the existing Bookmarks class variables:

Bookmark bkmklist[] = new Bookmark[3];

This declares the bkmklist variable as a Bookmark object array and assigns the variable
three new Bookmark objects. Each Bookmark object in this array must be initialized. A
good place for initialization is in the jbInit method. Add the following lines of code to
the jbInit method:

bkmklist[0] = new Bookmark(“JBuilder”,
“http://www.inprise.com/jbuilder/”);

bkmklist[1] = new Bookmark(“Sams.net”,
“http://www.mcp.com/sams/”);

bkmklist[2] = new Bookmark(“JavaSoft”,
“http://www.javasoft.com/”);

Each statement assigns a Bookmark object encapsulating one of the three web sites to one
of the three spaces in the bkmklist array.

Finally, you need to add code to the Bookmarks class that will perform the connections
between the Bookmarks applet and the Web sites encapsulated in the Bookmark objects.
The linkTo method in the Bookmarks applet uses Bookmark objects to connect with Web
sites. Add the following code to the Bookmarks class:

void linkTo(String name) {
URL theURL = null;
for (int i = 0; i < bkmklist.length; i++) {

if (name.equals(bkmklist[i].name))
theURL = bkmklist[i].url;

}
if (theURL != null)

getAppletContext().showDocument(theURL);
}

The linkTo method takes the name passed to the name parameter and checks it against
the names assigned to the name variables encapsulated in the three Bookmark objects.
When the names match, the URL encapsulated in the Bookmark object is extracted and
passed to the showDocument method.

The complete class source is shown in Listing 20.1. Compile and run the Bookmarks
applet. Figure 20.2 shows the applet’s user interface. Clicking the buttons in this applet
causes the document to be loaded from the locations to which the buttons refer.

682 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 682

Java Network Communications 683

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

LISTING 20.1. Bookmarks.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import java.net.*;
5: import borland.jbcl.layout.*;
6: import borland.jbcl.control.*;
7:
8: //import com.sun.java.swing.UIManager;
9: public class Bookmarks extends Applet {

10: boolean isStandalone = false;
11: GridLayout gridLayout1 = new GridLayout();
12: Button btnJBuilder = new Button();
13: Button btnSamsnet = new Button();
14: Button btnJavaSoft = new Button();
15: Bookmark bkmklist[] = new Bookmark[3];
16:
17: //Construct the applet
18:
19: public Bookmarks() {
20: }
21: //Initialize the applet
22:
23: public void init() {
24: try {
25: jbInit();

The appletviewer can’t load web pages. Nothing happens when you click on
the Bookmarks applet buttons in the appletviewer window. Load the
Bookmarks applet into your web browser to see it in action.

Note

FIGURE 20.2.
The Bookmarks applet.

TYPE

continues

24.31318-9 CH20 9/24/98 2:13 PM Page 683

LISTING 20.1. CONTINUED

26: }
27: catch (Exception e) {
28: e.printStackTrace();
29: }
30: }
31: //static {
32: // try {
33: // //UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.metal.MetalLookAndFeel());
34: // //UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.motif.MotifLookAndFeel());
35: // UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.windows.WindowsLookAndFeel());
36: // }
37: // catch (Exception e) {}
38: //}
39: //Component initialization
40:
41: private void jbInit() throws Exception {
42: gridLayout1.setRows(3);
43: btnJBuilder.setLabel(“JBuilder”);
44: btnJBuilder.addActionListener(new java.awt.event.ActionListener() {
45: public void actionPerformed(ActionEvent e) {
46: btnJBuilder_actionPerformed(e);
47: }
48: });
49: btnSamsnet.setLabel(“Sams.net”);
50: btnSamsnet.addActionListener(new java.awt.event.ActionListener() {
51: public void actionPerformed(ActionEvent e) {
52: btnSamsnet_actionPerformed(e);
53: }
54: });
55: btnJavaSoft.setLabel(“JavaSoft”);
56: btnJavaSoft.addActionListener(new java.awt.event.ActionListener() {
57: public void actionPerformed(ActionEvent e) {
58: btnJavaSoft_actionPerformed(e);
59: }
60: });
61: this.setLayout(gridLayout1);
62: this.add(btnJBuilder, null);
63: this.add(btnSamsnet, null);
64: this.add(btnJavaSoft, null);
65: bkmklist[0] = new Bookmark(“JBuilder”,

➥“http://www.inprise.com/jbuilder/”);
66: bkmklist[1] = new Bookmark(“Sams.net”, “http://www.mcp.com/sams/”);

684 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 684

Java Network Communications 685

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

67: bkmklist[2] = new Bookmark(“JavaSoft”, “http://www.javasoft.com”);
68: }
69: //Get Applet information
70:
71: public String getAppletInfo() {
72: return “Applet Information”;
73: }
74: //Get parameter info
75:
76: public String[][] getParameterInfo() {
77: return null;
78: }
79:
80: void linkTo(String name) {
81: URL theURL = null;
82: for (int i = 0; i < bkmklist.length; i++) {
83: if (name.equals(bkmklist[i].name))
84: theURL = bkmklist[i].url;
85: }
86: if (theURL != null)
87: getAppletContext().showDocument(theURL);
88: }
89:
90: void btnJBuilder_actionPerformed(ActionEvent e) {
91: linkTo(“JBuilder”);
92: }
93:
94: void btnSamsnet_actionPerformed(ActionEvent e) {
95: linkTo(“Sams.net”);
96: }
97:
98: void btnJavaSoft_actionPerformed(ActionEvent e) {
99: linkTo(“JavaSoft”);
100: }
101: }
102:
103: class Bookmark {
104: String name;
105: URL url;
106: Bookmark(String theName, String theURL) {
107: this.name = theName;
108: try {
109: this.url = new URL(theURL);
110: }
111: catch (MalformedURLException e) {
112: System.out.println(“Bad URL: “ + theURL);
113: }
114: }
115: }

24.31318-9 CH20 9/24/98 2:13 PM Page 685

Let’s go over the manually added lines of code:

● Line 4 gives your applet access to the URL and MalformedURLException classes
needed for its networking functionality by importing the java.net classes.

● Line 15 declares an array to hold three Bookmark objects.

● Lines 65 through 67 initialize the array by calling the Bookmark constructor for
each of the three bookmarks.

● Lines 80 through 88 compose the linkTo() method, which takes a String object
as an argument. This method is called from each button’s event handler method. It
compares the String object passed by the event handler to the list of bookmark
names. If it finds one that matches,it sets the URL address to the corresponding
URL object,and then it calls the getAppletContext() method (in line 87) to load
the address referenced in the URL object into the browser.

● Lines 103 through 115 declare the Bookmark class. (Note that this is not a public
class,so it’s allowed here.) This class defines the constructor that creates book-
marks from fully qualified URL addresses. (This is the constructor that is called in
lines 65 through 67.) Notice that this class couches the creation of the URL object in
a try block and that the catch block handles the MalformedURLException object if
necessary.

This applet could easily be modified to accept bookmarks as parameters.

Opening Web Connections
Instead of asking the browser to just load the contents of a file, sometimes you might
want to get hold of that file’s contents so your applet can use them. If the file you want
to grab is stored on the Web and can be accessed using the more common URL forms
(HTTP, FTP, and the like), your applet can use the URL class to get it.

Note that, for security reasons,applets can by default connect back only to the same host
from which they were originally loaded. This means that if you have your applets stored
on a system called www.myhost.com, the only machine your applet can open a connection
to is that same host (and that same hostname, so be careful with host aliases). If the file
that the applet wants to retrieve is on the same system,using a URL connection is the
easiest way to access it.

The URL class defines the openStream() method, which opens a network connection
using the given URL address and returns an instance of the class InputStream (part of
the java.io package). If you convert that stream to a BufferedReader object (with an
InputStreamReader object inside for better performance),you can then read characters
and lines from that stream. For example, the following lines open a connection to the

686 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

ANALYSIS

24.31318-9 CH20 9/24/98 2:13 PM Page 686

Java Network Communications 687

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

URL address assigned to the theURL variable and then read and echo each line of the file
to standard output:

try {
InputStream in = theURL.openStream();
BufferedReader data =

new BufferedReader(new InputStreamReader(in));

String line;
while ((line = data.readLine()) != null) {

System.out.println(line);
}

}

catch (IOException e) {
System.out.println(“IO Error: “ + e.getMessage());

}

Remember to wrap these lines in try...catch blocks to handle any
IOException object that might get thrown.

Note

Listing 20.2 is an example of an applet that uses the openStream() method to open a
connection to a web site, read a file from that connection,and display the result in a text
area. To create this applet in today’s project,select File |New and double-click the Applet
icon. In the Applet Wizard: Step 1 of 3 dialog box, erase the Package: field, change the
Class:field to GetRaven, and click the Finish button.

The user interface is very simple. Click the Design tab below the Content pane in the
AppBrowser window, and then select this(XYLayout) in the Structure pane. Change the
layout property to BorderLayout. Add a TextArea component from the AWT page of
the Component Palette and change its text property to Getting text.... The rest must
be added manually.

LISTING 20.2. GetRaven.java.

1: import java.awt.*;
2: import java.awt.event.*;
3: import java.applet.*;
4: import java.io.*;
5: import java.net.*;
6: import borland.jbcl.layout.*;
7: import borland.jbcl.control.*;
8:

continues

TYPE

24.31318-9 CH20 9/24/98 2:13 PM Page 687

LISTING 20.2. CONTINUED

9: public class GetRaven extends Applet implements Runnable {
10: boolean isStandalone = false;
11: BorderLayout borderLayout1 = new BorderLayout();
12: TextArea textArea1 = new TextArea();
13: URL theURL;
14: Thread runner;
15:
16: //Construct the applet
17: public GetRaven() {
18: }
19: //Initialize the applet
20:
21: public void init() {
22: try {
23: jbInit();
24: }
25: catch (Exception e) {
26: e.printStackTrace();
27: }
28: }
29: //static {
30: // try {
31: // //UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.metal.MetalLookAndFeel());
32: // //UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.motif.MotifLookAndFeel());
33: // UIManager.setLookAndFeel(new

➥com.sun.java.swing.plaf.windows.WindowsLookAndFeel());
34: // }
35: // catch (Exception e) {}
36: //}
37: //Component initialization
38:
39: private void jbInit() throws Exception{
40: this.setLayout(borderLayout1);
41: this.add(textArea1, BorderLayout.CENTER);
42: textArea1.setText(“Getting text...”);
43: String urlString = “http://www.lne.com/Web/Java/raven.txt”;
44: try {
45: this.theURL = new URL(urlString);
46: }
47: catch (MalformedURLException e) {
48: System.out.println(“Bad URL: “ + urlString);
49: }
50: }
51: //Get Applet information
52:
53: public String getAppletInfo() {
54: return “Applet Information”;
55: }

688 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 688

Java Network Communications 689

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

56: //Get parameter info
57:
58: public String[][] getParameterInfo() {
59: return null;
60: }
61:
62: public Insets insets() {
63: return new Insets(10,10,10,10);
64: }
65:
66: public void start() {
67: if (runner == null) {
68: runner = new Thread(this);
69: runner.start();
70: }
71: }
72:
73: public void stop() {
74: if (runner != null) {
75: runner.stop();
76: runner = null;
77: }
78: }
79:
80: public void run() {
81: InputStream conn;
82: BufferedReader data;
83: String line;
84: StringBuffer buf = new StringBuffer();
85:
86: try {
87: conn = theURL.openStream();
88: data = new BufferedReader(new InputStreamReader(conn));
89: while ((line = data.readLine()) != null) {
90: buf.append(line + “\n”);
91: }
92: textArea1.setText(buf.toString());
93: }
94: catch (IOException e) {
95: System.out.println(“IO Error: “ + e.getMessage());
96: }
97: }
98: }

Because it might take some time to load the file over the network, put that rou-
tine into its own thread and use the familiar start(), stop(), and run() meth-

ods to control that thread. Other than those three methods,here’s what else must be
added manually:

● Lines 4 and 5 import the necessary classes from the java.io and java.net pack-
ages.

ANALYSIS

24.31318-9 CH20 9/24/98 2:13 PM Page 689

● On line 9,implements Runnable must be added so that you can use the thread.

● Lines 13 and 14 contain declarations for the URL and Thread variables.

● Lines 43 through 49 set up the URL address String object and assign it to the URL

object,encased in a set of try...catch blocks. It could just as easily have been
passed in as an applet parameter, but it’s hard-coded here for simplicity.

● Lines 62 through 64 simply put a nice border around the applet.

● Lines 66 through 78 are the standard start() and stop() applet methods.

● Lines 80 through 97 represent the run() method, where all the real work takes
place. Here, you initialize variables and then open a connection to the URL (using
the openStream() method in line 87). After the connection is opened, in lines 88
through 90,you set up an input stream and read from it line-by-line, depositing the
results into an instance of StringBuffer.

● Also in the run() method, in line 92,the buffer is converted to a String object,
and the result is put into the text area.

Another thing to note about this example is that the part of the code that opens a network
connection,reads from the file, and creates a string is in a try block, so you can catch
any IOException object that might be generated by all this activity. If any errors do
occur while you’re attempting to read or process the file, these blocks let you recover
from them without the entire program’s crashing. (In this case, the program exits with an
error, because there’s little else to be done if the applet can’t read the file.)

Remember that both this applet and the file it addresses must be on the same host (or the
applet must reside on the client, as it does when you’re testing it on your machine).
Figure 20.3 shows the applet as it appears in Internet Explorer.

The URLConnection Class
The URL class’s openStream()method is actually a simplified use of the URLConnection
class. The URLConnection class provides a way to retrieve files using URLs,web sites,
or FTP sites,for example. It also lets you create output streams if the protocol allows it.

To use a URL connection,you first create a new instance of the URLConnection class,set
its parameters (whether it enables writing, for example),and then use the connect()

method to open the connection. Keep in mind that with a URL connection,the class han-
dles the protocol for you based on the first part of the URL. You therefore don’t have to
make specific requests to retrieve a file; all you have to do is read it.

Client and Server Sockets
For networking applications beyond what the URL and URLConnection classes offer (for
example, for other protocols or for more general networking applications),Java provides

690 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 690

Java Network Communications 691

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

the Socket and SocketServer classes as an abstraction of standard socket programming
techniques.

FIGURE 20.3.
The GetRaven applet.

Although a full explanation of how socket programming works is beyond
the scope of this book, a number of good books discuss it in depth. If you
haven’t worked with sockets before, see whether the openStream() method
will meet your needs first. Then, if you really need to do more, dive into one
of the heftier socket programming tomes.

Note

The Socket class provides a client-sidesocket interface similar to standard UNIX sock-
ets. To open a connection,create a new instance of Socket; pass the hostname parameter
a String object encapsulating the name of the host to connect to,and pass the portnum
parameter an integer value representing the port number:

Socket clientConn = new Socket(hostname, portnum);

If you use sockets in an applet, you are still subject to the same security
restrictions about where you can connect that apply to accessing files.

Caution

After the socket is open,you can use input and output streams to read to and write from
that socket:

24.31318-9 CH20 9/24/98 2:13 PM Page 691

BufferedReader in = new BufferedReader
(new InputStreamReader(clientConn.getInputStream()));

BufferedWriter out = new BufferedWriter
(new InputStreamWriter(clientConn.getOutputStream()));

When you’re done with the socket, don’t forget to close it. This also closes all the input
and output streams you might have set up for that socket:

connection.close();

Server-side sockets work similarly, with the exception of the accept() method. A server
socket listens on a TCP port for a connection from a client. When a client connects to
that port, the accept() method accepts the connection from that client. By using both
client and server sockets,you can create applications that communicate with each other
over the network (such as Dial-Up Networking).

To create a server socket and bind it to a port, create a new instance of the ServerSocket
class with the port number:

ServerSocket serverConn = new ServerSocket(8080);

To listen on that port (and to accept a connection from any clients,should one be
requested),use the accept() method:

serverConn.accept();

After the socket connection is made, you can use input and output streams to read from
and write to the client.

Network Exceptions
You’ve seen one of the exceptions that networking can produce—the
MalformedURLException object when you’re attempting to construct a fully-qualified
URL address. But there are several other networking-related exceptions you should be
aware of:

● BindException: Occurs when there is an error trying to bind a socket to a port.

● ConnectException: Typically, there is no server socket listening for the connection
request,so the connection is refused.

● NoRouteToHostException: Usually happens because there is a firewall between the
client and the server, or a router is out.

● ProtocolException: A protocol (such as TCP) error has been received.

● SocketException: Indicates that there is a problem with the socket itself.

● UnknownHostException: Means that the host’s IP address could not be determined.

● UnknownServiceException: Received when trying to write to a read-only connec-

692 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 692

Java Network Communications 693

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

tion, or the MIME type returned is nonsense.

As you saw earlier, whenever you’re dealing with code that might throw one of these
exceptions,you must enclose it in a try block and catch the exception. The
try...catch blocks enable you to handle and recover from the errors. If you’re using
streams,don’t forget about catching the IOException object.

Remote Method Invocation
Remote Method Invocation (RMI) gives you a way to access Java objects on another
host and call its methods remotely. Your program’s object is the client, and the remote
object is the server. The remote object can also be a client of another remote server
object,and so on. By using persistence (serialization and deserialization), local objects
can be passed as arguments to the methods of remote objects,as well as primitive values.
These features allow Java programs to take advantage of distributed computing to spread
the workload out over a number of Java Virtual Machines.

How Does It Work?
The architecture consistsof several layers on both the client side and server side of the

Client Server

Stubs Skeletons

Remote Reference Layer

Transport Layer

FIGURE 20.4.
The RMI architecture.

24.31318-9 CH20 9/24/98 2:13 PM Page 693

RMI system,as shown in Figure 20.4.

The method call travels down from the client object through the stub, remote reference
layer, and transport layer. It is then transmitted to the host,where it travels back up
through the transport layer, remote reference layer, and skeleton to the server object.

The stub acts as a surrogate for the remote server object so that it can be invoked by the
client. The remote reference layer deals with object semantics and manages communica-
tions with single and replicated objects,deciding whether the call must be sent to one
server or many. The transport layer manages the actual connection and tracks remote
objects to which it can dispatch method calls. The skeleton on the server side makes the
actual method to the server object and obtains the return value. The return value is then
sent back through the remote reference layer and transport layer on the server side and
transmitted back to the client, where it travels back through the transport layer and
remote reference layer. Finally, the stub receives the return value.

A special marshaling streamis used to handle the transmission of information between
client and server. For primitive method arguments,the stream could simply send the
bytes back and forth. However, for method calls that require object arguments,persis-
tence is used to transmit the object’s characteristics,serializing the object on the client
side and then deserializing it on the server side. Then the deserialized object argument is
passed to the skeleton as part of the method invocation. (This was discussed in detail on
Day 17,“Persistence.”)

To make all this activity happen,you need to know how to do the following:

● Create a remote interface

● Implement the remote object

● Create the stub and skeleton

● Write the server program

● Write the client program

● Register your remote object

In the following sections,you’ll learn how to implement these various pieces in your
Java programs.

Remote Interface
To create a remoteobject,you must first define a remote interface. The interface must be
a member of a package, and it must be public so that the client will be able to call its
methods. It must extend java.rmi.Remote so that the Java system will be aware that it is
a remote object. Each of its methods must have java.rmi.RemoteException in its

694 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 694

Java Network Communications 695

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

throws clause.

For example, if you wanted to declare a remote object with a method that returned a
string, you could write the following interface:

package LetsTalk;
public interface SaySomething extends java.rmi.Remote {

String talkToMe() throws java.rmi.RemoteException;
}

This interface lets you implement the talkToMe() method in a remote server object and
have that method called by a client on another system.

Implementation Class
To write a remote object,write a class that implements one or more remote interfaces. In
the implementation, you define the remote object’s constructor and implement the
method(s) that can be invoked by a client, as is shown Listing 20.3.

LISTING 20.3. SaySomethingImpl.java.

package LetsTalk;
import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class SaySomethingImpl extends UnicastRemoteObject
implements SaySomething {

private String name;

public SaySomethingImpl(String str) throws RemoteException {
super();
name = str;

}

public String talkToMe() throws RemoteException {
return “Far and Away!”;

}
}

By extending the UnicastRemoteObject class,you get its default sockets behavior for
your transport layer and define your remote object as a nonreplicated (single) remote
object.

Stubs and Skeletons
After the implementation class has been created, run the rmic command-line compiler to
create the stub and skeleton class files. For this example, from the MS-DOS command
prompt,type this:

24.31318-9 CH20 9/24/98 2:13 PM Page 695

rmic LetsTalk.SaySomethingImpl

This produces the skeleton class file SaySomethingImpl_Skel.class and the stub class
file SaySomethingImpl_Stub.class. These files are then used by your client and server
programs.

Server Program

696 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

In the main()method, you need to install a security manager. This ensures that your pro-
gram abides by Java’s security.

Caution

Without a security manager, RMI won’t work at all. This means that you
must either use the one provided by RMI or install one of your own cre-
ation.

Finally, the implementation needs to create at least one instance of the remote object and
register it with the RMI object registry (see Listing 20.4).

LISTING 20.4. A MAIN METHOD.

package LetsTalk;
import java.rmi.*;
import java.rmi.security.*;

public static void main(String args[]) {
// Create and install a security manager
System.setSecurityManager(new RMISecurityManager());
try {

SaySomethingImpl theObj = new SaySomethingImpl(“SaySomeServer”);
Naming.rebind(“//anyhost/SaySomeServer”, theObj);
System.out.println(“SaySomeServer bound in registry”);

}
catch (Exception e) {

System.out.println(“SaySomethingImpl err: “ + e.getMessage());
}

}
}

The Naming.rebind() method does the registration with RMI’s object registry, and it
requires a URL like this:

//hostname/objectname

24.31318-9 CH20 9/24/98 2:13 PM Page 696

Java Network Communications 697

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

hostname is the host where the remote object resides,and objectname is the string that
was passed to the remote object’s constructor. This object registry serves as a lookup
table for method calls,translating object name to object reference and invoking the
method. The remote object is restricted to binding and unbinding on its own host for
security reasons.

Client Program
For this example, let’s create an applet that calls the remote object’s talkToMe() method,
as shown in Listing 20.5.

LISTING 20.5. TalkingApplet.java.

package LetsTalk;
import java.applet.*;
import java.awt.*;
import java.rmi.*;

public class TalkingApplet extends Applet {
String localStr = “”;
public void init() {

try {
SaySomething theObj = (SaySomething)Naming.lookup(“//” +
➥getCodeBase().getHost() + “/SaySomeServer”);
localStr = theObj.talkToMe();

}
catch (Exception e) {

System.out.println(“TalkingApplet exception: “ + e.getMessage());
}

}

public void paint(Graphics g) {
g.drawString(localStr, 10, 50);

}
}

The applet does the method lookup on the remote host and then invokes the method on
the remote object. If all goes well, the message Far and Away! should appear on the
client system. (Don’t forget to write the HTML page from which to run the applet.) If the
host isn’t named, the applet will try to access the local system and throw an exception.

Start Registry and Server
To start the RMI registry, use this command:

start rmiregistry [portnum]

Here, portnum is an optional port number on the host (1099 by default). If you use a port

24.31318-9 CH20 9/24/98 2:13 PM Page 697

number other than the default, you will also need to specify that port number wherever
the hostname is required, such as in the Naming.rebind command:

Naming.rebind(“//hostname:portnum/objectname”, obj);

Also, the applet will require an additional parameter:

<PARAM name=”url” value=”//hostname:portnum/objectname”>

To start the server, use the following command:

java -Djava.rmi.server.codebase=http://hostname/codebase/

LetsTalk.SayHelloImpl

The codebase property (with a trailing /) is required so that the stub class will be
dynamically loaded into a client’s Java VM. Now you are finally ready to run the applet.

RMI Documentation
For more details on RMI, select Help|Java Reference, click New Feature Summary, and
then click Remote Method Invocation. On that page, in addition to direct links to the
RMI API docs,you’ll f ind topics and links for further exploration, such as the following:

● RMI Tools:Links to pages documenting the RMI command-line tools rmic and
rmiregistry. These utilities aren’t listed in the index, so these links are the only
access to their online manual pages.

● RMI Specification: Links to a document that details Java’s Distributed Object
Model (DOM) and RMI system architecture.

● Release Notes:Links to information and last-minute notes regarding RMI, serial-
ization, firewalls,CGI, and known problems.

In addition to the documentation, two RMI sample packages are provided in the
c:\jbuilder2\doc\java\guide\rmi\examples subdirectory.

Summary
Today you were introduced to Java networking through some of the classes in the
java.net package. Applet networking includes things as simple as pointing the browser
to another page from inside your applet,but it can also include retrieving files from the
Web by using standard Web protocols (HTTP, FTP, and so on). For additional network-
ing capabilities, Java provides socket interfaces that can be used to implement many
basic network-oriented applets,such as client/server interactions,chat sessions,and
so on.

You were also introduced to Remote Method Invocation (RMI), which lets you do Java-

698 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 698

Java Network Communications 699

20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

to-Java programming, calling methods on remote objects. It also lets you use both primi-
tives and objects as method arguments through serialization and deserialization (persis-
tence). RMI follows Sun’s Distributed Object Model (DOM),and lets you put Java
objects on the machines that are appropriate to their tasks while giving your Java pro-
grams to those objects and their methods.

Q&A
Q How can I mimic an HTML f orm submission in a Java applet?

A Currently, applets make it difficult to do this. You can submit HTML forms in two
ways: by using the GET request or by using POST. The best (and easiest) way is to
use GET notation to get the browser to submit the form contents for you. If you use
GET, your form information is encoded in the URL itself, something like this:

http://www.blah.com/cgi-bin/myscript?foo=1&bar=2&name=Kilroy

Because the form input is encoded in the URL, you can write a Java applet to mimic
a form, get input from the user, then construct a new URL object with the form data
included on the end. Then pass that URL to the browser using this:

getAppletContext().showDocument();

The browser submits the form results itself. For simple forms,this is all you need.

Q How can I do POST form submissions?

A You’ll have to mimicwhat a browser does to send forms using POST: Open a
socket to the server and send the data. For example:
POST /cgi-bin/mailto.cgi HTTP/1.0
Content-type: application/x-www-form-urlencoded
Content-length: 36

The exact format is determined by the HTTP protocol. This is only a subset.

If you’ve done this right, you’ll get the CGI form output back from the server. It’s
then up to your applet to handle that output properly. Note that if the output is in
HTML, there really isn’t a way yet to pass that output to the browser that is run-
ning your applet. If you get back a URL,however, you can redirect the browser to
that URL.

Q It looks as though the openStream() method and the socket classes implement
TCP sockets. Does Java support UPD (datagram) sockets?

A The JDK provides two classes,DatagramSocket and DatagramPacket, that imple-
ment UDP sockets. The DatagramSocket class operates much like the Socket

24.31318-9 CH20 9/24/98 2:13 PM Page 699

class. Use instances of DatagramPacket for each packet you send or receive over
the socket. See the Java Reference in the Help documentation on java.net for
more details.

Q You mentioned that I need to use several command-line utilities when creating
RMI pr ograms. Where are those utilities found?

A The rmic andrmiregistry command-line utilities are located in the
c:\jbuilder2\java\bin subdirectory (assuming a default installation). Also, if the
command start rmiregistry doesn’t work on one of the platforms you’re using,
javaw can be used instead. It is also located in the java\bin subdirectory.

Q RMI seems like a lot of work. Is it worth all the trouble?

A Definitely! Remote Method Invocation is a very powerful mechanism that allows
you to use persistence to pass objects as arguments and invoke methods on remote
systems. This is the essence of client/server systems. Today’s example implement-
ed only a single method, so the overhead might seem like a lot,but if you were
designing and implementing a full-fledged client/server program,the overhead
would shrink to a small percentage of the whole.

Workshop
The Workshop provides two ways for you to affirm what you’ve learned in this chapter.
The Quiz section poses questions to help you solidify your understanding of the material
covered. You can find answers to the quiz questions in Appendix A, “Answers to Quiz
Questions.” The Exercise section provides you with experience in using what you have
learned. Try to work through all these before continuing to the next day.

Quiz
1. What package(s) do you need to import in order to write networked Java pro-

grams?

2. What is the MalformedURLException for?

3. What method in the URL class opens a network connection using the supplied URL
address and returns an instance of the class InputStream?

4. After a server socket is bound to a port, which method should you use to get the
server socket to listen on the port for a client connection request?

5. When creating an RMI server, what is the circumstance under which you can leave
out RMISecurityManager?

Exercise
Convert the ATM program you created as an exercise on Day 16,“Multithr eading,”

700 Day 20

P2/VB TY JBuilder in 21 Days 31318-9 dietsch Chapter 20 Lp3

24.31318-9 CH20 9/24/98 2:13 PM Page 700

DAY 21

WEEK 3

Inside Java
Today, the final day, the inner workings of the Java system will be revealed.
You’ll find out all about the vision of Java’s developers, the Java Virtual
Machine, those bytecodes you’ve heard so much about, that mysterious garbage
collector, and why you might worry about security but don’t have to. We’ll
begin, however, with the big picture.

The Big Picture
The Java team is ambitious. Their ultimate goal is nothing less than a revolution
in the way software is written and distributed. They’ve started with the Internet,
where they believe much of the interesting software of the future will live.

To achieve such an ambitious goal, a large faction of the Internet programming
community itself must be marshaled behind a similar goal and given the tools
to help achieve it. The Java language, with its goals of being small, simple,
safe, and secure, along with its flexible Internet-oriented environment, is in-
tended to become the focal point for the rallying of a new legion of program-
mers.

To this end, Sun Microsystems has done something gutsy. What was originally

25.31318-9 CH21 9/24/98 2:15 PM Page 701

a secret,multimillion-dollar research and development project,and 100 percent propri-
etary, has become an open and relatively unencumbered technology standard upon which
anyone can build. Sun sells licenses to other companies to create their own Java Virtual
Machines while retaining the rights to maintain and grow the Java standard.

Any truly open standard must be supported by at least one excellent,freely available
“demonstration” implementation. In parallel, several universities,companies,and indi-
viduals have already expressed their intention to duplicate the Java environment,based
on the open Application Programming Interface (API) that Sun has created. Several soft-
ware companies,including Inprise, have implemented development environments based
on Java.

One reason this brilliant move on Sun’s part has a real chance of success is the pent-up
frustration of a whole generation of programmers who want to share their code to be us-
able on many machines regardless of platform. Right now, the computer science world is
splintered into factions at universities and companies all over the world, with hundreds of
languages,dozens of them widely used, dividing and separating us all. It’s the worst sort
of Tower of Babel. Java hopes to build some bridges and help tear down that tower.
Because Java’s so simple, because Java’s so useful for programming over the Internet,
and because the Internet is so hot right now, this confluence of forces has propelled Java
to center stage.

This new vision of software is one in which the Internet becomes a heterogeneous group-
ing of objects,classes,and components and the open Application Programming
Interfaces (APIs) between them. Traditional applications have vanished, replaced by
skeletal components,such as JavaBeans components,that can be fitted with any parts
from this and grouped together, on demand, to suit any purpose. Java component tech-
nology supports entertainment,business,and the social cyberspaces of today, and will do
so even more in the near future.

The Java Virtual Machine
To make visions such as this possible, Java must be ubiquitous. It must be capable of
running on any computer on any operating system,now and in the future. To achieve this
level of portability, Java must be precise not only about the language itself but also about
the environment in which the language lives. You can see from earlier in this book that
the Java environment includes a generally useful set of packages of classes and a freely
available implementation of them. This takes care of a portion of what is needed, but it is
also crucial to specify exactly how the runtime environment of Java behaves.

702 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:15 PM Page 702

Inside Java 703

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

This final requirement has stymied many attempts at ubiquity in the past. If you base
your system on any assumptions about what is “beneath” the runtime system,you lose. If
you depend in any way on the computer or the operating system below, you lose. Java
solves this problem by inventing an abstract computer of its own and running on that.

The Java Vir tual Machine, or Java VM, provides a layer of abstraction between
the physical machines on which the Java environment is designed to run and the

Java interpreter. A separate Java VM is created for each platform (UNIX, Windows 95,
Windows NT, and so on) that knows how to deal with the idiosyncrasies of that operating
system and the physical machine on which it runs. Although the Java VM presents a “na-
tive” face to the platform, it always presents the same abstraction to the interpreter, al-
lowing the Java-compiled bytecodes to run on any and all instances of the Java VM.

The Java VM runs a special set of instructions called bytecodesthat are simply a stream
of formatted bytes,each of which has a precise specification that defines exactly what
each bytecode does to the Java VM. The Java VM is also responsible for certain funda-
mental capabilities of Java,such as object creation and garbage collection.

Finally, to be able to move bytecodes safely across the Internet,you need a bulletproof
security model—and the know-how to maintain it—and a precise format for how this
stream of bytecodes can be sent from one Java VM to another.

Each of these requirements is addressed in this chapter.

The Java Virtual Machine is backward compatible. Java applications created
using older versions of Java run in newer instances of the Java VM. However,
the reverse isn’t true. Older instances of the Java VM, created for earlier ver-
sions of Java, do not always run applications created using newer versions of
Java.

Note

This discussion blurs the distinction between the terms Java runtime and
Java VM. This is intentional but a bit unconventional. Think of the Java VM
as providing all the capabilities, even those conventionally assigned to the
Java runtime. This book generally uses Java runtime (or runtime) and Java
VM interchangeably. Equating the two highlights the single environment
that must be created to support Java.

Much of the following description is based closely on the latest “Java Virtual
Machine Specifications” documents (and the bytecodes), so if you delve
more deeply into the details online at Sun’s Web site http://www.
javasoft.com, you should cover some familiar ground.

Note

NEW TERM

25.31318-9 CH21 9/24/98 2:15 PM Page 703

An Overview
It is worth quoting the introduction to the original Java VM documentation here because
it is so relevant to the vision outlined earlier:

“The Java virtual machine specification has a purpose that is both like and unlike
equivalent documents for other languages and abstract machines. It is intended to pre-
sent an abstract,logical machine design free from the distraction of inconsequential
details of any implementation. It does not anticipate an implementation technology or
an implementation host. At the same time it gives a reader sufficient information to
allow implementation of the abstract design in a range of technologies.

“However, the intent of the…Java project is to create a language…that will allow the
interchange over the Internet of executable content,which will be embodied by com-
piled Java code. The project specifically does not want Java to be a proprietary lan-
guage and does not want to be the sole purveyor of Java language implementations.
Rather, we hope to make documents like this one, and source code for our implemen-
tation, freely available for people to use as they choose.

“This vision…can be achieved only if the executable content can be reliably shared
between different Java implementations. These intentions prohibit the definition of the
Java virtual machine from being fully abstract. Rather, relevant logical elements of the
design have to be made sufficiently concrete to allow the interchange of compiled
Java code. This does not collapse the Java virtual machine specification to a descrip-
tion of a Java implementation; elements of the design that do not play a part in the in-
terchange of executable content remain abstract. But it does force us to specify, in ad-
dition to the abstract machine design,a concrete interchange format for compiled Java
code.”

The Java VM specification consists of the following:

● The bytecode syntax,including opcode and operand sizes,values,and types,and
their alignment and endianness

Endiannessis the arrangement of bytes inside a value. The value must contain
more than one byte for endianness to apply.

● The values of any identifiers (for example, type identifiers) in bytecodes or in sup-
porting structures

● The layout of the supporting structures that appear in compiled Java code (for ex-
ample, the constant pool)

● The Java .class file format

704 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

NEW TERM

25.31318-9 CH21 9/24/98 2:15 PM Page 704

Inside Java 705

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Each of these is covered today. Despite this degree of specificity, several elements of the
design remain purposely abstract,including the following:

● The layout and management of the runtime data areas

● The particular garbage-collection algorithms,strategies,and constraints used

● The compiler, development environment,and runtime extensions (apart from the
need to generate and read valid Java bytecodes)

● Any optimizations performed after valid bytecodes are received

These are places where the creativity of a Java VM implementor has full rein.

Fundamental Parts
The Java VM can be divided into five fundamental pieces:

● A bytecode instruction set

● A set of registers

● A stack

● A garbage-collected heap

● An area for storing methods

Some of these might be implemented by using an interpreter, a native binary code com-
piler, or even a hardware chip—but all these logical, abstract components of the Java VM
must be supplied in some form in every Java system.

The memory areas used by the Java VM are not required to be at any partic-
ular place in memory, to be in any particular order, or even to use contigu-
ous memory. However, all but the method area must be able to represent
aligned 32-bit values (for example, the Java stack is 32 bits wide).

Note

The Java VM and its supporting code are often referred to as the runtime environment.
When this book refers to something being done at runtime, the Java VM is doing it.

Java Bytecodes
The Java VM instructionset is optimized to be small and compact. It is designed to
travel across the Internet,and therefore has traded speed of interpretation for space.
(Given that both Internet bandwidth and mass storage speeds increase less rapidly than
CPU speed, this seems like an appropriate trade-off.)

25.31318-9 CH21 9/24/98 2:15 PM Page 705

Java source code is compiled into bytecodes and stored in a .class file. On Sun’s Java
system,this is performed using the javac tool. It is not exactly a traditional compiler be-
cause javac translates source code into bytecodes,a lower-level format that can’t be run
directly but must be further interpreted by the Java VM on each computer. Of course, it
is exactly this level of indirection that buys you the power, flexibility , and extreme porta-
bility of Java code.

A bytecode instruction consists of a one-byte opcode that serves to identify the instruc-
tion involved and zero or more operands,each of which may be more than one byte long,
that encode the parameters that the opcode requires.

706 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

When operands are more than one byte long, they are stored in big-endian
order—high-order byte first. These operands must be assembled from the
byte stream at runtime. For example, a 16-bit parameter appears in the
stream as two bytes so that its value is first_byte * 256 + second_byte. The
bytecode instruction stream is only byte-aligned, and the alignment of any
larger quantities is not guaranteed (except for within the special bytecodes
lookupswitch and tableswitch, which have special alignment rules of their
own).

Note

Bytecodes interpret data in the runtime memory areas as belonging to a fixed set of
types:

● The primitive types you’ve seen several times before, consisting of several signed
integer types (8-bit byte, 16-bit short, 32-bit int, 64-bit long)

● One unsigned integer type (16-bit char)

● Two signed floating-point types (32-bit float, 64-bit double)

● The object reference type (a 32-bit pointer-like type)

Some special bytecodes (for example, the dup instructions) treat runtime memory areas
as raw data,without regard to type. This is the exception,however, not the rule.

These primitive types are distinguished and managed by the compiler, javac, not by the
Java runtime environment. These types are not “tagged” in memory and thus can’t be
distinguished at runtime. Different bytecodes are designed to handle each of the various
primitive types uniquely, and the compiler carefully chooses from this palette based on
its knowledge of the actual types stored in the various memory areas. For example, when
adding two integers, the compiler generates an iadd bytecode; for adding two floating-
point values,fadd is generated. (You’ll see all this in more detail later.)

25.31318-9 CH21 9/24/98 2:15 PM Page 706

Inside Java 707

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Registers
The registers of the Java VM are just like the registers inside a real computer.

Registers hold the machine’s state, affect its operation, and are updated after
each bytecode is executed.

The following are the Java registers:

● pc, theprogram counter, which indicates what bytecode is being executed

● optop, a pointerto the top of the operand stack, which is used to evaluate all arith-
metic expressions

● frame, a pointer to the execution environment of the current method, which in-
cludes an activation record for this method call and any associated debugging in-
formation

● vars, a pointer to the first local variable of the currently executing method

The Java VM defines these registers to be 32 bits wide.

By the way, the pc register is also used when the runtime handles exceptions; catch
clauses ultimately are associated with ranges of the pc within a method’s bytecodes.

Stack
The JavaVM is stack-based. A Java stack frame is similar to the stack frame of a con-
ventional programming language in that it holds the state for a single method call.
Frames for nested method calls are stacked on top of this frame.

The stack is used to supply parameters to bytecodes and methods and to receive
results from them.

Each stack frame contains threepossibly empty sets of data: the local variables for the
method call,its execution environment,and its operand stack. The sizes of these first two
are fixed at the start of a method call,but the operand stack varies in size as bytecodes
are executed in the method.

NEW TERM

Because the Java VM is primarily stack-based, it doesn’t use any registers for
passing or receiving arguments. This is a conscious choice skewed toward
bytecode simplicity and compactness. It also aids efficient implementation
on register-poor architectures, which includes most of today’s computers.
Perhaps when the majority of CPUs are a little more sophisticated, this
choice will be reexamined—although simplicity and compactness might still
be reason enough to keep it the way it is.

Note

NEW TERM

25.31318-9 CH21 9/24/98 2:15 PM Page 707

Local variables are stored in an array of 32-bit slots,indexed by the register vars. Most
types take up one slot in the array, but the long and double types each take up two slots.

708 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

The long and double values, stored or referenced through an index N, take
up the 32-bit slots N and N + 1. These 64-bit values are therefore not guar-
anteed to be 64-bit-aligned. Implementors are free to decide the appropri-
ate way to divide these values between the two slots.

Note

The top of the operand stack and the top of the overall Java stack are al-
most always the same. Thus, the phrase “the stack” refers to both stacks col-
lectively.

Note

The execution environment in a stack frame helps to maintain the stack itself. It contains
a pointer to the previous stack frame, a pointer to the local variables of the method call,
and pointers to the stack’s current “base”and “top.” Additional debugging information
can also be placed into the execution environment.

The operand stack, a 32-bit first-in-first-out (FIFO) stack, is used to store the parameters
and return values of most bytecode instructions. For example, the iadd bytecode expects
two integers to be stored on the top of the stack. It pops them,adds them together, and
pushes the resulting sum back onto the stack.

Each primitive data type has unique instructions that tell how to extract,operate, and
push back operands of that type. For example, long and double operands take two slots
on the stack, and the special bytecodes that handle these operands take this into account.
It is illegal for the types on the stack and the instruction operating on them to be incom-
patible (javac outputs bytecodes that always obey this rule).

Heap
The heap is often assigned a large, fixed size when the Java runtime system is started,
but on systems that support virtual memory, it can grow as needed, in a nearly un-
bounded fashion.

The heap is that part of memory from which newly created instances (objects)
are allocated.

NEW TERM

25.31318-9 CH21 9/24/98 2:15 PM Page 708

Inside Java 709

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Because objects are automatically garbage-collected in Java,programmers do not have to
(and, in fact,cannot) manually free the memory allocated to an object when they are fin-
ished using it.

Java objects are referenced indirectly in the runtime, through handles,which are a kind
of pointer into the heap. Because objects are never referenced directly, parallel garbage
collectors can be written that operate independently of your program,moving around ob-
jects in the heap at will. You’ll learn more about garbage collection later today.

Method Area
Like the compiledcode areas of conventional programming language environments,or
the TEXT segment in a UNIX process,the method area stores the Java bytecodes that
implement almost every method in the Java system. (Remember that some methods
might be native, and thus implemented—for example, in C.) The method area also
stores the symbol tables needed for dynamic linking, as well as any additional informa-
tion that debuggers or development environments might want to associate with each
method’s implementation.

Constant Pool
In the heap, each class has a constant pool “attached” to it. Usually created by javac,
these constants encode all the names (of variables,methods,and so on) used by any
method in a class. The class contains a count of how many constants there are and an
offset that specifies how far into the class description itself the array of constants begins.
These constants are typed through specially coded bytes and have a precisely defined
format when they appear in the .class file for a class. A little of this file format is cov-
ered later today, but everything is fully specified by the Java VM specifications in your
Java release.

A native method is just like anything else that is called native in Java. It
means that the code outside the Java language is involved. The term native
method call refers to a method call from your Java applications to code writ-
ten in other languages (usually C).

Because bytecodes are stored as byte streams, the method area is aligned on
byte boundaries. (The other areas all are aligned on 32-bit word bound-
aries.)

Note

25.31318-9 CH21 9/24/98 2:16 PM Page 709

Limitations
The Java VM, as currently defined, places some restrictions on legal Java programs by
virtue of the choices it has made (some were described earlier, and more will be detailed
later today).

Here are the limitations and their implications:

● 32-bit pointers,which imply that the Java VM can address only 4GB of memory
(this might be relaxed in later releases)

● Unsigned 16-bit indexes into the exception, line number, and local variable tables,
which limit the size of a method’s bytecode implementation to 64KB

● Unsigned 16-bit indices into the constant pool,which limits the number of con-
stants in a class to 64KB (a limit on the complexity of a class)

In addition, Sun’s implementation of the Java VM uses so-called _quick bytecodes,
which further limit the system. Unsigned 8-bit offsets into objects might limit the num-
ber of methods in a class to 256 (this limit might not exist in future releases),and un-
signed 8-bit argument counts limit the size of the argument list to 255 32-bit words.
(Although this means that you can have up to 255 arguments of most types,you can have
only 127 of them if they’re all long or double.)

All About Bytecodes
One of the main tasks of the Java VM is the fast,efficient execution of the Java byte-
codes in methods. Unlike in the previous discussions about generality versus efficiency,
this is a case where speed is of the utmost importance. Every Java program suffers from
a slow implementation here, so the runtime must use as many tricks as possible to make
bytecodes run fast. The only other goal (or limitation) is that Java programmers must not
be able to notice these tricks in the behavior of their programs. A Java runtime imple-
mentor must be extremely clever to satisfy both of these goals.

The Bytecode Interpreter
A bytecode interpreter examines each opcode byte (bytecode) in a method’s bytecode
stream in turn and executes a unique action for that bytecode. This might consume fur-
ther bytes for the operands of the bytecode and might affect which bytecode will be ex-
amined next. It operates like the hardware CPU in a computer, which examines memory
for instructions to carry out in exactly the same manner. It is the software CPU of the
Java VM.

710 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:16 PM Page 710

Inside Java 711

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Your first, naive attempt to write such a bytecode interpreter will almost certainly be dis-
astrously slow. The inner loop,which dispatches one bytecode each time through the
loop, is notoriously difficult to optimize. In fact,smart people have been thinking about
this problem, in one form or another, for more than 20 years. Luckily, they’ve gotten re-
sults,all of which can be applied to Java.

The final result is that the interpreter shipped in the current release of Java has an ex-
tremely fast inner loop. In fact,on even a relatively slow computer, this interpreter can
perform more than 590,000 bytecodes per second! This is really quite good because the
CPU in that computer does only about 30 times better using hardware.

This interpreter is fast enough for most Java programs (and those requiring more speed
can always use native methods),but what if a smart implementor wants to do better?

Just-In-Time Compiler
About a decade ago, PeterDeutsch discovered a really clever trick while he was trying to
make the object-oriented programming language SmallTalk run faster. He called it “dy-
namic translation” during interpretation. Sun calls it just-in-time compiling.

The trick is to notice that the really fast interpreter you’ve just written—in C,for exam-
ple—already has a useful sequence of native binary code for each bytecode it interprets:
the binary code that the interpreter itself is executing. Because the interpreter has already
been compiled from C into native binary code, for each bytecode it interprets,it passes
through a sequence of native code instructions for the hardware CPU on which it’s run-
ning. By saving a copy of each binary instruction as it goes by, the interpreter can keep a
running log of the binary code that it itself has run to interpret a bytecode. It can just as
easily keep a log of the set of bytecodes that it ran to interpret an entire method.

You take that log of instructions and “peephole-optimize” it, just as a smart compiler
does. This eliminates redundant or unnecessary instructions from the log and makes it
look just like the optimized binary code that a good compiler might have produced. This
is where the “compiler” part of the phrase “just-in-time compiler”comes from,but it’s
really only the back-end of a traditional compiler—the part that generates native machine
code. By the way, the front-end compiler here is javac.

Here’s where the trick comes in. The next time that method is run (in exactly the same
way), the interpreter can directly execute the stored log of binary native code. Because
this optimizes the inner-loop overhead of each bytecode, as well as any other redundan-
cies between the bytecodes in a method, it can gain a factor of 10 or more in speed. In
fact,an early version of this technology at Sun showed that Java programs using it can
run as fast as compiled C programs.

25.31318-9 CH21 9/24/98 2:16 PM Page 711

java2c Translator
Another, simpler, trick, which works well whenever you have a good, portable C com-
piler on each system that runs your program,is to translate the bytecodes into C and then
compile the C into binary native code. If you wait until the first use of a method or class
and then perform this as an “invisible” optimization, it gains you an additional speed-up
over the approach outlined earlier without the Java programmer needing to know
about it.

Of course, this does limit you to systems that have a C compiler. In theory, your Java
code might be capable of traveling with its own C compiler, or know where to pull one
from the Internet as needed, for each new computer and operating system it faced.
(Because this practice violates some of the rules of normal Java code movement over the
Internet—which is to not have native code on a user’s system—it should be used spar-
ingly.)

If you’re using Java, for example, to write a server that lives only on your computer, it
might be appropriate to use Java because of its flexibility in wr iting and maintaining the
server (and for its capability to dynamically link new Java code on-the-fly) and then run
java2c manually to translate the basic server itself entirely into native code. You’d link
the Java runtime environment into that code so that your server would remain a fully ca-
pable Java program,but it’s now an extremely fast one. In fact,an experimental version
of the java2c translator at Sun has shown that it can reach the speed of compiled and op-
timized C code. This is the best that you can hope to do.

712 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

The preceding paragraph said “in exactly the same way” because if anything
is different about the input to the method, it takes a different path through
the interpreter and must be relogged. (Sophisticated versions of this tech-
nology solve this, and other, difficulties.) The cache of native code for a
method must be invalidated whenever the method has changed, and the in-
terpreter must pay a small cost up front each time a method is run for the
first time. However, these small bookkeeping costs are far outweighed by
the amazing gains in speed that are possible.

Note

Unfortunately there still is no publicly available java2c tool.Note

25.31318-9 CH21 9/24/98 2:16 PM Page 712

Inside Java 713

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

The .class File Format
You won’t be given the entire .class file format here, only a taste of what it’s like. (You
can read all about it in the release documentation.) It’s mentioned here because it is one
part of Java that needs to be specified carefully if all Java implementations are to be
compatible with one another, and if Java bytecodes are expected to travel across arbitrary
networks—to and from arbitrary computers and operating systems—and yet arrive safely.

The rest of this section paraphrases,and extensively condenses,the latest release of the
.class documentation.

.class files are used to hold the compiled versions of both Java classes and Java inter-
faces. Compliant Java interpreters must be capable of dealing with all .class files that
conform to the following specification.

A Java .class file consists of a stream of 8-bit bytes. All 16-bit and 32-bit quantities are
constructed by reading in two or four 8-bit bytes,respectively. The bytes are joined to-
gether in big-endian order. (Use java.io.DataInput and java.io.DataOutput to read
and write class files.)

The class file format is presented as a series of C-struct-like structures. However, unlike
a C struct, there is no padding or alignment between pieces of the structure. Each field
of the structure may be of variable size, and an array may be of variable size (in this
case, some field prior to the array gives the array’s dimension). The types u1, u2, and u4
represent an unsigned one-,two-, or four-byte quantity, respectively.

Attributesare used at several different places in the .class format. All attributes have
the following format:

GenericAttribute_info {
u2 attribute_name;
u4 attribute_length;
u1 info[attribute_length];

}

The attribute_name is a 16-bit index into the class’s constant pool; the value of
constant_pool[attribute_name] is a string giving the name of the attribute. The field
attribute_length gives the length of the subsequent information in bytes. This length
doesn’t include the four bytes needed to store attribute_name and attribute_length.
In the following text, whenever an attribute is required, names of all the attributes cur-
rently understood are listed. In the future, more attributes will be added. Class file read-
ers are expected to skip over and ignore the information in any attributes that they do not
understand.

The following pseudo-structure gives a top-level description of the format of a class file:

25.31318-9 CH21 9/24/98 2:16 PM Page 713

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count - 1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attribute_count];

}

Here’s one of the smaller structures used:

method_info {
u2 access_flags;
u2 name_index;
u2 signature_index;
u2 attributes_count;
attribute_info attributes[attribute_count];

}

Finally, here’s a sample of one of the later structures in the .class file description:

Code_attribute {
u2 attribute_name_index;
u2 attribute_length;
u1 max_stack;
u1 max_locals;
u2 code_length;
u1 code[code_length];
u2 exception_table_length;
{

u2 start_pc;
u2 end_pc;
u2 handler_pc;
u2 catch_type;

}
exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attribute_count];

}

None of this is meant to be completely comprehensible (although you might be able to

714 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:16 PM Page 714

Inside Java 715

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

guess at what many structure members are), just suggestive of the sort of structures that
live inside .class files. Because the compiler and runtime sources are available, you can
always begin with them if you actually have to read or write .class files yourself. Thus,
you don’t need to have a deep understanding of the details,even in that case.

Method Signatures
Because method signatures are used in .class files,now is an appropriate time to ex-
plore them in the detail promised on earlier days. They’re probably most useful to you
when writing the native methods.

A signature is a string representing the type of method, field, or array.

A field signature represents the value of an argument to a method or the value of
a variable and is a series of bytes in the following grammar:

<field signature> := <field_type>
<field type> := <base_type> : <object_type> : <array_type>
<base_type> := B | C | D | F | I | J | S | Z
<object_type> := L <full.className>
<array_type> := [<optional_size> <field_type>
<optional_size> := [0-9]*

Here are the meanings of the base types:

B byte

C char

D double

F float

I int

J long

S short

Z boolean

A return-type signature represents the return value from a method and is a series of bytes
in the following grammar:

<return signature> := <field type> | V

NEW TERM

25.31318-9 CH21 9/24/98 2:16 PM Page 715

The character V (void) indicates that the method returns no value. Otherwise, the signa-
ture indicates the type of the return value. An argument signature represents an argument
passed to a method:

<argument signature> := <field type>

Finally, a method signature represents the arguments that the method expects and the
value that it returns:

<method_signature> := (<arguments signature>) <return signature>
<arguments signature> := <argument signature>*

Let’s try out the new rules:A method called complexMethod() in the class
a.package.name.ComplexClass takes three arguments—a long, a boolean, and a two-
dimensional array of short values—and returns this. Therefore, this is its method signa-
ture:

(JZ[[S)La.package.name.ComplexClass;

A method signature is often prefixed by the name of the method or by its full package
(using underscores in the place of dots) and its class name followed by a slash (/) and
the name of the method, to form a complete method signature. Now at last you have the
full story! Thus,the following is the full,complete method signature of
complexMethod() (Whew!):

716 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

a_package_name_ComplexClass/complexMethod(JZ[[S)La.package.name.ComplexClass;

Garbage Collection
Java programmers are able to ignore memory deallocation. Memory allocation is funda-
mental. However, memory deallocation is typically forced on the programmer by the
laziness of the system. Not in Java. Java can figure out what is no longer useful and re-
move it from your computer memory. This capability makes it relatively easy to write
programs using Java,avoiding both design time and runtime bugs.

The Problem
Software engineering estimates indicate that for every 55 lines of production C-like code
in the world, there is one bug. This means that your electric razor has about 80 bugs,and
your TV has about 400. Soon they will have even more because the size of this kind of
embedded computer software is growing exponentially. When you begin to think of how
much C-like code is in your car’s engine, it should give you pause.

25.31318-9 CH21 9/24/98 2:16 PM Page 716

Inside Java 717

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Many errors are due to the misuse of difficult memory management language features
such as pointers and the deallocation of objects in computer memory. Java addresses both
of these issues—the former by eliminating explicit pointers from the Java language alto-
gether, and the latter by including, in every Java system,a garbage collector that solves
the problem.

The Solution
Imagine a runtime system that tracks each object you create, notices when the last refer-
ence to it has vanished, and frees the object for you. How could such a thing actually
work?

One brute-force approach, tried early in the days of garbage collection,is to attach a ref-
erence counter to every object. When the object is created, the counter is set to 1. Each
time a new reference to the object is made, the counter is incremented; and each time
such a reference disappears, the counter is decremented. Because all such references are
controlled by the language—as variables and assignments,for example—the compiler
can tell whenever an object reference might be created or destroyed, just as it does in
handling the scoping of local variables,and thus it can assist with this task. The system
itself holds onto a set of root objects that are considered too important to be freed. The
class Object is one example of such a VIO (Very Important Object). Finally, all that’s
needed is to test,after each decrement,whether the counter has hit 0. If it has,the object
is freed.

If you think carefully about this approach, you will soon convince yourself that the sys-
tem is definitely correct when it decides to free anything. It is so simple that you can im-
mediately tell it will work. The low-level hacker in you also might feel that if it’ s that
simple, it’s probably not fast enough to run at the lowest level of the system—and you’d
be right.

Think about all the stack frames,local variables,method arguments,return values,and
local variables created in the course of even a few hundred milliseconds of a program’s
lif e. For each of these tiny nanosteps in the program,an extra increment (at best) or
decrement,test,and deallocation (at worst) will be added to the program’s running time.
In fact,the first garbage collectors were slow enough that many predicted they could
never be used at all!

Luckily, a whole generation of smart programmers has invented a big bag of tricks to
solve these overhead problems. One trick is to introduce special “transient object”areas
that don’t need to be reference counted. The best of these generational scavenging
garbage collectors today can take less than 3 percent of the total time of your program—

25.31318-9 CH21 9/24/98 2:16 PM Page 717

a remarkable feat if you realize that many other language features,such as loop over-
heads,can be as large or larger!

There are other problems with garbage collection. If you’re constantly freeing and re-
claiming space in a program,won’t the heap of objects soon become fragmented, with
small holes everywhere and no room to create new, large objects? Because programmers
are now free from the chains of manual deallocation, won’t they create even more objects
than usual?

What’s worse, there is another way that this simple reference counting scheme is ineffi-
cient—in space rather than time. If a long chain of object references eventually comes
full circle, back to the starting object,each object’s reference count remains at least 1
forever. None of these objects will ever be freed!

Together, these problems imply that a good garbage collector must,every once in a
while, step back to compact or clean up wasted memory.

Compaction occurs when a garbage collector steps back and reorganizes mem-
ory, eliminating the holes created by fragmentation. Compacting memory is sim-

ply a matter of repositioning objects one by one into a new, compact grouping that places
them all in a row, leaving all the free memory in the heap in one big piece.

Cleaning up the circular garbage still lying around after reference counting is
called marking and sweeping. A mark and sweep of memory involves first mark-

ing every root object in the system and then following all the object references inside
those objects to new objects to mark, and so on,recursively. Then,when you have no
more references to follow, you “sweep away” all the unmarked objects and then compact
memory as before.

The good news is that this solves the space problems you were having. The bad news is
that when the garbage collector “steps back” and does these operations,a nontrivial
amount of time passes,during which your program is unable to run—all its objects are
being marked, swept, rearranged, and so forth, in what seemslike an uninterruptible pro-
cedure. Your first hint to a solution is the word “seems.”

Garbage collecting actually can be done a little at a time, between or in parallel with nor-
mal program execution,thus dividing the large time needed to “step back” into numerous
so-small-you-won’t-notice-them chunks of time that happen between the cracks. (Of
course, years of smart thinking went into the intricate algorithms that make all this possi-
ble!)

One final problem that might worry you a little has to do with these object references.
Aren’t these “pointers” scattered throughout your program and not just buried in objects?

718 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

NEW TERM

NEW TERM

25.31318-9 CH21 9/24/98 2:16 PM Page 718

Inside Java 719

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Even if they’re only in objects,don’t they have to be changed whenever the object they
point to is moved by these procedures? The answer to both of these questions is a re-
sounding yes,and overcoming them is the final hurdle to making an efficient garbage
collector.

There are really only two choices. The first, brute force, assumes that all the memory
containing object references needs to be searched regularly. Whenever the object refer-
ences found by this search match objects that have moved, the old reference is changed.
This approach assumes that there are “hard” pointers in the heap’s memory—ones that
point directly to other objects. By introducing various kinds of “soft” pointers, including
pointers that are like forwarding addresses,the algorithm improves greatly. Although
these brute-force approaches sound slow, it turns out that modern computers can perform
them fast enough to be useful.

You might wonder how brute-force techniques identify object references. In
early systems, references were specially tagged with a “pointer bit” so that
they could be located unambiguously. Now, so-called “conservative”
garbage collectors simply assume that if it looks like an object reference, it
is—at least for the purposes of the mark and sweep. Later, when actually
trying to update it, they can find out whether it really is an object reference.

Note

The final approach to handling object references,and the one Java currently uses,is also
one of the very first ones tried. It involves using 100-percent “soft” pointers. An object
reference is actually a handle to the real pointer, and a large object table exists to map
these handles into the actual object reference. Although this does introduce extra over-
head on almost every object reference (some of which can be eliminated by clever tricks,
as you might guess),it’s not too high a price to pay for this incredibly valuable level of
indirection.

This indirection allows the garbage collector, for example, to mark, sweep, move, or ex-
amine one object at a time. Each object can be independently “moved out from under”a
running Java program by changing only the object table entries. This not only allows the
“step back” phase to happen in the tiniest steps,but it also makes a garbage collector that
runs literally in parallel with your program much easier to write. This is what the Java
garbage collector does.

25.31318-9 CH21 9/24/98 2:16 PM Page 719

Parallel Garbage Collector
Java applies almost all theseadvanced techniques to give you a fast,efficient, parallel
garbage collector. Running in a separate thread, it clears the Java environment of almost
all trash (it is conservative), silently and in the background; it’s efficient in both space
and time; and it never steps back for more than a small amount of time. You should never
need to know it’s there.

By the way, if you want to force a full mark-and-sweep garbage collection to happen
soon,you can do so simply by calling the System.gc() method. You might want to do
this if you just freed up a majority of the heap’s memory in circular garbage and want it
all taken away quickly. You might also call this whenever you’re idle, as a hint to the sys-
tem about when it would be best to come and collect the garbage. This “meta knowl-
edge” is rarely needed by the system,however.

Ideally, you will never notice the garbage collector, and all those decades of program-
mers beating their brains out on your behalf will simply let you sleep better at night—
and what’s wrong with that?

The Security Story
Speaking of sleeping well at night, if you haven’t stepped back yet and said, “My good-
ness! You mean that Java programs will be running rampant on the Internet?”you better
do so now, because this is a legitimate concern. In fact,it is one of the major technical
stumbling blocks to achieving the dream of ubiquity and code sharing mentioned earlier.

Why You Should Worry
Any powerful, flexible technology can be abused. As the Internet becomes mainstream
and widespread, it too will be abused. Already there have been many blips on the secu-
rity radar screens of people who worry about such things,warning that, at least until re-
cently, the computer industry (or the media) hasn’t paid enough attention to solving some
of the problems that this new world brings with it. One of the benefits of constructively
solving security once and for all will be a flowering unseen before in the virtual commu-
nities of the Internet. Whole new economies based on people’s attention and creativity
will spring to life, rapidly transforming our online world in new and positive ways.

720 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Probably the only time you will need to be very careful about garbage col-
lection is when your application involves critical, real-time programs (such as
those that legitimately require native methods). But how often will your
Java code be flying a commercial jetliner in real time, anyway?

Caution

25.31318-9 CH21 9/24/98 2:16 PM Page 720

Inside Java 721

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

The downside of all this new technology is that we (or someone) must worry long and
hard about how to make our online playgrounds of the future safe for everyone.
Fortunately, Java is a big part of the answer.

Why You Might Not Have to Worry
Java protects you from potentially “nasty” Java code through a series of interlocking de-
fenses that together form an imposing barrier to all such attacks.

Java’s powerful security mechanisms act at four different levels of the system architec-
ture. First, the Java language itself was designed to be safe, and the Java compiler en-
sures that source code doesn’t violate these safety rules. Second, all bytecodes executed
by the runtime are screened to be sure that they also obey these rules. (This layer guards
against having an altered compiler produce code that violates the safety rules.) Third, the
class loader ensures that classes don’t violate namespace or access restrictions when
they’re loaded into the system. Finally, API-specific security prevents applets from doing
destructive things. This final layer depends on the security and integrity guarantees from
the other three layers.

Let’s now examine each of these layers in turn.

The Language and Its Compiler
The Java language and its compiler are the first line of defense. Java was designed to be
a safe language.

Most other C-like languages have facilities to control access to objects but also have
ways to forge access to objects (or to parts of objects),usually by using and misusing
pointers. This introduces two fatal security f laws to any system built on these languages.
One is that no object can protect itself from outside modification, duplication, or “spoof-
ing” (others pretending to be that object). Another is that a language with powerful point-
ers is more likely to have serious bugs that compromise security. These pointer bugs,in
which a runaway pointer starts modifying some other object’s memory, were responsible
for most of the public (and not-so-public) security problems on the Internet this past
decade.

Java gets rid of these threats in one stroke by eliminating pointers from the language al-
together. There are still pointers of a kind—object references—but these are carefully
controlled to be safe. They are unforgeable, and all casts are checked for legality before
being allowed. In addition, powerful new array facilities in Java not only help offset the

25.31318-9 CH21 9/24/98 2:16 PM Page 721

loss of pointers but also offer additional safety by strictly enforcing array bounds,catch-
ing more bugs for the programmer (bugs that, in other languages,might lead to unex-
pected and thus bad-guy-exploitable problems).

The language definition and the compilers that enforce it create a powerful barrier to any
nasty Java programmer.

Because an overwhelming majority of the “Internet-savvy” software on the Internet
might soon be written in Java, its safe-language definition and compilers help guarantee
that most of this software has a solid, secure base. With fewer bugs,Internet software
will be more predictable—a property that thwarts attacks.

Verifying the Bytecodes
What if some nasty programmer rewrites the Java compiler to suit his nefarious pur-
poses? The Java runtime, getting the lion’s share of its bytecodes from the Internet,can
never tell whether a “trustworthy” compiler generated those bytecodes. Therefore, it
must verify that they meet all the safety requirements.

Before running any bytecodes,the runtime subjects them to a rigorous series of tests that
vary in complexity from simple format checks all the way to running a theorem prover to
make certain that they are playing by the rules. These tests verify that the bytecodes
don’t do the following:

● Forge pointers

● Violate access restrictions

● Access objects as other than what they are (InputStream objects are always used
as InputStream objects and never as anything else)

● Call methods with inappropriate argument values or types

● Overflow the stack

Consider the following Java code sample:

public class VectorTest {
public int array[];
public int sum() {

int[] localArray = array;
int sum = 0;
for (int i = localArray.length; -i >= 0;)

sum += localArray[i];
return sum;

}
}

722 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:16 PM Page 722

Inside Java 723

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Here are the bytecodes generated when this code is compiled:

aload_0 Load this

getfield #10 Load this.array

astore_1 Store in localArray

iconst_0 Load 0

istore_2 Store in sum

aload_1 Load localArray

arraylength Gets its length

istore_3 Store in i

A:iinc_3 -1 Subtract 1 from i

iload_3 Load i

iflt B Exit loop if < 0

iload_2 Load sum

aload_1 Load localArray

iload_3 Load j

iaload Load loca1Array[i]

iadd Add sum

istore_2 Store in sum

goto A Do it again

B:iload_2 Load sum

ireturn Return it

The excellent examples and descriptions in this section are paraphrased from
the tremendously informative security paper in the Java release. You are en-
couraged to read whatever the latest version of this document is in newer
releases if you want to follow the ongoing Java security story. You can find
it on Sun’s Java site: http://www.javasoft.com.

Note

25.31318-9 CH21 9/24/98 2:16 PM Page 723

Extra Type Information and Requirements
Java bytecodes encodemore type information than is strictly necessary for the inter-
preter. Even though,for example, the aload and iload opcodes do exactly the same
thing, aload is always used to load an object reference, and iload is used to load an in-
teger. Some bytecodes (such as getfield) include a symbol table reference—and that
symbol table has even more type information. This extra type information allows the run-
time system to guarantee that Java objects and data aren’t manipulated illegally.

Conceptually, before and after each bytecode is executed, every slot in the stack and
every local variable has some type. This collection of type information—all the slots and
local variables—is called the type state of the execution environment. An important re-
quirement of the Java type state is that it must be able to be determined statically by in-
duction—that is, before any program code is executed. As a result,as the runtime system
reads bytecodes,each is required to have the following inductive property: given only the
type state before the execution of the bytecode, the type state afterward must be fully de-
termined.

Given straight-line bytecodes (no branches),and starting with a known stack state, the
state of each slot in the stack is therefore always known. For example, starting with an
empty stack, the following is true:

iload_1 Load integer variable. Stack type state is I.

iconst_5 Load integer constant. Stack type state is II.

iadd Add two integers,producing an integer.

Stack type state is I.

724 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

Another requirement made by the Java runtime is that when a set of bytecodes can take
more than one path to arrive at the same point,all such paths must arrive with exactly the
same type state. This is a strict requirement,and it implies,for example, that compilers
can’t generate bytecodes that load all the elements of an array onto the stack. (Because
each time through such a loop the stack’s type state changes,the start of the loop—the
same point in multiple paths—would have more than one type state, which isn’t al-
lowed.)

SmallTalk and PostScript bytecodes don’t have this restriction. Their more dy-
namic type behavior does create additional flexibility in those systems, but
Java needs to provide a secure execution environment. Therefore, it must
know all types at all times to guarantee a certain level of security.

Note

25.31318-9 CH21 9/24/98 2:16 PM Page 724

Inside Java 725

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

The Verifier
Bytecodes are checked for compliance with all these requirements,using the extra type
information in a .class file, by a part of the runtime called the verifier. It examines each
bytecode in turn, constructing the full type state as it goes,and verif ies that all the types
of parameters,arguments,and results are correct. Thus,the verif ier acts as a gatekeeper
to your runtime environment,letting in only those bytecodes that pass muster.

The verifier is the crucial piece of Java’s security, and it depends on your hav-
ing a correctly implemented runtime system (no bugs, intentional or other-
wise). Your runtime is the base on which all the rest of Java’s security is
built, so make sure that it’s a good, solid, secure base. (The runtime that
comes with JBuilder is provided by Sun.)

Caution

When bytecodes have passed the verif ier, they are guaranteed not to do the following:

● Cause any operand stack underflows or overflows

● Use parameter, argument,or return types incorrectly

● Illegally convert data from one type to another (from an integer to a pointer, for ex-
ample)

● Access any object’s fields illegally (in other words,the verif ier checks that the
rules for public, package, protected, private protected, and private are
obeyed)

As an added bonus,because the interpreter can now count on all these facts being true, it
can run much faster than before. All the required checks for safety have been done up
front, so the interpreter can run at full throttle. In addition, object references now can be
treated as capabilities because they are unforgeable. Capabilities allow, for example, ad-
vanced security models for file input/output and authentication to be safely built on top
of Java.

Because you can now trust that a private variable really is private, and that
no bytecode can perform magic with casts to extract information (such as
your credit card number) from the variable, many of the security problems
that might arise in other, less safe environments simply vanish! These guar-
antees also make erecting barriers against destructive applets possible and
easier. Because the Java system doesn’t have to worry about “nasty” byte-
codes, it can get on with creating the other levels of security it wants to give
you.

Note

25.31318-9 CH21 9/24/98 2:16 PM Page 725

The Class Loader
The class loader is another kind of gatekeeper, albeit a higher-level one. The verif ier was
the security of last resort. The class loader is the security of first resort.

When a new class is loaded into the system,it is placed into (lives in) one of several dif-
ferent realms. The current release has three possible realms:your local computer, the
firewall-guarded local network on which your computer is located, and the Internet (the
global Internet and the World Wide Web). The class loader treats each of these realms
differently.

Actually, there can be as many realms as your desired level of security (or paranoia) re-
quires. This is because the class loader is under your control. As a programmer, you can
make your own class loader that implements your own peculiar brand of security. (This
is a radical step:You might have to give the users of your program many classes—and
they give you a lot of trust—to accomplish this.)

726 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

If you’re a system administrator, Java has global security policies that you can set up to
help prevent your users from giving away the store. In other words,even if users set all
their preferences to be unrestricted, global security will override those settings to provide
more restrictive security for your site as a whole.

In particular, the class loader never allows a class from a “less protected”realm to re-
place a class from a “more protected”realm. The file system’s input/output primitives,
about which you should be very worried (and rightly so),are all defined in a local Java
class,which means that they all live in the local-computer realm. Thus,no class from
outside your computer (from either the supposedly trustworthy local network or from the
Internet) can take the place of these classes and “spoof ” Java code into using “nasty”
versions of these primitives. In addition, classes in one realm can’t call upon the methods
of classes in other realms unless those classes have explicitly declared those methods
public. This implies that classes from other than your local computer can’t even see the
file system I/O methods,much less call them,unless you or the system wants them to do
so.

In addition, every new applet loaded from the network is placed into a separate package-
like namespace. This means that applets are protected even from each other. No applet

As a user, you can tell your Java-capable browser, or Java system, what realm
of security (of the three) you want it to implement for you right now or
from now on.

Tip

25.31318-9 CH21 9/24/98 2:16 PM Page 726

Inside Java 727

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

can access another’s methods (or variables) without its cooperation. Applets from inside
the firewall can even be treated differently from those outside the firewall if you want.

Actually, it’s all a little more complex than that. In the current release, an applet is in a
package namespace along with any other applets from that source. This source, or origin,
is most often a host (domain name) on the Internet. Depending on where the source is lo-
cated, outside the firewall or inside, further restrictions might apply (or be removed en-
tirely). This model is likely to be extended in future releases of Java,providing an even
finer degree of control over which classes get to do what.

The class loader essentially partitions the world of Java classes into small,protected little
groups,about which you can safely make assumptions that will always be true. This type
of predictability is the key to well-behaved and secure programs.

You’ve now seen the full lifetime of a method. It starts as source code on some computer,
is compiled into bytecodes on possibly a different computer, and then can travel (as a
.class file) into any file system or network anywhere in the world. When you run an ap-
plet in a Java-capable browser (or download a .class file and run it manually using
java), the method’s bytecodes are extracted from its .class file and carefully looked
over by the verif ier. After they’re declared safe, the interpreter can execute them for you
(or a code generator can generate native binary code for them using either the “just-in-
time” compiler or java2c and then run that native code directly).

At each stage, more and more security is added. The final level of that security is the
Java class library itself, which has several carefully designed classes and Application
Programming Interfaces (APIs) that add the final touches to the system’s security.

The Security Manager
SecurityManager is an abstract class added to the Java system to collect,in one place,
all the security policy decisions that the system has to make as bytecodes run. You
learned earlier that you could create your own class loader. In fact,you might not have to
because you can subclass SecurityManager to perform most of the same customizations.

An instance of some subclass of SecurityManager is always installed as the current se-
curity manager. It has complete control over which of a well-defined set of “dangerous”
methods are allowed to be called by any given class. It takes into account the consider-
ations discussed in the preceding section. It also takes into account the class’s source
(origin) and type (standalone or loaded by an applet). Each of these can be configured
separately to have the effect that you (the programmer) want on your Java system. For
nonprogrammers, the system provides several levels of default security policies from
which you can choose.

25.31318-9 CH21 9/24/98 2:16 PM Page 727

What is this “well-defined set”of methods that are protected?

File input/output is a part of the set,for obvious reasons. Applets,by default, can open,
read, or write files only with the permission of the user—and even then,only in certain
restricted directories.

Also in this protected set are the methods that create and use Internet network connec-
tions,both incoming and outgoing.

The final members of the set are the methods that allow one thread to access,control,
and manipulate other threads. (Of course, you can protect additional methods as well by
creating a new subclass of SecurityManager that handles them.)

For both file and network access,the user of a Java-capable browser can choose between
three realms of protection (and one subrealm):

● Unrestricted (allows applets to do anything)

● Firewall (allows applets within the firewall to do anything)

● Source (allows applets to do things only with their originating Internet host or with
other applets from that same host)

● Local (disallows all file and network access)

For file access,the source subrealm isn’t meaningful,so it really has only three realms of
protection. (As a programmer, of course, you have full access to the security manager
and can set up your own peculiar criteria for granting and revoking privileges to your
heart’s content.)

For network access,you can imagine wanting many more realms. For example, you
might specify different groups of trusted domains (companies),each of which is given
added privileges when applets from that group are loaded. Some groups can be more
trusted than other groups,and you might even allow groups to grow automatically by al-
lowing existing members to recommend new members for admission (with the Java seal
of approval?).

In any case, the possibilities are endless,as long as there is a secure way of recognizing
the original creator of an applet.

You might think that this problem has already been solved because classes are tagged
with their origins. In fact,the Java runtime goes far out of its way to be sure that that ori-
gin information is never lost. Any executing method can be dynamically restricted by this
information anywhere in the call chain. So why isn’t this enough?

Because what you really want to be able to do is permanently “tag” an applet with its
original creator (its true origin), and no matter where it has traveled, a browser could ver-

728 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:16 PM Page 728

Inside Java 729

21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

ify the integrity and authenticate the creator of that applet. Just because you don’t know
the company or individual who operates a particular server machine doesn’t mean that
you want to mistrust every applet stored on that machine. It’s just that, currently, to be
really safe, you should mistrust those applets.

If somehow those applets were tagged irrevocably with the digital signature of their cre-
ator, and that signature could also guarantee that the applet hadn’t been tampered with,
you’d be golden. Currently, you can use digital signing to secure your Java applets and
JavaBeans components.

One final note about security. Despite the best efforts of the Java team,there is always a
trade-off between useful functionality and absolute security. For example, Java applets
can create windows,an extremely useful capability, but a “nasty” applet could use this to
trick the user into typing private password information by showing a familiar program
window (or operating system window) and then asking an expected, legitimate-looking
question in it. This is why Java adds a banner at the bottom that says Untrusted Applet.

Flexibility and security can’t both be maximized. Thus far on the Internet,people have
chosen maximum flexibility and have lived with the minimal security that the Internet
now provides. Let’s hope that Java can help tip the scales a bit,enabling much better se-
curity while sacrif icing only a minimal amount of the flexibility that has drawn so many
to the Internet.

Summary
Today, you learned about the grand vision that some people have for Java and about the
exciting future it promises.

The following were all revealed:the inner workings of the Java Virtual Machine (Java
VM), the bytecode interpreter, the garbage collector, the class loader, the verif ier, the se-
curity manager, and Java’s powerful security model.

You now know almost enough to write a Java runtime environment of your own—but
luckily, you don’t have to. You can simply use the latest release of Java provided with
JBuilder—or use a Java-capable browser to enjoy most of the benefits of Java right away.

25.31318-9 CH21 9/24/98 2:16 PM Page 729

Q&A
Q I’m still a little unc lear about why the Java language and compiler make the

Inter net safer. Can’t they just be “side-stepped” by “nasty” bytecodes?

A Yes,they can. But don’t forget that the whole point of using a safe language and
compiler is to make the Internet safer as a whole as more Java code is written.
Ethical Java programmers will write an overwhelming majority of the Java code re-
sulting in safe bytecodes. This makes the Internet more predictable over time, and
thus more secure.

Q I know you said that garbage collection is something I don’t have to worry
about, but what if I w ant (or need) to?

A So you are planning to fly a plane with Java! Cool! For just such cases,there is a
way to ask the Java runtime, during startup (java -noasyncgc), not to run garbage
collection unless forced to,either by an explicit call (System.gc()) or by running
out of memory. (This can be useful if you have multiple threads that are messing
each other up and you want to get the gc thread out of the way while testing them.)
Don’t forget that turning off garbage collection means that any object you create
will li ve a long, long time. If you’re real-time, you never want to step back for a
full gc—so be sure to reuse objects often,and don’t create too many of them!

Q I lik e the explicit contr ol as you explained it in the preceding answer. Can I do
anything else to the garbage collector?

A You can also force the finalize methods of any recently freed objects to be called
immediately through System.runFinalization(). You might want to do this if
you’re about to ask for some resources that you suspect might still be tied up by
objects that are gone but not forgotten (waiting for the finalize method). This is
even rarer than starting a gc by hand, but it’s mentioned here for completeness.

Q What’ s the last word on Java?

A Java adds much more than it can ever take away. It has certainly done so for me,
and now I hope it will do the same for you.

The future of the Internet is filled with as-yet-undreamed-of horizons. The road is
long and hard, but Java is a great traveling companion.

730 Day 21

P2/Vb TY JBuilder2 in 21 Days 31318-9 dietsch Chapter 21 Lp#2

25.31318-9 CH21 9/24/98 2:16 PM Page 730

APPENDIX A
Answers to Quiz
Questions

This appendix provides the answers to the quiz questions at the end of each
day.

Day 2
1. a. False. The boolean variables cannot be assigned numeric values in

Java. They can only take on the values of true or false.

b. False. The add operator does not have precedence over the multiply
operator. When using Table 2.6 to determine operator precedence,
be sure not to confuse the unary plus (+) and minus (-) operators
with the binary infix add (+) and subtract (-) operators.

c. False. The elements of an array must contain identical data types.

d. False. An if-else conditional can return only a boolean value.

e. True. As long as you can cast the resulting value to an int, you can
use an expression as a switch statement’s condition.

26.31318-9 AppA 9/24/98 2:18 PM Page 731

2. The symbols used to enclose statements to be treated as a group are the braces
({}).

3. Subscripts in Java begin with 0.

4. It throws a NegativeArraySizeException object at runtime because the integer
expression in the subscript evaluates to –2, which is not a valid subscript.

5. It is 8 because the wwwStr variable is assigned the value assigned to the chArr

variable, which contains eight characters.

6. It creates only two actual strings in memory. It creates one String object in
memory with the contents Here I am!, and a second String object in memory
with the contents No, I’m over here!!. This is due to optimization of strings in
Java. Therefore, both the firstStr and thirdStr variables point to the same
String object in memory.

7. Because you’ve declared a variable inside a block of statements,it’s defined only
in the block’s local scope. After the block has finished executing, the variable’s
value is undefined (it no longer exists).

8. It will iterate seven times but will output nothing. After the for loop exits on the
eighth test,the println statement will execute.

Did you miss the extraneous semicolon (;) at the end of the first line of code? It
causes the println statement to be outside the for loop’s scope.

9. If you want to execute the body of a loop and then re-execute the loop body as
long as a specified condition is true, you should use a do-while loop.

Day 3
1. Avoid creating too many custom classes to use with your applets because it can

take longer to download. Otherwise, just be sure to deploy the custom classes so
that your applet has access to them.

2. If you don’t specify a superclass,your class will inherit from the Object class by
default.

3. False. Java does not support multiple inheritance; it supports only single
inheritance. That is, a subclass can have only one superclass.

4. The first line of code initializes a primitive boolean variable named aBoolean to
the value true. The second line of code instantiates a Boolean object named
boolObj and assigns it the current value of aBoolean, which is true.

5. When a class takes advantage of method overloading and contains several methods
with the same name, the method that gets called is determined by the method’s

732 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 732

Answers to Quiz Questions 733

A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

signature. The method’s signature comprises the type and number of arguments in
its definition.

6. To declare a class variable, you would use the static keyword.

7. The this keyword refers to the current object instance. The super keyword refers
to the superclass of the current class.

8. The this() method calls the current class’s constructor. If there is more than one
constructor (that is, the class contains overloaded constructors), the this() method
calls whichever one matches the method signature, based on the argument list.

The super() method calls the superclass’s constructor. If there is more than one
constructor in the superclass (that is, it has overloaded constructors), the super()
method calls whichever one matches the method signature, based on the argument
list.

Day 4
1. The answers are as follows:

a. True. To declare a constant,you only need to use the final modifier.
However, if you want the constant to be available as a global value to all
instances of the class in which it is declared, you must use the static modifier
as well.

b. False. In fact,each public class should be in a separate .java source file so
that they will compile properly into separate .class files. To ensure that a
class is a member of a package, put the appropriate package statement at the
top of each .java source file.

c. False. Interfaces that do not extend another interface become top-level
interfaces and do not automatically extend Object.

d. False. A class can implement any number of interfaces and is not limited to
implementing only one interface.

2. Well, this was a trick question. You cannot declare a class method and allow
subclasses to override it. Remember that class methods are final by default and
therefore cannot be overridden in subclasses. To declare the class method, use the
static keyword before the method’s return type.

3. To create a variable that is read-only, use the convention of accessor methods to get
and set the variable, making the set method private and the get method public.
This is also good practice for your own use within the class because accessor
methods indirectly modify the variable, thus protecting you from changes in its
representation.

26.31318-9 AppA 9/24/98 2:18 PM Page 733

4. The only part of an abstract method you need to declare in the abstract class is the
method signature. In other words,you need only declare the modifier(s),return
type, method name, and arguments (if any). You do not declare the body of an
abstract method; its body is defined when the subclass implements the abstract
method.

5. To import all the java.util classes and subclasses,you would add this statement
to your source code file:

import java.util.*

To import java.util’s subpackage zip, you would add this statement to your
source code file:

import java.util.zip.*

Remember that the asterisk (*) that enables you to import a whole package of
classes and subclasses does not import that package’s subpackages. Each package
and subpackage must be declared in its own import statement,as shown here.

6. The package statement belongs at the top of the source code file (not counting
comments and whitespace). Your import statements follow directly after the
package statement (if any).

Day 5
1. You can get context-sensitive help in the JBuilder IDE by pressing F1.

2. When you select a .java file in the AppBrowser window Navigation pane, its
classes,objects,methods,resources,and import files are displayed in the Structure
pane, and the source code is displayed in the Content pane when the Source tab is
selected.

3. The UI Designer is invoked when you have a Frame object,applet,or other visual
object node selected in the Navigation pane, by clicking on the Design tab located
below the Content pane in the AppBrowser window. The Menu Designer is
invoked either by double-clicking on a menu item in the Component Tree pane or
by right-clicking and selecting Activate Designer from the pop-up menu.

4. The Make command compiles the files in a project if the .class file is older than
the .java source code file or if there is no .class file yet.

Day 6
1. To invoke UI Designer mode in the AppBrowser window, click on the Design tab

of the Content pane when a Frame object node is selected in the Navigation pane.

734 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 734

Answers to Quiz Questions 735

A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

2. To switch between the Menu Designer and the UI Designer, double-click on one of
the components under the Menu or UI node in the Context Tree (in the Structure
pane),respectively.

3. An exclusive Checkbox component is not programmatically related to and does not
depend on other Checkbox components. A non-exclusive Checkbox component is
one that has its checkboxGroup property set,which makes it a member of a group
of Checkbox components. To create a group of non-exclusive Checkbox
components so that they will become radio buttons,you must add a
CheckboxGroup component and set the Checkbox components’checkboxGroup
property to that CheckboxGroup component.

4. True. It’s okay to leave Panel components set to XYLayout when you are ready to
distribute your program. However, it is definitely not recommended. Always set
your layout to one of the standard Java layouts before final distribution.

5. The BorderLayout manager arranges your components according to the points of
the compass:North, South,East,West,and Center.

Day 7
1. You cannot change the <name> property of a component at runtime because it’s not

a true property. It is a pseudoproperty that enables you to globally change the
component’s identifier in all JBuilder generated code.

2. The ChoiceControl component presents a drop-down selection list. It is similar to
the Choice component on the AWT page.

3. TabsetControl and TabsetPanel components are similar to exclusive check boxes
in that they all act as radio buttons; only one exclusive tab/page/check box can be
selected at a time.

4. A data-aware component has the capability (usually through its dataSet property)
to display and sometimes edit data in a database table.

5. The show() method is used to display a dialog box. This method should be called
in the event handler of the component that is to invoke the dialog box, such as a
button or menu item.

Day 8
1. The five major methods that an applet can override are the init(), start(),

stop(), destroy(), and paint() methods. The only one that your applet is really
required to override is the paint() method because if it doesn’t, it will have no
visible presence on the Web page.

26.31318-9 AppA 9/24/98 2:18 PM Page 735

2. Plain text between the <APPLET> and </APPLET> tag pair serves as an alternative
message when your applet is encountered by a browser that is not Java-capable.
That way, the reader isn’t presented with a blank space. It’s optional but certainly
recommended.

3. The CODEBASE attribute can be used in the <APPLET> tag to tell the HTML page to
look in some other directory for the applet’s class files. The directory is specified
as a string, and the pathname is relative to the HTML file’s directory.

4. True. All applet parameters are passed into the applet as strings. If you want them
to be some other data type, you must write code in the applet body to convert them
to the desired type.

Day 9
1. False. This line of code draws a filled rectangle whose upper-left corner is at 20,20

and whose lower-right corner is at 79,79:

g.fillRect(20,20,60,60);

Remember that the last two arguments are width and height, not coordinates.
Also, don’t forget to count the starting coordinates as one of the pixels in the filled
rectangle (pixels 20 through 79 give a total of 60 pixels).

2. True. You can draw an outline of a circle using either the drawRoundRect() or the
drawOval() method. Here’s an example of the paint() method that uses both of
these methods to draw a circle 60 pixels by 60 pixels:
public void paint(Graphics g) {

g.drawRoundRect(20,20,60,60,30,30);
g.drawOval(120,20,60,60);

}

Of course, it’s simpler to use the drawOval() method because it takes fewer
arguments.

3. It’s true that there is no isBoldItalic() method defined in the Font class.
However, you can use the getStyle() method and test the integer constant it
returns. If it returns 3, the style of the Font object is bold italic.

4. The effect of the following line of code in an applet is to erase all that has been
drawn on it to this point:

setForground(getBackground());

By getting the background color and setting the foreground color equal to it,you
color in all the drawn graphics with the background color, effectively wiping them

736 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 736

Answers to Quiz Questions 737

A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

clean. If what you wanted to do was set the current drawing color to the
background color (as painting programs do when they implement an eraser tool),
you could use this line of code:

g.setColor(getBackground());

This sets the current drawing color without disturbing any existing graphics.

Day 10
1. False. Both streams and files make use of the DataInput and DataOutput

interfaces because they are implemented by the DataInputStream,
DataOutputStream, and RandomFileAccess classes.

2. A deprecatedclass is one that is obsolete but that remains defined for purposes of
backward compatibility .

3. The InputStream, OutputStream, and RandomAccessFile classes are byte-based;
the Reader and Writer classes are character-based.

Although the text doesn’t say so explicitly, you can easily tell that the
RandomAccessFile class is byte-based because it implements the DataInput and
DataOutput interfaces,with methods that are also implemented in the
DataInputStream and DataOutputStream classes (subclasses of InputStream and
OutputStream).

4. Even though some methods still depend on the existence of the PrintStream class
(most notably, the System.out.println() method),it has been superseded by the
PrintWriter class. This means that your programs should use the PrintWriter

class rather than the deprecated PrintStream class.

Day 11
1. Make does a conditional compilation, compiling only those source code files that do

not have up-to-date .class files. Rebuild compiles everything regardless of the
state of the .class files.

2. There are several ways to set a breakpoint on a particular line of source code. First,
with the cursor position on the source code line, you can right-click on the line of
source code in the Content pane and select the Toggle Breakpoint command from
the Editor’s pop-up menu. Second, select View |Breakpoints to display the Break-
points window, and then right-click and select the Breakpoints Options dialog box

26.31318-9 AppA 9/24/98 2:18 PM Page 737

and set the desired breakpoint. Third, select Run|Add Breakpoints to display the
Breakpoints Options dialog box and set the desired breakpoint.

3. The Trace Into command lets you execute each line of a method while debugging.
(If you trace into a method and then change your mind, you can select the Run to
End of Method menu item to execute the remaining lines of code in the method as
a group.)

4. To change a variable’s value during execution,select Run|Evaluate/Modify to
display the Evaluate/Modify dialog box, specify the new value, and then click the
Modify button.

5. False. The execution point indicates the line of code that will be executed next.

6. To make the debugger run your code until it encounters the line of code in which
the cursor is positioned in the Editor, select Run|Run to Cursor.

Day 12
1. To create an event handler in the JBuilder IDE,first select the component in the UI

Designer pane of the AppBrowser window. Click on the Events tab in the Inspector
pane, and triple-click the event in question. This will insert the method stub, ready
for your event-handling code.

2. True. A MouseClicked event is not generated when the mouse button is pressed
and released if a MouseDragged event occurred in between.

3. The getKeyCode() method returns VK_UNDEFINED for the keyTyped event.

4. To share an event handler, after it is created, you need only put the event handler’s
method name in the right column of the event that you want to share the handler.

5. The event for which you would create a handler to detect and do something
whenever a particular component receives focus is the focusGained event.

6. The AWTEvent class is the superclass for all the AWT events.

Day 13
1. You can have as many catch blocks as you need following a try statement.

2. No; you can have either catch blocks or a finally block following a try block,
but not both.

738 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 738

Answers to Quiz Questions 739

A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

3. Use the finally keyword when you want to do something no matter what else
happens.

4. The throws keyword in a method signature alerts the compiler that the caller of
that method must either catch the exceptions listed in the throws clause or must
also list those exceptions in its own throws clause. The throw keyword is used to
throw or rethrow an exception during execution.

5. False. When you catch an exception, you can handle it by doing nothing at all.

Day 14
1. The four major types of JDBC connectivity are JDBC-ODBC Bridge, native API

partly-Java driver, net-protocol all-Java driver, and native-protocol all-Java driver.

2. By using a DataModule class,you can reuse the components within as a group.

3. The detail DataSet component’s MasterLink property is what links it to the master
DataSet component.

4. In a data-aware component,the DataSet property must be set to the underlying
data-access component to make the connection.

Day 15
1. The icon for configuring the Local InterBase Server data sources is installed on the

Windows Control Panel—it’s the 32-bit ODBC icon.

2. At design time, nonvisual components appear on the Component Tree in the
AppBrowser window’s Structure pane. You can place them by clicking either in the
Structure pane or in the Content pane, but they’ ll display on the Component Tree
nevertheless.

3. The dataset property of a data-aware component needs to be hooked up to the
data-providing component. To do this,select the data-providing component from
the dataset property’s drop-down list.

4. Before attempting to set and execute a new query, you must close the existing
query using its close() method.

5. Query-related operations need to be put inside a try block because they can throw
a DataSetException object,which must be either handled or rethrown.

6. You can use the saveChanges() method to resolve changes to a database.

26.31318-9 AppA 9/24/98 2:18 PM Page 739

Day 16
1. You use the synchronized keyword to atomize a block or method—that is, make

its statements appear to happen all at once and protect them from interruptions.

2. True. The word synchronized can be used as both a method and a keyword in
Java. As a keyword, it serves to atomize the block or method it modifies. As a
method, it locks the instance of the object that is contained in its argument.

3. The method call that takes place as the implicit first statement in any
synchronized method is:

synchronized(this);

4. When you subclass a class other than Thread, the Runnable interface must be
implemented to make that new subclass capable of running threads.

5. Preemptive timeslicing allows threads to run (according to their priorities) in small
incremental units of time, yielding to one another so that all have a chance to use
system resources. Nonpreemptive scheduling requires that a program ask for
permission to run,and after it receives that permission,it runs until it is finished;
no other program can use the resources until it has completed its mission.

Day 17
1. False. Both streams and files can make use of the methods in the ObjectInput and

ObjectOutput interfaces. Streams can read and write other streams,including RMI
marshaling streams; files can be written to and read from within security
restrictions. (Applets can read and write files only on their host systems.)

2. The Externalizable interface requires you to define your object’s external format,
so you must define this class’s abstract writeExternal() and readExternal()
methods in your object’s class.

3. For serializing objects,use the writeObject() method. For deserializing objects,
use the readObject() method.

Day 18
1. The two basic requirements for creating beans are that the bean class must be

declared public and the bean musst have a public default constructor that takes
no arguments.

740 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 740

Answers to Quiz Questions 741

A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

2. For JBuilder to expose properties and events,their methods must follow certain
conventions. Property accessor methods should be named getProperty() and
setProperty() for most property types. For boolean values,the get accessor
method should be named isProperty(). Event methods are named
addEventListener() and removeEventListener.

3. If you get an ODBC Driver Manager error when you choose the Design tab for a
DBBean, you probably didn’t create the necessary Data Source when you installed
Local InterBase. Refer to the instructions in the section “Making Connections”to
correct the problem.

4. The two main uses of the BeanInfo class are to describe bean elements that don’t
follow the naming conventions so that they can be found by introspection and to
hide elements from introspection.

5. The method used to hide bean elements is called setHidden(), and it takes a
boolean argument.

Day 19
1. You need to uncheck the Include Debug Information check box in the Compiler

page of the Project Properties dialog box before doing a final build. This will
create class files without the symbolic debugging information and create smaller,
faster class files.

2. False. You do not always need to add auxiliary files to your project. This is
required only if you’re planning to archive your project using the Deployment
Wizard.

3. True. You can’t create JAR files with a zip utility, but you can use a zip utility to
view the contents of a JAR file.

4. To include the jbcl2.0-rt.jar and/or jgl3.1.0.jar archive files in your own
archives,uncheck the appropriate check boxes in the Deployment Wizard dialog
box. This is necessary if you’re planning to deploy your program on a machine that
you know won’t contain these files. This might be the case if you were going to
deploy an applet on a friend’s web site as a demo,for instance.

5. False. If you include your applet’s main class file in an archive referenced by the
ARCHIVE attribute, you must still reference that class file in the <APPLET> tag’s CODE
attribute so that the browser will know which class file contains the main method.

6. The semantic difference between adding archive files to the <APPLET> tag’s
ARCHIVE attribute and adding them to the CLASSPATH is that the ARCHIVE attribute is

26.31318-9 AppA 9/24/98 2:18 PM Page 741

comma-delimited, and the CLASSPATH is semicolon-delimited. If your archives
aren’t being loaded properly, this is one of the things to check. (The other thing to
check is that each archive filename contains its fully qualified pathname.)

Day 20
1. To write networked Java programs,you must import the java.net package.

2. MalformedURLException is used to signal that the URL you tried to instantiate is
not correctly specified (for example, it has a typo).

3. The openStream() method in the URL class opens a network connection using the
supplied URL address and returns an instance of the class InputStream.

4. When a server socket is bound to a port, use the accept() method to get the server
socket to listen on the port for a client connection request.

5. When creating an RMI server, the only circumstance under which you can leave
out RMISecurityManager is if you create and install your own security manager.
RMI won’t run without a security manager installed; this is a Java security feature.

742 Appendix A

P2/Vb TY JBuilder in 21 Days 31318-9 dietsch Appendix A Lp#2

26.31318-9 AppA 9/24/98 2:18 PM Page 742

APPENDIX B
JBuilder and Java Utilities

This appendix briefly describes each utility provided with JBuilder. Table B.1
alphabetically lists each utility by its executable name and cross-references the
utility’s category (Java or JBuilder) and its full name. Utilities in the JDK cate-
gory are provided by Sun as part of the Java Development Kit, and Borland
provides those in the JBuilder category.

The JBuilder Standard edition includes only the JDK utilities pro-
vided by JavaSoft. The JBuilder Professional and Enterprise edi-
tions provide Borland command-line tools.

Note

TABLE B.1. EXECUTABLES CROSS-REFERENCED BY UTILITY NAMES.

Executable Category Utility Name

appletviewer JDK Java AppletViewer

bcj JBuilder Borland Compiler for Java

bmj JBuilder Borland Make for Java

continues

27.31318-9 AppB 9/24/98 2:21 PM Page 743

Grep JBuilder Turbo GREP

jar JDK Java Archive Tool

java JDK Java Interpreter

javac JDK Java Compiler

javadoc JDK Java Documentation Generator

javah JDK C Header and Stub File Generator

javakey JDK Digital Signing Tool

javap JDK Class File Disassembler

jdb JDK Java Debugger

jre JDK Java Runtime Loader

Make JBuilder MAKE

native2ascii JDK Native-to-ASCII Converter

rmic JDK Java RMI Stub Converter

rmiregistry JDK Java Remote Object Registry

serialver JDK Serial Version Command

To find a utility’s description, go to the section of this appendix that corresponds to its
category. The programs in both categories are listed alphabetically by utility name.

These programs are command-line utilities that must be run from the DOS prompt or
your console window. In Windows, there are two ways to run a DOS session:

• From Windows,choose Start | Programs | MS-DOS Prompt or Start | Programs |
Command Prompt. Choose the latter option if you’re running Windows NT.
Invoking DOS in this way treats the session as a windowed application, allowing
you to switch to other applications in Windows by clicking the Windows taskbar or
by using Alt+Tab. However, this method usually gives you less available memory
in the session. When you’ve completed your work and want to close the session,
right-click the taskbar’s MS-DOS icon and choose Close, or type exit at the DOS
command prompt and press Enter. You will be returned to the Windows desktop.

• From Windows 95 or Windows 98,choose Start | Shut Down. Choose the radio
button that’s labeled Restart the computer in MS-DOS mode? and then click the
Yes button. This method usually gives you more available memory than the win-
dowed DOS session,but you won’t be able to use any Windows applications until
you exit the session. To close the session,type exit and press Enter. Windows will
be restarted.

744 Appendix B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

TABLE B.1. CONTINUED

Executable Category Utility Name

27.31318-9 AppB 9/24/98 2:21 PM Page 744

JBuilder and Java Utilities 745

B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

For these utilities to find the classes needed for your program,the SOURCEPATH and
CLASSPATH environment variables must be set. To run the batch file that sets the appropri-
ate DOS environment variables while in a DOS session,type the following at the com-
mand prompt:

c:\jbuilder2\bin\setvars.bat c:\jbuilder2

This assumes the default installation pathnames. If you installed JBuilder to a different
directory, you’ll need to modify this command accordingly. You can also put this com-
mand in your AUTOEXEC.BAT file.

Each of the descriptions in the following sections includes the syntax and usage informa-
tion describing the allowable parameters and options for the utility (if any). In most
cases,you can view this information during a DOS session by entering the utility’s exe-
cutable name at the command prompt. For example, to see the usage screen for the Java
Compiler, type javac and press Enter.

Java Utilities
These utilities,which are provided by Sun as part of the JDK,are found in the
c:\jbuilder2\java\bin directory unless otherwise indicated.

C Header and Stub File Generator (javah)
The C Header and Stub File Generator utility is used for attaching native methods to Java
code.

Usage: JAVAH.EXE [-v] [-options] classes...

where options include:
-help print out this message
-o specify the output file name
-d specify the output directory
-jni create a JNI-style header file
-td specify the temporary directory
-stubs create a stubs file
-trace adding tracing information to stubs file
-v verbose operation
-classpath <directories separated by colons>
-version print out the build version

Class File Disassembler (javap)
The Class File Disassembler utility disassemblescompiled .class files and prints a rep-
resentation of the bytecodes.

27.31318-9 AppB 9/24/98 2:21 PM Page 745

Usage: javap <options> <classes>...

where options include:
-b Backward compatibility with javap in JDK 1.1
-c Disassemble the code
-classpath <directories separated by colons>

List directories in which to look for classes
-l Print line number and local variable tables
-public Show only public classes and members
-protected Show protected/public classes and members
-package Show package/protected/public classes

and members (default)
-private Show all classes and members
-s Print internal type signatures
-verbose Print stack size, number of locals and args for methods

If verifying, print reasons for failure
-version Print the javap version string
-verify Run the verifier

To use the last option to run the verif ier, you must also have javaverify.exe in the same
directory as the utility (where it is installed by default as part of the JDK).

Digital Signing Tool (javakey)
The Digital Signing Tool utility manages security for Java programs,such as keys, cer-
tif icates,and the level of trust associated with them.

javakey
l list of the identities in the database.
c create a new identity.
r remove an identity from the database.
i import a public key, a key pair, etc.
g generate a key pair, a certificate, etc.
d display a certificate.

for more information, see documentation.

Java AppletViewer (appletviewer)
The Java AppletViewer utility is used to test and run applets.

usage: appletviewer [-debug] [-J<runtime flag>] url|file ...

Java Archive Tool (jar)
The Java Archive Tool utility combines .class files and other resources into a single
JAR file. Using JAR files allows your applet to cause all its supporting members to be
accessed in a single download, improving your program’s performance.

Usage: jar {ctx}[vfm0M] [jar-file] [manifest-file] files ...

746 Appendix B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

27.31318-9 AppB 9/24/98 2:21 PM Page 746

JBuilder and Java Utilities 747

B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

Options:
-c create new archive
-t list table of contents for archive
-x extract named (or all) files from archive
-v generate verbose output on standard error
-f specify archive file name
-m include manifest information from specified manifest file
-0 store only; use no ZIP compression
-M Do not create a manifest file for the entries

If any file is a directory then it is processed recursively.
Example: to archive two class files into an archive called classes.jar:

jar cvf classes.jar Foo.class Bar.class
Note: use the ‘0’ option to create a jar file that can be put in your
CLASSPATH

Java Compiler (javac)
The Java Compiler utility compiles .java files containing source code into .class files
containing bytecodes.

use: javac [-g][-O][-debug][-depend][-nowarn][-verbose]
➥[-classpath path][-nowrite][-deprecation]
➥[-d dir][-J<runtime flag>] file.java...

Java Debugger (jdb)
The Java Debugger utility helps you find bugs in Java programs. To view the help screen
outlined here, invoke the jdb utility and then type help at its prompt after it initializes.

threads [threadgroup] -- list threads
thread <thread id> -- set default thread
suspend [thread id(s)] -- suspend threads (default: all)
resume [thread id(s)] -- resume threads (default: all)
where [thread id] | all -- dump a thread’s stack
threadgroups -- list threadgroups
threadgroup <name> -- set current threadgroup

print <id> [id(s)] -- print object or field
dump <id> [id(s)] -- print all object information

locals -- print all local variables in current stack
frame

classes -- list currently known classes
methods <class id> -- list a class’s methods

stop in <class id>.<method> -- set a breakpoint in a method
stop at <class id>:<line> -- set a breakpoint at a line
up [n frames] -- move up a thread’s stack
down [n frames] -- move down a thread’s stack

27.31318-9 AppB 9/24/98 2:21 PM Page 747

clear <class id>:<line> -- clear a breakpoint
step -- execute current line
cont -- continue execution from breakpoint

catch <class id> -- break for the specified exception
ignore <class id> -- ignore when the specified exception

list [line number|method] -- print source code
use [source file path] -- display or change the source path

memory -- report memory usage
gc -- free unused objects

load classname -- load Java class to be debugged
run <class> [args] -- start execution of a loaded Java class
!! -- repeat last command
help (or ?) -- list commands
exit (or quit) -- exit debugger

Java Documentation Generator (javadoc)
The Java Documentation Generator utility is used to extract documentation comments
from your source code. It parses the declarations and documentation comments in a set
of .java source files and produces a set of HTML pages that can be viewed with a
browser. Also, after the HTML files are generated and placed in the same directory as the
.java source files, you can load and select the .java source file in a JBuilder
AppBrowser window and then select the Content pane’s Doc tab to view the HTML page
from within the JBuilder IDE.

usage: javadoc flags* [class | package]*
-sourcepath <path> Colon-separated list of source-file

directories
-classpath <path> Synonym for -sourcepath
-d <directory> Destination directory for output files
-version Include @version paragraphs
-nodeprecated Exclude @deprecated paragraphs
-author Include @author paragraphs
-noindex Do not generate method and field index
-notree Do not generate class hierarchy
-public show only public classes and members
-protected show protected/public classes and members

(default)
-package show package/protected/public classes and

members
-private show all classes and members
-J<flag> Pass <flag> directly to the runtime system
-encoding <name> Source file encoding name
-docencoding <name> Output encoding name

748 Appendix B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

27.31318-9 AppB 9/24/98 2:21 PM Page 748

JBuilder and Java Utilities 749

B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

Java Interpreter (java)
The Java Interpreter utility executes Java applications—that is, those Java .class files
that were compiled from source code containing a main function.

usage: java [-options] class

where options include:
-help print out this message
-version print out the build version
-v -verbose turn on verbose mode
-debug enable remote JAVA debugging
-noasyncgc don’t allow asynchronous garbage collection
-verbosegc print a message when garbage collection occurs
-noclassgc disable class garbage collection
-ss<number> set the maximum native stack size for any thread
-oss<number> set the maximum Java stack size for any thread
-ms<number> set the initial Java heap size
-mx<number> set the maximum Java heap size
-classpath <directories separated by semicolons>

list directories in which to look for classes
-prof[:<file>] output profiling data to .\java.prof or .\<file>
-verify verify all classes when read in
-verifyremote verify classes read in over the network [default]
-noverify do not verify any class

Java Remote Object Registry (rmiregistry)
The Java Remote Object Registry utility creates and starts a remote object registry on the
specified port of the current host,enabling communications.

Syntax: rmiregistry portnumber

Java RMI Stub Converter (rmic)
The Java RMI Stub Converter utility generates objects from the identifiers in compiled
.class files that contain remote object implementations.

use: rmic [-g][-O][-debug][-depend][-nowarn][-verbose][-classpath path]
➥[-nowrite][-d dir][-dstub dir][-dskel dir][-show]
➥[-keepgenerated] classname...

Java Runtime Loader (jre)
The Java Runtime Loader is the version ofthe JDK runtime that end users can employ to
run your Java programs. The jre is a slimmed-down version of the java utility, which
doesn’t include support for development tools and command-line utilities,so it takes up
less space on end users’ machines.

27.31318-9 AppB 9/24/98 2:21 PM Page 749

Usage: jre [-options] classname [arguments]
Options:

-?, -help print out this message
-v, -verbose turn on verbose mode
-verbosegc print a message when garbage collection occurs
-noasyncgc disable asynchronous garbage collection
-noclassgc disable class garbage collection
-ss<number> set the maximum native stack size for any thread
-oss<number> set the maximum Java stack size for any thread
-ms<number> set the initial Java heap size
-mx<number> set the maximum Java heap size
-D<name>=<value> set a system property
-classpath <path> set class path to <path>
-cp <path> prepend <path> to base class path
-verify verify all classes when loaded
-verifyremote verify classes loaded from the network (default)
-noverify do not verify any classes
-nojit disable JIT compiler

Native-to-ASCII Converter (native2ascii)
The Native-to-ASCII Converter utility converts a native encoding file (platform-specific)
to an ASCII file that is formatted using \udddd Unicode notation.

syntax: native2ascii nativefilename asciifilename

Serial Version Command (serialver)
The Serial Version Command utility returns the serialVersionUID in a form that can be
used in your source code.

use: serialver [-show] [classname...]

JBuilder Utilities
The JBuilder utilities,which are provided by Borland as part of the JBuilder Professional
and JBuilder Client/Server packages,are found in the c:\jbuilder2\bin directory. All
of them have the .EXE extension.

Borland Compiler for Java (bcj)
The Borland Compiler for Java utility does an unconditional compilation. Dependencies
are not checked.

Usage: bcj [-g][-verbose][-quiet][-nowarn][-obfuscate][-encoding name]
➥[-d dir][-classpath path] {file.java}

750 Appendix B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

27.31318-9 AppB 9/24/98 2:21 PM Page 750

JBuilder and Java Utilities 751

B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

For a full discussion of this utility’s options,refer to the User’s Guide online documenta-
tion (select Help | Help Topics).

Borland Make for Java (bmj)
The Borland Make for Java utility does a conditional compilation and checks dependen-
cies on the current CLASSPATH.

Usage: bmj [-g][-verbose][-quiet][-nowarn][-obfuscate][-encoding name]
➥[-d dir][-classpath path][-sourcepath path][-rebuild]
➥[-nocompile][-nocheckstable][-nomakestable]
➥{[-s] {source.java} | -p {package} | -c {class}}

For a full discussion of this utility’s options,refer to the User’s Guide online documenta-
tion (select Help | Help Topics).

MAKE (Make)
The MAKE utility does a conditional compilation of the named target files but doesn’t
do the dependency checking that the bmj utility performs.

Syntax: MAKE [options ...] target[s]
-B Builds all targets regardless of dependency dates
-Dsymbol[=string] Defines symbol [equal to string]
-Idirectory Names an include directory
-K Keeps (does not erase) temporary files created by

MAKE
-N Increases MAKE’s compatibility with NMAKE
-Wfilename Writes MAKE to filename updating all non-string

options
-Usymbol Undefine symbol
-ffilename Uses filename as the MAKEFILE
-a Performs auto-dependency checks for include files
-c Caches auto-dependency information
-e Ignores redefinition of environment variable macros
-i Ignores errors returned by commands
-l+ Enables use of long command lines
-m Displays the date and time stamp of each file
-n Prints commands but does not do them
-p Displays all macro definitions and implicit rules
-q Returns zero if target is up-to-date and nonzero

if it is not (for use in batch files)
-r Ignores rules and macros defined in BUILTINS.MAK
-s Silent, does not print commands before doing them
-? or -h Prints this message

Options marked with ‘+’ are on by default. To turn off a default
option follow it by a ‘-’, for example: -a-

27.31318-9 AppB 9/24/98 2:21 PM Page 751

Turbo GREP (Grep)
The Turbo GREP utility is a globalregular expression printer that is used to search for
text in a file. It prints to standard output (by default) or to a specified file (by redirec-
tion). For example, if you wanted to find all occurrences of the word java in thisfile,
and you wanted the results to be deposited in results.txt, you would use the following
syntax:

grep java thisfile > results.txt

Here is the syntax that is displayed when you enter the utility name at the command
prompt:

Syntax: GREP [-rlcnvidzuwo] searchstring file[s]
GREP ? for help

In addition, typing grep ? at the command prompt causes the following help screen to be
displayed:

Syntax: GREP [-rlcnvidzuwo] searchstring file[s]
Options are one or more option characters preceeded by “-”, and optionally
followed by “+” (turn option on), or “-” (turn it off). The default is
“+”.

-r+ Regular expression search -l- File names only
-c- match Count only -n- Line numbers
-v- Non-matching lines only -i- Ignore case
-d- Search subdirectories -z- Verbose
-u- NewFileName Update options -w- Word search
-o- UNIX output format Default set: [0-9A-Z_]

A regular expression is one or more occurrences of: One or more
characters
optionally enclosed in quotes. The following symbols are treated
specially:

^ start of line $ end of line
. any character \ quote next character
* match zero or more + match one or more
[aeiou0-9] match a, e, i, o, u, and 0 thru 9 ;
[^aeiou0-9] match anything but a, e, i, o, u, and 0 thru 9

752 Appendix B

P2/Vb STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix B Lp#2

27.31318-9 AppB 9/24/98 2:21 PM Page 752

APPENDIX C
Additional Resources

This appendix lists some of the innumerable resources available to the JBuilder
user and Java programmer on the World Wide Web, CompuServe, and else-
where.

Inprise International
You’ll want to check Borland resources regularly at the Inprise International
Web site. The JBuilder Product Team posts white papers, competitive analyses,
answers to frequently asked questions (FAQ), sample applications, updated
software, and information about upgrades. TeamB (volunteer users) answers
questions on the Inprise newsgroups.

World Wide Web
General information and Inprise product home page links:

http://www.inprise.com

List of Inprise offices and distributors worldwide:

http://www.inprise.com/bww/

28.31318-9 AppC 9/24/98 2:22 PM Page 753

Electronic newsletter listserv subscription forms:

http://www.inprise.com/feedback/listserv.html
http://www.inprise.com/feedback/intlist.html

Lists of user-supported Inprise newsgroups:

http://www.inprise.com/newsgroups/

JBuilder home page:

http://www.inprise.com/jbuilder/

JBuilder Developer Support:

http://www.inprise.com/devsupport/jbuilder/

JBuilder documentation updates and miscellaneous files:

http://www.inprise.com/techpubs/jbuilder/

Newsgroups
Newsgroups hosted by forums.inprise.com:

borland.public.install.jbuilderborland.public.jbuilder.announce

borland.public.jbuilder.applet-issues

inprise.public.as400.jbuilder

borland.public.jbuilder.compiler

borland.public.jbuilder.corba-rmi

borland.public.jbuilder.database

borland.public.jbuilder.debugger

borland.public.jbuilder.deployment

borland.public.jbuilder.documentation

borland.public.jbuilder.ide

borland.public.jbuilder.java

borland.public.jbuilder.java.api

borland.public.jbuilder.java.language

borland.public.jbuilder.javabeans

754 Appendix C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

28.31318-9 AppC 9/24/98 2:22 PM Page 754

Additional Resources 755

C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

borland.public.jbuilder.javabeans.using

borland.public.jbuilder.javabeans.writing

borland.public.jbuilder.jbcl

borland.public.jbuilder.jobs

borland.public.jbuilder.multi-lingual-apps

borland.public.jbuilder.non-technical

borland.public.jbuilder.thirdpartytools

CompuServe
Although Inprise no longer officially supports CompuServe forums,there is still a large
user community that gathers and discusses Inprise products on CompuServe.

Inprise’s top level:

GO INPRISE

JBuilder forum:

GO JBUILDER

Mail, Phone, Fax
Comments or questions can be emailed to

feedback@corp.inprise.com

Inprise’s street address:

Inprise International

World Wide Headquarters

100 Enterprise Way

Scotts Valley, CA 95066-3249

USA

Telephone switchboard:

(408) 431-1000

Technical documents available by fax in North America:

(800) 822-4269

28.31318-9 AppC 9/24/98 2:22 PM Page 755

Sun Microsystems
Sun Microsystems,the developer of Java,offers support and information via its Web
sites,anonymous FTP, faxback, email,telephone, and postal mail. The following is a
brief list of some of these resources.

World Wide Web
Sun’s Java Developers Connection,which has access to technical support, a Q&A data-
base, online forums,technical articles,training courses,tips and techniques,and product
discounts:

http://developer.javasoft.com

JavaSoft’s home page:

http://java.sun.com

JavaSoft mirror site (SunSITE Singapore, National University of Singapore):

http://sunsite.nus.sg/hotjava/

JavaBeans component architecture:

http://splash.javasoft.com/beans/

HotJava Web page:

http://java.sun.com/products/hotjava/

SunTest home page, featuring cross-platform testing tools for Java:

http://www.sun.com/suntest/

List of places to email for technical help:

http://java.sun.com/mail/

Sun’s Java Computing Web page:

http://www.sun.com/java/

Sun Microsystem’s main Web site:

http://www.sun.com

Mail, Phone, Fax
Comments about the JDK can be emailed to

jdk-comments@java.sun.com

756 Appendix C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

28.31318-9 AppC 9/24/98 2:22 PM Page 756

Additional Resources 757

C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

Sun’s street address:

Sun Microsystems,Inc.

2550 Garcia Avenue

Mountain View, CA 94043-1100

USA

Other Java Resources
There are many other resources on the Web and elsewhere for Java- and JBuilder-related
information. What follows is a brief description of the resources that have proved to be
the most interesting.

World Wide Web
Finjan Inc., premier Java security solutions vendor and founder of the Java Security
Alliance (JSA),whose members include Cisco,Raptor Systems,CheckPoint Software,
Alta Vista,Milk yway Networks,and Secure Computing:

http://www.finjan.com

JARS provides ratings for Java applets that are available on the Web:

http://www.jars.com

Gamelan’s collection of Java information, demos,and applets:

http://www.developer.com/directories/pages/dir.java.html/

Ask the Java Pro at inquiry.com:

http://www.inquiry.com/techtips/java_pro/

Laura Lemay’s Web site (coauthor of Teach Yourself Java in 21 Days):

http://www.lne.com/lemay/

Charles L. Perkins’s Web site (coauthor of Teach Yourself Java in 21 Days):

http://rendezvous.com

Moondog Software (Bill Giel) has some interesting applets and is where you can obtain
jHelp 2.0 software:

http://w3.nai.net/~rvdi/bgiel/bill.htm

28.31318-9 AppC 9/24/98 2:22 PM Page 757

TeamJava,a no-cost registry for consultants and companies that provide Java-related
services:

http://teamjava.com

Newsgroups
Newsgroups hosted by Usenet:

alt.www.hotjava

comp.lang.java

comp.lang.java.*

Newsgroups hosted by msnews.microsoft.com:

microsoft.public.java.*

microsoft.public.internetexplorer.java

microsoft.public.inetexplorer.ie4.java_applets

Macmillan Computer Publishing
Macmillan has anextensive Web site that has links to many other resources as well.
Macmillan Computer Publishing is the parent company of Sams Publishing, Que, and
New Riders.

World Wide Web
Macmillan’s home page:

http://www.mcp.com

Mail, Phone, Fax
Comments or questions can be sent to

support@mcp.com

Sams Publishing’s street address:

Sams Publishing

201 W. 103rd St.

Indianapolis, IN 46290-1093

USA

758 Appendix C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

28.31318-9 AppC 9/24/98 2:22 PM Page 758

Additional Resources 759

C

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

Sams Publishing’s telephone numbers:

Orders: (800) 428-5331

Fax: (800) 835-3202

Customer service: (800) 858-7674

28.31318-9 AppC 9/24/98 2:22 PM Page 759

P2/VB STY JBuilder 2 in 21 Days 31318-9 dietsch Appendix F Lp#2

28.31318-9 AppC 9/24/98 2:22 PM Page 760

>= (greater than or equal to
operator), 47

++ (increment operator), 45-46
==

is equal to operator, 47
refers-to-same-object

operator, 47
!=

is not equal to operator, 47
refers-to-different-object

operator, 47
< (less than operator), 47
<= (less than or equal to opera-

tor), 47
! (logical NOT operator), 48
| (logical OR operator), 48
^ (logical XOR operator), 48
% (modulus operator), 46
/*, */ (multi-line comment

marks), 36
* (multiplication operator), 46
; (semicolons), 34
>> (signed right shift operator),

49-50
' (single-quotes), 42
// (single-line comment marks),

36
- (unary minus operator), 46
>>> (zero-fill right shift opera-

tor), 49-50

A

About command (Help menu),
220

abstract modifier, 159-160
Abstract Window Toolkit, see

AWT
accelerators (menus), 244
accept() method, 692
access control, 149

class methods, 156
class variables, 155-156
instance variables, 153-155
modifiers

abstract, 159-160
final, 157-159
package (default),

149-151
private, 152-153
private protected, 151-152
protected, 151
public, 149

accessing array elements, 55-57
accessing string elements, 60-63

AccessString.java listing, 61
AccessString class, 60
action events, 502

ActionTest applet, 503-504
listing, 505-507

ActionEvent class, 503
actionPerformed event handler,

502

Symbols

= (assignment operator), 40, 45
combining operators, 50

\ (backslash), 42
&

bitwise AND operator, 49
logical AND operator, 48

- (bitwise NOT operator), 49
^ (bitwise XOR operator),

49-50
<< (bitwise left shift operator),

49-50
| (bitwise OR operator), 49
{} (braces), 35
[] (brackets), 54
: (colons), 81
+

concatenation operator, 46, 65
unary plus operator, 46

&& (conditional AND opera-
tor), 48

?: (conditional if-else operator,
48, 73-74

|| (conditional OR operator), 48
† (dagger symbol), 39
-- (decrement operator), 45-46
/ (division operator), 46
/**, */ (documentation com-

ment marks), 36-37
> (greater than operator), 47

INDEX

29.31318-9 index 9/24/98 2:25 PM Page 761

ActionTest applet, 503-504
listing, 505-507

Add Breakpoint command
(Run menu), 204-205

Add Watch command (Run
menu), 204

Add Watch dialog box, 204
addition operator, seeunary

plus operator
addPoint() method, 352
adjustment events,507-508

ScrollTest applet,508
listing, 509-510

AdjustmentEvent class,508
adjustmentValueChanged

event, 507-508
ALIGN a ttr ibute (<APPLET>

tag), 314-315
aligning applets,314-315
ancestors,seesuperclasses
animation, 369

Animator class,409-410
audio,adding, 406

AudioLoop.java listing,
408-409

looping clips, 408
playing clips, 407
stopping clips, 408

clock example, 371-373
paint() method, 370
reducing flicker, 392-393

clipping, 395-403
double-buffering, 403-406
overdrawing, 393-395

starting/stopping, 370-371
threads,374-377

DigiClock.java (threaded)
listing, 377-378

Animator class,409-410
APIs (Application

Programming Interfaces),541
JDBC,537-538

applets,538
applications,538-539
Connection interface,

543-544
connectivity, 539-540
DriverManager class,

541-542
QueryMyTable.java

listing, 550
ResultSet class,546-548
Statement interface,

544-546

AppBrowser, 226
Debug mode, 230-231
Directory Browser mode, 230
Opened Files Browser mode,

229-230
Project Browser mode, 226

Content pane, 229
Navigation pane, 227
Structure pane, 228

Watch mode, 231
append() method, 70
Applet class,306
<APPLET> tag, 29,311-312

attributes,313
ALIGN, 314-315
CODE,317
CODEBASE,317
HSPACE,316
VSPACE,316

Applet Wizard (creating
applets),333

HTML f ile modifications,
335-336

modifying applet,336-337
modifying HTML, 335-336
source files,333-335

Applet Wizard dialog box, 333
applets,9, 22

ActionTest,503-507
aligning, 314-315
Animator, 409-410
applet information, 322
<APPLET> tag, 313-316
application comparison,

304-305
as applications,328-331
communication between,

322-323
creating, 27-30,306,309

Applet Wizard, 333-337
HelloAgainApplet2.java

listing, 309
HelloWorldApplet.java

listing, 28
debugging, 312
deploying, 669

application deployment
comparison,669

archived, 670
beans,670
unarchived, 670

destroying, 308
embedding in HTML, 310

<APPLET> tag, 311-312
HelloAgain2.html listing,

311
HTML forms,mimicing, 699

initializing, 307
JDBC,538
KeyTest,498-501
Lines,487-492
linking, 678-682,686

Bookmarks.java listing,
683-685

URL class,678
painting, 308-309

HelloAnybodyApplet.java
listing, 319-320

HelloAnybodyApplet1.
html listing, 320

HelloAnybodyApplet2.
html listing, 321

ScrollTest,508-510
Spots,480-484
starting, 307-308
status messages,322
stopping, 308
text, spacing around, 316
threads,584-585

animation, 374-378
modifications needed, 584
run() method, 585
Runnable interface,

implementing, 585
starting, 585
stop() method, 585
Thread instance variable,

585
Web servers,313

appletviewer utility , 29,746
Application Programming

Interf aces,seeAPIs
Application Wizard, 337-339
applications, 22

applet comparison,304-305
arguments

command-line, 324-325
converting from strings,

327-328
parsing, 325

as applets,328-331
HelloAnybody.html

listing, 330
HelloAnybody.java

listing, 329
compiling, 452

compiler options,454-456
Make command, 452-453
Rebuild command, 453
run/debug options,

456-457
creating, 23-26,324

762 ActionTest applet

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 762

Application Wizard,
337-339

HelloWorld.java listing,
24

database
main source files,569
query component,

571-572
requirements,569
server connection,

570-571
switch statement listing,

575
user interface, 573-576

deploying, 672
applet deployment

comparison,669
install procedure, 672

JDBC,538-539
main() method, 307
output,displaying, 26

archive tool (Java), seejar
utility

archives,666
compressed, 667
Deployment Wizard, 667-669
JAR files,667
uncompressed, 667
ZIP files,667

arcs,354-359
arguments

command-line, 324-325
converting from strings,

327-328
parsing, 325
passing to methods,129-130

arithmetic operators,45
binary infix, 46
concatenation (+), 46
decrement (--),45-46
increment (++),45-46

arraycopy() method, 57
arrays,53

accessing elements,55-57
copying data between,57
declaring, 53-54
initializing, 54
multidimensional,57-58
objects,54-55
subscripts,55

assignment operator (=), 40,45
combining operators,50

atomic operations (threads),
587

attr ibutes,93

.au file extension,332
audio, 406

AudioLoop.java listing,
408-409

looping clips, 408
playing clips, 407
stopping clips, 408

AudioClip class,407
auxiliar y files,accessing,

658-663
available() method, 417
AWT (Abstr act Window

Toolkit), 239-240,250
components,296

containers,251,262-263
UI, 251-263

layout managers,263-264
BorderLayout, 264-266
CardLayout,264,267
FlowLayout,264-265
GridBagLayout,264,

268-271
GridLayout, 264-265
PaneLayout, 264,268-270
VerticalFlowLayout,

264-266
XYLayout, 264,267-269

see also GUIs; JavaBeans
AWTEvent class,501

B

backslash (\), 42
base classes,seesuperclasses
bcj utility , 750
BeanInfo class,638

adding to projects,638
constructor, 642
hiding properties/events,642
MyDBBeanInfo.java listing,

640-642
beans,seeJavaBeans
BeansExpress,625

BeanInfo class,638
adding to projects,638
constructor, 642
hiding properties/events,

642
MyDBBeanInfo.java

listing, 640-642
DBBean,633

connecting, 637-638
MyDBBean.java listing,

634-636

property accessor
methods,637

renaming, 634,638
NewBean,625

adding to project,625
imports,declaring, 628
MyNewBean.java listing,

627-628
public class declaration,

629
renaming, 626

NewEventBean,643
MyCustomEvent.java list-

ing, 646
MyCustomEventExample

Bean.java listing,
644-645

MyCustomEventListener.
java listing, 645

OkCancelBean,630
constructor, 633
event handling, 633
modifying, 633
MyOkCancelBean.java

listing, 630-632
user interface, 633

BeansExpress command (Help
menu), 219

BeansExpress page (Object
Gallery), 223

behaviors,seemethods
BevelPanel component,288
binary infix operators,44

basic math, 46
concatenation (+), 46

BindException exception, 692
bitwise operators

bitwise AND (&), 49
bitwise left shift (<<),49-50
bitwise NOT (-), 49
bitwise XOR (^),49

block statements,34-35
bmj utility , 751
.bmp file extension,332
Boolean literals,41
BorderLayout component,

264-266
Borland

contact information, 755
Web sites,753-754

JBuilder support, 20
Borland Compiler 1.1 for Java

(bcj), 750
Borland JBuilder 2.0

Installation dialog box, 564

Borland JBuilder 2.0 Installation dialog box 763

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 763

Borland Make 1.1 for Java
(bmj), 751

Borland Online command
(Help menu), 220

 tag, 312
braces ({}),35
brackets ([]), 54
break keyword, 80

labeled loops,81-82
breakpoints,465-469

exception,467-468
performing actions at, 468
setting, 465
source, 466-467
viewing, 468-469

Breakpoints command (View
menu), 199

Browse Goto dialog box, 198
Browse Symbol command

(Search menu), 198
browsers

HotJava,10
Java Plug-in,22

BufferedInputStream class,421
BufferedOutputStream class,

432
BufferedReader class,436
BufferedWriter class,440
Build menu commands

Make, 202
Make Project,202
Rebuild, 202
Rebuild Project,202

Button component,253
BUTTON1_MASK modifier,

493
BUTTON2_MASK modifier,

493
BUTTON3_MASK modifier,

493
ButtonBar component,284-285
ButtonContr ol component,277
ByteArrayInputStr eam class,

419
ByteArrayOutputStr eam class,

430
bytecodes,12,703,710

data types,706
endianness,704
interpreter, 710-711
java2c translator, 712
just-in-time compiling, 711
type information encoding,

724
verif ier, 725
verifying (security), 722-723

C

Calculator command (Tools
menu), 216

calling
constructors (from construc-

tors), 138-139
methods,124

class,125
original, 135-136

cancel() method, 544
CardLayout component,264,

267
case sensitivity, 22,657
case statement,seeswitch

conditional
casting, 117

objects,119-120
primitives,118-119

catch keyword, 523
character escape codes,42-43
character literals, 42
CharAr rayReader class,437
CharAr rayWr iter class,440
charAt() method, 62,68
charWidth() method, 365
Checkbox component,253-255
CheckboxControl component,

278
CheckboxGroup component,

255-256
CheckboxPanel component,

278-279
CheckedInputStream class,426
CheckedOutputStream class,

434
Choice component,258-259
ChoiceControl component,279,

557,574
Choose a DataModule dialog

box, 207
.class file extension,332,

713-715
attributes,713
contents,713
format, 713
method signatures,715-716
structures,714

class instances,seeobjects
class libraries,92
class loader, security, 726-727
class members,149
class methods,124-125,130-131

access control, 156
calling, 125
valueOf(),125

class variables
access control, 155-156
creating, 109-110
multithreading, 594-595

classes,91-93,97-98
abstract,159-160
AccessString, 60
ActionEvent,503
AdjustmentEvent,508
Animator, 409-410
Applet,306
attributes,93
AudioClip,407
AWTEvent,501
BeanInfo, 638

adding to projects,638
constructor, 642
hiding properties/events,

642
MyDBBeanInfo.java

listing, 640-642
BufferedInputStream,421
BufferedOutputStream,432
BufferedReader, 436
BufferedWriter, 440
ByteArrayInputStream,419
ByteArrayOutputStream,430
CharArrayReader, 437
CharArrayWriter, 440
CheckedInputStream,426
CheckedOutputStream,435
Color, 366-367
Component,251
ComponentEvent,511
Container, 251
creating, 94-95
Database, 554
DataInputStream,422-423
DataOutputStream,433
DataSet,553-555

editing data,555
filtering data,555
master-detail support, 556
resolving, 556

DeflaterOutputStream,435
DigestInputStream,425-426
DigestOutputStream,434
DriverManager, 541

deregisterDriver()
method, 541

findColumn() method,
546

getAsciiStream() method,
546

getBinaryStream()
method, 546

764 Borland Make 1.1 for Java (bmj)

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 764

getConnection() method,
541

getCursorName()
method, 547

getDrivers() method, 541
getMetaData() method,

547
getUnicodeStream()

method, 547
getXxxx() method, 547
next() method, 547
registerDriver() method,

541
setCursorName() method,

547
wasNull() method, 547

Error, 520,531
Exception,531
File, 443-444
FileDescriptor, 445
FileInputStream,419-420
FileOutputStream,431-432
FileReader, 438
FileWriter, 441
FilterInputStream,420
FilterOutputStream,432
FilterReader, 437
FilterWriter, 440-441
final modifier, 157
FocusEvent,511-512
Font, 361-362

font information methods,
363-364

font metrics methods,
365-366

ManyFonts.java listing,
363

arcs,354-359
clearRect() method, 360
copyArea() method,

360-361
lines,348
ovals,354
polygons,351-353
rectangles,348-351
SpottedLamp.java listing,

359
text, 361-363

HashTable, 385
hiding, 167-168
Image, 378-379

drawing images,380-383
modifying images,384

implementing, 96-98
InflaterInputStream,426-427
inheritance, 99

hierarchy, creating,
100-102

instance variables,102
methods,102-103
multiple, 103
single, 103
subclassing, 105-108

InputStream,415-416
available() method, 417
close() method, 419
mark() method, 418
markSupported() method,

418
read() method, 416
reset() method, 418
skip() method, 417

InputStreamReader, 438
IOException,415
Java class libray, 104
KeyEvent,493-496
LineNumberReader, 437
methods,93-94,123

calling, 124
calling original, 135-136
class,124-125,130-131
constructors,113-114,

123,137-142
creating, 125
defining, 125-127
finalizer, 123,142-143
overloading, 123,131-133
overriding, 103,123,

133-135
passing arguments,

129-130
signatures,103
this keyword, 127-128
variable scope, 128-129

object,determining, 122-123
ObjectInputStream,427,617
ObjectOutputStream,435,

615-616
ObjectStreamClass,446-448
OutputStream,415,428-429

close() method, 430
flush() method, 430
write() method, 429

OutputStreamWriter, 441
overview, 94
packages,160

designing, 161-164
implementing, 164-167
naming, 162,165

PipedInputStream,427
PipedOutputStream,436
PipedReader, 438

PipedWriter, 441-442
Point, multithreading

modifications,592-593
PrintWriter, 442
ProcedureDataSet,554
PushbackInputStream,424
QueryDataSet,554
RandomAccessFile, 445
Reader, 436
remote interface

implementation, 695
RuntimeException,520,531
SecurityManager, 727-729

methods protected, 728
protection levels,728

SequenceInputStream,428
serializable, designating,

614-615
ServerSocket, 692
Socket,691-692
StorageDataSet,553
StreamTokenizer, 447-448
String, 58
StringBuffer, 58

accessing elements,66-68
declaring objects,58
manipulating objects,

68-71
StringReader, 439
StringWriter, 442
subclasses,94,99
superclasses,94,99
ThreadGroup,600
URL, 678-679
URLConnection,690
WindowEvent,512-513
Writer, 439
see also interfaces

CLASSPATH variable, setting
to run utilities, 745

clearRect() method, 360
client/server databases,534,537
clients, 534,697
clipping, 395

Checkers.java listing,
396-397

Checkers2.java listing,
401-402

Close All command (File
menu), 191

Close command (File menu),
190

close() method, 419,430
Connection interface, 543
ResultSet class,546
Statement interface, 544

close() method 765

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 765

CODE attr ibute (<APPLET>
tag), 317

Code Editor options,458-459
CODEBASE attr ibute

(<APPLET> tag), 317
colons (:),81
color, 366

ColorBoxes.java listing,
368-369

setting, 368
standard colors,367
testing, 368

Color class,366-367
ColorChooser component,292
command-line arguments,

324-325
commands

Build menu
Make, 202
Make Project,202
Rebuild, 202
Rebuild Project,202

compiler
Make, 452-453
Rebuild, 453

debugger
Run to Cursor, 465
Run to End of Method,

465
Step Over, 465
Trace Into,465

Edit menu
Copy, 195
Cut,195
Delete, 196
Paste, 196
Redo,195
Select All, 196
Undo,195

File menu
Close, 190
Close All, 191
Exit, 194
New, 188
New Project,188
Open / Create, 189-190
Print, 194
Printer Setup,193
Project Properties,

192-193
Remove from Project,191
Rename, 192
Reopen,190
Save, 191
Save All, 191
Save As, 191
Save Project,191

Help menu
About,220
BeansExpress,218
Borland Online, 220
Help Topics,218
Java Reference, 219
JBCL Reference, 219
Version Control Help,219
Welcome Project,220

Run menu
Add Breakpoint,204-205
Add Watch, 204
Debug, 203
Evaluate/Modify, 206
Inspect,205
Parameters,203
Program Reset,204
Run,203
Run to Cursor, 203
Run to End of Method,

204
Show Execution Point,

204
Step Over, 203
Trace Into,203

Search menu
Browse Symbol,198
Find, 196
Go to Line Number, 197
Incremental Search, 197
Replace, 197
Search Again,197
Search Source Path, 197

serial version,750
Tools menu

Calculator, 216
Configure Palette, 210
IDE Options,211-215
JBuilder Web Updates,

215
JDBC Monitor, 210
Notepad, 216
RMIRegistry, 216
SQL Explorer, 217
Treat As Text, 214
VisiBroker Smart Agent,

215
View menu

Breakpoints,199
Component Palette, 201
Debugger Context

Browser, 200
Execution Log, 199
Inspector, 201
Loaded Classes,198
Message View, 201

New Browser, 200
Next Error Message, 200
Next Pane, 202
Previous Error Message,

200
Toggle Curtain,201
Toolbar, 201

Wizards menu, see Wizards
comments,35-36

documentation (/**, */),
36-37

extracting, see javadoc utility
multi-line (/*, */), 36
single-line (//),36

commit() method, 543
compaction,718
compareTo() method, 63
comparing objects,121-122
comparing strings,63-66
comparison operators,see

relational operators
compiler errors,459-461
compiler options,454

class exclusions,455
encoding, 455
executable file creation, 455
pathname settings,454
source root directory, 455
stable packages,455
warnings,displaying, 455

compiling applications, 452
compiler options,454-456

class exclusions,455
encoding, 455
executable file creation,

455
pathname settings,454
source root directory, 455
stable packages,455
warnings,displaying, 455

just-in-time compilers,711
Make command, 452-453
Rebuild command, 453
run/debug options,456-457
see also javac utility

Component class,251
component events,510-511
Component Palette, 225,275

adjusting size, 225
AWT Components page, 296
configuring, 276
Data Express page, 295
JBCL Containers page, 287
JBCL page, 277
KL Group page, 297

766 CODE attribute (<APPLET> tag)

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 766

Other page, 297
Swing Containers page, 296
see also JBCL

Component Palette command
(View menu), 201

Component Tree, 231
ComponentEvent class,511
components

AWT, 296
containers,251,262-263
layout managers,263-265
UI, 251-263

ChoiceControl, 557,574
data-access,551,534
data-aware, 551,534,557
Database, adding, 570-571
DataModule, 554
DataSetView, 553
GridControl, 557,573
JBCL

BevelPanel,288
ButtonBar, 284-285
ButtonControl, 277
CheckboxControl, 278
CheckboxPanel,278-279
ChoiceControl, 279
ColorChooser, 292
Database, 295
dbSwing, 296
FieldControl, 279
Filer, 291-292
FontChooser, 293
GridControl, 282-283
GroupBox, 288
ImageControl, 283
LabelControl, 279
ListControl, 280-281
LocatorControl, 281
Message, 293-294
NavigatorControl, 285
ParameterRow, 295
ProcedureDataSet,295
ProcedureResolver, 295
QueryDataSet,295
QueryResolver, 295
ShapeControl, 285
SplitPanel,289
StatusBar, 286
StringInput,294
Swing, 296
TableDataSet,295
TabsetControl, 289-290
TabsetPanel,290-291
TextAreaControl, 286
TextControl, 280
TextFieldControl,

286-287

TransparentImage, 283
TreeControl, 287

KL Group,297
LocatorControl, 557
naming, 242
NavigatorControl, 557,573
QueryDataSet,555,571-572
QueryResolver, 554
StatusBar, 557
TableDataSet,554
UI designer, adding to,242
visual/nonvisual,232
see also classes; JavaBeans

compound statements,seeblock
statements

CompuServe forums,755
concatenating strings,65
concatenation operator (+), 46,

65
concurrency, 534
conditional AND operator

(&&), 48
conditional if-else operator (?:),

48,73-74
conditional OR operator (||), 48
conditionals

if-else, 71-73
switch, 74-77

Configure Palette command
(Tools menu), 210

configur ing LIBS, 567-569
data source, adding, 567
ODBC configuration, 567

Confir m dialog box, 626
ConnectException exception,

692
Connection dialog box, 570
Connection interface, 543

close() method, 543
createStatement() method,

543
getAutoCommit() method,

543
getMetaData() method, 543
isClosed() method, 543
prepareCall() method, 543
prepareStatement() method,

543
rollback() method, 543
setAutoCommit() method,

543
connections,Web (opening),

687
GetRaven.java listing, 687-

689
openStream() method, 686,

689

Console windows,25
constant pool (VM),709
constants,110

declaring, 110-111
modifiers,mouse events,493

constructor methods,123
constructors,53,113-114,137

calling (from constructors),
138-139

default, 137-138
overloading, 139-141
overriding, 141-142
Person.java listing, 138
URL class,678-679

consumers (streams),414
Container class,251
containers,251,262,288

dialog box controls, 291
Panel component,262
ScrollPane component,263
Swing, 296
see also components

Content pane (Project
Browser), 229

Content pane (UI Designer),
241

Context Tree (UI Designer),244
Context Tree Properties dialog

box, 470
context-sensitive help,186
context-sensitive menus,186
continue keyword, 80-81

labeled loops,81-82
control-flow statements,71

break keyword, 80
continue keyword, 80-81
do-while loops,79
for loops,77-78
if-else, 71-73
labeled loops,81-82
switch conditional,74-77
while loops,78-79

controls,seecomponents
coordinates (graphics), 347
Copy command (Edit menu),

195
copyAr ea() method, 360-361
Create New Data Source dialog

box, 567
Create Project for ProjectName

dialog box, 218
Create ResourceBundle dialog

box, 572,663
CreateDates.java listing, 114
createStatement() method, 543
custom exceptions, 530
Cut command (Edit menu), 195

Cut command (Edit menu) 767

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 767

D

daemon threads,595
dagger symbol (†),39
Data Directories dialog box,

218
Data Migration Wizard, 209
Data Modules page (Object

Gallery), 222
Data pane (debugging view),

470
data-access components,551
data-aware components,551,

557
ChoiceControl, 557
GridControl, 557
LocatorControl, 557
NavigatorControl, 557
StatusBar, 557

Database class,554
adding, 570-571

Database Management System,
seeDBMS

databases,534
access components

Database, 295
DataSetView, 295
DataStore, 295
ParameterRow, 295
ProcedureDataSet,295
ProcedureResolver, 295
QueryDataSet,295
QueryResolver, 295
TableDataSet,295
TextDataFile, 295

client/server, 534,537
clients,534
concurrency, 534
data-access components,551,

534
data-aware components,551,

534
ChoiceControl, 557
GridControl, 557
LocatorControl, 557
NavigatorControl, 557
StatusBar, 557

Database class,554
DataBroker, 551-553
DataModule component,554
DataSet class,553-556
DataSetView component,553
DBBean component,633

connecting, 637-638
MyDBBean.java listing,

634-636

property accessor
methods,637

renaming, 634,638
DBMS, 534
editing data,555
file-share, 536-537
filtering data,555
flat-file, 536
JDBC,537-538

applets,538
applications,538-539
Connection interface,

543-544
connectivity, 539-540
DriverManager class,

541-542
QueryMyTable.java

listing, 550
ResultSet class,546-548
Statement interface,

544-546
master-detail support, 556
multi-tier, 537
navigating data,555
ProcedureDataSet class,554
queries

parameterized, 555
unparameterized, 555

QueryDataSet class,554
QueryDataSet component,

555
QueryResolver component,

554
relational, 535-536
servers,535
standalone, 536
StorageDataSet class,553
table editor application

main source files,569
query component,571
requirements,569
resolving changes,577
server connection,

570-571
switch statement listing,

575
tables,creating, 579-580
TEFrame.java source

code, 577-579
user interface, 573-576

TableDataSet component,554
terminology, 534-535

DataBroker, 551-553
see also JDBC

DataInput interf ace, 422-423
DataInputStr eam class,421-423
DataModule component,554

DataOutput interf ace, 433
DataOutputStr eam class,

432-433
DataSet class,553-555

editing data,555
filtering data,555
master-detail support, 556
resolving, 556

DataSetView component,295,
553

DataStore component,295
datatypes,37

bytecodes,706
casting, 117-119
mapping, 548-549
reference types,39
value types,38

DBBean component,633
connecting, 637-638
MyDBBean.java listing,

634-636
renaming, 634,638

DBMS (Database Management
System),534

dbSwing components,296
Debug command (Run menu),

203
Debug mode (AppBrowser),

230-231
Debugger Context Browser

command (View menu), 200
debugging, 452

applets,312
debugger, 462-463

breakpoints,465-469
invoking, 463
pausing/resuming, 465

execution points,464
options,463
syntax errors,457

Code Editor options,
458-459

compiler errors,459-461
HelloDebug.java listing,

458
online help,462

views
Data pane, 470
Evaluate/Modify dialog

box, 471
Inspector window, 471
Loaded Classes window,

471
Threads and Stacks pane,

470
watches,469
see also jdb utility

768 daemon threads

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 768

declar ing
arrays,53-54
constants,111
strings,58
variables,40

decrement operator (--), 45-46
defining methods,125-127

RangeClass.java listing,
126-127

this keyword, 127-128
variable scope, 128-129

DeflaterOutputStr eam class,
435

Delete command (Edit menu),
196

deployment, 655
applets,669

application deployment
comparison,669

archived, 670
unarchived, 670

applications,672
applet deployment

comparison,669
install procedure, 672

archives,666
compressed, 667
JAR files,667
uncompressed, 667
ZIP files,667

beans,652,665,670
Deployment Wizard, 667-669
project preparation, 656,665

auxiliary files,657-658
directories/paths,656-657
final build, 664
Resource wizard, 663-664
unarchived projects,

665-666
Deployment Wizard, 209,

667-669
deregisterDr iver() method, 541
descendants,seesubclasses
deserialization, 612
designing

exception handling, 518-519
interfaces,169-171

implementation
comparison,171-173

packages,161-164
destroy() method, 308
destroying applets,308
destructors,seefinalizer

methods

dialog boxes
Add Watch, 204
adding to projects,223
Applet Wizard, 333
as beans,653
Borland JBuilder 2.0

Installation, 564
Choose a DataModule, 207
Confirm, 626
Connection,570
Context Tree Properties,470
controls, 291

ColorChooser, 292
Filer, 291-292
FontChooser, 293
Message, 293-294
StringInput,294

Create New Data Source, 567
Create Project for

ProjectName, 218
Create ResourceBundle, 572,

663
Data Directories,218
Deployment Wizard, 209
Environment Options,

211-215
Evaluate/Modify, 471
File Open / Create, 23,

189-190
Find Text, 196
Go to Line Number, 197
Implement Interface, 207
Inspect,205
InterBase Server Setup,564
JavaBean Wizard, 646
JBuilder Web Updates,215
License Certif icate, 564
New, 188,220
ODBC Configuration,

567-568
ODBC Data Source

Administrator, 567
Override Inherited Methods,

207
Palette Properties,210,276
Parameters,638
Paste Snippet,638
Print Selection,194
Print Setup,193
Project Wizard, 188,331
ProjectName.jpr, 192-193
Ready to Copy Files,566
Replace Text, 197,626
Resource Wizard, 208
Save As, 191
Save Modified Files,22,194

Search Source Path, 197
Select InterBase Components,

564
Treat As Text, 214

Dialogs page (Object Gallery),
221

DigestInputStream class,
424-425

DigestOutputStream class,434
digital signing tool (Java), see

javakey utility
DigiTime bean,647

clock engine, creating, 648
Date class,importing, 647
DigiTime.java listing,

649-650
getter method, 648
Runnable interface,

implementing, 647
setter method, 648
variables,647

dir ectories,deployment consid-
erations, 656-657

Dir ectory Browser mode
(AppBrowser), 230

disassembler, seejavap utility
division operator (/), 46
do-while loops,79
documentation, seejavadoc

utility
DOS, running sessions in

Windows,744
double-buffering, 393,403-406
double-quotes ("), 43
draw3DRect() method, 351
drawAr c() method, 355-359
drawChars() method, 362-363
drawImage() method, 380-383
drawing

arcs,354-359
characters,362-363
images,380-383
lines,348
ovals,354
polygons,351-353
rectangles,348-351
strings,362-363

drawLine() method, 348
drawOval() method, 354
drawPolygon() method,

351-353
drawPolyline() method,

351-353
drawRect() method, 349
drawRoundRect() method, 349
drawString() method, 362-363

drawString() method 769

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 769

DriverManager class,541
deregisterDriver() method,

541
getConnection() method, 541
getDrivers() method, 541

E

Edit menu commands
Copy command, 195
Cut command, 195
Delete command, 196
Paste command, 196
Redo command, 195
Select All command, 196
Undo command, 195

editing data, 555
embedding applets in HTML,

310
<APPLET> tag, 311-312
HelloAgain2.html listing, 311

encryption, serialization, 620
endianness,704
endsWith() method, 62
Envir onment Options dialog

box, 211-215
envir onment variables

CLASSPATH, 745
SOURCEPATH, 745
Windows,15
Windows NT, 16-17

equals() method, 63
equalsIgnoreCase() method, 63
Error class,520,531
errors

debugging
debugger, 462-469
execution points,464
options,463

exception comparison,531
syntax

compiler errors,459-461
debugging, 457-459
online help,462

see also exceptions
Evaluate/Modify command

(Run menu), 206
Evaluate/Modify dialog box,

206,471
events

beans
adding, 633
hiding, 642

NewEventBean
component,643-646

defined, 475
event handlers,475-476

actionPerformed, 502
creating, 476-477
defined, 244
menus,244-246

introspection,625
key, 493-497
mouse, 478-479

clicks,479-480
Lines applet,487-492
modifiers, 493
moves,485-487
Spots applet,480-484

standard, 501
action,502-507
adjustment,507-510
component,510-511
focus,511-512
item,512
window, 512-513

Events page (Inspector),
233-234

exception breakpoints,setting,
467-468

Exception class,531
exceptions, 55

error comparison,531
handling, 517-519

catch keyword, 523
chains,525-526
custom exceptions,530
Error class,520
exceptions,defined, 517
java.awt package, 521
java.io package, 521
java.lang package, 521
limitations,529-530
program design,518-519
RuntimeException class,

520
throw keyword, 523-524
throwing/catching excep-

tions,522-523
throws keyword, 519-522
try keyword, 523

network, 692-693
BindException,692
ConnectException,692
NoRouteToHostException,

692
ProtocolException,692
SocketException,692
UnknownHostException,

692

UnknownServiceExcep-
tion, 692

persistence-related, 619
InvalidClassException,

619
InvalidObjectException,

619
NotSerializableException,

619
OptionalDataException,

619
SecurityException,619
StreamCorruptedExcep-

tion, 619
WriteAbortedException,

619
throw keyword, 524
URL object,679
see also errors

executable names (utilities),
743-744

execute() method, 544
executeQuery() method, 544
executeUpdate() method, 545
Execution Log, 26
Execution Log command (View

menu), 199
execution points,464
Exit command (File menu), 194
expressions,44
Externalizable interface, 446

readExternal() method, 614
writeExternal() method,

613-614
extr anets,539

F

FieldControl component,279
File class,442-444
file extensions

.au,332

.bmp,332

.class,332,713
attributes,713
contents,713
format, 713
method signatures,

715-716
structures,714

.gif , 332

.~htm,332

.html, 332

770 DriverManager class

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 770

.jar, 332

.~jav, 332

.java,332

.jpg, 332

.jpr, 331-332

.zip, 332
File menu commands

Close, 190
Close All, 191
Exit, 194
New, 188
Open / Create, 189-190
Print, 194
Printer Setup,193
Project Properties,192
Remove from Project,191
Rename, 192
Reopen,190
Save, 191
Save All, 191
Save As, 191
Save Project,191

File Open / Create dialog box,
23,189-190

file-share databases,536-537
FileDescriptor class,444-445
FileInputStr eam class,419
FilenameFilter interf ace,

446-448
FileOutputStr eam class,431
Filer component,291-292
FileReader class,438
files

auxiliary (deployment),
657-658

accessing, 658-663
extensions

.au,332

.bmp,332

.class,332,713-716

.gif , 332

.~htm,332

.html, 332

.jar, 332

.~jav, 332

.java,332

.jpg, 332

.jpr, 331-332

.zip, 332
File class,443-444
FileDescriptor class,445
JAR, 667

compressed, 667
creating, 667
uncompressed, 667

native, converting to ASCII,
750

RandomAccessFile class,445

FileWr iter class,441
fill3DRect() method, 351
fillAr c() method, 355-359
fillOv al() method, 354
fillPolygon() method, 351-353
fillRect() method, 349
fillRoundRect() method, 349
filter ing data, 555
FilterInputStr eam class,420
FilterOutputStr eam class,432
FilterReader class,437
FilterWr iter class,440
final keyword, 110
final modifier, 157

classes,157
methods,158-159
variables,157-158

finalize() method, 142
finalizer methods,123,142-143
finally block, 526-529
finally keyword, 527
Find command (Search menu),

196
Find Text dialog box, 196
findColumn() method, 546
Finjan Web site, 757
flat-f ile databases,536
flicker, reducing (animation),

392-393
clipping, 395-403
double-buffering, 403-406
overdrawing, 393-395

FlowLayout component,
264-265

flush() method, 430
focus events,511-512
FocusEvent class,511-512
Font class,361-362

font information methods,
363-364

font metrics methods,
365-366

ManyFonts.java listing, 363
FontChooser component,293
fonts

font information methods,
363-364

font metrics methods,
365-366

font objects,creating,
361-363

for loops,77-78
forms

HTML, mimicing with
applets,699

POST, submissions,699
fr ame register, 707

G

Gamelan Web site, 757
garbage collection,716

compaction,718
marking and sweeping, 718
need for, 716-717
object references,718-719
parallel collector, 720
problems with,718

getAppletContext().getApplet()
method, 323

getAppletContext().getApplets()
method, 323

getAppletInf o() method, 322
getAscent() method, 365
getAsciiStream() method, 546
getAudioClip() method, 407
getAutoCommit() method, 543
getBackground() method, 368
getBinaryStream() method,

546
getClass() method, 123,659
getCodeBase() method, 379
getColor() method, 368
getConnection() method, 541
getCursorName() method,

545-547
getDescent() method, 365
getDocumentBase() method,

379
getDrivers() method, 541
getFont() method, 364
getFontList() method, 362
getFontMetr ics() method, 364
getForeground() method, 368
getHeight() method, 365
getImage() method, 379-380
getKeyChar() method, 494
getKeyCode() method, 494
getKeyModif iers() method, 494
getKeyText() method, 494
getLeading() method, 365
getMaxAscent() method, 365
getMaxDescent() method, 365
getMetaData() method, 543,

547
getMoreResults() method, 545
getName() method, 123,364
getParameter() method,

318-319
getQueryTimeout() method,

545
getResource() method, 658

getResource() method 771

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 771

getResultSet() method, 545
getSize() method, 364
getStyle() method, 364
getUnicodeStream() method,

547
getXxxx() method, 547
.gif f ile extension,332
Go to Line Number command

(Search menu), 197
Go to Line Number dialog box,

197
Gotoh, Kenji, 384
graphics,346-347

arcs,354-359
clearRect() method, 360
color

ColorBoxes.java listing,
368-369

setting, 368
standard colors,367
testing, 368

coordinates,347
copyArea() method, 360-361
lines,348
ovals,354
polygons,351-353
rectangles,348-351
SpottedLamp.java listing, 359
see also AWT; GUIs; images

Graphics class,348
arcs,354-359
clearRect() method, 360
copyArea() method, 360-361
lines,348
ovals,354
polygons,351-353
rectangles,348-351
setColor() method, 368
SpottedLamp.java listing, 359
text, 361-363

graphs (objects),613
greater than operator (>), 47
greater than or equal to opera-

tor (>=), 47
Grep utility , 752
Gr idBagLayout component,

264,268-271
Gr idContr ol component,

282-283,557,573
Gr idLayout component,

264-265
GroupBox component,288
GUIs, UI Designer, 240-242

code, viewing, 247-250
components,adding, 242
Context Tree, 244

MyFrame.java listing,
248-250

UITest.java listing, 247-248
see also AWT; JavaBeans

H

handling events,475-477
creating event handlers,

476-477
key events,493-497
mouse events,478-479

clicks,479-480
Lines applet,487-492
modifiers, 493
moves,485-487
Spots applet,480-484

standard events,501
action events,502-507
adjustment events,

507-510
component events,

510-511
focus events,511-512
item events,512
window events,512-513

HashTable class,385
<HEAD> tag, 312
header file generator, seejavah

utility
heaps,116,709
help, context-sensitive, 186
help files,19
Help menu commands

About,220
BeansExpress,218
Borland Online, 220
Help Topics,218
Java Reference, 219
JBCL Reference, 219
Version Control Help,219
Welcome Project,220

Help Topics command (Help
menu), 218

hiding classes,167-168
HotJava Web site, 10,756
HSPACE attr ibute (<APPLET>

tag), 316
HTML (HyperT ext Mar kup

Language),28
embedding applets,310-311
forms,mimicing with applets,

699
pages,creating, 28-29

tags
<APPLET>,29,313-316

, 312
<HEAD>, 312
<P>,312
<PARAM>, 317-319

.~htm file extension,332

.html f ile extension,332
HyperText Mar kup Language,

seeHTML

I

IDE (Integrated Development
Envir onment),20-21,185

AppBrowser, 226
Debug mode, 230-231
Directory Browser mode,

230
Opened Files Browser

mode, 229
Project Browser mode,

226-229
Watch mode, 231

Component Palette, 225
context-sensitive help,186
context-sensitive menus,186
main window, 187
menu bar, 187-188

Build menu, 202
Edit menu, 195-196
File menu, 188-194
Help menu, 218-220
Run menu, 203-206
Search menu, 196-198
Tools menu, 209-217
View menu, 198-202
Wizards menu, 207-209
Workgroup menu,

217-218
Object Gallery, 220

BeansExpress page, 223
Data Modules page, 222
Dialogs page, 221
Menus page, 220-221
New page, 220
Other page, 223-224
Panels page, 220
VisiBroker page, 223-224

tool bar, 225
UI Designer, 231,240

Component Tree, 231
Inspector, 232-234
Menu Designer, 233-235

772 getResultSet() method

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 772

IDE Options command (Tools
menu), 211-215

if-else conditional,71-73
Image class,378-379

drawing images,380-383
modifying images,384

ImageControl component,283
images,378-379

animation, 384
Neko example, 384-392

displaying, 378-380
drawing, 380-383
modifying, 384
see also graphics

Implement Interf ace dialog
box, 207

Implement Interf ace Wizard,
207

implementing interfaces,174
LinkedList.java listing,

175-176
LinkedLlistEnumerator.java

listing, 176-177
Node.java listing, 176
stubs,174

increment operator (++), 45-46
Incr emental Search command

(Search menu), 197
indexOf() method, 62
Inf laterInputStr eam class,426
inheritance, 99

class hierarchy, creating,
100-102

instance variables,102
interfaces,design versus

implementation, 171-173
methods,102-103
multiple, 103
single, 103
subclassing, 105-108

init() method, 307
initializing

applets,307
arrays,54
variables,40-41

Inpr ise International Web site,
753

input streams,415-416
BufferedInputStream class,

421
ByteArrayInputStream class,

419
CheckedInputStream class,

426
closing, 419
DataInput interface, 422-424

DataInputStream class,
422-424

DigestInputStream class,
425-426

FileInputStream class,
419-420

FilterInputStream class,420
InflaterInputStream class,

426-427
ObjectInputStream class,427
PipedInputStream class,427
PushbackInputStream class,

424-425
SequenceInputStream class,

428
InputStr eam class,415-416

available() method, 417
close() method, 419
mark() method, 418
markSupported() method,

417-418
read() method, 416
reset() method, 418
skip() method, 417

InputStr eamReader class,437
insert() method, 70
Inspect command (Run menu),

205
Inspect dialog box, 205
Inspector (UI Designer),241,

232-233
Events page, 233-234
Properties page, 233

Inspector command (View
menu), 201

Inspector window (debugging
view), 471

installing
JavaBeans,650-651
JBuilder, 13

environment variables,
setting, 15-17

InstallShield, invoking, 14
requirements,14

LIBS, 564,567
InstallShield, invoking, 14
instance variables,93

access control, 153-155
creating, 95,108-109
inheritance, 102

instanceof operator, 47,123
instances,seeobjects
Integrated Development

Envir onment,seeIDE
InterBase ODBC Configuration

dialog box, 568

InterBase Server Setup dialog
box, 564

interf ace modifier, 148
interf aces,169

Connection,543
close() method, 543
commit() method, 543
createStatement()

method, 543
getAutoCommit()

method, 543
getMetaData() method,

543
isClosed() method, 543
prepareCall() method,

543
prepareStatement()

method, 543
rollback() method, 543
setAutoCommit()

method, 543
DataInput,422-423
DataOutput,433
designing, 169-171

implementation
comparison,171-173

Externalizable, 446-447
readExternal() method,

614
writeExternal() method,

613-614
FilenameFilter, 446-448
implementing, 174-175

LinkedLlistEnumerator.
java listing, 176-177

LinkedLlistTester.java list-
ing, 177

Node.java listing, 176
stubs,174

ObjectInput,616-618
ObjectInputValidation,

446-447
ObjectOutput,615-616
packages,160

designing, 161-164
implementing, 164-167
naming, 162,165

remote, 694-695
Runnable, 375

implementing, 585
run() method, 596
SimpleRunnable.java

listing, 597
Serializable, 446,614-615
Statement,544

cancel() method, 544

interfaces 773

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 773

close() method, 544
execute() method, 544
executeQuery() method,

544
executeUpdate() method,

545
getCursorName()

method, 545
getMoreResults()

method, 545
getQueryTimeout()

method, 545
getResultSet() method,

545
setCursorName() method,

545
setQueryTimeout()

method, 545
Table Editor application, 573

ChoiceControl
component,574

connecting to query
object,573

message dialog box, 574
navigation, 573

see also classes
interpreter (Java), seejava

utility
intr anets,539
intr ospection,625
InvalidClassException, 619
InvalidObjectException, 619
IOException class,415
is equal to operator (==), 47
is not equal to operator (!=), 47
isBold() method, 364
isClosed() method, 543
isItalic() method, 364
isPlain() method, 364
item events,512
itemStateChanged event, 512

J

.jar f ile extension,332
JAR files,667

compressed, 667
creating, 667
uncompressed, 667

jar utility , 746-747
JARS Web site, 757
.~jav file extension,332

Java
applications,displaying

output,26
case sensitivity, 22,657
goals,701-702
history, 10-11
learning, 12
overview, 10-12
platform-independence, 11-12
VM, 703

bytecodes,703-706,
710-712

constant pool,709
documentation (excerpt),

704
heap, 709
limitations,710
memory, 705
method area,709
registers,707
stack, 707-708

Java archive files,seeJAR files
java archive tool,seejar utility
Java class library, 104
Java Computing Web site, 756
Java Database Connectivity, see

JDBC
Java Developers Connection

Web site, 756
.java file extension,332
Java interpreter, seeVM
Java Plug-in, 22
Java Pro Web site, 757
Java Reference command (Help

menu), 219
Java runtime, seeVM
java utility , 749
Java Vir tual Machine, seeVM
java.applet package, 104
java.awt package, 104,521
java.io package, 104,521
java.lang package, 104,521
java.net package, 104
java.util package, 104
JavaBean Wizard, 646

DigiTime.java listing,
649-650

naming bean,647
JavaBean Wizard dialog box,

646
JavaBeans,13,275-277

adding to projects,625
BevelPanel component,288
ButtonBar component,

284-285
ButtonControl component,

277

CheckboxControl component,
278

CheckboxPanel component,
278-279

ChoiceControl component,
279

ColorChooser component,
292

creating, 624
DBBean,633-637
imports, declaring, 628
JavaBean Wizard,

646-650
MyDBBean.java listing,

634-636
MyNewBean.java listing,

627-628
MyOkCancelBean.java

listing, 630-632
NewBean,625-630
OkCancelBean,630-633
public class declaration,

629
Database component,295
DataSetView component,295
DataStore component,295
dbSwing components,296
deploying, 652,665,670
dialogs as,653
events

adding, 633
NewEventBean,643-646

exposing information,
638-643

FieldControl component,279
Filer component,291-292
FontChooser component,293
GridControl component,

282-283
GroupBox component,288
ImageControl component,

283
installing, 650-651
introspection,625
KL Group components,297
LabelControl component,279
ListControl component,

280-281
LocatorControl component,

281
Message component,293-294
modifying, 623
naming, 626,647
NavigatorControl component,

285
ParameterRow component,

295

774 interfaces

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 774

ProcedureDataSet component,
295

ProcedureResolver
component,295

QueryDataSet component,
295

QueryResolver component,
295

requirements,624-625
ShapeControl component,285
SplitPanel component,289
StatusBar component,286
StringInput component,294
Swing components,296
Swing containers,296
TableDataSet component,295
TabsetControl component,

289-290
TabsetPanel component,

290-291
testing, 650-652
TextAreaControl component,

286
TextControl component,280
TextDataFile component,295
TextFieldControl component,

286-287
TransparentImage component,

283
TreeControl component,287
see also AWT; components;

GUIs
JavaBeans Component Library,

seeJBCL
JavaBeans Web site, 756
javac utility, 747
javadoc utility, 748
javah utility , 745
javakey utility , 746
javap utility , 745-746
JavaPlug-in, 303
JavaSoft Web site, 540,756
JBCL (JavaBeans Component

Libr ary)
BevelPanel,288
ButtonBar, 284-285
ButtonControl, 277
CheckboxControl, 278
CheckboxPanel,278-279
ChoiceControl, 279
ColorChooser, 292
Database, 295
DataSetView, 295
DataStore, 295
dbSwing components,296
FieldControl, 279

Filer, 291-292
FontChooser, 293
GridControl, 282-283
GroupBox, 288
ImageControl, 283
LabelControl, 279
ListControl, 280-281
LocatorControl, 281
Message, 293-294
NavigatorControl, 285
ParameterRow, 295
ProcedureDataSet,295
ProcedureResolver, 295
QueryDataSet,295
QueryResolver, 295
ShapeControl, 285
SplitPanel,289
StatusBar, 286
StringInput,294
Swing components,296
Swing containers,296
TableDataSet,295
TabsetPanel,290-291
TextAreaControl, 286
TextControl, 280
TextDataFile, 295
TextFieldControl, 286-287
TransparentImage, 283
TreeControl, 287
see also AWT

JBCL Reference command
(Help menu), 219

JBuilder
help files,19
installing, 13-17

environment variables,
setting, 15-17

InstallShield, invoking, 14
requirements,14

overview, 12-13
paper documenatation, 19
registration, 15
uninstalling, 18
Web site, 20

JBuilder Web Updates
command (Tools menu), 215

JBuilder Web Updates dialog
box, 215

jdb utility , 747-748
JDBC, 537-538

applets,538
applications,538-539
classes

DriverManager, 541-542
ResultSet,546-548

connectivity, 539

JDBC-ODBC Bridge, 539
Native API to Java,539
Native Network Protocol,

540
Neutral Network Protocol,

540
interfaces

Connection,543-544
Statement,544-546

QueryMyTable.java listing,
550

see also DataBroker
JDBC Monitor command

(Tools menu), 210
JDBC-ODBC Bridge, 539
JDK (Java Development Kit)

contact information, 756
utilities

appletviewer, 746
jar, 746-747
java,749
javac, 747
javadoc, 748
javah,745
javakey, 746
javap, 745-746
jdb, 747-748
jre, 749-750
native2ascii,750
rmic, 749
rmiregistry, 749
serialver, 750

.jpg file extension,332

.jpr f ile extension,331-332
jr e utility, 749-750
just-in-time compiler, 711

K

key events,493-497
KeyCode variable, 494-496
KeyEvent class,493-496
KeyPressed event, 496-497
KeyReleased event, 496-497
KeyTest applet, 498-501
KeyTyped event, 496-497
keywords,39

break,80-82
catch, 523
continue, 80-82
final, 110
finally, 527
modifiers,147-148

keywords 775

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 775

abstract,159-160
final, 157-159
package (default),

149-151
private, 152-153
private protected, 151-152
protected, 151
public, 149

new, 113
this,127-128

constructors,138-139
throw, 523-524
throws,519-522
transient,620

KL Gr oup components,297

L

Label component,256
LabelControl component,279
labeled loops,81-82
lastIndexOf() method, 62
layout managers,263-264

BorderLayout,264-266
CardLayout,264,267
FlowLayout, 264-265
GridBagLayout, 264,268-271
GridLayout,264-265
PaneLayout,264,268-270
VerticalFlowLayout, 264-266
XYLayout,264,267-269

Lemay, Laur a, Web site, 757
length() method, 62,68
less than operator (<), 47
less than or equal to operator

(<=), 47
libr aries (classes),92

Java class library, 104
LIBS (Local InterBase), 564

configuring, 567-569
data source, adding, 567
ODBC configuration, 567

installing, 564,567
License Certif icate dialog box,

564
LineNumberReader class,437
lines,348
Lines applet, 487-492
links, applets (creating in),

678-682,686
Bookmarks.java listing,

683-685
URL class,678

List component,257-258
ListContr ol component,

280-281
listings

AccessBuffer.java,67
AccessString.java,61
ActionTest applet,505-507
AudioLoop.java,408-409
Bookmarks.java,683-685
Breakers.java,82
CenterString.java,365-366
ChangeBuffer.java,69
ChangeString.java,64
Checkers.java,396-397
Checkers2.java,401-402
Checkers3.java,404-406
CheckPoint.java,112
ColorBoxes.java,368-369
ColorSwirl.java,393-394
ComplexThread.java,606
CreateDates.java,114
DigiClock.java,372
DigiClock.java (threaded),

377-378
DigiTime.java,649-650
EchoArgs.java,325
EqualString.java,121-122
GetRaven.java,687-689
HelloAgain.html,105
HelloAgain2.html,311
HelloAgainApplet.java,106
HelloAgainApplet2.java,309
HelloAnybody.html, 330
HelloAnybody.java,329
HelloAnybodyApplet.java,

319-320
HelloAnybodyApplet1.html,

320
HelloAnybodyApplet2.html,

321
HelloDebug.java,458
HelloWorld.java,24
HelloWorldApplet.java,28
HelloWorldWideWeb.html, 28
HeyYouApplet.html,342
HeyYouApplet.java,343
KeyTest applet,500-501
Ladybug.java,381
Ladybugs.java,382-383
Lines applet,490-492
LinkedList.java,175-176
LinkedListEnumerator.java,

176-177
LinkedListTester.java,177
ManyFonts.java,363
Motorcycle.java,97

MyCustomEvent.java,646
MyCustomEventExample-

Bean.java,644-645
MyCustomEventListener.java,

645
MyDBBean.java,634-636
MyDBBeanInfo.java,

640-642
MyExceptionalClass.java,

527-528
MyFrame.java,248-250
MyOkCancelBean.java,

630-632
MyRect.java,139-140
NameThreadTester.java,599
Neko.java,390-392

preparing for deployment,
660-663

Node.java,176
Person.java,138
Point.java,589,592
PotatoThreadTester.java,603
PrintClass.java,133
PrintRevClass.java,136
PrintSubClass.java,134
PrintSubClass2.java,134
PriorityThreadTester.java,605
QueryMyTable.java,550
RangeClass.java,126-127
ReallySafePoint.java,593
ReferencesTest.java,117
RMI main method example,

696
RunningInIdaho.java,

603-604
SafePointPrinter.java,591
SafeThreadCounter.java,588
SaySomethingImpl.java,695
ScrollTest applet,509-510
SimpleLineReader.java,424
SimpleRunnable.java,597
SingleThreadTester.java,601
Spots applet,483-484
SpottedLamp.java,359
SumAverage.java,328
SumAverageNot.java,327
switch statement,575
TEFrame.java,577-579
ThreadCounter.java,588
TryAgainPointPrinter.java,

590
UITest.java,247-248

liter als, 41
Boolean,41
character, 42
numeric, 41-42
string, 43

776 keywords

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 776

Loaded Classes command
(View menu), 198

Loaded Classes window (debug-
ging view), 471

Local InterBase, seeLIBS
LocatorContr ol component,

281,557
logical operators,48-49

logical AND (&), 48
logical NOT (!), 48
logical OR (|),48
logical XOR (^),48

loop() method, 408
loops

break keyword, 80
continue keyword, 80-81
do-while, 79
for, 77-78
labeled, 81-82
while, 78-79

M

Macmillan Computer
Publishing, 758

main window, 187
main() method, 307,324
Make command (Build menu),

202,452-453
Make Project command (Build

menu), 202
Make utility, 751
mapping data types,548-549
mark() method, 418
marking and sweeping

(garbage collection),718
markSupported() method, 418
marshaling streams,694
master-detail support (DataSet

class),556
memory

garbage collection,716
compaction,718
marking and sweeping,

718
need for, 716-717
object references,718-719
parallel collector, 720
problems with,718

heaps,116,708-709
management,116
VM, 705

Menu Designer, 233-235
event handlers, creating,

244-246
menu-bar items, 233-235
menu-command items,234-235
MenuBar component,258-259
menus

accelerators,244
context-sensitive, 186
event handlers, creating,

244-246
main menu bar, 187-188

Build menu, 202
Edit menu, 195-196
File menu, 188-194
Help menu, 218-220
Run menu, 203-206
Search menu, 196-198
Tools menu, 209-217
View menu, 198-202
Wizards menu, 207-209
Workgroup menu, 217-

218
Menus page (Object Gallery),

221
Message component,293-294
Message View command (View

menu), 201
method area (VM), 709
methods,34,93-94,123

accept(), 692
access control, 149

abstract modifier, 159-160
final modifier, 157
package modifier

(default), 149-151
private modifier, 152-153
private protected modifier,

151-152
protected modifier, 151
public modifier, 149

addPoint(), 352
append(),70
arraycopy(), 57
available(), 417
calling, 124,135-136
cancel(),544
charAt(),62,68
charWidth(), 365
class,124-125,130-131

access control, 155-156
calling, 125

clearRect(),360
close(),419,430

Connection interface, 543
ResultSet class,546
Statement interface, 544

commit(),543
compareTo(), 63
constructors,113-114,123

calling (from
constructors), 138-139

default, 137-138
overloading, 139-141
overriding, 141-142
Person.java listing, 138

copyArea(),360-361
createStatement(),543
creating, 95-96,125
defining, 125-127
deregisterDriver(),541
destroy(), 308
draw3DRect(),351
drawArc(), 355-359
drawChars(),362-363
drawImage(),380-383
drawLine(), 348
drawOval(), 354
drawPolygon(),351-353
drawPolyline(), 351-353
drawRect(),349
drawRoundRect(),349
drawString(), 362-363
endsWith(), 62
equals(),63
equalsIgnoreCase, 63
execute(),544
executeQuery(), 544
executeUpdate(),545
fill3DRect(),351
fillAr c(), 355-359
fillOval(), 354
fillPolygon(),351-353
fillRect(), 349
fillRoundRect(),349
final modifier, 158-159
finalize(),142
finalizer, 123,142-143
findColumn(),546
flush(),430
getAppletContext().

getApplet(),323
getAppletContext().

getApplets(),323
getAppletInfo(), 322
getAscent(),365
getAudioClip(),407
getAutoCommit(),543
getBackground(),368
getBinaryStream(),546
getClass(),123,659
getCodeBase(),379
getColor(),368

methods 777

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 777

getConnection(),541
getCursorName(),545-547
getDescent(),365
getDocumentBase(),379
getDrivers(),541
getFont(),364
getFontList(),362
getFontMetrics(),364
getForeground(),368
getHeight(),365
getImage(),379-380
getKeyChar(),494
getKeyCode(),494
getKeyModifiers(),494
getKeyText(), 494
getLeading(),365
getMaxAscent(),365
getMaxDescent(),365
getMetaData(),543,547
getModifiers(),494
getMoreResults(),545
getName(),123,364
getParameter(),318-319
getQueryTimeout(),545
getResource(),658
getResultSet(),545
getSize(),364
getStyle(),364
getUnicodeStream(),547
getXxxx(), 547
indexOf(), 62
inheritance, 102-103
init(), 307
insert(), 70
isBold(),364
isClosed(),543
isItalic(), 364
isPlain(),364
lastIndexOf(), 62
length(),62,68
loop(),408
main(),307,324
mark(), 418
markSupported(),418
native, 709
next(), 547
openStream(),689
overloading, 123,131-133
overriding, 103,123,307

PrintClass.java listing,
133

PrintSubClass.java listing,
134

PrintSubClass2.java list-
ing, 134

paint(),107,309,370
passing arguments,129-130
play(), 407-408
prepareCall(),543
prepareStatement(),543
print(), multithreading

modifications,590-591
read()

InputStream class,
416-417

Reader class,437
readExternal(),614
readObject(),617-618
registerDriver(),541
remotely calling, see RMI
reset(),418-419
resume(),596
reverse(),71
rollback(), 543
run()

applet threads,585
calling, 597-599

setAutoCommit(),543
setBackground(),368
setCharAt(),70
setColor(),368
setCursorName(),545-547
setFont(),362-363
setForeground(),368
setLength(),70
setQueryTimeout(),545
show(), 291
showStatus(),322
skip(),417
start()

animation, 370-371
applet threads,585

startsWith(), 62
stop(),308,408

animation, 370-371
applet threads,585

stringWidth(), 365
substring(), 62
suspend(),596
this keyword, 127-128
toString(), 70
valueOf(),125
variable scope, 128-129
wasNull(),547
write(), 429-430,439
writeExternal(),614
writeObject(),616
yield(), 605

Micr osoft Web site, 10
middleware, 537

modifiers, 147-148
abstract,159-160
final, 157

classes,157
methods,158-159
variables,157-158

interface, 148
mouse events,493
native, 148
package (default), 149-151
private, 152-153
private protected, 151-152
protected, 151
public, 149
synchronized, 148
transient,148
volatile, 148

modulus operator (%), 46
Moondog Software Web site,

757
mouse events,478-479

clicks,479-480
Lines applet,487-492
modifiers,493
moves,485-487
Spots applet,480-484

mouseClicked event, 479-480
mouseDragged event, 485-487
mouseEntered event, 485-487
MouseEvent object,478-479
mouseExited event, 485-487
mouseMoved event, 485-487
mousePressed event, 479-480
mouseReleased event, 479-480
multi-tier da tabases,537
multidimensional arrays,57-58
multimedia

animation, 369
Animator class ,409-410
audio,adding, 406-409
clock example, 371-373
images,384-392
paint() method, 370
reducing flicker, 392-406
starting/stopping, 370-371
threads,374-378

audio,406-409
graphics,347

arcs,354-359
clearRect() method, 360
copyArea() method,

360-361
ovals,354
polygons,351-353
rectangles,351

778 methods

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 778

images,378
animation, 384-392
displaying, 378-380
drawing, 380-383
modifying, 384

multiple inher itance, 103
multiplica tion operator (*), 46
multithr eading

animation, 374-377
atomic operations,587
class variables,594-595
complex thread example,

606-607
Point class (modifying)

Point.java listing, 592
ReallySafePoint.java

listing, 593
points,589-593

SafePointPrinter.java
listing, 591

TryAgainPointPrinter.java
listing, 590

print() method (modifying),
590-591

run() method, calling, 599
scheduling, 601

nonpreemptive
scheduling, 602

preemptive timeslicing,
602

priorities, testing, 605-606
testing scheduler, 603-605
yield() method, 605

synchronization, 586-587
common problems,588
SafeThreadCounter.java

listing, 588
ThreadCounter.java

listing, 588
variables,589

thread-safe systems,586
see also threads

MyFrame.java listing, 248-250

N

naming
beans,626,647
components,242
packages,162,165
threads,599-600
variables,39

Native API to Java, 539

native files, converting to
ASCII, 750

native methods,709
native modifier, 148
Native Network Protocol, 540
native2ascii utility, 750
navigating data, 555
Navigation pane (Project

Browser), 227
NavigatorContr ol component,

285,557,573
Neko animation example,

384-385
background, setting, 389
initialization, 386
Neko.java listing, 390-392
nekorun() method, 387
nekoscratch() method, 388
nekosleep() method, 389
pause() method, 386
run() method, 388
wakeup() method, 389
x and y position variables,

386
yawning images,388

Netscape Web site, 10
networking, 678

exceptions
BindException,692
ConnectException,692
NoRouteToHost-

Exception,692
ProtocolException,692
SocketException,692
UnknownHostException,

692
UnknownService-

Exception,692
linking applets,678-682,686

Bookmarks.java listing,
683-685

URL class,678
sockets,690

client-side, 691-692
server-side, 692

URLConnection class,690
Web connections (opening),

687-690
GetRaven.java listing,

687-689
openStream() method,

686,689
see also RMI

Neutral Network Protocol, 540
New Browser command (View

menu), 200

New command (File menu), 188
New dialog box, 188,220
new keyword, 113
New page (Object Gallery), 220
NewBean component,625

adding to project,625
imports,declaring, 628
MyNewBean.java listing,

627-628
public class declaration, 629
renaming, 626

NewEventBean component,643
MyCustomEvent.java,646
MyCustomEventExampleBean.

java,644-645
newsgroups,20,755,758
Next Er ror Message command

(View menu), 200
Next Pane command (View

menu), 202
next() method, 547
nonpreemptive scheduling, 602
nonvisual components,232
NoRouteToHostException

exception, 692
Notepad command (Tools

menu), 216
NotSerializableException, 619
numeric literals, 41-42

O

Object Gallery, 220
BeansExpress page, 223
Data Modules page, 222
Dialogs page, 221
Menus page, 220-221
New page, 220
Other page, 223-224
Panels page, 220
VisiBroker page, 223-224

object-oriented programming
seeOOP

ObjectInput interf ace, 616-618
ObjectInputStr eam class,427,

617
ObjectInputValidation inter -

face, 446-447
ObjectOutput interf ace,

615-616
ObjectOutputStr eam class,435,

615-616

ObjectOutputStream class 779

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 779

objects,91-92,112
arrays,54-55
casting, 119-120
comparing, 121-122
converting to primitives,120
creating, 113-115
deserialization, 612
determining class,122-123
graphs,613
persistence, 612
references,116-117

garbage collection,
718-719

ReferencesTest.java
listing, 117

serialization, 612
example, 618-619
ObjectInputStream class,

617
ObjectOutputStream class,

615-616
readObject() method,

617-618
Serializable interface,

614-615
ObjectStreamClass class,

446-448
ODBC Configuration dialog

box, 567
ODBC Data Source

Administr ator dialog box, 567
OkCancelBean component,630

constructor, 633
event handling, 633
modifying, 633
MyOkCancelBean.java

listing, 630-632
user interface, 633

online help,syntax errors,462
OOP (object-oriented

programming), 89-90
classes,91

attributes,93
creating, 94-95
hierarchy, creating,

100-102
implementing, 96-98
inheritance, 99-108
Java class library, 104
methods,93-96,123-143
Motorcycle.java listing,

97
subclasses,94
superclasses,94

objects,91-92,112
casting, 119-120
comparing, 121-122

converting to primitives,
120

creating, 113-115
determining class,

122-123
references,116-117

overview, 90-91
Open / Create command (File

menu), 189-190
Opened Files Browser mode

(AppBrowser), 229-230
openStream() method, 689
operands,44
operators,44-45

arithmetic, 45
binary infix, 46
concatenation (+), 46
decrement (--),45-46
increment (++),45-46

assignment (=),40,45
combining operators,50

binary infix, 44
bitwise, 49-50
instanceof, 123
logical, 48-49
relational, 47

comparing objects,
121-122

ternary infix, 44
type comparison (instanceof),

47
unary postfix, 44
unary prefix, 44

OptionalDataException, 619
optop register, 707
Other page (Object Gallery),

223-224
output streams,428-429

BufferedOutputStream class,
432

ByteArrayOutputStream
class,430

CheckedOutputStream class,
435

closing, 430
DataOutput interface,

433-434
DataOutputStream class,

433-434
DeflaterOutputStream class,

435
DigestOutputStream class,

434
FileOutputStream class,

431-432
FilterOutputStream class,432

flushing, 430
ObjectOutputStream class,

435
PipedOutputStream class,436
writing bytes,429-430

OutputSreamWriter class,441
OutputStr eam class,415,

428-429
close() method, 430
flush() method, 430
write() method, 429

ovals,354
overdrawing (animation),

393-395
overloading constructors,

139-141
overloading methods,123,

131-133
Overr ide Inherited Methods

dialog box, 207
Overr ide Methods Wizard, 207
overr iding constructors,

141-142
overr iding methods,103,123,

133
calling original, 135

PrintRevClass.java listing,
136

PrintRevSubClass.java
listing, 136

PrintClass.java listing, 133
PrintSubClass.java listing,

134
PrintSubClass2.java listing,

134

P

<P> tag, 312
package modifier (default),

149-151
packages,160

designing, 161-164
hiding classes,167-168
implementing, 164-167
java.applet,104
java.awt, 104,521
java.io,104,521
java.lang, 104,521
java.net,104
java.util, 104
naming, 162,165

paint() method, 107,309,370

780 objects

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 780

painting (applets),308-309
Palette Properties dialog box,

210,276
Panel component,262
PaneLayout component,264,

268-269
Panels page (Object Gallery),

220
parallel garbage collector, 720
<PARAM> ta g, 317-319
parameterized queries,555
ParameterRow component,295
parameters,passing to applets,

317-321
Parameters command (Run

menu), 203
Parameters dialog box, 638
parsing arguments,325

converting from strings,
327-328

EchoArgs.java listing, 325
passing

arguments to methods,
129-130

command-line arguments,
324-325

parameters to applets,
317-319

HelloAnybodyApplet.java
listing, 319-320

HelloAnybodyApplet1.ht
ml listing, 320

HelloAnybodyApplet2.ht
ml listing, 321

Paste command (Edit menu),
196

Paste Snippet dialog box, 638
paths, deployment considera-

tions, 656-657
pc register, 707
peers,268-272
Perkins, Charles L,Web site,

757
persistence, 612

deserialization, 612
exceptions

InvalidObjectException,
619

NotSerializableException,
619

OptionalDataException,
619

SecurityException,619
StreamCorruptedException,

619
WriteAbortedException,

619

Externalizable interface
readExternal() method,

614
writeExternal() method,

613-614
graphs,613
ObjectInput interface,

616-618
ObjectOutput interface,

615-616
serialization, 612

example, 618-619
ObjectOutputStream class,

615-617
readObject() method,

617-618
security, 620
Serializable interface,

614-615
subclasses,621
writeObject() method,

616
PipedInputStream class,427
PipedOutputStream class,435
PipedReader class,438
PipedWriter class,441
pipes,414
platform-independence, 11-12
play() method, 407-408
Point class,multithr eading

modifications, 592-593
Point.java listing, 592
ReallySafePoint.java listing,

593
pointers,seereferences
points, multithr eading, 589-590

Point class (modifying),
591-593

print() method (modifying),
590-591

SafePointPrinter.java listing,
591

TryAgainPointPrinter.java
listing, 590

polygons,351-353
PopupMenu component,

259-260
POST forms,submissions,699
precedence of operators,51-53
preemptive timeslicing, 602
prepareCall() method, 543
prepareStatement() method,

543
Previous Error Message

command (View menu), 200

pr imiti ves
casting, 118-119
converting to objects,120
see also datatypes

Print command (File menu),
194

Print Selection dialog box, 194
Print Setup dialog box, 193
pr int() method, multithr eading

modifications, 590-591
Printer Setup command (File

menu), 193
PrintRevSubClass.java listing,

136
PrintSubClass2.java listing, 134
PrintWr iter class,442
pr ivate modifier, 152-153
pr ivate protected modifier,

151-152
ProcedureDataSet class,554
ProcedureDataSet component,

295
ProcedureResolver component,

295
processors,414
producers (streams),414
Program Pause command (Run

menu), 204
Program Reset command (Run

menu), 204
Project Browser mode

(AppBrowser)
Content pane, 229
Navigation pane, 227
Structure pane, 228

Project Properties command
(File menu), 192

Project Wizard dialog box, 188,
331

ProjectName.jpr Pr operties
dialog box, 192-193

projects,331
archiving, 666

Deployment Wizard,
667-669

JAR files,667
ZIP files,667

beans,adding, 625
creating, 331-332
deployment preparation, 656,

665
auxiliary files,657-658
directories/paths,656-657
final build, 664
Resource wizard, 663-664
unarchived projects,

665-666
file types,332

projects 781

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 781

properties
beans,hiding, 642
introspection,625

Properties page (Inspector),
233-234

protecting methods/variables,
seeaccess control

ProtocolException exception,
692

public modifier, 149
PushbackInputStr eam class,

424

Q

queries
parameterized, 555
unparameterized, 555

QueryDataSet class,554
QueryDataSet component,295,

555
adding, 571-572

QueryResolver component,295,
554

quotes
double ("), 43
single ('),42

R

radix, 131
RandomAccessFile class,445
read() method

InputStream class,416-417
Reader class,437

Reader class,436
readExternal() method, 614
readObject() method, 617-618
Ready to Copy Files dialog box,

566
Rebuild command (Build

menu), 202,453
Rebuild Project command

(Build menu), 202
rectangles,348-351
Redo command (Edit menu),

195

reducing flicker (animation),
392-393

clipping, 395
Checkers.java listing, 396-

397
Checkers2.java listing,

401-402
double-buffering, 403

Checkers3.java,404-406
overdrawing, 393

ColorSwirl.java listing,
393-394

reference types,39
references,116-117

garbage collection,718-719
ReferencesTest.java listing,

117
refers-to-different-object opera-

tor (!=), 47
refers-to-same-object operator

(==), 47
registerDr iver() method, 541
registering JBuilder, 15
registers (VM)

frame, 707
optop,707
pc, 707
vars,707

relational databases,535-536
relational operators,47

comparing objects,121-122
remote interfaces,694-695
Remote Method Invocation, see

RMI
Remote Object Registry utility ,

seermir egistry utility
Remove from Project command

(File menu), 191
Rename command (File menu),

192
Reopen command (File menu),

190
Replace command (Search

menu), 197
Replace Text dialog box, 197,

626
reset() method, 418
resolving changes (databases),

577
resolving DataSet class,556
Resource Wizard, 208,663-664
resources

Borland contact information,
755

CompuServe forums,755
JDK contact information, 756

Macmillan Computer
Publishing, 758

newsgroups,755,758
RMI documentation, 698
SQL statements,581
Web sites

Borland, 753-754
Charles L. Perkins,757
Finjan,757
Gamelan,757
HotJava,756
Inprise International, 753
JARS, 757
Java Computing, 756
Java Developers

Connection,756
Java Pro, 757
JavaBeans,756
JavaSoft,756
Laura Lemay, 757
Moondog Software, 757
Sun Microsystem,756
TeamJava,758
technical help email list,

756
ResultSet class,546

findColumn() method, 546
getAsciiStream() method,

546
getBinaryStream() method,

546
getCursorName() method,

547
getMetaData() method, 547
getUnicodeStream() method,

547
getXxxx() method, 547
next() method, 547
setCursorName() method,

547
wasNull() method, 547

resume() method, 596
reverse() method, 71
RMI, 693

architecture, 693-694
client program,697
documentation, 698
implementation class,695
marshaling streams,694
registry, 697-698
remote interface, 694-695
security manager, 696
server, 696-697

main method listing, 696
starting, 698

skeleton files,695
stub files,695

782 properties

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 782

RMI stub converter (Java), see
rmic utility

rmic utility , 700,749
RMIRegistry command (Tools

menu), 216
rmir egistry utility , 700,749
rollback() method, 543
Run command (Run menu),

203
Run menu commands

Add Breakpoint,204-205
Add Watch, 204
Debug, 203
Evaluate/Modify, 206
Inspect,205
Parameters,203
Program Pause, 204
Program Reset,204
Run,203
Run to Cursor, 203
Run to End of Method, 204
Show Execution Point, 204
Step Over, 203
Trace Into,203

Run to Cursor command (Run
menu), 203,465

Run to End of Method com-
mand (Run menu), 204,465

run() method
applet threads,585
calling, 597-599

run/debug options (compiling
applications), 456-457

Runnable interface, 375,596
implementing, 585
run() method, 596

calling, 596-599
SimpleRunnable.java listing,

597
runtime loader (Java), seejr e

utility
RuntimeException class,520,

531

S

Save All command (File menu),
191

Save As command (File menu),
191

Save As dialog box, 191
Save command (File menu), 191

Save Modified Files dialog box,
22,194

Save Project command (File
menu), 191

saving, resolving changes (data-
bases),577

schedulers (threads),601
nonpreemptive scheduling,

602
preemptive timeslicing, 602
priorities, testing, 605-606
testing, 603-605
yield() method, 605

scope, 40
method definitions,128-129

Scrollbar component,260
ScrollPane component,263
ScrollTest applet, 508-510
Search Again command (Search

menu), 197
Search menu commands

Browse Symbol,198
Go to Line Number, 197
Incremental Search, 197
Replace, 197
Search Again,197
Search Source Path, 197

Search Source Path command
(Search menu), 197

Search Source Path dialog box,
197

security, 720-729
bytecode verif ication,

722-723
class loader, 726-727
extra type information, 724
Finjan Web site, 757
language definition, 721-722
need for, 720-721
RMI manager, 696
SecurityManager class,

727-729
methods protected, 728
protection levels,728

serialization
encryption,620
transient keyword, 620

verif ier, 725
SecurityException, 619
SecurityManager class,727-729

methods protected, 728
protection levels,728

Select All command (Edit
menu), 196

Select InterBase Components
dialog box, 564

semicolons (;),34

SequenceInputStream class,
427-428

serial version command, 750
Serializable interface, 445-446,

614-615
serialization, 612

example, 618-619
ObjectInputStream class,617
ObjectOutputStream class,

615-616
readObject() method,

617-618
security

encryption,620
transient keyword, 620

Serializable interface,
614-615

subclasses,621
writeObject() method, 616

serialver utility , 750
servers,535

RMI, 696-697
main method listing, 696
starting, 698

ServerSocket class,692
setAutoCommit() method, 543
setBackground() method, 368
setCharAt() method, 70
setColor() method, 368
setCursorName() method,

545-547
setFont() method, 362-363
setForeground() method, 368
setLength() method, 70
setQueryTimeout() method,

545
ShapeControl component,285
Show Execution Point com-

mand (Run menu), 204
show() method, 291
showStatus() method, 322
signatur es (methods),103
signed right shift operator (>>),

49-50
simple statements,34
single inheritance, 103
single-quotes ('),42
skeleton files (RMI), 695
skip() method, 417
Socket class,691-692
SocketException exception, 692
sockets,690

client-side, 691-692
server-side, 692
UPD, support, 699

sound, seeaudio

sound 783

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 783

source breakpoints,setting,
466-467

SOURCEPATH variable, 745
SplitPanel component,289
Spots applet, 480-484
SQL

mapping data types to Java,
548-549

statements,resources,581
SQL Explorer command (Tools

menu), 217
stack (VM), 707

data sets,707
execution environment,708
operand stack, 708

standalone databases,536
standard events,501

action,502
adjustment,507-508
component,510-511
focus,511-512
item,512
window, 512-513

start() method, 307
animation, 370-371
applet threads,585

starting applets,307-308
startsWith() method, 62
Statement interface, 544

cancel() method, 544
close() method, 544
execute() method, 544
executeQuery() method, 544
executeUpdate() method, 545
getCursorName() method,

545
getMoreResults() method,

545
getQueryTimeout() method,

545
getResultSet() method, 545
setCursorName() method,

545
setQueryTimeout() method,

545
statements

block, 34-35
comments,35-36

documentation (/**, */),
36-37

multi-line (/*, */), 36
single-line (//),36

ending, 34
simple, 34
SQL, resources,581
see also control-flow

statements; loops

states,preserving, seepersis-
tence

status messages,displaying, 322
StatusBar component,286,557
Step Over command (Run

menu), 203,465
stop() method, 308,408

animation, 370-371
applet threads,585

stopped threads,finding,
600-601

stopping applets,308
StorageDataSet class,553
StreamCorruptedException,

619
streams,414-415

BufferedReader class,436
BufferedWriter class,440
CharArrayReader class,437
CharArrayWriter class,440
consumers,414
FileReader class,438
FileWriter class,441
FilterReader class,437
FilterWriter class,440-441
input,415-416

BufferedInputStream
class,421

ByteArrayInputStream
class,419

CheckedInputStream
class,426

closing, 419
counting bytes in,417
DataInput interface,

422-424
DataInputStream class,

422-423
DigestInputStream class,

425-426
FileInputStream class,

419-420
FilterInputStream class,

420
InflaterInputStream class,

426-427
ObjectInputStream class,

427
PipedInputStream class,

427
PushbackInputStream

class,424
reading, 416-417
SequenceInputStream

class,428
skipping bytes,417

InputStreamReader class,438
LineNumberReader class,437
marshaling, 694
output,428-429

BufferedOutputStream
class,432

ByteArrayOutputStream
class,430-431

CheckedOutputStream
class,435

closing, 430
DataOutput interface,

433-434
DeflaterOutputStream

class,435
DigestOutputStream class,

434
FileOutputStream class,

431-432
FilterOutputStream class,

432
flushing, 430
ObjectOutputStream class,

435
PipedOutputStream class,

436
writing bytes,429

OutputStreamWriter class,
441

PipedReader class,438
PipedWriter class,441-442
PrintWriter class,442
producers,414
Reader class,436
StringReader class,439
StringWriter class,442
Writer class,439

write() method, 439
StreamTokenizer class,446-448
String class,58
string literals,43
StringBuffer class,58

accessing elements,66-68
creating objects,66
declaring objects,58
manipulating objects,68-71

StringInput component, 294
StringReader class,438
strings,53,58

accessing elements,60-63
comparing, 63-66
concatenating, 46,65
creating, 59-60
declaring, 58
StringBuffer objects

accessing elements,66-68
creating, 66
manipulating, 68-71

784 source breakpoints, setting

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 784

stringWidth() method, 365
StringWr iter class,442
Structure pane (Project

Browser), 229
stub files,695

see also javah utility
stubs,174
subclasses,94,100,105-108

inheritance, 99
serialization, 621

subscripts, 55
substring() method, 62
subtraction operator, seeunary

minus operator
Sun Microsystems Web site,

624,703,756
SunTest Web site, 756
superclasses,94,99-100
suspend() method, 596
Swing components,296
Swing containers,296
switch conditional, 74-77
synchronization (multithr ead-

ing), 586-589
class variables,594-595
common problems,588
Point class (modifying)

Point.java listing, 592
ReallySafePoint.java

listing, 593
points,589-593

SafePointPrinter.java
listing, 591

TryAgainPointPrinter.java
listing, 590

print() method (modifying),
590-591

SafeThreadCounter.java
listing, 588

ThreadCounter.java listing,
588

variables,589
synchronized modifier, 148
syntax errors,debugging, 457

Code Editor options,458-459
compiler errors,459-461
HelloDebug.java listing, 458
online help,462

T

Table Editor application
main source files,569
query component,571-572

requirements,569
resolving changes,577
switch statement listing, 575
tables,creating, 579-580
TEFrame source code,

577-579
user interface, 573

Choice Control compo-
nent,574

connecting to query
object,573

message dialog box, 574
navigation, 573

TableDataSet component,295,
554

tables,creating, 579-580
TabsetControl component,

289-290
TabsetPanel component,

290-291
tags (HTML)

<APPLET>,29,311-312
attributes,313-316

, 312
<HEAD>, 312
<P>,312
<PARAM>, 317-319

TeamJava Web site, 758
ternary infix operator, 44
testing JavaBeans,650-652
text, 361

applets,spacing around, 316
font objects,creating,

361-363
TextAr ea component,261-262
TextAr eaControl component,

286
TextContr ol component,280
TextDataFile component,295
TextField component,256-257
TextFieldControl component,

286-287
this keyword, 127-128

constructors,138-139
ThreadGroup class,600
thr eads

advantages,583-584
animation, 374-378
applets,584

modifications needed, 584
run() method, 585
Runnable interface,

implementing, 585
starting, 585
stop() method, 585
Thread instance variable,

585

complex thread example,
606-607

creating, 595-596
daemon,595
grouping, 600
naming, 599-600
resuming, 596
run() method, calling,

596-599
Runnable interface, 596-597
running, 596
scheduling, 601

nonpreemptive, 602
preemptive timeslicing,

602
priorities, testing, 605-606
testing scheduler, 603-605
yield() method, 605

stopped (finding),600-601
stopping, 596
suspending, 596
synchronization, 586-587

points,592-593
Threads and Stacks pane

(debugging view), 470
thr ow keyword, 523-524
thr ows keyword, 519-522
Toggle Curtain command (View

menu), 201
toolbar, 225
Toolbar command (View

menu), 201
Tools menu commands

Calculator, 216
Configure Palette, 210
IDE Options,211-215
JBuilder Web Updates,215
JDBC Monitor, 210
Notepad, 216
RMIRegistry, 216
SQL Explorer, 217
Treat As Text, 214
VisiBroker Smart Agent,215

toString() method, 70
Trace Into command (Run

menu), 203,465
tr ansient keyword, 620
TransparentImage component,

283
Treat As Text command (Tools

menu), 214
Treat As Text dialog box, 214
TreeControl component,287
tr y keyword, 523
two-tier systems,seeclient/

server databases

two-tier systems 785

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 785

two-way tools,13
type comparison (instanceof)

operator, 47
typedef statement,39
types,seedatatypes

U

UI components (AWT), 251,
262-263

Button,253
Checkbox, 253-255
CheckboxGroup,255-256
Choice, 258-259
Label, 256
List, 257-258
MenuBar, 258-259
PopupMenu, 259-260
Scrollbar, 260
TextArea,261-262
TextField, 256-257

UI Designer, 231,240
code, viewing, 247-250
components,adding, 242
Content pane, 241
Component Tree, 231
Context Tree, 244
Inspector, 232,241

Events page, 233-234
Properties page, 233

Menu Designer, 233-235,
243-244

event handlers, creating,
244-246

MyFrame.java listing,
248-250

UITest.java listing, 247-248
UITest.java listing, 247-248
unarchived projects,

deployment preparation,
665-666

unary minus operator (-), 46
unary plus operator (+), 46
unary postfix operator, 44
unary prefix operator, 44
Undo command (Edit menu),

195
Unicode character set,38
Unicode Consortium Web site,

38
uninstalling JBuilder, 18
UnInstallShield utility , 18

UnknownHostException
exception, 692

UnknownServiceException
exception, 692

unparameterized queries,555
UPD sockets,support, 699
URL class,678

constructors,678-679
openStream() method, 686,

689
URLConnection class,690
Use DataModule Wizard, 207
utilities

appletviewer, 746
bcj, 750
bmj, 751
environment variables,

setting, 745
executables,743-744
Grep, 752
jar, 746-747
java,749
javac, 747
javadoc, 748
javah,745
javakey, 746
javap, 745-746
jdb, 747-748
jre, 749-750
Make, 751
native2ascii,750
rmic, 749
rmiregistry, 749
running, 744
serialver, 750

V

value types,38
valueOf() method, 125
variables,37

access control, 149
abstract modifier, 159-160
final modifier, 157
package modifier

(default), 149-151
private modifier, 152-153
private protected modifier,

151-152
protected modifier, 151
public modifier, 149

arrays,53
declaring, 53-54
subscripts,55

class
access control, 155-156
creating, 109-110
multithreading, 594-595

declaring, 40
final modifier, 157-158
initializing, 40-41
instance, 93

access control, 153-155
creating, 95,108-109
inheritance, 102

KeyCode, 494-496
modifying values,111-112
naming, 39
scope, 40

method definitions,
128-129

synchronization, 589
see also data types; literals

vars register, 707
verif ier, 725
Version Control Help command

(Help menu), 219
VerticalFlowLayout component,

264-266
View menu commands

Breakpoints,199
Component Palette, 201
Debugger Context Browser,

200
Execution Log, 199
Inspector, 201
Loaded Classes,198
Message View, 201
New Browser, 200
Next Error Message, 200
Next Pane, 202
Previous Error Message, 200
Toggle Curtain,201
Toolbar, 201

Vir tual Machine, seeVM
VisiBroker page (Object

Gallery), 223-224
VisiBroker Smart Agent

command (Tools menu), 215
visual components,232
Visual Designer, seeUI

Designer
VM (Java Vir tual Machine),

11-12
bytecodes,703-706

data types,706
interpreter, 710-711
java2c translator, 712
just-in-time compiling,

711

786 two-way tools

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 786

type information
encoding, 724

verif ier, 725
verifying (security),

722-723
constant pool,709
documentation (excerpt), 704
heap, 709
limitations,710
memory, 705
method area,709
registers

frame, 707
optop,707
pc, 707
vars,707

stack, 707
data sets,707
execution environment,

708
local variables,708
operand stack, 708

volatile modifier, 148
VSPACE attr ibute (<APPLET>

tag), 316

W

wasNull() method, 547
Watch mode (AppBrowser), 231
watches,469
Web servers,applets,313
Web sites

Borland, 753-754
JBuilder, 20
JBuilder support, 20

Charles L. Perkins,757
Finjan,757
Gamelan,757
HotJava,10,756
Inprise International, 753
JARS, 757
Java Computing, 756
Java Developers Connection,

756
Java Pro, 757
JavaBeans,756
Laura Lemay, 757
Macmillan Computer

Publishing, 758
Microsoft,10
Moondog Software, 757
Netscape, 10

Sun Microsystems,624,703,
756

SunTest,756
TeamJava,758
technical help email list,756
Unicode Consortium, 38

Welcome Project command
(Help menu), 220

while loops,78-79
window events,512-513
WindowEvent class,512-513
Windows, running DOS

sessions in,744
wizards,333

Applet,333-337
Application, 337-339
Data Migration, 209
Deployment,209,667-669
Implement Interface, 207
JavaBean,646-650

DigiTime.java listing,
649-650

naming bean,647
Override Methods,207
Resource, 208,663-664
Use DataModule, 207

Wizards menu, 207
Workgroup menu, 217-218
wr ite() method, 429-430,439
Wr iteAbortedException, 619
wr iteExternal() method, 614
wr iteObject() method, 616
Wr iter class,440

write() method, 440
WWW connections (opening),

686
GetRaven.java listing,

687-689
openStream() method, 686,

689

X-Z

XYLa yout component,264,
267-269

yield() method, 605

zero-fill r ight shift operator
(>>>), 49-50

.zip file extension,332
ZIP f iles,667

ZIP files 787

P/V TY Generic in 14/21/Week ISBN# Name Index Lp#

29.31318-9 index 9/24/98 2:25 PM Page 787

p?v? Title ISBN name 4-22-98 minicatalog Lp#1

Sams Teach Yourself Delphi 4 in 21 Days
Reisdorph, Kent

Contains 750 pages of all-new content. The tutorial information for programmers and
developers includes complete coverage of Delphi 4’s enhanced features. Get up to
speed with Delphi and learn advanced topics such as databases, Object-Oriented
Programming, ActiveX, graphics, and Internet programming. Learn basic component
creation, and focus on enabling applications for intranets, the Internet, and
client/server environments. Explore ways to integrate Delphi into your enterprise. No
other tutorial offers this level of coverage. A Sams Teach Yourself book is the perfect
introduction to an upper-level development tool such as Delphi. This book is an all-
new edition. It’s the most complete beginning level tutorial for Delphi 4.

$39.99 US/$57.95 CDN Beginner - Intermediate
0-672-31286-7 750 pp.
Programming
Sams Borland Press

Delphi 4 Developer’s Guide
Pacheco, Xavier; Teixeira, Steve

The Delphi 4 Developer’s Guide is an advanced-level reference showing developers
what they need to know most about Delphi 4. The authors deal with developers every
day and offer sound skills, advice, and technical knowledge on the most advanced
features of Delphi 4. This guide is the most advanced developers’ book on Delphi 4.
Written by members of Borland’s Delphi development team, it shows you how to:
build advanced-level components, create Visual Component Libraries, design and cre-
ate enterprise-level applications, and more. On the CD-ROM are the book’s complete
source code, additional chapters from the book, examples, and sample components.
This guide discusses issues about application design and frameworks concepts for
client/server, enterprise, and desktop level database apps, along with Delphi’s Multi-
tier Distributed Applications Services Suite (MIDAS) and how it works with Delphi.
Steve Teixeira and Xavier Pacheco are the award-winning authors of the Delphi 2
Developer’s Guide and key members of Borland’s Delphi development team. Learn the
latest information on the best ways to build efficient, usable applications with Delphi
4, including Borland’s new enterprise features, cross-component compatibility, and
Internet-enabling capabilities.

$59.99 US/$85.95 CDN Advanced - Expert
0-672-31284-0 1200 pp.
Programming
Sams Borland Press

31318-9 Minicat 9/24/98 2:25 PM Page 788

Charlie Calvert’s Delphi Unleashed
Calvert, Charlie

Charlie Calvert’s Delphi 4 Unleashed is an all-new edition,written by one of the best-
known developers in the Delphi community. This advanced reference provides pro-
grammers with the information they need to build high-end Delphi applications and
components. Calvert brings the newest technologies and features of Delphi into focus
and shows programmers how to utilize them. Some features include:Building and
integrating components with Java,Active X, and so forth; Internet-enabling applica-
tions and components; Internet and intranet applications and enabling; Delphi’s
Multi-tier Distributed Applications Services Suite (MIDAS) and how it works with
Delphi; and client/server architecture and enterprise-wide development. The content
for the book and CD is all new. This book tells programmers what the manuals
don’t—how to make Delphi 4 really work for them.

$49.99 US/$71.95 CDN Intermediate - Advanced
0-672-31285-9 1000 pp.
Programming
Sams Borland Press

Sams Teach Yourself Borland C++Builder 3
in 21 Days

Kent Reisdorph

The drag-and-drop power of Borland’s C++Builder 3.0 is yours to command with
Sams Teach Yourself Borland C++Builder 3.0 in 21 Days. In no time, you can rapidly
build programs from reusable ActiveX controls, JavaBeans,and Delphi components.
Using the methods taught in this book,you can increase your productivity and lever-
age your knowledge of C++ 3.0 and Delphi to develop mainstream applications. The
proven,step-by-step techniques of the Sams Teach Yourself series show you how to
accomplish specific tasks with this powerful new programming interface. Stop pro-
gramming C++ the old-fashioned way, and start tapping into the visual programming
power of Borland C++Builder 3.0! This is a key revision to an already-successful
Borland Press book. It was released day-and-date with the release of Borland
C++Builder 3,with 30 percent new and updated content by a well-known author in
the Borland development community.

$39.99 US/$57.95 CDN Beginner – Intermediate
0-672-31266-2 832 pp.
Programming
Sams Borland Press
CD-ROM

p?v? Title ISBN name 4-22-98 minicatalog Lp#1

31318-9 Minicat 9/24/98 2:25 PM Page 789

Charlie Calvert’s C++Builder 3 Unleashed
Charlie Calvert

Focused, in-depth explanations of the core features and complexities of C++Builder
3. Written by best-selling author and C++Builder expert Charlie Calvert and key
members of the C++Builder team,this title provides you with what you need to know
to take advantage of C++Builder 3’s power. Develop Web applications by incorporat-
ing WebBroker, ActiveX, and Internet functions into your programs,write multimedia
instructions for Windows with DirectX,and interoperate with OWL and Microsoft
DLLs.

Connect to your corporate data with scaleable database tools,develop C++ programs
visually with drag-and-drop methods,Internet-enable client/server applications for
your entire network, and much more!

$59.99 US/$85.95 CDN Advanced - Expert
0-672-31265-4 1200 pp.
Programming
Sams

p?v? Title ISBN name 4-22-98 minicatalog Lp#1

31318-9 Minicat 9/24/98 2:25 PM Page 790

Add to Your Sams Library Today with the Best Books for
Programming, Operating Systems, and New Technologies

To order, visit our Web site at www.mcp.com or fax us at

1-800-835-3202
ISBN Quantity Description of Item Unit Cost Total Cost

0-672-31286-7 Sams Teach Yourself Delphi 4 in 21 Days $39.99

0-672-31284-0 Delphi 4 Developer’s Guide $59.99

0-672-31285-9 Charlie Calvert’s Delphi Unleashed $49.99

0-672-31266-2 Sams Teach Yourself Borland C++Builder 3 $39.99
in 21 Days

0-672-31265-4 Charlie Calvert’s C++Builder 3 Unleashed $59.99

Shipping and Handling: See information below.

TOTAL

Shipping and Handling

Standard $5.00

2nd Day $10.00

Next Day $17.50

International $40.00

201 W. 103rd Street, Indianapolis, Indiana 46290 1-800-835-3202 — FAX

1Book ISBN 0-672-31318-91

p?v? Title ISBN name 4-22-98 order form Lp#1

31.31318-9 Order Form 9/24/98 2:26 PM Page 791

31.31318-9 Order Form 9/24/98 2:26 PM Page 792

When you’re looking for computing information, consult the authority.
The Authoritative Encyclopedia of Computing at mcp.com.

The Authoritative Encyclopedia of Computing

Get the best
information and
learn about latest
developments in:

■ Design

■ Graphics and
Multimedia

■ Enterprise Computing
and DBMS

■ General Internet
Information

■ Operating Systems

■ Networking and
Hardware

■ PC and Video Gaming

■ Productivity
Applications

■ Programming

■ Web Programming
and Administration

■ Web Publishing

Resource Centers

Books & Software

Personal Bookshelf

WWW Yellow Pages

Online Learning

Special Offers

Site Search
Industry News

▼ Choose the online ebooks
that you can view from your
personal workspace on our site.

About MCP Site Map Product Support

Turn to the Authoritative
Encyclopedia of Computing

You'll find over 150 full text books online, hundreds of
shareware/freeware applications, online computing classes

and 10 computing resource centers full of expert advice
from the editors and publishers of:

• Adobe Press • Que
• BradyGAMES • Que Education & Training
• Cisco Press • Sams Publishing
• Hayden Books • Waite Group Press
• Lycos Press • Ziff-Davis Press
• New Riders

7 3/8x9 1/8 B/W 9/24/98 2:27 PM Page 793

A Division of Macmillan Computer Publishing
201 West 103rd St., Indianapolis, Indiana, 46290 USA

Don Doherty
Michelle M. Manning

JBuilder™ 2
in 21 Days

Teach Yourself

00.31318-9 FM 9/23/98 9:44 AM Page i

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

Sams Teach Yourself JBuilder 2™ in 21 Days

Copyright © 1998 by Sams Publishing
All r ights reserved. No part of this book shall be reproduced, stored in a
retrieval system,or transmitted by any means,electronic, mechanical,photo-
copying, recording, or otherwise, without written permission from the publish-
er. No patent liability is assumed with respect to the use of the information
contained herein. Although every precaution has been taken in the preparation
of this book,the publisher and author assume no responsibility for errors or
omissions. Neither is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number:0-672-31318-9

Library of Congress Catalog Card Number:98-84521

Printed in the United States of America

First Printing: July 1998

00 99 98 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks or service
marks have been appropriately capitalized. Sams Publishing cannot attest to
the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark. JBuilder is
a trademark of the Inprise Corporation.

Warning and Disclaimer
Every effort has been made to make this book as complete and as accuate as
possible, but no warranty of fitness is implied. The information provided is on
an “as is” basis. The authors and the publisher shall have neither liablility nor
responsiblilty to any person or entity with respect to any loss or damages aris-
ing from the information contained in this book.

EXECUTIVE EDITOR

Brian Gill

ACQUISITIONS EDITOR

Ron Gallagher

DEVELOPMENT EDITOR

Scott Warner

MANAGING EDITOR

Jodi Jensen

PROJECT EDITOR

Susan Ross Moore

COPY EDITORS

Geneil Breeze
Sarah Burkhart
Cheri Clark

INDEXER

Christine Nelsen

TECHNICAL EDITOR

Andrew Bennett

PRODUCTION

Marcia Deboy
Michael Dietsch
Jennifer Earhart
Cynthia Fields
Susan Geiselman

00.31318-9 FM 9/23/98 9:44 AM Page ii

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

Contents at a Glance
Introduction 1

WEEK 1 AT A GLANCE 7
Day 1 Introduction to JBuilder 9

2 Java Basics 33

3 Java Intermediate 89

4 Java Advanced 147

5 JBuilder IDE 185

6 User Interface Design 239

7 JavaBeans Component Library 275

WEEK 2 AT A GLANCE 301
Day 8 Applets,Applications,and Wizards 303

9 Graphics,Fonts,and Multimedia 345

10 Streams and I/O 413

11 Compiling and Debugging 451

12 Handling Events 475

13 Exception Handling 517

14 JBuilder Database Architecture 533

WEEK 3 AT A GLANCE 561
Day 15 Building Database Applications 563

16 Multithreading 583

17 Persistence 611

18 Building JavaBeans 623

19 Deploying Java Programs 655

20 Java Network Communications 677

21 Inside Java 701

00.31318-9 FM 9/23/98 9:44 AM Page iii

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

Appendix A Answers to Quiz Questions 731

B JBuilder and Java Utilities 743

C Additional Resources 753

Index 761

0

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

Contents
INTRODUCTION 1

How This Book Is Structured..1
Week 1..1
Week 2..2
Week 3..3

Conventions Used in This Book..4
Web Sites for Further Information ..5

WEEK 1 AT A GLANCE 7

DAY 1 INTRODUCTION TO JBUILDER 9

What Is Java? ..10
Java’s Past and Present..10
Java Is Platform-Independent..11
Java Is Object-Oriented..12
Java Is Easy to Learn..12

What Is JBuilder? ..12
JBuilder Makes Java Even Easier..13
JBuilder Extends Functionality..13

Installing JBuilder..13
Requirements..14
Installation..14
After Installing..15
Uninstalling..18

Where to Get Help..19
Help Files and E-Docs..19
Paper Documentation ..19
Online Resources..20

JBuilder’s Integrated Development Environment..20
Applets and Applications..21

Creating an Application..23
Creating an Applet..27

Summary..30
Q&A ..30

DAY 2 JAVA BASICS 33

Program Statements..34
Simple Statements..34
Block Statements..34
Comment Statements..35

0

Variables,Literals,and Data Types ..37
Data Types..37
Variable Naming..39
Declaring Variables..40
Initializing ..40
Literals..41

Expressions and Operators ..44
Arithmetic Operations..45
Relational Operations ..47
Logical Operations ..48
Bitwise Operations ..49
Assignments..50
Operator Precedence..51

Arrays and Strings ..53
Array Objects..53
String and StringBuffer Objects..58

Conditionals and Loops..71
if-else Conditionals..71
The Conditional ?: Operator..73
switch Conditionals..74
for Loops ..77
while Loops..78
do-while Loops..79
Breaking Out of Loops..80
Labeled Loops..81

Summary..82
Q&A ..83
Workshop ..85

Quiz ..85
Exercises..86

DAY 3 JAVA INTERMEDIATE 89

Thinking in Objects..90
Understanding Objects and Classes..91
Using Attributes..93
Understanding Behaviors ..93

Using Classes..94
Creating a Class..94
Using Inheritance..99
Creating a Subclass..105
Creating Instance and Class Variables..108

vi Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

Using Objects..112
Instantiating Objects..113
Making References to Objects..116
Casting and Converting ..117
Comparing Objects..121
Determining an Object’s Class..122

Using Methods..123
Calling Methods..124
Using Class Methods..124
Creating Methods..125
Overloading Methods..131
Overriding Methods..133
Understanding Constructor Methods..137
Understanding Finalizer Methods..142

Summary..143
Q&A ..144
Workshop ..145

Quiz ..145
Exercises..146

DAY 4 JAVA ADVANCED 147

Using Modifiers ..147
Controlling Access to Methods and Variables..149
Understanding Instance Variable Access Conventions..................................153
Protecting Class Variables and Methods..155
Using the final Modifier ..157
Using abstract Methods and Classes..159

Using Packages..160
Designing Packages..161
Implementing Packages..164
Hiding Classes..167

Using Interfaces..169
Designing Interfaces..169
Comparing Design Versus Implementation..171
Implementing Interfaces..174

Summary..178
Q&A ..180
Workshop ..180

Quiz ..180
Exercises..181

Contents vii

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

DAY 5 JBUILDER IDE 185

Using Context-Sensitive Features..186
Identifying Sections of the Main Window ..187
Using the Main Menu Bar ..187

Using File Menu Commands..188
Using Edit Menu Commands..195
Using Search Menu Commands..196
Using View Menu Commands..198
Using Build Menu Commands..202
Using Run Menu Commands..203
Using Wizards Menu Commands..207
Using Tools Menu Commands..209
Using Workgroup Menu Commands..217
Using Help Menu Commands..219

Creating Files with the Object Gallery..220
Using the New Page ..220
Using the Panels Page..221
Using the Menus Page..222
Using the Dialogs Page..223
Using the Data Modules Page..223
Using the BeansExpress Page..223
Using the VisiBroker Page ..225
Using the Other Page..225

Using the Toolbar..226
Using the Component Palette..226
Using the AppBrowser ..227

Using Project Browser Mode..229
Using Opened Files Browser Mode..231
Using Directory Browser Mode..231
Using Debug and Watch Modes..231

Using the UI Designer..232
Controlling Projects Using the Component Tree ..233
Working with Components Using the Inspector ..233
Menu Designer ..235

Summary..236
Q&A ..236
Workshop ..236

Quiz ..237
Exercises..237

viii Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

DAY 6 USER INTERFACE DESIGN 239

Using the UI Designer..240
Modifying the GUI ..242
Viewing Generated Code..247

Understanding AWT ..250
Using UI Components..252

Button ..253
Checkbox ..253
CheckboxGroup..255
Label ..256
TextField ..256
List ..257
Choice ..258
MenuBar ..258
PopupMenu ..259
Scrollbar ..260
TextArea ..261

Using Containers..262
Panel ..262
ScrollPane ..263

Arranging Controls with Layout Managers ..263
FlowLayout ..265
GridLayout ..265
BorderLayout..267
VerticalFlowLayout ..267
CardLayout ..268
XYLayout ..268
PaneLayout ..269
GridBagLayout..270

Summary..271
Q&A ..272
Workshop ..272

Quiz ..273
Exercises..273

DAY 7 JAVABEANS COMPONENT LIBRARY 275

Using JBCL Components..277
ButtonControl..277
CheckboxControl ..278
CheckboxPanel..278
ChoiceControl..279
FieldControl..279
LabelControl..279
TextControl..280

Contents ix

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

ListControl..280
LocatorControl ..281
GridControl..282
ImageControl..283
TransparentImage ..283
ButtonBar ..284
NavigatorControl ..285
ShapeControl..285
StatusBar ..286
TextAreaControl ..286
TextFieldControl ..286
TreeControl..287

Using JBCL Containers ..287
BevelPanel ..288
GroupBox ..288
SplitPanel ..289
TabsetControl..289
TabsetPanel..290
Dialog Boxes..291

Understanding Data Express Components..295
dbSwing Components..296
Swing Components..296
Swing Containers ..296
AWT Components..296
More Pages..297
Summary..297
Q&A ..298
Workshop ..298

Quiz ..299
Exercises..299

WEEK 2 AT A GLANCE 301

DAY 8 APPLETS, APPLICATIONS, AND WIZARDS 303

Comparing Applets to Applications ..304
Creating Applets..306

Major Applet Activities..307
Examining a Simple Applet..309
Embedding an Applet on a Web Page..310
Debugging and Testing the Applet ..312
Making Applets Available to the Web..313
Using Advanced <APPLET> Tag Features..313
Passing Parameters to Applets..317
Other Applet Tidbits ..321

x Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

Creating Applications..324
Passing Command-Line Arguments..324
Parsing Arguments..325

Dual-Duty Programs..328
JBuilder Projects..331

Creating a Project ..331
Project File Extensions..332

Using Wizards..333
Applet Wizard ..333
Application Wizard ..337

Summary..339
Q&A ..340
Workshop ..341

Quiz ..341
Exercise..342

DAY 9 GRAPHICS, FONTS, AND MULTIMEDIA 345

Graphics ..346
Graphics Coordinate System..347
Drawing and Filling ..348
A Simple Graphics Example..358
Copying and Clearing ..360

Fonts and Text..361
Creating Font Objects..361
Drawing Characters and Strings ..362
Getting Font Information..363

Using Color..366
Color Objects ..367
Testing and Setting Colors ..368
A Simple Color Example..368

Creating Simple Animation ..369
Painting and Repainting ..370
Starting and Stopping..370
A Broken Digital Clock..371
Applets and Threads..374
A Fixed Digital Clock ..376

Retrieving and Using Images..378
Getting Images..378
Drawing Images..380
Modifying Images..384

Animation Using Images ..384
Understanding the Neko Example Project ..384
Building the Neko Example Project ..385

Contents xi

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

Reducing Animation Flicker..392
Overdrawing: Don’t Clear the Applet..393
Clipping: Redraw Only When Necessary ..395
Double-Buffering: Drawing Offscreen..403

Making It Multimedia..406
Adding Sounds..407
Sun’s Animator Applet ..409

Summary..410
Q&A ..410
Workshop ..411

Quiz ..412
Exercises..412

DAY 10 STREAMS AND I/O 413

Understanding Input Streams..415
InputStream Abstract Class..415
ByteArrayInputStream ..419
FileInputStream ..420
FilterInputStream ..421
ObjectInputStream ..428
PipedInputStream ..428
SequenceInputStream ..428

Output Streams..429
OutputStream Abstract Class..429
ByteArrayOutputStream ..431
FileOutputStream ..432
FilterOutputStream ..432
ObjectOutputStream ..436
PipedOutputStream ..437

Reader ..437
BufferedReader ..437
LineNumberReader ..437
CharArrayReader ..438
FilterReader..438
InputStreamReader ..439
FileReader ..439
PipedReader..439
StringReader..439

Writer ..440
BufferedWriter ..440
CharArrayWriter ..441
FilterWriter..441
OutputStreamWriter ..441
FileWriter ..442

xii Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

PipedWriter..442
PrintWriter..442
StringWriter..444

File Classes..444
File ..445
FileDescriptor ..446
RandomAccessFile ..446

Related Classes..447
Interfaces..447
Classes..448

Summary..448
Q&A ..449
Workshop ..450

Quiz ..450
Exercise..450

DAY 11 COMPILING AND DEBUGGING 451

Compiling..452
Make ..452
Rebuild..453

Project Options..454
Compiler Options..454
Run/Debug Options..456

Syntax Errors ..457
Code Editor Options..458
Compiler Errors..459
Getting Help with Errors..462

Using the Debugger ..462
Debugging Options..463
Invoking the Debugger ..463
Pausing and Resuming..465
Breakpoints..465
Watches..469
Threads and Stack ..470
Other Debug Views ..471

Summary..471
Q&A ..472
Workshop ..472

Quiz ..473
Exercise..473

DAY 12 HANDLING EVENTS 475

Creating Event Handlers..476
Managing Simple Events..477

Contents xiii

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

Mouse Events..478
Mouse Clicks..479
Spots Applet..480
Mouse Motions..485
Lines Applet..487
Testing Modifiers..493

Key Events ..493
Handling Key Events..496
KeyTest Applet ..498

Standard Events ..501
Action Events ..502
Adjustment Events..507
Component Events..510
Focus Events..511
Item Events..512
Window Events..512

Summary..513
Q&A ..514
Workshop ..514

Quiz ..514
Exercises..515

DAY 13 EXCEPTION HANDLING 517

Exceptions by Design..518
Understanding the throws Keyword ..519
Understanding Error and RuntimeException ..520

Handling Exceptions..522
Using try and catch ..523
Using the throw Keyword ..523
Falling Through..525
Using a finally Block ..526

Limitations ..529
Creating Custom Exceptions ..530
Summary..530
Q&A ..531
Workshop ..532

Quiz ..532
Exercise..532

DAY 14 JBUILDER DATABASE ARCHITECTURE 533

Database Basics..534
Tables and Terms..534
Database Models..535
Database Types..536

xiv Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

JDBC Architecture ..537
Using JDBC with Applets..538
Using JDBC with Applications..538
Database Connectivity ..539

JDBC Classes..540
Understanding the DriverManager Class ..541
Understanding the Connection Class..543
Understanding the Statement Class..544
Understanding the ResultSet Class..546
Mapping Types ..548
A JDBC API Example..549

JBCL and DataBroker..551
Data Access..553
Providing Data..554
Navigating and Editing Data..555
Sorting and Filtering ..555
Master-Detail Support ..556
Resolving a DataSet ..556
Data-Aware Controls..557

Summary..558
Q&A ..558
Workshop ..559

Quiz ..559
Exercise..559

WEEK 3 AT A GLANCE 561

DAY 15 BUILDING DATABASE APPLICATIONS 563

Installing and Configuring Local InterBase..564
Basic Requirements..569
Providing Data ..570
User Interface..573
Resolving Changes..576
Creating Tables..579
Summary..580
Q&A ..581
Workshop ..581

Quiz ..581
Exercises..582

DAY 16 MULTITHREADING 583

Why Use Threads?..583
Applet Threads..584

Parallelism Problems ..586

Contents xv

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

Thinking Multithreaded..587
Points About Points ..589
Class Variable Protection..594

Creating and Using Threads..595
The Runnable Interface..596
Understanding the ThreadTester Class..597
Understanding the NamedThreadTester Class..599
Thread Groups..600

Knowing When a Thread Has Stopped..600
Thread Scheduling..601

Preemptive Versus Nonpreemptive ..602
Testing Your Scheduler..603

Summary..607
Q&A ..608
Workshop ..609

Quiz ..610
Exercises..610

DAY 17 PERSISTENCE 611

The Externalizable Interface..613
The writeExternal() Method ..613
The readExternal() Method ..614

The Serializable Interface..614
The ObjectOutput Interface..615

The ObjectOutputStream Class ..615
The writeObject() Method ..616

The ObjectInput Interface..616
The ObjectInputStream Class..617
The readObject() Method..617

A Serialized Example..618
Persistence Exceptions..619
Security Issues..620

The transient Keyword ..620
Using Encryption..620

Summary..620
Q&A ..621
Workshop ..622

Quiz ..622
Exercise..622

DAY 18 BUILDING JAVABEANS 623

Meeting Bean Requirements..624
Using BeansExpress..625

New Bean ..625
Ok Cancel Bean..630

xvi Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

DB Bean ..633
Bean Info ..638
New Event Bean..643

JavaBean Wizard..646
Testing Beans..650
Summary..653
Q&A ..653
Workshop ..654

Quiz ..654
Exercises..654

DAY 19 DEPLOYING JAVA PROGRAMS 655

Project Preparation ..656
Directories and Paths..656
Auxiliary Files..657
Accessing Auxiliary Files ..658
Resource Wizard ..663
Final Build..664
Unarchived Projects..665

Archives ..666
Deployment Wizard ..667
Applets and Applications ..669

Deploying Applets..669
Deploying Applications..672

Summary..673
Q&A ..674
Workshop ..675

Quiz ..675
Exercise..675

DAY 20 JAVA NETWORK COMMUNICATIONS 677

Networking ..678
Creating Links in Applets..678
Opening Web Connections..686
The URLConnection Class..690
Client and Server Sockets..690
Network Exceptions ..692

Remote Method Invocation..693
How Does It Work?..693
RMI Documentation ..698

Summary..698
Q&A ..699

Contents xvii

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

Workshop ..700
Quiz ..700
Exercise..700

DAY 21 INSIDE JAVA 701

The Big Picture..701
The Java Virtual Machine..702

An Overview ..704
Fundamental Parts..705
Constant Pool..709
Limitations..710

All About Bytecodes..710
The Bytecode Interpreter..710
Just-In-Time Compiler ..711
java2c Translator..712

The .class File Format ..713
Method Signatures ..715
Garbage Collection..716

The Problem ..716
The Solution..717
Parallel Garbage Collector ..720

The Security Story ..720
Why You Should Worry..720
Why You Might Not Have to Worry ..721

Summary..729
Q&A ..730

APPENDIX A ANSWERS TO QUIZ QUESTIONS 731

Day 2..731
Day 3..732
Day 4..733
Day 5..734
Day 6..734
Day 7..735
Day 8..735
Day 9..736
Day 10..737
Day 11..737
Day 12..738
Day 13..738
Day 14..739
Day 15..739
Day 16..740
Day 17..740

xviii Sams Teach Yourself JBuilder 2 in 21 Days

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

Day 18..740
Day 19..741
Day 20..742

APPENDIX B JBUILDER AND JAVA UTILITIES 743

Java Utilities ..745
C Header and Stub File Generator (javah) ..745
Class File Disassembler (javap) ..745
Digital Signing Tool (javakey) ..746
Java AppletViewer (appletviewer)..746
Java Archive Tool (jar) ..746
Java Compiler (javac) ..747
Java Debugger (jdb) ..747
Java Documentation Generator (javadoc)..748
Java Interpreter (java) ..749
Java Remote Object Registry (rmiregistry) ..749
Java RMI Stub Converter (rmic) ..749
Java Runtime Loader (jre) ..749
Native-to-ASCII Converter (native2ascii) ..750
Serial Version Command (serialver) ..750

JBuilder Utilities..750
Borland Compiler for Java (bcj) ..750
Borland Make for Java (bmj) ..751
MAKE (Make) ..751
Turbo GREP (Grep) ..752

APPENDIX C ADDITIONAL RESOURCES 753

Inprise International ..753
World Wide Web ..753
Newsgroups..754
CompuServe ..755
Mail, Phone, Fax ..755

Sun Microsystems..756
World Wide Web ..756
Mail, Phone, Fax ..756

Other Java Resources..757
World Wide Web ..757
Newsgroups..758

Macmillan Computer Publishing ..758
World Wide Web ..758
Mail, Phone, Fax ..758

INDEX 761

Contents xix

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

0

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

Acknowledgments
I thank Brian Gill for being fun to work with and, especially, for making sure that I’m
not bored and with too little work to do. Thanks go out to Scott Warner’s excellent job at
editing. Special thanks go out to the JBuilder team at Inprise Corporation, especially to
Nan Borreson and Andrew Bennett. Andrew Bennett’s thorough and conscientious tech-
nical editing job warrants special mention.

0

P/V TY Generic in 14/21/Week ISBN# Name FM Lp#

About the Authors
Dr. Donald Doherty is a neuroscientist and a computer expert. He received his Ph.D.
from the Department of Psychobiology at University of California, Irvine. Don’s comput-
er experience includes programming large-scale computer models of brain systems. He’s
written on a wide range of computer topics. His books include Sams Teach Yourself
JavaBeans in 21 Days. Don is a research associate in the Department of Neurobiology at
the University of Pittsburgh School of Medicine. Visit his Web site at http://
ourworld.compuserve.com/homepages/brainstage/.

Michelle Manning, the principal of Triple-M Consulting, specializes in software quality
assurance and documenation. Michelle’s computer industry experience spans 25 years as
a developer, QA engineer, and technical writer. She is also the author of Borland’s
Official No-Nonsense Guide to Delphi 2.

0

http://ourworld.compuserve.com/homepages/brainstage/

Tell Us What You Think!
As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what
areas you’d like to see us publish in, and any other words of wisdom you’re willing to
pass our way.

As the Executive Editor for the Programming group at Macmillan Computer Publishing,
I welcome your comments. You can fax, email, or write me directly to let me know what
you did or didn’t like about this book—as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the topic of this
book, and that due to the high volume of mail I receive, I might not be able to reply to
every message.

When you write, please be sure to include this book’s title and author as well as your
name and phone or fax number. I will carefully review your comments and share them
with the authors and editors who worked on the book.

Fax: 317-817-7070
Email: prog@mcp.com

Mail: Executive Editor
Programming
Macmillan Computer Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

P2/VB/swg1 TY JBuilder in 21 Days ISBN# Name FM Lp#

0

mailto:prog@mcp.com

	SAMS Teach Yourself Borland JBuilder 2 in 21 Days
	Copyright © 1998 by Sams Publishing

	Contents at a Glance
	Contents

	Acknowledgments
	About the Authors
	Tell Us What You Think!
	Introduction
	Week 1 At a Glance
	Day 1 Introduction to JBuilder
	Day 2 Java Basics
	Day 3 Java Intermediate
	Day 4 Java Advanced
	Day 5 JBuilder IDE
	Day 6 User Interface Design
	Day 7 JavaBeans Component Library

	Week 2 At a Glance
	Day 8 Applets, Applications, and Wizards
	Day 9 Graphics, Fonts, and Multimedia
	Day 10 Streams and I/O
	Day 11 Compiling and Debugging
	Day 12 Handling Events
	Day 13 Exception Handling
	Day 14 JBuilder Database Architecture

	Week 3 At a Glance
	Day 15 Building Database Applications
	Day 16 Multithreading
	Day 17 Persistence
	Day 18 Building JavaBeans
	Day 19 Deploying Java Programs
	Day 20 Java Network Communications
	Day 21 Inside Java

	APPENDIXES
	Answers to QuizQuestions
	JBuilder and Java Utilities
	Additional Resources

	INDEX
	Mini Catalog
	Add to Your Sams Library Today
	mcp.com

	page one:

