Introduction

Welcome to Visual C++. Over the next 21 days, you will learn how to use the features
that Microsoft has built into its C++ development environment to enable you to create
very advanced applications for the Windows and NT platforms. When Microsoft's devel-
opers first came up with the idea behind Visual C++, they decided to take their world-
class C++ compiler and create a development environment and set of tools that would
enable developers to create Windows applications with a level of ease and speed that was
unheard of among C++ development environments. Since that first version, Microsoft
has continued to improve the tools that are a part of Visual C++ to make it even easier to
create Windows applications. As Microsoft has introduced new technologies into the
Windows platforms, it has also introduced tools into the Visual C++ suite to make it easy
to integrate these new technologies into your applications.

If you are new to C++, don’t worry. I've tried to make it easy for you to learn the C++
programming language while also learning how to build applications using the Visual
C++ tools. Just in case you find yourself having trouble understanding some aspect of
C++, I've included a brief overview of the programming language in Appendix A,

“C++ Review.”

If you've looked at previous versions of this book, you might notice that I've completely
rewritten the entire book. Our goal with this new version is not just to introduce you to
and guide you through the various tools and resources that you will use to build applica-
tions with Visual C++; I've also tried to include a great deal more detail about the vari-
ous options that are available to you with each of the features that are covered. This way,
you'll be able to get a lot of use out of this book long after the initial 21 days.

How This Book Is Organized

This book is organized in weeks, with each set of seven days set off into a part unto
itself. However, even though the book is organized in weeks, the topics are not neces-sar-
ily organized that way.

For the first week, you'll be covering the basics of building applications with Visual
C++. You'll learn how to use designers to design your application windows. You'll learn
how to use various controls available to you as a Windows application developer. You'll
also learn a lot about the Visual C++ development environment and the tools that it
makes available to you.

Sams Teach Yourself Visual C++ 6 in 21 Days

By the time you begin the second week, you'll be doing more and more programming, as
the topics become more involved. You'll still be using the Visual C++ tools to construct
your applications, but the programming code will be getting a little more involved. You'll
also start learning about more advanced topics, such as displaying graphics and creating
SDI and MDI applications. Toward the end of the second week, you'll begin to work

with databases. This topic spills over into the third and final week.

In the third week, you'll learn how to create your own modules, DLLs, and ActiveX con-
trols. You'll also learn how to build multitasking applications, which perform multiple
tasks at a time. Finally, you'll learn how to integrate Microsoft Internet Explorer, and the
ActiveX controls it provides, into your applications so that you can extend your applica-
tions over the Internet.

After you finish the third week, you'll be ready to tackle the world of Windows program-
ming with Visual C++. You'll have the skills and know-how required to build most
Windows applications available today.

Conventions Used in This Book

While you are reading this book, you will probably notice a couple conventions that have
been used to make it easier for you to learn the topic being discussed.

All the source code in this book is provided ima@nospaced font, as shown in Listing

0.1. This includes all the source code from the applications that you will be building and
illustrations of how various functions can be used. Whenever you are adding new code,
or changing code in a function with other code already there, the line numbers of the
code that you add or change will be pointed out in the text.

LisTING O.1. SOME SAMPLE CODE.

1:vod main()

A

3 /ifyouareaddngordnangngcodeinanexsing

4 /loode snippet, Wl portoutthe inenumbersintheext.
5

If a topic needs special attention, it will be set apart from the rest of the text by one of
several special markers:

- Notes

- Tips

- Cautions

Introduction 3 |

Nﬂtﬂ Notes offer a deeper explanation of a topic or explain interesting or impor-
tant points.

Tips are pieces of information that can make things easier.

Tip
H Cautions warn you about traps that you will want to avoid.
Gaution y ps thaty

At the end of each day, you'll find a short quiz and one or two exercises to help make
sure that you learned the topic you were studying. Don’t worry—just in case you need
the answers to the quizzes and some guidance when building the exercises, the solutions
are provided in Appendix B, “Answers.”

Enough said! You didn’t buy this book to read about this book. You bought this book to
learn how to use Visual C++ to build Windows applications. So go ahead and flip the
page and get started programming...

WEEK 1

At a Glance

Welcome to the world of Visual C++. Over the next three
weeks, you'll learn how to build a wide variety of applica-
tions using this extremely flexible and complete programming
tool. Each day you'll learn about a different area of function-
ality and how you can use it in your applications. What's
more—every one of the areas of functionality will be accom-
panied with a hands-on sample application that you will build
yourself. There’s not a more effective way of learning new
technologies than to work with them yourself. Learning by
doing...that's what you'll do as you make your way through
this book.

Over the course of the first week, you'll learn about several

of the basics that are involved in building applications with
Visual C++. This starts on the first day as you learn about and
become familiar with the Visual C++ development environ-
ment by building a simple application.

On Day 2, you'll begin learning more about the specifics of
building applications in Visual C++. You'll learn about the
standard controls that are used in Windows applications, how
you can place and configure these on an application window,
and how you can interact with them.

On Day 3, you'll learn how you can capture mouse and key-
board events and react to them in your applications. You'll

see how you can determine where the mouse is in your appli-
cation space. You'll also learn how to determine what keys
the user is pressing on the keyboard and how you can react tc
these user actions.

| 6

Week 1

On Day 4, you'll learn how to work with timers in a Visual C++ application. You'll learn
how to have two or more timers running at the same time and how you can tell them
apart.

On Day 5, you'll see how you can add additional windows to your application and how
you can use them to get information from the user. You'll see how you can use built-in
dialogs to ask the user simple questions and how you can build your own custom dialogs
to get more detailed information.

On Day 6, you'll learn how to create menus to add to your application. You'll see how
you can call functions in your application from menus that you have added to your appli-
cation.

On Day 7, you'll learn about the font infrastructure in Windows and how you can access
it in your Visual C++ applications. You'll see how you can build a list of available fonts
and how you can display text in any of these fonts.

That will end the first week of this book. At that time, you can look back over what you
have learned during the week and think about all that you can do with what you have
learned when you build applications. So, without further ado, go ahead and jump in and
get started.

WEEK 1

DAY 1

The Visual C++
Development
Environment—Building
Your First Visual C++
Application

Welcome toSams Teach Yourself Visual C++ 6 in 21 Da@ser the next three
weeks, you will learn how to build a wide variety of applications with
Microsoft’s Visual C++. What's even better is that you will learn how to create
these types of applications by actually building them yourself. As you read this
book, you will be gaining actual programming experience using Visual C++. So
let’s get started!

Today, your focus will be on learning about the Visual C++ development envi-
ronment and some of the tools that it provides for building applications.
Although Visual C++ provides more tools than you would probably use in any

Day 1

one application development effort—even more than you could possibly learn to use in a
single day—I limit the focus to the primary tools that you will use throughout this book,
as well as in just about every application you build with Visual C++. Today, you'll learn
about the following:

» The primary areas of the Visual C++ development environment

» The Application Wizard—how you can use it to build the basic infrastructure for
your applications

» The Dialog Painter—how you can use it to paint dialog windows, much in the
same way that you can build windows with Visual Basic, PowerBuilder, or Delphi

» The Class Wizard—how you can use it to attach functionality to your application
windows

The Visual C++ Development Environment

Before you begin your quick tour around the Visual C++ development environment, you
should start Visual C++ on your computer so that you can see firsthand how each of the
areas are arranged and how you can change and alter that arrangement yourself.

After Developer Studio (the Microsoft Visual development environment) starts, you see a
window that looks like Figure 1.1. Each of the areas has a specific purpose in the
Developer Studio environment. You can rearrange these areas to customize the Developer
Studio environment so that it suits your particular development needs.

The Workspace

When you start Visual C++ for the first time, an area on the left side of Developer Studio
looks like it is taking up a lot of real estate and providing little to show for it. This area is
known as the workspace, and it is your key to navigating the various pieces and parts of
your development projects. The workspace allows you to view the parts of your applica-
tion in three different ways:

» Class View allows you to navigate and manipulate your source code on a C++
class level.

» Resource View allows you to find and edit each of the various resources in your
application, including dialog window designs, icons, and menus.

« File View allows you to view and navigate all the files that make up your appli-
cation.

Building Your First Visual C++ Application 9 |

Standard toolbar Build minibar

FIGURE 11 2 Microsoft Yisual C++
File Edit VWiew |nsertt Project Build Tools ‘Window Hep
The Visual C++ open- 1z = T G Tl
INng screen.
g \ | | =ik
x
Workspace pane
e
ET =
Output pane
| T¥ T, Build £ Debug) Find in Files 1y Find in Filez2 /] 4| >|L
Reary
Editor area Wizard toolbar

The Output Pane

The Output pane might not be visible when you start Visual C++ for the first time. After
you compile your first application, it appears at the bottom of the Developer Studio envi-
ronment and remains open until you choose to close it. The Output pane is where
Developer Studio provides any information that it needs to give you; where you see all
the compiler progress statements, warnings, and error messages; and where the Visual
C++ debugger displays all the variables with their current values as you step through
your code. After you close the Output pane, it reopens itself when Visual C++ has any
message that it needs to display for you.

The Editor Area

The area on the right side of the Developer Studio environment is the editor area. This is
the area where you perform all your editing when using Visual C++, where the code edi-
tor windows display when you edit C++ source code, and where the window painter
displays when you design a dialog box. The editor area is even where the icon painter
displays when you design the icons for use in your applications. The editor area is basi-
cally the entire Developer Studio area that is not otherwise occupied by panes, menus,
or toolbars.

|1O

Day 1

FIGURE 1.2. v Dutpu

¥ ‘warkspace
Toolbar on and off 2 Gt
menu. Build

Menu Bars

The first time you run Visual C++, three toolbars display just below the menu bar. Many
other toolbars are available in Visual C++, and you can customize and create your own
toolbars to accommodate how you best work. The three toolbars that are initially open

are the following:

» The Standard toolbar contains most of the standard tools for opening and saving
files, cutting, copying, pasting, and a variety of other commands that you are likely
to find useful.

» The WizardBar toolbar enables you to perform a number of Class Wizard actions
without opening the Class Wizard.

» The Build minibar provides you with the build and run commands that you are
most likely to use as you develop and test your applications. The full Build toolbar
also lets you switch between multiple build configurations (such as between the
Debug and Release build configurations).

Rearranging the Developer Studio Environment

The Developer Studio provides two easy ways to rearrange your development environ-
ment. The first is by right-clicking your mouse over the toolbar area. This action opens
the pop-up menu shown in Figure 1.2, allowing you to turn on and off various toolbars
and panes.

¥ Build MiniBtar
ATL
Fiesouice
Edit
Debug
Browse

¥ ‘wizardBar

Custamize.

Another way that you can easily rearrange your development environment is to grab the
double bars at the left end of any of the toolbars or panes with the mouse. You can drag
the toolbars away from where they are currently docked, making them floating toolbars,
as in Figure 1.3. You can drag these toolbars (and panes) to any other edge of the
Developer Studio to dock them in a new spot. Even when the toolbars are docked, you
can use the double bars to drag the toolbar left and right to place the toolbar where you
want it to be located.

Building Your First Visual C++ Application 11 |

Ficure 1.3.

T

Example of a floating

minibar.

" Note

On the workspace and Output panes, the double bars that you can use to

drag the pane around the Developer Studio environment might appear on
the top of the pane or on the left side, depending on how and where the
pane is docked.

Starting Your First Project

For your first Visual C++ application, you are going to create a simple application that
presents the user with two buttons, as in Figure 1.4. The first button will present the user

with a simple

greeting message, shown in Figure 1.5, and the second button will close

the application. In building this application, you will need to do the following things:

1. Create a new project workspace.
2. Use the Application Wizard to create the application framework.

3. Rearrange the dialog that is automatically created by the Application Wizard to
resemble how you want the application to look.

4. Add the C++ code to show the greeting to the user.

5. Create a new icon for the application.

FIGURE 1.4.

Your first Visual C++
application.

FiGure 1.5.

If the user clicks the
first button, a simple
greeting is shown.

Creating

My First Visual C++ Application

[Hello |

Close ‘

Dayl

Hello. This is my first Yisual C++ Application!

the Project Workspace

Every application development project needs its own project workspace in Visual C++.
The workspace includes the directories where the application source code is kept, as well

| 12 Day 1

as the directories where the various build configuration files are located. You can create a
new project workspace by following these steps:

1. Select File | New. This opens the New Wizard shown in Figure 1.6.

FIGURE 1.6. HER HE
. Fies Projects | Workspaces | Dther Documents
The New Wizard. | | !
B Project name
|] Custom Appiwizard
%2 DevStudio Addin Wizard .
[KP Enended Stored Procedure Appwizard Cosglions
LY 1SAPI Extencion Wizsrd D WSVS \MyProjectst J
=l e
8 MFC Activer Controlwizard
7] MFC Apphw/izard [dl) & Create new workspace
MFC Appwizard (eve) IS
T Utilty Project -
=] wina2 Application ’—_‘
| Jwin32 Console Application
) wina2 Dymamic-Link Library
%] win32 Static Library e

2. On the Projects tab, select MFC AppWizard (exe).
3. Type a name for your project, such as Hello, in the Project Name field.

4. Click OK. This causes the New Wizard to do two things: create a project directory
(specified in the Location field) and then start the AppWizard.

Using the Application Wizard to Create the
Application Shell

The AppWizard asks you a series of questions about what type of application you are
building and what features and functionality you need. It uses this information to create
a shell of an application that you can immediately compile and run. This shell provides
you with the basic infrastructure that you need to build your application around. You will
see how this works as you follow these steps:

1. In Step 1 of the AppWizard, specify that you want to create a Dialog-based appli-
cation. Click Next at the bottom of the wizard.

2. In Step 2 of the AppWizard, the wizard asks you about a number of features that
you can include in your application. You can uncheck the option for including sup-
port for ActiveX controls if you will not be using any ActiveX controls in your
application. Because you won't be using any ActiveX controls in today’s applica-
tion, go ahead and uncheck this box.

3. In the field near the bottom of the wizard, delete the project name (Hello) and type
in the title that you want to appear in the title bar of the main application window,

Building Your First Visual C++ Application 13 |

such aswly First Visual C:++ Appication . Click Next at the bottom of the
wizard.

4. In Step 3 of the AppWizard, leave the defaults for including source file comments
and using the MFC library as a DLL. Click Next at the bottom of the wizard to
proceed to the final AppWizard step.

5. The final step of the AppWizard shows you the C++ classes that the AppWizard
will create for your application. Click Finish to let AppWizard generate your appli-
cation shell.

6. Before AppWizard creates your application shell, it presents you with a list of what
it is going to put into the application shell, as shown in Figure 1.7, based on the
options you selected when going through the AppWizard. Click OK and
AppWizard generates your application.

FIGUrRe 1.7 New Project Information
. Appwizard wil create a new skeleton project with the following specifications:
The New Project
. [&pplication type of Dayl:
Information screen. Dialog Based &pplication targeting
Wind2
Clazzes to be created:
Application; CDaylApp in Dayl.h and Dayl cpp
Dislog: CDay1Dlg in Day1Dlg h and Day1Dlg.cpp
Features:
+ About oy on system menu
+ 30 Contrals
+ Uses shared DL implementation (MFC42.0LL)
+ Localizable text in:
Englsh [United States]
Preject Dirsctory:
D:\MSYS MyProjects\Dayl

7. After the AppWizard generates your application shell, you are returned to the
Developer Studio environment. You will notice that the workspace pane now pre-
sents you with a tree view of the classes in your application shell, as in Figure 1.8.
You might also be presented with the main dialog window in the editor area of the
Developer Studio area.

8. Select Build | Build Hello.exe to compile your application.

9. As the Visual C++ compiler builds your application, you see progress and other
compiler messages scroll by in the Output pane. After your application is built, the
Output pane should display a message telling you that there were no errors or
warnings, as in Figure 1.9.

| 14 Day 1

FiGURe 1.8 52 Dayl - Mictosot Visual G+ MEE
o File Edit Wiew |nsert Project Buid Layout Tools Window Help
Your workspace with a | g CET & = oa
tree view of the pro- [COaitla <[l e menbersl <[& CDay1Dlg =3 - R
jeC'[’S classes. LRI Day1.1c - IDD_DAY1_DIALOG [Dialog) [[O]x]
+ 4 Dayl classes T —
L3
< n bl |[:
Coe|
C R oE
TODD: Place dislog controls here, ~ —— BB |
= E |
4 m ||
=Rl
A
= HE
2b
"84 Classview | 4 Recourceview | =] Fietiw e
9 B85 1o
E| =
a
¥, Build 4 Debug) Find in Files 1 3 Findin Files2 /] 4| | L\@ >|L
Ready 0.0 o 185k 92
FIGURE 1.9. @ =18l
i File Edit View Insert Project Buid Layout Tools Window Help
The OUtpUt pan_e dis- A = mEE &] om
plays any Compller [Coay10i =] [18l clacs members) ~][% CDayiDIg ~|FE - # !
errors. NN o [=] S
+ EH Dayl classes |
o N
_ Az abl x|
0o :lK
X @
= el
TODD: Place dilag canirok here
A
2 m
i B
=R
= H
"84 Clsstiew | 4 ResourceView | =] Fietiew b
B
\J i34]:t ﬂ E,‘;
ﬂ Tinking -
Dayl.exs — 0 srror(s). 0 warning(s)
¥ I\ Build { Debug & Find in Files 1 }, Find in File=2 /] 4| | >|L
00 o0k0

10. Select Build | Execute Hello.exe to run your application.

11. Your application presents a dialog witli@d omessage and OK and Cancel but-
tons, as shown in Figure 1.10. You can click either button to close the application.

Building Your First Visual C++ Application 15 |

Ficure 1.10. ## My First Visual C++ Application

The unmodified appli-
cation shell. T0D0: Place dialag conirol: here

Designing Your Application Window

Now that you have a running application shell, you need to turn your focus to the win-
dow layout of your application. Even though the main dialog window may already be
available for painting in the editor area, you should still navigate to find the dialog win-
dow in the workspace so that you can easily find the window in subsequent develop-
ment efforts. To redesign the layout of your application dialog, follow these steps:

1. Select the Resource View tab in the workspace pane, as in Figure 1.11.

FIGURE 111 4 Dayl - Microsoft Visual C++
h Vi b Fle Edit Wiew lnsert Project Buld Tools Window Help
T iReSOEfCE lewtab 3 »gg mAE s o oa
Iin the workspace pane. ‘ =] ~Is et i q
x|
+ _iDayl resources
= Az abl x|
= ™ o
Ey
]
TODO: Place dialog controls here
® B
2 m
Lol
= T
=H
B 4 Classview | 2] Resouncelion |] Fievisw &
€
| [Tinking. .. =
i =
Dayl.exs — 0 error(s). 0 warning(s)
¥ [, Build {Debug) Find in Files 1 3 Findin Filez2 /] 4] | >|L

Feady

2. Expand the resources tree to display the available dialogs. At this point, you can
double-click thabpb_DAY1_DiALOGdialog to open the window in the Developer
Studio editor area.

3. Select the text displayed in the dialog and delete it using the Delete key.

4. Select the Cancel button, drag it down to the bottom of the dialog, and resize it so
that it is the full width of the layout area of the window, as in Figure 1.12.

| 16 Day 1
FIGUre 1.12. [x]
Positioning the Cancel
button.

. Cancel 5

5. Right-click the mouse over the Cancel button, opening the pop-up menu in Figure
1.13. Select Properties from the menu, and the properties dialog in Figure 1.14

opens.
FIGURE 113 5 Dayl - Microsoft Visual C++ [_[O]x]
iaht-clicki h Fle Edt View Inset Project Buid Layout Tooks Window Help
Right-clicking the N e DE®E % = a
mouse to open a pop- [CDay10Ig | [IOCANCEL | [BN_CLICKED A~ B!
up menu. i
= 4 Dayl resources - ‘ | Cont.]
Z-E4 Dinka e
=) IDD_ABOUTEON Ax abl
=00 o o] - =l
* _lcon H
] Shing Table] K @
1 Version =B
= B
4 m
Cancel bl &=
Cut
Bz Copy
8.3 Clacsview |] ResourceView | 2] Fieview Insett Activel, Contral..

b =] [HT

X[Tinking. ..

Size to Content

Dayl.exe - 0 error(s). 0 warning(s) o
~ Check Mnemonics

AN Classwizard
L
e Propetties

¥ [, Build {Debug) Find in Files 1 3 Findin Filez2 /] 4] |

Push Button Propeties

4 P Genersl | Styles | Estended Styes |

Ficure 1.14.
The Cancel button

) . Ib: v Caption: [Cancel
properties dialog. ogbe T Gow [HeplD
™ Dizabled ¥ Tab stop lk

6. Change the value in the Caption fielcktmose . Close the properties dialog by
clicking the Close icon in the upper-right corner of the dialog.

7. Move and resize the OK button to around the middle of the window, as in Figure
1.15.

Building Your First Visual C++ Application 17 |

FiIGUre 1.15. [x]
Positioning the OK | x F
button. : ¥ .
Close ‘
8. On the OK button properties dialog, change the ID valueHiLLO and the cap-
tion to &Helo .
9. Now when you compile and run your application, it will look like what you've just
designed, as shown in Figure 1.16.
FIGURE 116 ## My First Visual C++ Application
Running your ‘ o |
redesigned applica-
tion.
Close ‘
Nl]tﬂ If you play with your application, you will notice that the Close button still

closes the application. However, the Hello button no longer does anything
because you changed the ID of the button. MFC applications contain a series
of macros in the source code that determine which functions to call based
on the ID and event message of each control in the application. Because you
changed the ID of the Hello button, these macros no longer know which
function to call when the button is clicked.

Adding Code to Your Application

You can attach code to your dialog through the Visual C++ Class Wizard. You can use
the Class Wizard to build the table of Windows messages that the application might
receive, including the functions they should be passed to for processing, that the MFC
macros use for attaching functionality to window controls. You can attach the functional-
ity for this first application by following these steps:

1.

To attach some functionality to the Hello button, right-click over the button and
select Class Wizard from the pop-up menu.

If you had the Hello button selected when you opened the Class Wizard, it is
already selected in the list of available Object IDs, as in Figure 1.17.

|18

Day 1

FiGure 1.17.
The Class Wizard.

MFC ClassWizard

Message Maps | MemberVarisbles | dutomation | ctiveX Events | Classlrfo |

Project: Class name: T ——
-] [coainig =]

D\ 4DayT\Day1Dlgh, DA \Dayl\DaylDla.cpp g
Object 1D Messages: |
TOa100 BN_CLICKED

[DCEHCEL BN_DOUBLECLICKED E oo

Member functions

¥ DoDalaExchangs -
W OnlnitDislog ON_w_INITDIALOG

W OnFaint ON_WwM_PAINT

W OndueyDrsgleon ON_wM_OUERYDRAGICON

W OnSusCommand O WM SYSCOMMAND =

Deseription:

Cancel

3. With IDHELLO selected in the Object ID list, selam_cLICKEDIN the list of mes-
sages and click Add Function. This opens the Add Member Function dialog shown
in Figure 1.18. This dialog contains a suggestion for the function name. Click OK
to create the function and add it to the message map.

Ficure 1.18.

Add Member Function

Member function name:

The Class Wizard Add

o]

Urﬂﬂ]ﬂ Cancel
Member Function dia- Message: BN_CLICKED
|Og Object |D: IDHELLO

4. After the function is added for the click message on the Hello button, select the
onHelo function in the list of available functions, as in Figure 1.19. Click the Edit
Code button so that your cursor is positioned in the source code for the function,
right at the position where you should add your functionality.

Ficure 1.19.

MFC ClassWizard

Message Maps | MemberVarisbles | dutomation | ctiveX Events | Classlrfo |

The list of available
functions in the Class
Wizard.

AddClass.. ©

Project Class name:

[Da] [coaDla -
D:t ADay14Day1Dla h, DA ADay1\DiayiDla.cpp

Object IDs Messages:

Thay10ig

IDCAMCEL EN_DOLELECLICKED

Member functions

Delete Function

{ EdiCods]

Y% DoDataExchange
OnHello

W OninitDialog

W DnPaint

W OnQuenDraalcon

Deseription:

ON_IDHELLO:BN_CLICKED
ON_WwM_IMITDIALOG
ON_wM_PAINT

O WM OUERYDRARICON

Indicates the uzer clicked a buttan

oK Cancel

Building Your First Visual C++ Application 19 |

5. Add the code in Listing 1.1 just below the bocomment line, as shown in Figure

FiGuURE 1.20. 5 Day] - Micrasoft Visual C++ - [Day1Dlg.cpp] MEE
Fie Edi View Insen Project Buld Took Window Help TR
Source code view 3l ¥ CEE % =oa
where you insert [Tl ~[Elcesmenberl][& DnFielia TE - B o
Listing 1.1. _|x| [HCURSOR CDaylDlg OnimeryDraglcon() j
f -
= ' Dayl resources return (HCURSOR) m_hlcon:
- /4 Dislog ¥
=] IDD_ABOUTBON
Sib0_oav_oiaLia) cid CDaylDlg: :mHello()
+ _Jleon TODO: Add your control notification handler code he:
+ _| Stiing Table
+ | Version }
B 4 Classiew | 5] ResaurceView | =] FileView i LIZl
"
| [Tinking 3 =
| =
Dayl.exe — 0 error(s). 0 varning(s)
¥ T, Build {Debug & Find in Files1 & Findin File=2 7] 4| | v
Ready Ln 175, Col 1
MAStart| | @ €y A W 3y Exploring - EAquebtye21... | FFvuePrint - P File: [Miig3..|[42 DayT - Micresolt Visu... E13PM

LisTING 1.1. HELLODLG.CPP—THE OnHeb FUNCTION.

1: Vod CHeloDig:OnHelo()

A

3. /' TODO: Add your control natification handler code here
4

LSS

6: //MY CODE STARTS HERE

7

8

9 /Sayheboiotheuser

10: MessageBox(Helo. Thisis my first Visuial C++ Applicationf);
NNK

120 [

13: /MY CODE ENDS HERE
14 i

15}

6. When you compile and run your application, the Hello button should display the
message shown in Figure 1.21.

| 20 Day 1

Ficure 1.21. Dayl

. . Hello. This is my first Wisual C++ Application!
Now your application i
will say hello to you.

Finishing Touches

Now that your application is functionally complete, you can still add a few details to fin-
ish off the project. Those finishing touches include

 Creating the dialog box icon
» Adding maximize and minimize buttons

Creating the Dialog Box Icon

If you noticed the icon in the top-left corner of your application window, you saw three
blocks with the letters M, F, and C. What does MFC have to do with your application?
MFC stands for Microsoft Foundation Classes. Technically, it's the C++ class library that
your application is built with, but do you want to broadcast that to every user who sees
your application? Most likely not. You need to edit the application icon to display an
image that you do want to represent your application. Let’s get busy!

1. In the tree view of your application resources in the workspace pane, expand the
icon branch and select theR_MAINFRAMEiCON, as in Figure 1.22. This brings the
application icon into the editor area of the Developer Studio.

FIGURE 1.22. @ -ofx]
_JFile Edit View lncert Project Buid Image Tools Window Help 18]
_The standard MFC ER= 3 mEE @A T w

icon. | = =l T |eme 1
X Device: [Standard (32432) - ﬂ]
~ _iDayl resources = - - e

= Dialos M 7

JE \SD_AEUUTEU)(J p
=] IDD_DAY1_DIALOG <
A

= dlcon

(DR MAINFRAHE]
+] Sting Table
+] Version

8 4 ClassView |] ResourceView | 2] Fileview

X|[Tinking

Dayl.exs — 0 srror(s). 0 warning(s)

» I\ Build { Debug & Find in Files 1) Find in Files2 /] 4| |
Ready

Building Your First Visual C++ Application 21 |

2. Using the painting tools provided, repaint the icon to display an image that you
want to use to represent your application, as in Figure 1.23.

Ficure 1.23.

Your own custom icon
for your application.

3. When you compile and run your application, you will notice your custom icon in
the top-left corner of your application window. Click the icon and select About
Hello from the drop-down menu.

4. On the About dialog that Visual C++ created for you, you can see a large version
of your custom icon in all its glory, as shown in Figure 1.24.

FIGURE 1.24.

Diayl Yersion 1.0
Copyright (C) 1398

Your application’s
About window.

Nﬂtﬂ When you open an application icon in the icon designer, the icon is sized by
default at 32x32. You can also select a 16x16 size icon from the drop-down
list box just above where you are drawing the icon. You should draw both
of these icons because there are some instances in which the large icon will
be displayed and some instance in which the small icon will be shown. You
will want both icons to show the same image to represent your application.

Adding Maximize and Minimize Buttons

In the dialog editor, where you design your application window, you can add the mini-
mize and maximize buttons to the title bar of your application window by following
these steps:

1. Select the dialog window itself as if you were going to resize the window.

2. Using the pop-up menu (from right-clicking the mouse), select the dialog proper-
ties.

3. Select the Styles tab, as shown in Figure 1.25.

|22

Day 1

FIGURE 125 Dialog Properties]
R R General | Styes | More Styles | Edtended Stles |
Turning t_he_ minimize Syle W Titls bar I Clp siblings
and maximize buttons Pn T Sytemmenw [Cipchibien
Border ™ Miginize box I™ Hrizontal screll
on and off. Dialog Frame ™ Masimize box ™ Vertical scrol

4. After you turn on the minimize and maximize boxes, you can compile and run
your application. The minimize and maximize buttons appear on the title bar, as in
Figure 1.26.

FIG URE 1 i 26 . 15 My First Visual C++ Application [O] x]

The application win- |
dow with the minimize
and maximize buttons.

Close \

Summary

Today you got your first taste of building applications using Visual C++. You learned
about the different areas of the Visual C++ Developer Studio and what function each of
these areas serves. You also learned how you can rearrange the Developer Studio envi-
ronment to suit the way you work. You also learned how you can use the Visual C++
wizards to create an application shell and then attach functionality to the visual compo-
nents that you place on your application windows.

Q&A

Q How can | change the title on the message box, instead of using the applica-
tion name?

A By default, the message box window uses the application name as the window
title. You can change this by adding a second text string taedsageBox func-
tion call. The first string is always the message to be displayed, and the second
string is used as the window title. For example dfi@lo function would look
like
/1Sayheloothe user
MessageBox(Helo. Thisis myfist Visual G+ Application”’,
"My FistAppicaton’)

Building Your First Visual C++ Application 23 |

Q Can | change the text on the About window to give my company name and
more detailed copyright information?

A Yes, the About window is in the Dialogs folder in the Resources View tab of the
workspace pane. If you double-click tim>_ABouTBO>dialog, the About box will
be opened in the dialog designer, where you can redesign it however you want.

Workshop

The Workshop provides quiz questions to help solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How do you change the caption on a button?
2. What can you do with the Visual C++ AppWizard?
3. How do you attach functionality to the click of a button?

Exercise

Add a second button to the About window in your application. Have the button display a
different message from the one on the first window.

WEEK 1

DAY 2

Using Controls in Your
Application

Some of the things that you will find in just about every Windows application
are buttons, check boxes, text fields, and drop-down list boxes. These are
known as controls, and many of these controls are built into the operating sys-
tem itself. With Visual C++, using these common controls is as easy as placing
them on a dialog window with a drag-and-drop window design method. Today
you are going to learn

e What the basic controls in Visual C++ are

¢ How to declare and attach variables to a controls

¢ How to synchronize the values between a control and a variable

« How to specify the order users navigate around your application windows

e How to trigger actions with controls

* How to manipulate and alter the appearance of controls (while your appli-
cation is running)

| 26 Day 2

The Basic Windows Controls

Several standard controls are built into the Windows operating system, including such
things as sliders, tree and list controls, progress bars, and so on. However, today you will
work with a half dozen controls that appear in just about every Windows application:

+ Static text

* Edit box

» Command button

» Check box

» Radio button

» Drop-down list box (also known as a combo box)
These and other controls are readily available for use in Visual C++ applications. They

can be found on the controls palette in the Dialog Painter editor in the Developer Studio,
as shown in Figure 2.1.

FiGUre 2.1. Cort,. 1
Select B — Picture
The standard controls Static Text ——-x abl Edit Box
available on the Group Box 1 29— Command Button)
Check Box —®& @ Radio Button
Control palette. B — List Box
. ~ Horizontal Scrollbar = H Vertical Scrollbar
Drop-Down Spin $ m— Progress Bar
List Box . :
(Combo Box) : Slider — = Hot Key
List Control | =+—Tree Control
Tab Control—= H - - Animate
Rich Text Edit ao ~ontro ab G Date/Time Picker
Month Calendar —& IP Address
Custom Control € B+— Extended Combo
Box

The Static Text Control

You use the static text control to present text to the user. The user will not be able to
change the text or otherwise interact with the control. Static text is intended as a read-
only control. However, you can easily change the text displayed by the control as your
application is running through the code you create for your application.

The Edit Box Control

An edit box allows the user to enter or change text. The edit box is one of the primary
tools for allowing the user to enter specific information that your application needs. It is
a control that allows the user to type a specific amount of text, which you can capture

Using Controls in Your Application 27 |

and use for any needed purpose. The edit box accepts plain text only; no formatting is
available to the user.

The Command Button Control

A command button is a button that the user can press to trigger some action. Command
buttons have a textual label that can give users some idea of what will happen when they
click that button. Buttons can also have images as part of the button, allowing you to
place an image on the button—alone or along with a textual description—to convey what
the button does.

The Check Box Control

A check box is a square that the user can click to chgair uncheck. The check box
control is used to turn a particular value on and off. They are basically on/off switches
with an occasional third, in-between state. You normally use check boxes to control dis-
crete, on/off-type variables.

The Radio Button Control

A radio button is a circle that the user can click to fill with a black spot. The radio button
is similar to the check box control, but it is used in a group of two or more where only
one of the values can be in the on state at a time. You normally use radio buttons in
groups of at least three, surrounded by a group box. The group box allows each group of
radio buttons to be independent so that only one radio button in each group can be in the
on state at any time.

The Drop-Down List Box Control

A drop-down list box, or combo control, is an edit box with a list of available values
attached. You use the drop-down list box to provide a list of choices, from which the user
may select one value from the list. Sometimes, the user is given the option of typing in
his own value when a suitable one isn’t provided in the list.

Adding Controls to Your Window

The application you are going to build today will have a number of controls on a single
dialog window, as shown in Figure 2.2. These controls have a number of different func-
tions. At the top of the window is an edit field where the user can enter a message that
displays in a message box when he or she clicks the button beside the field. Below this
edit field are two buttons that either populate the edit field with a default message or
clear the edit field. Below these buttons is a drop-down list box that contains a list of

|28

Day 2

standard Windows applications. When the user selects one of these programs and then
clicks the button beside the drop-down list, the selected program will run. Next are two
groups of check boxes that affect the controls you add to the top half of the dialog: the
controls for displaying a user message and the controls for running another program.
The left set of check boxes will enable and disable each group of controls you provide.
The right set of check boxes will show and hide each group of controls. At the bottom
of the dialog box is a button that can be clicked to close the application.

FIGURE 2.2 2% Visual C++ Controls
L This is an skample of & Visusl Ces
Today’s app| ication Applicalian using a number of contrals.
will use a number of ERYVIINT -l c: o messas hed Show Hessage
standard controls. Default Message | Clear Message
FunaProgam| =] FunProoam

Enble Actions Show Actins

I Ensbls Messags Action W Show Message Action

¥ Enable Frogiam Action W Shaw Frogiam Action

Esit

Creating the Application Shell and Dialog Layout
Using what you learned yesterday, create a new application shell and design the applica-
tion dialog layout as follows:

1. Create a new AppWizard workspace project, calling the projget

2. Use the same settings in the AppWizard as you used yesterday; specify the dialog
title Visual C++ Controls

3. After you create the application shell, lay out the main dialog as shown earlier in
Figure 2.2.

4. Configure the control properties as specified in Table 2.1.

TABLE 2.1. PROPERTY SETTINGS FOR THE CONTROLS ON THE APPLICATION DIALOG.

Object Property Setting

Static Text ID IDC_STATIC
Caption Thisisan example of a Visual C++
Application using a number of controls.

Static Text ID IDC_STATICMSG
Caption Enter a &Message:

Static Text ID IDC_STATICPGM

Caption Run a &Program:

Using Controls in Your Application

29|

Object Property Setting

Edit Box ID IDC_MSG

Button ID IDC_SHWMSG
Caption &Show Message

Button ID IDC_DFLTMSG
Caption &Default Message

Button ID IDC_CLRMSG
Caption &Clear Message

Button ID IDC_RUNPGM
Caption &Run Program

Button ID IDC_EXIT
Caption E&xit

Combo Box ID IDC_PROGTORUN

Group Box ID IDC_STATIC
Caption Enable Actions

Group Box ID IDC_STATIC
Caption Show Actions

Check Box ID IDC_CKENBLMSG
Caption &Enable Message Action

Check Box ID IDC_CKENBLPGM
Caption E&nable Program Action

Check Box ID IDC_CKSHWMSG
Caption S&how Message Action

Check Box ID IDC_CKSHWPGM
Caption Sh&ow Program Action

When adding a combo box control to the window, it is important that you
click and drag the area for the control as large as you want the drop-down
list to be. After you draw the control on the window, you can resize the
width of the control as you would normally expect to do. To resize how far
the list drops down, you need to click the arrow, as if you were trying to
trigger the drop-down list while the application was running.

|3O

Day 2

5. After you place all these controls on the dialog window and configure all their
properties, reopen the properties dialog for the combo box that you placed on the
window. On the Data tab of the properties dialog, enter the following values, using
a Control+Enter key combination to add the second and third items, as shown in

Figure 2.3.
» Notepad
+ Paint
 Solitaire

FIGURE 2.3.
Styles | Extended Styles
Use the properties dia- ¢ oo 5
log to add entries in o R
the combo box’s drop-
down list. =

Specifying the Control Tab Order

Now that you have all the controls laid out on the window, you need to make sure that

the user navigates in the order you want if he or she uses the Tab key to move around the
window. You can specify the tab order by following these steps:

1. Select either the dialog window or one of the controls on the window in the editing
area of the Developer Studio.

2. Choose Layout | Tab Order from the menu. By turning on the Tab Order, you see
a number beside each of the controls on the window. The numbers indicate the
order in which the dialog will be navigated, as shown in Figure 2.4.

FIGURE 2.4.]
. M o cxcmpe of avisual G-
Turnmg on Tab Order Application uzing & number of controls
shows the order in 2 WSVSN 3 !! ow Message
which the dialog will T
be navigated. (7 s o
E 0 ciions L., 5cions

% nable Message Action show Message Action

mmhle Program Action m;hgw Program Action
m

3. Using the mouse, click each of the number boxes in the order that you want the
user to navigate the window. The controls will renumber themselves to match the

order in which you selected them.

Using Controls in Your Application 31 |

4. Once you specify the tab order, select Layout | Tab Order once again to return to
the layout editor.

4 Nﬂtﬂ Any static text that has a mnemonic should appear just before the control
that accompanies the text in the tab order. Because the user cannot interact
with the static text, when the user chooses the mnemonic, the focus will go
directly to the next control in the tab order.

A mnemonic is the underlined character in the caption on a button, check box, menu, or
other control label. The user can press this underlined character and the Alt key at the
same time to go directly to that control or to trigger the clicked event on the control. You
specify a mnemonic by placing an ampersa)dr(front of the character to be used as

the mnemonic when you type the Caption value. It is important to make certain that you
do not use the same mnemonic more than once on the same window, or set of menus,
because the user can get confused when choosing a mnemonic doesn't result in the
action that he or she expects.

One last thing that you want to do before getting into the details of the application code
is check your mnemonics to make certain that there are no conflicts in your controls.
Follow these steps:

1. Select the dialog window or one of the controls in the layout editor. Right-click the
mouse and select Check Mnemonics.

2. If there are no conflicts in your mnemonics, Visual C++ returns a message box
dialog, letting you know that there are no conflicts (see Figure 2.5).

FIGURE 2.5. Microsoft Visual G+
The mnemonic checker \1‘) N duplicate mneniorics v besn found
tells you whether there

are conflicts.

3. If any conflicts exist, the dialog indicates the conflicting letter and gives you the
option of automatically selecting the controls containing the conflicting mnemon-
ics, as in Figure 2.6.

FIGURE 2.6. Mictosolt Visual Co+

. . B Duplicate mnemonic found: &'
Duplicate mnemonics = Do you wart the canficting tems to be selected?
can be automatically

Ho Cancel
selected.

| 32 Day 2

Attaching Variables to Your Controls

At this point, if you've programmed using Visual Basic or PowerBuilder, you probably
figure that you're ready to start slinging some code. Well, with Visual C++, it's not quite
the same process. Before you can begin coding, you have to assign variables to each of
the controls that will have a value attached—everything except the static text and the
command buttons. You will interact with these variables when you write the code for
your application. The values that the user enters into the screen controls are placed into
these variables for use in the application code. Likewise, any values that your application
code places into these variables are updated in the controls on the window for the user
to see.

How do you declare these variables and associate them with the controls that you placed
on the window? Follow these steps:

1. Open the Class Wizard, as you learned yesterday.
2. Select the Member Variables tab, as shown in Figure 2.7.

FlGURE 27 MFC ClassWizard
. MessageMaps Member Vaisbles | Automation | ctivex Everts | Classlrfo |
The Member Variables - P
tab on the Class [T - | [C0.00 i
Wi di h D\ ADay2\Day2Dlg h, DA \Day2\Day2Dlg.cpp ﬁ
1zar I.S wnere yOU Cantrol D Type Membar ‘
add variables to EEEEEE%@SE
controls. 3
i —
IDC_DFLTMSEG
DC_EXIT
IDC_PROGTORLMN
IBEEhunida =l
Description:
Cancel
3. Select the ID of one of the controls that you need to attach a variable to, such as

IDC_MSG
4. Click the Add Variable button.

5. In the Add Member Variable dialog, enter the variable name, specifying the catego-
ry and variable type, as shown in Figure 2.8. Click OK.

6. Repeat steps 3 through 5 for all the other controls for which you need to add vari-
ables. You should add the variables for your application as listed in Table 2.2.

Using Controls in Your Application

33|

FIGURE 2.8. Add Member Variable HE
) i Member variable name
Adding a variable to a e
control. Category: =N
frae 7]
Wariable type:
[eswng 7]

Description

CStiing with length validation

TABLE 2.2. VARIABLES FOR APPLICATION CONTROLS.

Control Variable Name Category Type
IDC_MSG m_strMessage Value Csting
IDC_PROGTORUN m_strProgToRun Value CSting
IDC_CKENBLMSG m_bEnableMsg Value BOOL
IDC_CKENBLPGM m_bEnablePgm Value BOOL
IDC_CKSHWMSG m_bShowMsg Value BOOL
IDC_CKSHWPGM m_bShowPgm Value BOOL
“I] All these variables are prefixed with m _because they are class member vari-

ables. This is an MFC naming convention. After the m _, a form of Hungarian
notation is used, in which the next few letters describe the variable type. In
this case, b means boolean, and ¢ indicates that the variable is a string.
You'll see this naming convention in use in this book and other books about
programming with Visual C++ and MFC. Following this naming convention
will make your code more readable for other programmers; knowing the
convention will make it easier for you to read other programmer’s code as
well.

7. After you add all the necessary variables, click the OK button to close the Class
Wizard.

Attaching Functionality to the Controls

Before you begin adding code to all the controls on your application window, you need
to add a little bit of code to initialize the variables, setting starting values for most of
them. Do this by following these steps:

| 34 Day 2

1. Using the Class Wizard, on the Message Maps tab, selepiribiiog function
in the list of member functions. You can do this by finding the function in the
Member Functions list, or by selecting theay2Dlg object in the list of object IDs
and then selecting them_INITDIALOG message in the messages list, as shown in

Figure 2.9.
FIGURE 2.9. MEC ClassWizard [[X]
Message Maps ‘ Meriber Vatisbles | Automation | Active Events | ClassInfa |
You can use the Clgss et R st -
Wizard to locate exist- R =] [fhaie =] [z, o]
DA ADay2\Day2Dlgh, Ot ADap2\Diay2Dlg.cpp e |

ing functions.

Dbject IDs Messages: Delete Functon |

W _DESTROT -] Edit Code

IDC_CKENBLMSG
IDC_CKEMELFGM

W _KEYDOWN

IDE_DFLTHSG | |wMZkevUR hd|
Member functions:

ON_WM_INITDIALOG [-]
W OnPaint ON_WH_FAINT
W DrlueyDiagleon ON_wh_OUERYDRAGICON
W OrFunpam ON_IDC_RUNFGM,EN_CLICKED —
W OnShwmza ON IDC SHWHMSGEN CLICKED j

Description: Sent to a dialog box before the dialog box is displayed

Cancel

2. Click Edit Code to be taken to the source code fooihiaog function.

3. Find theropomarker, which indicates where to begin adding your code, and add
the code in Listing 2.1.

LISTING 2.1. DAY2DLG.CPP—THE OniniDialog FUNCTION IS WHERE YOU NEED TO ADD
INITIALIZATION CODE.

1: BOOL CDay2DIg::OninitDialog()

/' TODO: Add extrainiialization here

M
//MY CODE STARTS HERE
13 i

SEBoo~Nouswn

15: //Putadefautt message inthe message edit
16: m_stMessage =“Place amessage here”;
17

18 //Setalofthe checkboxesto checked

Using Controls in Your Application

35|

19: m_bShowMsg = TRUE;

20: m_bShowPgm = TRUE;
m_bEnableMsg = TRUE;
m_bEnablePgm = TRUE;

UpdateData(FALSE);

21
2
pa
24 [Updatethe dalogwihthe values
25
%

27 [y

28. /MY CODE ENDS HERE

29: M

0

3L reum TRUE; /reum TRUE unlessyousetthefocustoa

J control

X}

" Note

" Note

This initialization code is simple. You are setting an initial message in the edit box that

There is more code in the OnintDialog function than has been included in
Listing 2.1. | won’t include all the code for every function in the code listings
throughout this book as a means of focusing on the code that you need to
add or modify (and as a means of keeping this book down to a reasonable
size). You are welcome to look at the code that has been left out, to learn
what it is and what it does, as you build your understanding of MFC and
Visual C++.

If you've programmed in C or C++ before, you’ve noticed that you are set-
ting the value of the m_strMessage variable in a very un-C-like manner. It
looks more like how you would expect to set a string variable in Visual Basic
or PowerBuilder. That’s because this variable is a CSting type variable. The
csting class enables you to work with strings in a Visual C++ application in
much the same way that you would work with strings in one of these other
programming languages. However, because this is the C++ programming
language, you still need to add a semicolon at the end of each command.

you will use to display messages for the user. Next, you are setting all the check boxes to
the checked state. It's the last line of the code you added to this function that you really
need to notice.

The updateData function is the key to working with control variables in Visual C++. This

function takes the data in the variables and updates the controls on the screen with the
variable values. It also takes the data from the controls and populates the attached vari-

|36

Day 2

ables with any values changed by the user. This process is controlled by the argument
passed into thepdateData function. If the argument iBALSE, the values in the variables
are passed to the controls on the window. If the argumenruis the variables are

updated with whatever appears in the controls on the window. As a result, which value

you pass this function depends on which direction you need to update. After you update

one or more variables in your code, then you need twpslleData , passing iFALSE as

its argument. If you need to read the variables to get their current value, then you need to

call updateData with a TRUEvalue before you read any of the variables. You'll get the
hang of this as you add more code to your application.

Closing the Application

The first thing that you want to take care of is making sure that the user can close your

application. Because you deleted the OK and Cancel buttons and added a new button for

closing the application window, you need to place code into the function called by the
Exit button to close the window. To do this, follow these steps:

1. Using the Class Wizard, add a function for i EXIT object on theN_CLICKED
message, as you learned to do yesterday.

2. Click the Edit Code button to take you to the new function that you just added.

3. Enter the code in Listing 2.2.

LISTING 2.2. DAY2DLG.CPP—THE OnExit FUNCTION.

1: void CDay2Dig::OnExit)
JI'TODO: Add your control natification handler code here
M

//MY CODE STARTS HERE
M

IBxitthe program
OnOK(;

M
/MY CODE ENDS HERE
M

RO REBooNoaswN

15}

A single function call within theneit function closes the Window and exits the appli-
cation. Where did thisnokfunction come from, and why didn’t you have to call it in
yesterday’s application? Two functiors; OkandoncCancel , are built into the ancestor

Using Controls in Your Application 37 |

Chidog class from which youcDay2Dlg class is inherited. In thebiaog class, the mes-
sage map already has the object IDs of the OK and Cancel buttons attachenintorhe
andoncancel buttons so that buttons with these IDs automatically call these
functions. If you had specified the Exit button’s object 1Dbas, you would not have
needed to add any code to the button unless you wanted to override tbe base
functionality.

Showing the User’s Message

Showing the message that the user typed into the edit box should be easy because it's
similar to what you did in yesterday’s application. You can add a function to the Show
Message button and call tlvessageBox function, as in Listing 2.3.

LisTING 2.3. DAY2DLG.CPP—THE OnShwmsgFUNCTION DISPLAYS THE USER MESSAGE.

1: void CDay2DIg::OnShwmsg()
/I TODO: Add your control natification handler code here
M

//MY CODE STARTS HERE
M

©OoONDUA®WN

I/ Display the message forthe user
10: MessageBox(m_strMessage);
INK

12: i

13: //MY CODE ENDS HERE

14 [

15}

If you compile and run the application at this point, you'll see one problem with this
code. It displays the string that you initialized thatrMessage variable within the

onniDaog ~ function. It doesn't display what you type into the edit box. This happens
because the variable hasn't been updated with the contents of the control on the window
yet. You need to callpdateData , passing it @aRUEvalue, to take the values of the con-

trols and update the variables before callingmbsageBox function. Alter the
onshwmsgfunction as in Listing 2.4.

LISTING 2.4. DAY2DLG.CPP—UPDATED ONnShwmsgFUNCTION.

1: void CDay2DIg::OnShwmsg()
2

continues

| 38 Day 2

LISTING 2.4. CONTINUED

/' TODO: Add your control natification handler code here

M
//MY CODE STARTS HERE
M

1 Update the message variable with what the user entered
UpdateData(TRUE);

I/ Display the message forthe user
MessageBox(m_strMessage);

BREBoo~Nousw

15: i

16: /MY CODE ENDS HERE
17:

18}

Now if you compile and run your application, you should be able to display the message
you type into the edit box, as shown in Figure 2.10.

Ficure 2.10.

This is a test

The message entered
in the edit box is dis-
played to the user.

Clearing the User’s Message

If the user prefers the edit box to be cleared before he or she types a message, you can
attach a function to the Clear Message button to clear the contents. You can add this
function through the Class Wizard in the usual way. The functionality is a simple matter
of setting then_strMessage Vvariable to an empty string and then updating the controls

on the window to reflect this. The code to do this is in Listing 2.5.

LIsTING 2.5. DAY2DLG.CPP—THE OnClrmsg FUNCTION.

1: void CDay2DIg::OnClrmsg()
/' TODO: Add your control natification handier code here
i

/MY CODE STARTS HERE
M

©ONDUS®WN

I Clearthe message

Using Controls in Your Application 39|

10: m strMessage=",

1
12 //Updatethe screen
13: UpdateData(FALSE);

1S i

16: //MY CODE ENDS HERE
7. i

18}

Disabling and Hiding the Message Controls

The last thing that you want to do with the message controls is add functionality to the
Enable Message Action and Show Message Action check boxes. The first of these check
boxes enables or disables the controls dealing with displaying the user message. When
the check box is in a checked state, the controls are all enabled. When the check box is
in an unchecked state, all those same controls are disabled. In a likewise fashion, the sec-
ond check box shows and hides this same set of controls. The code for these two func-
tions is in Listing 2.6.

LISTING 2.6. DAY2DLG.CPP—THE FUNCTIONS FOR THE ENABLE AND SHOW MESSAGE ACTIONS
CHECK BOXES.

1: void CDay2DIg::OnCkenblmsg()
/I TODO: Add your control natification handler code here
M
/IMY CODE STARTS HERE
M

I Getthe curentvalues fromthe screen
UpdateData(TRUE);

I's the Enable Message Action check box checked?
if (m_bEnableMsg == TRUE)

BREBoo~nouswyn

4 {

15 /Yes soenabeal contasthethaveanything

16: /todowihshowingthe usermessage

17 GetDigltem(IDC_MSG)->EnableWindow(TRUE);

18: GetDlgltem(IDC_SHWMSG)->EnableWindow(TRUE);
19: GetDIgitem(IDC_DFLTMSG)->EnableWindow(TRUE);
20: GetDlgitem(IDC_CLRMSG)->EnableWindow(TRUE);
21: GetDigltem(IDC_STATICMSG)->EnableWindow(TRUE);
2}

continues

| 40 Day 2

LISTING 2.6. CONTINUED

3 ee

2

25 /No,sodsabea contasthethaveanyting

26. /todowith showing the user message

27. GetDigltem(DC_MSG)->EnableWindow(FALSE);
28: GetDlgltem(IDC_SHWMSG)->EnableWindow(FALSE);
29: GetDigitem(IDC_DFLTMSG)->EnableWindow(FALSE);
30: GetDigltem(IDC_CLRMSG)->EnableWindow(FALSE);
31: GetDigitem(DC_STATICMSG)->EnableWindow(FALSE);
2}

3

34: Mo

35 //IMY CODE ENDS HERE

36: M

37}

B

39: void CDay2DIg::OnCkshwmsg()

404

/I'TODO: Add your control nafification handler code here

M
//MY CODE STARTS HERE
M

1/ Getthe cumentvalues from the screen
UpdateData(TRUE);

555558608

50: //Isthe Show Message Action check box checked?

51 if (m_bShowMsg == TRUE)

2{

53 /Yes soshowal conrasthathave anything

5 /[todowith showing the usermessage

55; GetDigltem(IDC_MSG)->ShowWindow(TRUE);

56: GetDlgltem(IDC_SHWMSG)->ShowWindow(TRUE);
57: GetDigltem(IDC_DFLTMSG)->ShowWindow(TRUE);
58: GetDlgitem(IDC_CLRMSG)->ShowWindow(TRUE);
59: GetDlgitem(IDC_STATICMSG)->ShowWindow(TRUE);
@}

6l e

& {

63 /No,sohdealcontostethaveanyting

64 /todowihshowingthe usermessage

65: GetDigltem(IDC_MSG)->ShowWindow(FALSE);

66: GetDIgltem(IDC_SHWMSG)->ShowWindow(FALSE);
67: GetDlgltem(IDC_DFLTMSG)->ShowWindow(FALSE);
68: GetDlgltem(IDC_CLRMSG)->ShowWindow(FALSE);
69: GetDIgltem(IDC_STATICMSG)->ShowWindow(FALSE);
n}

Using Controls in Your Application 41 |

7L

72 N

73. //MY CODE ENDS HERE
74: I

75}

By now, you should understand the first part of these functions. First, you update the
variables with the current values of the controls on the window. Next, you check the
value of the boolean variable attached to the appropriate check box. If the variable is
TRUE you want to enable or show the control. If the variabiriiSE, you want to dis-
able or hide the control.

At this point, the code begins to be harder to understand. The first function, GetDIgltem,
is passed the ID of the control that you want to change. This function returns the object
for that control. You can call this function to retrieve the object for any of the controls on
the window while your application is running. The next part of each command is where a
member function of the control object is called. The second function is a member func-
tion of the object returned by the first function. If you are not clear on how this works,
then you might want to check out Appendix A, “C++ Review,” to brush up on your C++.

The second functions in these catlsgblewindow andShowwindow, look like they

should be used on windows, not controls. Well, yes, they should be used on windows;
they happen to be members of thendclass, which is an ancestor of thmeog class

from which yourcbay2blg class is inherited. It just so happens that, in Windows, all con-
trols are themselves windows, completely separate from the window on which they are
placed. This allows you to treat controls as windows and to call windows functions on
them. In fact, all the control classes are inherited froncthedclass, revealing their

true nature as windows.

If you compile and run your application now, you can try the Enable and Show Message

FlG URE 2 . 1 1 . #% Visual C++ Controls
Thiz i an example of aVisual C++
The user message con- Application using a number of controls,
trols can now be dis-
abled.
unafogem| =] BunProguam

Enable Actionz Show Actions

™ Enabie Massags Aeton ¥ Show Message Action

¥ Enable Program &ction ¥ Show Program Action

Exit

|42

Day 2

Action check boxes. They should work just fine, as shown in Figure 2.11.

Running Another Application

The last major piece of functionality to be implemented in your application is for the set
of controls for running another program. If you remember, you added the names of three
Windows applications into the combo box, and when you run your application, you can
see these application names in the drop-down list. You can select any one of them, and
the value area on the combo box is updated with that application name. With that part
working as it should, you only need to add code to the Run Program button to actually
get the value for the combo box and run the appropriate program. Once you create the
function for the Run Program button using the Class Wizard, add the code in Listing 2.7
to the function.

LISTING 2.7. DAY2DLG.CPP—THE OnRUnNpgmMFUNCTION STARTS OTHER WINDOWS APPLICA-

1: void CDay2DIg::OnRunpgm()
i
: /' TODO: Add your control natification handler code here

w

M
//MY CODE STARTS HERE
M

©OoOONOOS

' Getthe cumentvalues fromthe screen

10: UpdateData(TRUE);

1

12: //Dedare alocal variable forhalding the program name
13: CSting stPgmName;

14

15: //Copythe program name to the local variable
16: strPgmName =m_strProgToRun;

17

18: //Make the program name all uppercase
19: strPgmName.MakeUpper();

20

21: //Ddthe userselectio runthe Paintprogram?
22: if(stPgmName = “PAINT")

23 [YesunthePantprogam
WinExec(pbrush.exe”, SW_SHOW);

: [/ Didthe user select to run the Notepad program?
if (sttPgmName == “NOTEPAD")

28 II'Yes,unthe Natepad program

29: WinExec('notepad.exe”, SW_SHOW);
0

24;
5
26
27

Using Controls in Your Application 43|

3L /Ddthe userselectio runthe Soltare program?
32 if(strPgmName =“SOLITAIRE")
3B /YesuntheSdiarepogam
34 WinExec('sol.exe”, SW_SHOW);
x
36: M

37: /IMY CODE ENDS HERE

38 i

39}

As you expect, the first thing that you do in this function is ggdhteData to populate

the variables with the values of the controls on the window. The next thing that you do,
however, might seem a little pointless. You declare acseg variable and copy the
value of the combo box to it. Is this really necessary when the value is already in a
csring variable? Well, it depends on how you want your application to behave. The next
line in the code is a call to tlesting function MakeUpper , which converts the string to

all uppercase. If you use thering variable that is attached to the combo box, the next
time thatupdateData is called withFALSE as the argument, the value in the combo box is
converted to uppercase. Considering that this is likely to happen at an odd time, this is
probably not desirable behavior. That's why you use an additisfagl in this func-

tion.

Once you convert the string to all uppercase, you have a sefiegaiéments that com-
pare the string to the names of the various programs. When a match is found, the

Gautipn nction is called to run the application. Now, if you compile and run your
7, you can select one of the applications in the drop-down list and run it|by
clicking the Run Program button.

It is important to understand the difference in C and C++ between using a
single equal sign (=) and a double equal sign (==). The single equal sign per-
forms an assignment of the value on the right side of the equal sign to the
variable on the left side of the equal sign. If a constant is on the left side of
the equal sign, your program will not compile, and you’ll get a nice error
message telling you that you cannot assign the value on the right to the
constant on the left. The double equal sign (==) is used for comparison. It is

|44

Day 2

" Note

Summary

Today, you learned how you can use standard windows controls in a Visual C++ applica-
tion. You learned how to declare and attach variables to each of these controls and how
to synchronize the values between the controls and the variables. You also learned how
you can manipulate the controls by retrieving the control objects using their object ID
and how you can manipulate the control by treating it as a window. You also learned how
to specify the tab order of the controls on your application windows, thus enabling you

to control how users navigate your application windows. Finally, you learned how to
attach application functionality to the controls on your application window, triggering
various actions when the user interacts with various controls. As an added bonus, you

important to make certain that you use the double equal sign when you
want to compare two values because if you use a single equal sign, you alter
the value of the variable on the left. This confusion is one of the biggest
sources of logic bugs in C/C++ programs.

The WinExec function is an obsolete Windows function. You really should use
the CreateProcess ~ function instead. However, the CreateProcess ~ function has a
number of arguments that are difficult to understand this early in program-
ming using Visual C++. The WinExec function is still available and is imple-
mented as a macro that calls the CreateProcess ~ function. This allows you to
use the much simpler winExec function to run another application while still

using the function that Windows wants you to use.

Another API function that can be used to run another application is the
ShelExecute function. This function was originally intended for opening or
printing files, but can also be used to run other programs.

learned how you can run other Windows applications from your own application.

Q&A

Q When | specified the object IDs of the controls on the window, three controls

had the same ID|DC_STATIC. These controls were the text at the top of the
window and the two group boxes. The other two static text controls started
out with this same ID until | changed them. How can these controls have the
same ID, and why did | have to change the ID on the two static texts where |
did change them?

All controls that don't normally have any user interaction, such as static text and
group boxes, are by default given the same object ID. This works fine as long as

Using Controls in Your Application 45|

your application doesn’'t need to perform any actions on any of these controls. If
you do need to interact with one of these controls, as you did with the static text
prompts for the edit box and combo box, then you need to give that control a
unique ID. In this case, you needed the unique ID to be able to retrieve the control
object so that you could enable or disable and show or hide the control. You also
need to assign it a unique ID if you want to attach a variable to the control so that
you could dynamically alter the text on the control.

The application behaves in a somewhat unpredictable way if you try to alter any of
the static controls that share the same ID. As a general rule of thumb, you can
allow static controls to share the same object ID if you are not going to alter the
controls at all. If you might need to perform any interaction with the controls, then
you need to assign each one a unique object ID.

Is there any other way to manipulate the controls, other than retrieving the
control objects using their object IDs?

You can declare variables in the Control category. This basically gives you an
object that is the control’s MFC class, providing you with a direct way of altering
and interacting with the control. You can then call all ofdhendclass functions

on the control, as you did to enable or disable and show or hide the controls in
your application, or you can call the control class methods, enabling you to do
things in the code that are specific to that type of control. For instance, if you add
another variable to the combo box control and specify that it is a Control category
variable, you can use it to add items to the drop-down list on the control.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises appear in Appendix B,
“Answers.”

Quiz

1.

Why do you need to specify the tab order of the controls on your application win-
dows?

How can you include a mnemonic in a static text field that will take the user to the
edit box or combo box beside the text control?

Why do you need to give unique object IDs to the static text fields in front of the
edit box and combo boxes?

Why do you need to call thedateData function before checking the value of one

| 46 Day 2

of the controls?

Exercises
1. Add code to the Default Message button to reset the edit box Eesay
message here .
2. Add code to enable or disable and show or hide the controls used to select and run
another application.
3. Extend the code in th@nRunpgmfunction to allow the user to enter his own pro-
gram name to be run.

WEEK 1

DAY 3

Allowing User
Interaction—Integrating
the Mouse and Keyboard
In Your Application

Depending on the type of application you are creating, you might need to
notice what the user is doing with the mouse. You need to know when and
where the mouse was clicked, which button was clicked, and when the button
was released. You also need to know what the user did while the mouse button

was being held down.

Another thing that you might need to do is read the keyboard events. As with
the mouse, you might need to know when a key was pressed, how long it was
held down, and when it was released.

|48

Day 3

Today you are going to learn

» What mouse events are available for use and how to determine which one is appro-
priate for your application’s needs.

» How you can listen to mouse events and how to react to them in your Visual C++

application.

* What keyboard events are available for use and what actions will trigger each of

these events.

» How to capture keyboard events and take action based on what the user pressed.

Understanding Mouse Events

As you learned yesterday, when you are working with most controls, you are limited to a
select number of events that are available in the Class Wizard. When it comes to mouse
events, you are limited for the most part to click and double-click events. Just looking at
your mouse tells you that there must be more to capturing mouse events than recognizing
these two. What about the right mouse button? How can you tell if it has been pressed?
And what about drawing programs? How can they follow where you drag the mouse?

If you open the Class Wizard in one of your projects, select the dialog in the list of

object IDs, and then scroll through the list of messages that are available, you will find a
number of mouse-related events, which are also listed in Table 3.1. These event messages
enable you to perform any task that might be required by your application.

TABLE 3.1. MOUSE EVENT MESSAGES.

Message

Description

WM_LBUTTONDOWN
WM_LBUTTONUP
WM_LBUTTONDBLCLK
WM_RBUTTONDOWN
WM_RBUTTONUP
WM_RBUTTONDBLCLK
WM_MOUSEMOVE

WM_MOUSEWHEEL

The left mouse button has been pressed.

The left mouse button has been released.

The left mouse button has been double-clicked.

The right mouse button has been pressed.

The right mouse button has been released.

The right mouse button has been double-clicked.

The mouse is being moved across the application window space.
The mouse wheel is being moved.

Integrating the Mouse and Keyboard in Your Application 49|

Drawing with the Mouse

Today you are going to build a simple drawing program that uses some of the available
mouse events to let the user draw simple figures on a dialog window. This application
depends mostly on them_MOUSEMO@Zent message, which signals that the mouse is
being moved. You will look at how you can tell within this event function whether the

left mouse button is down or up. You will also learn how you can tell where the mouse is
on the window. Sound’s fairly straight ahead, so let's get going by following these steps:

1. Create a new MFC AppWizard workspace project, calling the pnojest.

2. Specify that this project will be a dialog-based application in the first AppWizard
step.

3. Use the default settings in the AppWizard. In the second step, specify a suitable
dialog title, such asiouse and Keyboard

4. After the application shell is created, remove all controls from the dialog window.
This provides the entire dialog window surface for drawing. This step is also nec-
essary for your application to capture any keyboard events.

Nﬂtﬂ If there are any controls on a dialog, all keyboard events are directed to the
control that currently has input focus—the control that is highlighted or has
the cursor visible in it. To capture any keyboard events in a dialog, you have
to remove all controls from the dialog.

5. Open the Class Wizard. Selecti_mouseEMO¥rem the list of messages, and add
a function by clicking the Add Function button. Click the OK button to accept the
suggested function name.

6. Click the Edit Code button to edit tb@MouseMove function you just created,
adding the code in Listing 3.1.

LisTING 3.1. THE OnM ouseM ove FUNCTION.

1: void CMouseDlg::OnMouseMove(UINT nFags, CPoint point)
/I'TODO: Add your message handler code here andlor call defavit
M

/MY CODE STARTS HERE
Mt

0 ND A WN

continues

| 50 Day 3

LisTING 3.1. CONTINUED

9. //Checktoseeiftheletmouse button is down
10: if ((nFlags & MK_LBUTTON) == MK_LBUTTON)
n{

I Getthe Device Context
CCenDCdots);

IDawteps
} deSePrelpointx porty, RGB(0,0,0);

M

20: /MY CODE ENDS HERE

21 M

2

23. CDialog:OnMouseMove(nHags, point);
%)

CREEBERBR

Look at the function definition at the top of the listing. You will notice that two argu-
ments are passed into this function. The first of these arguments is a set of flags that can
be used to determine whether a mouse button is depressed (and which one). This deter-
mination is made in the first line of your code with thetatement:

if (NFlags & MK_LBUTTON) == MK_LBUTTON)

In the first half of the condition being evaluated, the flags are filtered down to the one
that indicates that the left mouse button is down. In the second half, the filtered flags are
compared to the flag that indicates that the left mouse button is down. If the two match,
then the left mouse button is down.

The second argument to this function is the location of the mouse. This argument gives
you the coordinates on the screen where the mouse currently is. You can use this infor-
mation to draw a spot on the dialog window.

Before you can draw any spots on the dialog window, you need to get the device context
for the dialog window. This is done by declaring a new instance afdhedC class.

This class encapsulates the device context and most of the operations that can be per-
formed on it, including all the screen drawing operations. In a sense, the device context
is the canvas upon which you can draw with your application. Until you have a canvas,
you cannot do any drawing or painting. After the device context object is created, you
can call itsssPd function, which colors the pixel at the location specified in the first

two arguments with the color specified in the third argument. If you compile and run
your program, you can see how it allows you to draw on the window surface with the
mouse, as shown in Figure 3.1.

Integrating the Mouse and Keyboard in Your Application 51|

Ficure 3.1. + Mouse and Keyboard
Drawing on the win-)
dow with the mouse. “\/\/\J | Mouss moved slowly

""=———— Mouse moved quickly

4 N[llﬂ In Windows, colors are specified as a single number that is a combination of
three numbers. The three numbers are the brightness levels for the red,
green, and blue pixels in your computer display. The RGBfunction in your
code is a macro that combines these three separate values into the single
number that must be passed to the sePe function or to any other function
that requires a color value. These three numbers can be any value between
and including 0 and 255.

Using the ANDand ORBinaries

If you are new to C++, you need to understand how the different typasodndoRr

work. The two categories ofN s andors are logical and binary. The logical 5 and

ORs are used in logical or conditional statements, such a®eawie statement that is
controlling the logic flow. The binanyN s andors are used to combine two values on a
binary level.

The ampersand characte) (s used to denoteN D A single ampersan&] is a binary

AND and a double ampersarglg] is a logicalanD A logical AN Dworks much like the

word ANDiIn Visual Basic or PowerBuilder. It can be used irf atatement to say “if

this condition AND this other condition...” where both conditions must be true before

the entire statement is true. A binary Dis used to set or unset bits. When two values

are binaryaNed, only the bits that are set to 1 in both values remain as 1, all the rest of
the bits are set to 0. To understand how this works, start with two 8-bit values such as the

following:
Value 1 01011001
Value 2 00101001

If you binaryAaNDthese two values together, you wind up with the following value:

ANd Value 00001001

|52

Day 3

All the bits that had 1 in one of the values, but not in the other value, were set to 0. All
the bits that were 1 in both values remained set to 1. All the bits that were 0 in both val-
ues remained 0.

ORis represented by the pipe characferand as wittaNDQ a single pipe|) is a binary

OR whereas a double pipp) (s a logicalor As withAND a logicalorcan be used in
conditional statements suchfasr wie statements to control the logical flow, much like
the wordoRin Visual Basic and PowerBuilder. It can be used im atatement to say “if
this condition OR this other condition...” and if either condition is true, the entire state-
ment is true. You can use a binargto combine values on a binary level. WiiR if a

bit is set to 1 in either value, the resulting bit is set to 1. With a bmarthe only way

that a bit is set to O in the resulting value is if the bit was already 0 in both values. Take
the same two values that were used to illustrate the binany

Value 1 01011001
Value 2 00101001

If you binaryoRrthese two values together, you get the following value:

Oored Value 01111001

In this case, every bit that was set to 1 in either value was set to 1 in the resulting value.
Only those bits that were 0 in both values were 0 in the resulting value.

Binary Attribute Flags

Binary ANCs andors are used in C++ for setting and reading attribute flags. Attribute
flags are values where each bit in the value specifies whether a specific option is turned
on or off. This enables programmers to use defined flags. A defined flag is a value with
only one bit set to 1 or a combination of other values in which a specific combination of
bits is set to 1 so that multiple options are set with a single value. The flags controlling
various options are red together, making a composite flag specifying which options
should be on and which should be off.

If two flags that specify certain conditions are specified as two different bits in a byte,
those two flags can often loeed together as follows:

Flag 1 00001000
Flag 2 00100000
Combination 00101000

This is how flags are combined to specify a number of settings in a limited amount of
memory space. In fact, this is what is done with most of the check box settings on the

Integrating the Mouse and Keyboard in Your Application 53|

window and control properties dialogs. These on/off settinge mee together to form
one or two sets of flags that are examined by the Windows operating system to determine
how to display the window or control and how it should behave.

On the flip side of this process, when you need to determine if a specific flag is included
in the combination, you caxN Dthe combination flag with the specific flag that you are
looking for as follows:

Combination 00101000
Flag 1 00001000
Result 00001000

The result of this operation can be compared to the flag that you used to filter the com-
bined flag. If the result is the same, the flag was included. Another common approach is
to check whether the filtered combination flag is nonzero. If the flag being used for fil-
tering the combination had not been included, the resulting flag would be zero. As a
result, you could have left the comparison out ofitls¢éatement in the preceding code,
leaving you with an statement that looks like the following:

if (NFlags & MK_LBUTTON)

You can modify this approach to check whether a flag is not in the combination as fol-
lows:

if ((nFlags & MK_LBUTTON))

You might find one of these ways of checking for a flag easier to understand than the
others. You'll probably find all of them in use.

Improving the Drawing Program

If you ran your program, you probably noticed a small problem. To draw a solid line,
you need to move the mouse very slowly. How do other painting programs solve this
problem? Simple, they draw a line between two points drawn by the mouse. Although
this seems a little like cheating, it's the way that computer drawing programs work.

As you move the mouse across the screen, your computer is checking the location of the
mouse every few clock ticks. Because your computer doesn’'t have a constant trail of
where your mouse has gone, it has to make some assumptions. The way your computer
makes these assumptions is by taking the points that the computer does know about and
drawing lines between them. When you draw lines with the freehand tool in Paint, your
computer is playing connect the dots.

|54

Day 3

Because all the major drawing programs draw lines between each pair of points, what do
you need to do to adapt your application so that it also uses this technique? First, you
need to keep track of the previous position of the mouse. This means you need to add
two variables to the dialog window to maintain the previous X and Y coordinates. You
can do this by following these steps:

1. In the workspace pane, select the Class View tab.
Select the dialog class—in this case,deuseDlg class.
Right-click the mouse and select Add Member Variable from the pop-up menu.

Enterint as the Variable Type andl iprevy as the Variable Name and specify
Private for the access in the Add Member Variable dialog, as shown in Figure 3.2.

Hpw DN

FIGURE 3.2. Add Member Variable =T
Wariable Type:
The Add Member T
. . Cancel
Variable dialog. Yarable ane:

[m_iPrev

Acoess
C Public € Protected @ Private

5. Click OK to add the variable.
6. Repeat steps 3 through 5, specifying the Variable Nameiras/x to add the sec-
ond variable.

After you add the variables needed to keep track of the previous mouse position, you can
make the necessary modifications to ¢tl@ouseMove function, as shown in Listing 3.2.

LisTING 3.2. THE REVISED OnM ouseM ove FUNCTION.

1: void CMouseDlg::OnMouseMove(UINT nFlags, CPoint point)
A

3: //'TODO: Add your message handler code here and/or call defauit
4

S Ml

6: //MY CODE STARTS HERE

e

8

9 //Checkipseeifthe leftmouse butionis down
10: if((nFlags & MK_LBUTTON) == MK_LBUTTON)
1 {

12 //Getthe Device Coniext

13 ClenDCdotis)

14

15 /Drawainefromthe previous pointtothe curent point

16: dcMoveTo(m iPrevX, m iPrevY);

Integrating the Mouse and Keyboard in Your Application 55|

17 delineTofportx porty);

18

19 /Saetecurentportasthe previousport
20 m PrevX=pantx

2 m PeWY=poty,

2}

A

24: [l

25. //MY CODE ENDS HERE

26: M

2T

28: CDialog:OnMouseMove(nhHags, point);
2}

Look at the code that draws the line from the previous point to the current point:
dc.MoveTo(m_iPrevX, m_iPrevY);

deLineTo(point, pointy);

You see that you need to move to the first position and then draw a line to the second
point. The first step is important because without it, there is no telling where Windows
might think the starting position is. If you compile and run your application, it draws a

bit better. However, it now has a peculiar behavior. Every time you press the left mouse
button to begin drawing some more, your application draws a line from where you ended
the last line you drew, as shown in Figure 3.3.

FIGURE 33 # Mouse and Keyboard

The drawing program
with a peculiar
behavior.

Adding the Finishing Touches

Your application is doing all its drawing on the mouse move event when the left button
is held down. Initializing the previous position variables with the position of the mouse
when the left button is pressed should correct this application behavior. Let's try this
approach by following these steps:

1. Using the Class Wizard, add a function forwe_LBUTTONDOWNSSage on the
dialog object.

| 56 Day 3

2. Edit theonLButtonDown function that you just created, adding the code in Listing
3.3.

LisTING 3.3. THE OnLButonDown FUNCTION.

1: void CMouseDlg::OnLButtonDown(UINT nFHags, CPoint point)
/I TODO: Add your message handler code here and/or call default

M
//MY CODE STARTS HERE
M

I'Setthe aumentpontasthe stariing point
m iPrevX=potx;
m _iPrevY =poirty;

M
/MY CODE ENDS HERE
15 M

EBPEBoo~vouswn

856

CDialog:OnLButtonDown(nFags, point);
18}

When you compile and run your application, you should find that you can draw much
like you would expect with a drawing program, as shown in Figure 3.4.

FlGURE 34 # Mouse and Keyhoard

Capturing Keyboard Events

Reading keyboard events is similar to reading mouse events. As with the mouse, there
are event messages for when a key is pressed and when it is released. These events are
listed in Table 3.2.

The finished drawing
program.

Integrating the Mouse and Keyboard in Your Application 57|

TABLE 3.2. KEYBOARD EVENT MESSAGES.

Message Description
WM_KEYDOWN A key has been pressed down.
WM_KEYUP A key has been released.

The keyboard obviously has fewer messages than the mouse does. Then again, there are
only so many things that you can do with the keyboard. These event messages are avail-
able on the dialog window object and are triggered only if there are no enabled controls
on the window. Any enabled controls on the window have input focus, so all keyboard
events go to them. That's why you remove all controls from the main dialog for your
drawing application.

Changing the Drawing Cursor

To get a good idea of how you can use keyboard-related event messages, why don’t you
use certain keys to change the mouse cursor in your drawing application? Make the A
key change the cursor to the default arrow cursor, which your application starts with.
Then you can make B change the cursor to the I-beam and C change the cursor to the
hourglass. To get started adding this functionality, follow these steps:

1. Using the Class Wizard, add a function forwha_KE Y DO wnNessage on the dia-
log object.
2. Edit theonkeyDownfunction that you just created, adding the code in Listing 3.4.

LiISTING 3.4. THE OnKeyDownFUNCTION.

1: void CMouseDlIg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)
/I TODO: Add your message handler code here and/or call default
i
/IMY CODE STARTS HERE
L

dharlsChar;, [Theaumrentcharaderbeing pressed
HCURSOR IhCursor; // The hande to the: cursor to be displayed

. [/ Convertthe key pressed to a character
sCrer=charnCer);

ERRREBoo~Noa»wn

16 HCha=n)

continues

| 58 Day 3

LISTING 3.4. CONTINUED

17{

18 /Loadtheamowoursor

19: IhCursor = AixGetApp()->LoadStandardCursor(IDC_ARROW);
20 /Sethesaeenausor

21 SeCusothCusa),

2}

23

24 [lstedraader'B’

5 igCha=B)

a{

27 [Loadthelbeamaoursor

28 IhCursor = AixGetApp()->LoadStandardCursor(IDC_IBEAM);
29 [Sethesaeenausor

0 SeCusathCusa),

3}

23

B [isthedaader'C’

34 igCha=0C)

&{

3% /Loadthehougessausor

37 InCursor = AixGetApp()->LoadStandardCursor(IDC_WAIT);
3B [Sethesaeenausor

2 SeCusathCusa),

a3

41

42 [isthedaacerX’

R iEa=X)

41

I oadtheamowcursor

InCursor = AixGetApp()->LoadStandardCursor(IDC_ARROW);
ISetthescreencursor

SeCusathCusol);

IBdtheappcain

€13

M
/MY CODE ENDS HERE
M

IBGLEOEBLELE S

CDialog::OnKeyDown(nChar, nRepCnt, nFlags);
58}

In the function definition, you see three arguments taiheyDownfunction. The first
is the key that was pressed. This argument is the character code of the character, which
needs to be converted into a character in the first line of your code. After you convert the

Integrating the Mouse and Keyboard in Your Application 59|

character, you can perform straight-ahead comparisons to determine which key was
pressed:

void CMouseDIg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFlags)

The second argument to tbekeyDownfunction is the number of times that the key is
pressed. Normally, if the key is pressed and then released, this value is 1. If the key is
pressed and held down, however, the repeat count rises for this key. In the end, this value
tells you how many times that Windows thinks the key has been pressed.

The third argument to thenkeyDownfunction is a combination flag that can be exam-
ined to determine whether the Alt key was pressed at the same time as the key or
whether the key being pressed is an extended key. This argument does not tell you
whether the shift or control keys were pressed.

When you determine that a specific key was pressed, then it's time to change the cursor
to whichever cursor is associated with that key. There are two steps to this process. The
first step is to load the cursor into memory. You accomplish this step with the
LoadStandardCursor function, which loads one of the standard Windows cursors and
returns a handle to the cursor.

Nﬂtﬂ A sister function, LoadCursor , can be passed the file or resource name of a
custom cursor so that you can create and load your own cursors. If you
design your own cursor in the resource editor in Visual C++, you can pass the
cursor name as the only argument to the LoadCursor function. For example,
if you create your own cursor and name it IDC_MYCURSORyou can load it
with the following line of code:

IhCursor = AfxGetApp()->LoadCursor(IDC_MYCURSOR);

After you load your own cursor, you can set the mouse pointer to your cur-
sor using the SetCursor function, as with a standard cursor.

After the cursor is loaded into memory, the handle to that cursor is passed to the

Setcursor ~ function, which switches the cursor to the one the handle points to. If you
compile and run your application, you should be able to press one of these keys and get
the cursor to change, as in Figure 3.5. However, the moment you move the mouse to do
any drawing, the cursor switches back to the default arrow cursor. The following section
describes how to make your change stick.

|60

Day 3

FIGURE 3.5. 4 Mouse and Kegboard

Changing the cursor
with specific keys.

Making the Change Stick

The problem with your drawing program is that the cursor is redrawn every time you
move the mouse. There must be some way of turning off this behavior.

Each time the cursor needs to be redrawn—because the mouse has moved, because
another window that was in front of your application has gone away, or because of what-
ever other reason—&M_SETCURS@@vent message is sent to your application. If you
override the native behavior of your application on this event, the cursor you set remains
unchanged until you change it again. To do this, follow these steps:

1. Add a new variable to th@mouseDIg class, as you did for the previous position
variables. This time, declare the typesasoLand name the variabie bCursor , as
shown in Figure 3.6.

FIGURE 3.6. Add Mombor Variabie 5]
.. Wariable Type:
Defining a class mem- feoac
1 Cancel
ber variable. Variable Hame S Cenci

[Fr_bCurser

Access
© Pubic C Foected & Fivag

2. Initialize them_bcCursor variable in theonniDaog ~ with the code in Listing 3.5.

LIsTING 3.5. THE OnirtiDBoy ~ FUNCTION.

1: BOOL CMouseDlig::OninitDialog()
A

3 CDabog-OniniDeloy)

4

~ oo

8 /[Settheiconforthisdialog. Theframewark doesthis
[0 automaticaly

Integrating the Mouse and Keyboard in Your Application 61|

9/ whenthe gppication's mainwindowis natadialog
10 Sefioonm hioon TRUE);, /Sethigioon

110 Seticon(m_hicon, FALSE), /Setsmalioon
12

13 /TODO: Addextrainitalzation here

14

15: i

/MY CODE STARTS HERE

T

Iniiizethecusoriotheanmow
m_bCursor=FALSE;

RRSBESS

M
3. //IMY CODE ENDS HERE
M

N

BBN

retum TRUE; //retium TRUE unlessyousetthefocustoa
O control
27}

3. Alter theonkeyDownfunction to set then_bcursor flag to TRUEWhen you change
the cursor, as in Listing 3.6.

LISTING 3.6. THE OnKeyDownFUNCTION.

1: void CMouseDlIg::OnKeyDown(UINT nChar, UINT nRepCnt, UINT nFags)
/I TODO: Add your message handler code here and/or call default

M

/IMY CODE STARTS HERE

M

charChar;, /' Theaumentcharaderbeing pressed
HCURSOR IhCursor; / The handeto the cursor to be displayed

- [/ Convertthe key pressed to a character
;. sChar=char(nChar);

EREBRNEBooNouswn

. [sthe characer A’

16 fECa=A)

17 /Loadtheamowoursor

18 IhCursor = AixGetApp()->LoadStandardCursorIDC_ARROW);
19

20 [stecharader'B’

21 igCha=B)

continues

| 62 Day 3

LISTING 3.6. CONTINUED

22 [Loadthelbeamaousor

23 InCursor= AixGetApp(->LoadStandardCursor(IDC_IBEAM);
24

2 [sthecharacer'C’

% fECha=0C)

27: [Loadthe houglass cursor

28 InCursor = AfixGetApp()->LoadStandardCursor(IDC_WAIT);

3B /Loadthearowvausor
34: IhCursor = AixGetApp()->LoadStandardCursor(IDC_ARROW);
. [Setheausorg
. m _bCursor=TRUE;
ISetthescreencursor

[Bitheapizin

50: M
51: //MY CODE ENDS HERE
52l

53
54: CDialog::OnKeyDown(nChar, nRepCnt, nFlags);
%}

4. Using the Class Wizard, add a function forthe_SETCURSQRessage on the
dialog object.

5. Edit theonsetCursor function that you just created, adding the code in Listing 3.7.

LisTING 3.7. THE OnSeCursor FUNCTION.

1: BOOL CMouseDIg::OnSetCursor(CWnd* pwWnd, UINT nHitTest, UINT message)
A

3. /TODO: Add your message handeer code here andlor call defauit

4

Integrating the Mouse and Keyboard in Your Application 63|

M
/MY CODE STARTS HERE
M

Ifthe cursor has been set, thenretm TRUE
if(m_bCursor)
_UNTRUE,
2 e
13
14 i
15: //MY CODE ENDS HERE
16: i
17:
18 retum CDialog:OnSetCursor(pWd, nHitTest, message);
19}

EBoo~ow

TheonsetCursor function needs to always returrueor else call the ancestor function.

The ancestor function resets the cursor and does need to be called when the application
first starts. Because of this, you need to initialize your variak#altee so that until the

user presses a key to change the cursor, the defeeitursor processing is executed.

When the user changes the cursor, you want to bypass the default processing and return
TRUEIinstead. This allows the user to draw with whichever cursor has been selected,
including the hourglass, as shown in Figure 3.7.

FIGURE 3.7. % Mouse and Keyboard

Drawing with the
hourglass cursor.

Nl]tﬂ The most common cursor change that you are likely to use in your programs
is setting the cursor to the hourglass while your program is working on
something that might take a while. There are actually two functions avail-
able in MFC that you can use to handle this task. The first is BeginwaitCursor
which displays the hourglass cursor for the user. The second function is
EndwaitCursor , which restores the cursor to the default cursor. Both of these
functions are members of the CCmdTarget class, from which all of the MFC
window and control classes are derived.

|64

Day 3

If you have a single function controlling all the processing during which you
need to display the hourglass and you don’t need to display the hourglass
after the function has finished, an easier way to show the hourglass cursor is
to declare a variable of the CwaitCursor class at the beginning of the func-
tion. This automatically displays the hourglass cursor for the user. As soon as
the program exits the function, the cursor will be restored to the previous
cursor.

Summary

In this chapter, you learned about how you can capture mouse event messages and per-
form some simple processing based upon these events. You used the mouse events to
build a simple drawing program that you could use to draw freehand figures on a dialog
window.

You also learned how to grab keyboard events and determine which key is being pressed.
You used this information to determine which cursor to display for drawing. For this to
work, you had to learn about the default cursor drawing in MFC applications and how

you could integrate your code with this behavior to make your application behave the
way you want it to.

From here, you will learn how to use the Windows timer to trigger events at regular
intervals. You will also learn how to use additional dialog windows to get feedback from
the user so that you can integrate that feedback into how your application behaves. After
that, you will learn how to create menus for your applications.

Q&A

Q How can | change the type of line that | am drawing? | would like to draw a
larger line with a different color.

A When you use any of the standard device context commands to draw on the screen,
you are drawing with what is known as a pen, much like the pen you use to draw
on a piece of paper. To draw bigger lines, or different color lines, you need to
select a new pen. You can do this by adapting the code omtih@iseMove func-
tion, starting where you get the device context. The following code enables you to
draw with a big red pen:
I/ Getthe Device Context
CCientDC dofhis);

I/ Create anew pen
CPen Ipen(PS_SOLID, 16, RGB(255, 0, 0));

Integrating the Mouse and Keyboard in Your Application 65|

I/ Use the new pen
de.SelectObject(&lpen);

I/ Draw aline fromthe previous point to the cuent point
dc.MoveTo(m_iPrevX, m_iPrevY);

deLineTo(porntx, porty);
Q How can you tell whether the Shift or Ctrl keys are being held down when you
receive thewM_KEYDOWRNessage?

A You can call another functiomgetkeySiate , with a specific key code to determine
whether that key is being held down. If the return value ofdbieeystate func-
tion is negative, the key is being held down. If the return value is nonnegative, the
key is not being held down. For instance, if you want to determine whether the
Shift key is being held down, you can use this code:
if (:GetKeyState(VK_SHIFT) <0)

MessageBox(“Shiftkey is down?™;

A number of virtual key codes are defined in Windows for all the special keys.
These codes let you look for special keys without worrying about OEM scan codes
or other key sequences. You can use these virtual key codes @atthstate
function and pass them to tbakeyDownfunction as thechar argument. Refer to
the Visual C++ documentation for a list of the virtual key codes.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the possible mouse messages that you can add functions for?

2. How can you tell if the left mouse button is down onwhe MOUSEMOegent
message?

3. How can you prevent the cursor from changing back to the default cursor after you
set it to a different one?

Exercises
1. Modify your drawing program so that the left mouse button can draw in red and

| 66 Day 3

the right mouse button can draw in blue.
2. Extend theonkeyDownfunction to add some of the following standard cursors:
* IDC_CROSS
* IDC_UPARROW
* IDC_SIZEALL
* IDC_SIZENWSE
* IDC_SIZENESW
* IDC_SIZEWE
* IDC_SIZENS
* IDC_NO
* IDC_APPSTARTING
* IDC_HELP

WEEK 1

DAY 4

Working with Timers

You may often find yourself building an application that needs to perform a
specific action on a regular basis. The task can be something simple such as
displaying the current time in the status bar every second or writing a recovery
file every five minutes. Both of these actions are regularly performed by several
applications that you probably use on a daily basis. Other actions that you
might need to perform include checking specific resources on a regular basis,
as a resource monitor or performance monitor does. These examples are just a
few of the situations where you want to take advantage of the availability of
timers in the Windows operating system.

Today you are going to learn

* How to control and use timers in your Visual C++ applications.
« How to set multiple timers, each with a different recurrence interval.
e How to know which timer has triggered.

e How you can incorporate this important resource into all your Visual C++
applications.

| 68 Day 4

Understanding Windows Timers

Windows timers are mechanisms that let you set one or more timers to be triggered at a
specific number of milliseconds. If you set a timer to be triggered at a 1,000 millisecond
interval, it triggers every second. When a timer triggers, it semfdg_aIMERNessage to

your application. You can use the Class Wizard to add a function to your application to
handle this timer message.

Timer events are placed only in the application event queue if that queue is empty and
the application is idle. Windows does not place timer event messages in the application
event queue if the application is already busy. If your application has been busy and has
missed several timer event messages, Windows places only a single timer message in the
event queue. Windows does not send your application all the timer event messages that
occurred while your application was busy. It doesn’t matter how many timer messages
your application may have missed; Windows still places only a single timer message in
your queue.

When you start or stop a timer, you specify a timer ID, which can be any integer value.
Your application uses this timer ID to determine which timer event has triggered, as well
as to start and stop timers. You'll get a better idea of how this process works as you build
your application for today.

Placing a Clock on Your Application

In the application that you will build today, you will use two timers. The first timer
maintains a clock on the window. This timer is always running while the application is
running. The second timer is configurable to trigger at whatever interval the user speci-
fies in the dialog. The user can start and stop this timer at will. Let’s get started.

Creating the Project and Application

You will build today’s sample application in three phases. In the first phase, you will add
all the controls necessary for the entire application. In the second phase, you will add the
first of the two timers. This first timer will control the clock on the application dialog. In
the third phase, you will add the second timer, which the user can tune, start, and stop as
desired.

To create today’s application, follow these steps:

1. Create a new project, namaders , using the same AppWizard settings that
you've used for the past three days. Specify the application titieess .

Working with Timers

69|

2. Lay out the dialog window as shown in Figure 4.1, using the control properties in
Table 4.1. Remember that when you place a control on the window, you can right-
click the mouse to open the control’s properties from the pop-up menu.

FIGURE 4.1. 5 Day4 - Miciosolt Visual C++ - [Dap4.rc - IDD_DAY4_DIALDG (Dialog]]
] . i ZFie Edit Wiew Insert Project Buid Layout Tools ‘Window Help =121
The Timers application . . Bio L 1L — T
dlalog layOUt' [CDayaDIy = |[1an claes members)][¢ CDay4DIg | FE - B [e
+ B Dapd classes = LI ; ek ; el
= Doy Tk
Tirner Inkerval: [E g Start Timer g a:h:
Time: Current Time ®
Count:0
= A
2 m
Exit P
= T
= H
| g »
B4 Cass.. | @ Feso.. | =1 Filvi.. B
k! e i} ¢
x| =
Il
L’T’\Euld Debug & Find in Files 1) Find in Files2 /] 4| | »]L
Ready E0.0 ! 245293
TABLE 4.1. CONTROL PROPERTY SETTINGS.
Object Property Setting
Static Text ID IDC_STATIC
Caption Timer &interval
Edit Box ID IDC_INTERVAL
Button ID IDC_STARTTIME
Caption &Start Timer
Button ID IDC_STOPTIMER
Caption S&top Timer
Disabled Checked
Static Text ID IDC_STATIC
Caption Time:
Static Text ID IDC_STATICTIME
Caption Cunent Time

continues

|7O

Day 4

TABLE 4.1. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC
Caption Count

Static Text ID IDC_STATICCOUNT
Caption 0

Button ID IDC_EXIT
Caption E&xit

3. Set the tab order as you learned on Day 2, “Using Controls in Your Application.”
4. Add code to the Exit button to close the application, as you did on Day 2.

Adding the Timer IDs

Because you will be using two timers in this application, you should add two IDs to your
application to represent the two timer IDs. This can be done by following these steps:

1. On the Resource View tab in the workspace pane, right-click the mouse over the
Timers resources folder at the top of the resource tree. Select Resource Symbols
from the pop-up menu, as in Figure 4.2.

FIGURE 4.2.
The Resource pop-up

5 Day# - Microsoft Visual C++ - [Day4.ic - IDD_DAY4_DIALOG (Dialog)]

ZlFie Edt View Incent Project Buld Took ‘Window Help _18] x|
E = mEE M
I =]l Bl S
Jﬂl ol o ERIIRERTRR N - =
il 10 Resource Includes %] Y
¢ = Az abl
o oo TN | e g :
+ Ty SweDadc g Mo
- Time: Cuntent Time: K &
Impot Count 0
v Docking View @ B
Hide: $ m
Exit .
Properties o b
—] e
=B
EL
4 Class.. | 2 Reso.. | =] Filevi. B e
14

x|
_l|Dayd e=e - 0 erroris). 0 warning(s)
¥ [, Build { Debug & Find in Files 1 Find in Files2 7] 4| |

Browses and edits the symbols in the resource file

2. On the Resource Symbols dialog, click the New button.

Working with Timers 71 |

3. On the New Symbol dialog, enter cLOCK_TIMERas the symbol name andas
the value, as shown in Figure 4.3.

FIGURE 4.3. @ MI=1E
ddi =lfle Edt Yiew Incet Project Buid Tooks Window Help =la x|
A |ng| a new resource 3 = nEE W = oa
symbol. | = = EEe RN
I xl
[~ _{Dapd resources x5
+ _|Dislog N val Inu x| i
_leon i e ne e | Az 2l
1 Stiing Table New =)
1 Version
\DC_ETADTTIME e .
o+ L N 1| E
ibce | =
el = @L
ipp_¢ [IDCLOCK. Use a
- Cancel $ m
0 5
=
= H
ab
B3 Clace. | 4 Reco | = Fiey B
£ H
E| =
_I[pays.ex= - 0 error(s). 0 warning(s) s =
¥ i, Build 4 Debug) Find in Files 1 3 Findin Filez2 7] 4| | v
Ready

4. Repeat steps 2 and 3, specifyingCOUNT_TIMERas the symbol name andhs the
value.

5. Click the Close button to close the Resource Symbols dialog. The two timer IDs
are now in your application and ready for use.

Starting the Clock Timer

To start the clock timer, you need to edit tmeiDaog ~ function, as you did in the pre-
vious two days. Add the new code in Listing 4.1.

LISTING 4.1. THE OnIriDabg ~ FUNCTION.

1: BOOL CTimersDig::OninitDialog()
A

3 CDelog:OnhiDaby)

4.

5.

8

7. I'TODO: Addextraintelizatonhere
8

o M

continues

| 72 Day 4

LISTING 4.1. CONTINUED

10: /MY CODE STARTS HERE

15 M

2

13 /Sarthedookimer

14: SefTimer(ID_CLOCK_TIMER, 1000, NULL);
15

16: M

17: /MY CODE ENDS HERE
18 M

19

20: reum TRUE; /reium TRUE unlessyousetthefocustoa
[J contral

21}

In this listing, you started the clock timer with theTimer function. The first argument
that you passed to tisetTimer function is the ID for the clock timer. The second argu-
ment is how often you want to trigger the event. In this case, the clock timer event is
triggered every 1,000 milliseconds, or about every second. The third argument is the
address of an optional callback function that you can specify to bypassitiieMER
event. If you passuLL for this argument, thevm_TIMERevent is placed in the applica-
tion message queue.

' i N“tﬂ A callback function is a function you create that is called directly by the
Windows operating system. Callback functions have specific argument defin-
itions, depending on which subsystem calls the function and why. After you
get past the function definition, however, you can do whatever you want or
need to do in the function.

A callback function works by passing the address of the function as an argu-
ment to a Windows function that accepts callback functions as arguments.
When you pass the function address to Windows, your function is called
directly every time the circumstances occur that require Windows to call the
callback function.

Handling the Clock Timer Event

Now that you've started a timer, you need to add the code to handle the timer event mes-
sage. You can do this by following these steps:

1. Using the Class Wizard, add a variable toitleeSTATICTIME control of type
CSting namedm_sTime.

Working with Timers

73|

LISTING

2. Using the Class Wizard, add a function to handlesmtkie TIMERMessage for the

CTimersDlg Object.

3. Edit theonTimer function, adding the code in Listing 4.2.

4.2. THE OnTimer FUNCTION.

1: void CTimersDIg:OnTimer(UINT nIDEvent)

FEBoo~Nouswn

13

14
15
16
17

:/ TODO: Add your message handler code here and/or call defaut

. I

/MY CODE STARTS HERE

- W

. IGetthecumrentime
. CTime curTime = CTime:GetCunrentTime();

I Dsplay the curerttime
m_sTime.Format(“%d:%d:%d", curTime.GetHour(),
arTme GetVinute(),
aurTime GetSecond());

1Updatehe diatog
UpdateData(FALSE);

18
19
20: Mg
21:
22
23
24

/IMY CODE ENDS HERE

-

: CDiglog:OnTimer(niDEvert);

25}

In this listing, you declare an instance of #wme class, initializing it to the current sys-
tem time. The next thing that you do is setrth@Time string to the current time, using
theFormat method to format the time in the familiar HH:MM:SS format. Finally, you

update the dialog window with the current time. If you compile and run your application

now, you should see a clock running in the middle of your dialog window, as in Figure

4.4.

FIGURE 4.4. 8 Timers

A running clock on
your application

dialog.

Time: 14:34.27

Count: 0

Exit

Timerlotereal [g Timer

| 74 Day 4

Adding a Second Timer to Your Application

As you have seen, adding a single timer to an application is a pretty simple task. All it
takes is calling theetTimer function and then placing the timer code in tagimer

function. However, sometimes you need more than one timer running simultaneously in
the same application. Then things get a little bit more involved.

Adding the Application Variables

Before you add the second timer to your application, you need to add a few variables to
the controls. With the clock timer, you needed only a single variable for updating the
clock display. Now you need to add a few other variables for the other controls, as listed
in Table 4.2.

TABLE 4.2. CONTROL VARIABLES.

Object Name Category Type
IDC_STATICCOUNT m_sCount Value CSting
IDC_INTERVAL m_inewvel Value in
IDC_STARTTIME m_cStartTime Control CButton
IDC_STOPTIMER m_cStopTime Control CButton

After you add all the variables using the Class Wizard, follow these steps:

1. Using the Class Wizard, select thénenad variable and specify a Minimum
Value of1 and a Maximum Value afooooo in the two edit boxes below the list of
variables, as shown in Figure 4.5.

FlGURE 45 MFC ClassWizard
e - Message Maps Member Varisbles | Automation | Active Everts | Class Info |
SpeC|fy|ng a range g
Project Class name: Add Class... =
for a variable. Dava =] [ooaivi I oo
D:h. D ayd\DapdDig h, D% D ayd\D apdDlg.cpp = -
Contol IDs: Type Mermber Delete Varable |

10C_EAL
1B NTERVAL m inierval

IDC_STARTTIME CButton m_cotartT ime

IDC_STATICCOUNT CSting m_sCount

IDC_STATICTIME CString m_sTime

IDC_STOFTIMER: CButton m_cStopTime

Description: it with validation
Minimum Yalue: i
Magimum Value: 100000

Cancel

Working with Timers 75 |

2. On the Class View tab in the workspace pane, add a member variable to the
CTimersDlg class as you learned yesterday. Specify the variable type tee vari-
able name as_icount , and the access asae

3. Using the Class Wizard, add a function oneEReCcHANGEvent message for the
IDC_INTERVAL control ID (the edit box). Edit the function and add the code in
Listing 4.3.

LISTING 4.3. THE OnChangelnterval FUNCTION.

1: void CTimersDIg::OnChangelnterval()

3 /TODC: fthsisaRICHEDIT contral, the controwiinct
4 [lsendthisnatfication uniessyouoverride the
[CDialog:OniniialUpdate()
./l function and call CRichEdiCri). SetEventMiask()
. Jwiththe EN_CHANGE flag ORed into the mask.

: /' TODO: Add your control natification handier code here

10: i
11: /MY CODE STARTS HERE
12: [

14: [Updatethe variables
15: UpdateData(TRUE);

7.l

18: //MY CODE ENDS HERE
19: [

20}

When you specify a value range for the timer interval variable, Visual C++ automatically
prompts the user, stating the available value range if the user enters a value outside of the
specified range. This prompt is triggered by WhéateData function call in the

OnChangeinterval ~ function. The last variable that was added through the workspace pane

is used as the actual counter, which is incremented with each timer event.

Starting and Stopping the Counting Timer
To make your second timer operational, you need to
¢ Initialize them ineval variable.
* Start the timer when thec_STARTTIME button is clicked.
¢ Increment then_icount variable and update the dialog on each timer event.
« Stop the timer when thec_sToPTIMERbutton is clicked.

| 76 Day 4

To implement this additional functionality, perform the following steps:

1. Edit theonniDaog function, updating the code as in Listing 4.4.

LISTING 4.4. THE UPDATED OninitDialog FUNCTION.

1: BOOL CTimersDig::OnlnitDialog()
2

1 D Dok

4.

ITODO: Add extrainiiaization here

©

My
10: /MY CODE STARTS HERE
13 [

&R

Inicizethecouneriniene
14 m iinenval=100;

16; /Updaiethe dislog
17: UpdateData(FALSE);

18

19 /Sathedokimer

20 SetTimer(ID_CLOCK_TIMER, 1000, NULL);
pat

22

23 //MY CODE ENDS HERE

ez

o)

26; retum TRUE; /reum TRUE unlessyou setthefocustoa
0 contrdl

27}

2. Using the Class Wizard, add a function toaRNeCLICKEDmessage on the
IDC_STARTTIME button. Edit theonStartime ~ function as in Listing 4.5.

LISTING 4.5. THE OnStarttime ~ FUNCTION.

1:void CTimersDig-OnStartime()
JI'TODO: Add your control natification hander code here
M

//MY CODE STARTS HERE
M

0O NDOAWN

Working with Timers 77 |

9 [/Updaiethevariables

10: UpdateData(TRUE);

1

12 /nigzetecut

13 m_iCount=0;

14 //Fomatthe countfordisplaying

15: m_sCount.Format(%d", m_iCount);

17 IUpdatethe dialog

18 UpdateData(FALSE);

19 ISartteiner

20: SetTimer(ID_COUNT_TIMER, m_ilnterval, NULL);
21

22: [
/MY CODE ENDS HERE
M

NN
AW

x5}

3. Using the Class Wizard, add a function togNecLICKEDmessage on the
IDC_STOPTIMERbutton. Edit theonstoptimer function as in Listing 4.6.

LISTING 4.6. THE OnStoptimer ~ FUNCTION.

1: void CTimersDIg::OnStoptimer()
/I TODO: Add your control natification handler code here
M
/IMY CODE STARTS HERE
M

I'Sopthetimer
KilTimer(D_COUNT _TIMERY);

—
EBoo~vouswn

122 [

13: //MY CODE ENDS HERE
14 [

15}

4. Edit theonTimer function, updating the code as in Listing 4.7.

LISTING 4.7. THE UPDATED OnTimer FUNCTION.

1: void CTimersDIg::OnTimer(UINT nIDEvent)
A
3: //'TODO: Add your message handler code here and/or call defauit

continues

| 78 Day 4

LISTING 4.7. CONTINUED

4

LS

6. //MY CODE STARTS HERE

7 I

8

9 /Getthecurentime

10: CTime curTime = CTime:GetCumentTime();

1

120 Whichtimertiggered thisevent?

13 swich (NDEvent)

14 {

15 /Thedockimer?

16: caselD_CLOCK_TIMER:

17. /Depayteanertime
m_sTime.Format(*%d:%d:%d", curTime.GetHour(),
arTmeGetvinug(),

aurTmeGetSecond();

lresk

I The countimer?

case ID_COUNT_TIMER:

Incrementthe court

m_iCount+;

IIFommetand display the court
m_sCount.Format(‘%d’, m_iCount);

besk

BYBHRERNRBBES

2}

28

I1Updte he diatog
UpdateData(FALSE);

M

//MY CODE ENDS HERE
M

CDialog-OnTimer(niDEvent);

BBISHRBE

-

In theonniDalg ~ function, you added the initialization of theinena variable, start-
ing it at 100. This initialization is reflected on the dialog window by calling the
UpdateData function.

In theonstatime ~ function, you first synchronize the variables with the control values,
allowing you to get the current setting of thénenal variable. Next, you initialize the
m_iCount Variable, setting it to, and then format the value in thesCount Csting vari-
able, which is updated in the dialog window. The last thing that you do is to start the
timer, specifying thed_couNT_TIMERID and using the interval from theinenal

variable.

Working with Timers 79 |

In the onstoptimer ~ function, all you really need to do is stop the timer. You do this by
calling thekimmer ~ function, passing the timer ID as the only argument.

It is in theonTimer function that things begin to get interesting. Here, you still see the
code for handling the clock timer event. To add the functionality for the counter timer,
you need to determine which timer has triggered this function. The only argument to the
onTimer function just happens to be the timer ID. You can use this ID in a switch state-
ment to determine which timer has called this function and to control which set of code
is executed. The clock timer code is still the same as it was in Listing 4.2. The counter
timer code is placed into its spot in the switch statement, incrementing the counter and
then updating then_sCount variable with the new value. You can compile and run your
application at this point, and you can specify a timer interval and start the timer running,
as in Figure 4.6.

FIGURE 4.6. @ iiere
X Timer Interval [1000 -_ art Timer
A running counter on o e

. . Time: 14:47:20
your application
dialog.

Count: &

Exit

Enabling the Stop Button

If you run your application, you'll find that it works well except for one small problem.
When you start your second timer, you can't stop it. When you were specifying all the
properties of the controls, you disabled the Stop Timer button. Before you can stop the
timer, you need to enable this button.

What makes the most sense is enabling the stop button and disabling the start button
once the timer starts. Then you reverse the situation when the timer stops again. You can
do this in the same way you enabled and disabled controls on Day 2, or you can modify
your approach just a little.

Remember that when you added variables to the controls, you added variables to the
start and stop buttons. These were not normal variables, but control variables. Instead of
getting a pointer to these controls using their IDs, you can work directly with the control
variables. Try that now by updating tbestatime ~ andonStoptimer ~ functions as in

Listing 4.8.

| 80 Day 4

LISTING 4.8. THE REVISED OnStarttime ~ AND OnStoptimer ~ FUNCTIONS.

1: vod CTimersDig::OnStarttime()

A

3./ TODO: Add your control natiication handler code here
4

S

6. //MY CODE STARTS HERE

7

8

9 [Updatethe variables

10: UpdateData(TRUE);

1

12 Jrigizetecout

13 m_iCount=0;

14 /Fomatthe countfordisplaying

15: m_sCount.Format(“%d", m_iCount);

16

17 Updatethe dislog

18: UpdateData(FALSE);

19 /Satthetmer

20: SetTimer(ID_COUNT_TIMER, m_ilnterval, NULL);
2

22 [|Enablethe Stop Timer button

23: m_cStopTime.EnableWindow(TRUE);

24: [/ Disablethe Start Timer bution

25: m_cStartTime.EnableWindow(FALSE);

%

27 [

28. //MY CODE ENDS HERE

29: I

0}
3t

32: void CTimersDig::OnStoptimer()

B

34: [/ TODO: Add your control nafification handier code here
3

36: M

37 /MY CODE STARTS HERE

38 M

N

I'Stopthetimer
KilTimer(ID_COUNT_TIMER);

SES8

43: //Disable the Stop Timer button

44: m_cStopTime.EnableWindow(FALSE);
45 //Enablethe Start Timer bution

46: m_cStartTime.EnableWindow(TRUE);
a7

48: Ny

49: /IMY CODE ENDS HERE

Working with Timers 81 |

50: M
51}

Now when you compile and run your application, it looks more like Figure 4.7, where
you can start and stop the counter timer. This enables you to play with the timer interval,
putting in a variety of time intervals and observing the difference, with the clock ticking
above the counter for reference.

FIGURE 4.7. 8 Timers
The finished appll- Tlmellr\t?wa\ 155 l:l -
cation. e
Count: &
Exit
Summary

Today you learned how to use the timers built into the Windows operating system to trig-
ger your application at various time intervals that you can control. You learned how to
use multiple timers in the same application, running them simultaneously and triggering
different actions.

In the coming days, you'll learn how to use additional dialog windows to get feedback
from the user so that you can integrate that feedback into how your application behaves.
After that, you will learn how to a create menus for your applications. Then you will

learn how you can work with text and fonts in your applications.

Q&A

Q What is the interval range that | can set for timers in my applications?

A The available range that you can set for timers in your applications is around 55
milliseconds on the short end t& 21 milliseconds, or around 49 1/2 days, on the
long end.

Q

How many timers can | have running at the same time in my application?

A That depends. There are a limited number of timers available to all applications in
the Windows operating system. Although the number that is available should be
more than sufficient for all running applications using no more than a handful of
timers, if an application goes overboard and begins hogging the timers, the operat-
ing system may run out. It could be your application that is denied the use of some
timers, or it could be other applications that don’t have any to use. As a general

| 82 Day 4

rule, if you use more than two or three timers at the same time, you might want to
reconsider your application design and determine if there is another way to design
and build your application so that it can work with fewer timers.

Q Is there any way to trigger my application to perform some work when it is
idle, instead of using a timer to trigger the work when | think my app might
be idle?

A Yes, there is. All Windows applications haveaide function that can be used to
trigger idle processingnide is discussed later on Day 18, “Doing Multiple Tasks
at One Time—Multitasking.”

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What did you accomplish by adding the two timer IDs to the resource symbols?

n

What is another way to add these two IDs to the application?

w

How can you tell two timers apart in tbeTimer function?

E

How many timer events does your application receive if the timer is set for one
second and your application has been busy for one minute, preventing it from
receiving any timer event messages?

Exercise

Update your application so that when the counter timer is started, the clock timer is reset
to run at the same interval as the counter timer. When the counter timer is stopped, return
the clock timer to a one-second interval.

WEEK 1

DAY 5

Getting User Feedback—
Adding Dialog Boxes to
Your Application

With most applications that you might use, there are numerous situations where
the application asks you for information—how you want the application config-
ured or whether you want to save your work before exiting, for example. In

most of these situations, the application opens a new window to ask these ques-
tions. These windows are called dialog windows.

Dialog windows typically have one or more controls and some text explaining
what information the program needs from you. Dialog windows typically do
not have a large blank work area, as you find in the main windows of a word
processor or a programming editor. All the applications that you have built in
the preceding days have been dialog windows, and your projects will continue
to be dialog windows for the next few days.

All the dialogs that you have created up to now have been single window dia-
log applications. Today you are going to learn

| 84 Day 5

* How to use dialog windows in a more flexible way.

* How to call other dialog windows and take the information entered by the user on
these windows back to the main application window for use in the application.

* How to use both standard dialogs, such as the message boxes you used in previous
days and custom dialogs that you have created.

Using Pre-existing (or System) Dialog
Windows

The Windows operating system provides a number of pre-existing dialog windows.
Simple dialog windows, also known as message boxes, present the user with a message
and provide one to three buttons to click. More complex dialogs, such as the File Open,
Save, or Print dialogs, are also provided with Windows. These system (or common)
dialogs are created and used with a combination of a variable declaration of a C++ class
and a series of interactions with the class instance.

Using Message Boxes

As you learned in the previous days, using message boxes is as simple as making a sin-
gle function call, passing the message text as the only argument. This results in a mes-
sage box that displays the message to the user with an icon and gives the user one button
to click to acknowledge the message. As you probably know from using other Windows
software, you have a whole range of other message box possibilities with various button
combinations and various icons that can be displayed.

The MessageBox Function

As you have seen in previous days, MeesageBox function can be passed one or two
arguments. The first argument is the message to be displayed to the user. The second
argument, which is completely optional, is displayed in the title bar on the message box.
You can use a third argument, which is also optional, to specify the buttons to be pre-
sented to the user and the icon to be displayed beside the message. In addition to this
third argument, th&lessageBox function returns a result value that indicates which but-

ton was clicked by the user. Through the combination of the third argument and the
return value, theessageBox function can provide a whole range of functionality in your
Visual C++ applications.

Getting User Feedback—Adding Dialog Boxes to Your Application 85 |

¢ N“tﬂ If you use the third argument to the MessageBox function to specify the but-
tons or the icon to be presented to the user, the second argument (the mes-
sage box title) is no longer optional. You must provide a value for the title
bar of the message box.

The button combinations that you can use inmesageBox function are limited. You do

not have the freedom to make up your own button combination. If you get to the point
where you need to make up your own, you have to create a custom dialog window that
looks like a message box. The button combinations that you can use are listed in Table
5.1.

TABLE 5.1. MESSAGBOXBUTTON COMBINATION IDs.

ID Buttons
MB_ABORTRETRYIGNORE Abort, Retry, Ignore
MB_OK OK

MB_OKCANCEL OK, Cancel
MB_RETRYCANCEL Retry, Cancel
MB_YESNO Yes, No
MB_YESNOCANCEL Yes, No, Cancel

To specify the icon to be displayed, you can add the icon ID to the button combination
ID. The icons that are available are listed in Table 5.2. If you want to specify either the
icon or the button combination, and you want to use the default for the other, you can
just specify the one ID that you want to use.

TABLE 5.2. MESsAGBoXICON IDs.

ID Icon
MB_ICONINFORMATION Informational icon
MB_ICONQUESTION Question mark icon
MB_ICONSTOP Stop sign icon
MB_ICONEXCLAMATION Exclamation mark icon

When you do specify a button combination, you want to capture the return value so that
you can determine which button the user clicked. The return value is defined as an inte-
ger data type; the return value IDs are listed in Table 5.3.

| 86 Day 5

TABLE 5.3. MESSAGBOXRETURN VALUE |Ds.

ID Button Clicked
IDABORT Abort

IDRETRY Retry

IDIGNORE Ignore

IDYES Yes

IDNO No

IDOK OK

IDCANCEL Cancel

Creating a Dialog Application

To get a good understanding of how you can useigeengeBox function in your appli-
cations to get information from the user, you will build a simple application that uses the
MessageBox function in a couple of different ways. Your application will have two sepa-
rate buttons that call two different versions of te@sageBox function so that you can

see the differences and similarities between the various options of the function. Later in
the day, you will add a standard File Open dialog so that you can see how the standard
dialogs can be used to allow the user to specify a filename or perform other standard
functions. Finally, you will create a custom dialog that allows the user to enter a few dif-
ferent types of values, and you will see how you can read these values from the main
application dialog after the user has closed the custom dialog.

To start this application, follow these steps:

1. Create a new MFC AppWizard workspace project, naminigoit .

2. Choose the same settings as for the previous dppications, giving the applica-
tion a title ofDalogs .

3. Lay out the main application dialog as shown in Figure 5.1 using the properties in
Table 5.4.

TABLE 5.4. CONTROL PROPERTY SETTINGS.

Object Property Setting

Command Button ID IDC_YESNOCANCEL
Caption &Yes, No, Cancel

Command Button ID IDC_ABORTRETRYIGNORE

Caption &Abort, Retry, lgnore

Getting User Feedback—Adding Dialog Boxes to Your Application

87|

Object Property Setting

Command Button ID IDC_FILEOPEN
Caption &File Open

Command Button ID IDC_BCUSTOMDIALOG
Caption &Custom Dialog

Command Button ID IDC_BWHICHOPTION
Caption &Which Option?
Disabled Checked

Command Button ID IDC_EXIT
Caption E&xt

Static Text ID IDC_STATIC
Caption Diclog Resus:

Edit Box ID IDC_RESULTS
Multiline Checked
Auto Vscroll Checked

FIGURE 5.1. 5% Day5 - Microsoft Visual C+ - [Dayb.1c - IDD_DAY5,_DIALOG (Diolog)]

The application main
dialog layout.

4. Using the Class Wizard, attach variables to the controls as listed in Table 5.5.

ZlFile Edit View Insert Project Buid Layout Tools Window Help

2 =H:

L E—

[CDay5DIg = |[1an claes members)][¢ CDay5DIg

A St E

alx

- _i Daybresources *
+ _] Dialog
+ _Jleon =
+] Sting Table
+] Version =

Yes. No, Cancel
- Custom Dialog

File Open

&]
|»

X

Abort, Retry, lgnare

o
=

|

Dialog Results: |Edit

3 Esit

8 4 Class...| 2 Reso.. | 2] FileVi

AERELTOBEENGE B

BigowAEB=mE0

kg |
A B85 1o
E| =
Al =
L’T{\ Build 4 Debug & Find in Files 1) Find in Files2 /] 4| | »]L
Ready i 0.0 T 232013

| 88 Day 5

TABLE 5.5. CONTROL VARIABLES.

Object Name Category Type
IDC_RESULTS m_sResuits Value CSting
IDC_BWHICHOPTION m_cWhichOption Control CButton

5. Using the Class Wizard, attach code to the Exit button to close the application, as
on previous days.

Coding the Message Box Dialogs

For the first command button (the Yes, No, Cancel button), create a function on the
clicked event using the Class Wizard, just as you did on previous days. Edit the function
on this button, adding the code in Listing 5.1.

LISTING 5.1. THE OnYesnocancel FUNCTIONS.

1: void CDialogsDIg:-OnYesnocancel()
A
/' TODO: Add your control natification handier code here

M
//MY CODE STARTS HERE
M

ntiResuss / Thsvarisbiewd caplLiethe bution seledion

IAsktheuser

. iResuts =MessageBox(Press the Yes, No, or Cancel button”,
“YesNoCanoelDebg,

14: MB_YESNOCANCEL | MB_ICONINFORMATION);
15

16: // Determine which button the user dicked

17: I/ Give the user amessage showing which button was clicked
18 swichResus)

19

20. caseIDYES: /'TheYesbution?

21: m SResuis="Yes! Yes!Yesl!
2 besk

23 caseIDNO: //'The Nobution?
24 m sResuls="No,no,no,no,no’’;
A5 besk
26
27
2
e
0

3
4
5
6:
T
8
9
10
1
12
13

. case [IDCANCEL: // The Cancel button?
* m_sResuis="Sony,canoged”

besk
}

31 /Updeiethedaiag

Getting User Feedback—Adding Dialog Boxes to Your Application 89 |

;. UpdateData(FALSE);

/MY CODE ENDS HERE

32
<y
34: M
35
36: M
3r.

[

If you compile and run your application, you can see how selecting the different buttons
on the message box can determine the next course of action in your application. If you
add a function to the clicked event of the Abort, Retry, Ignore button using the Class
Wizard and enter the same code as in Listing 5.1, substitutingethBORTRETRYIG-
NOREandMB_ICONQUESTIONalues and changing the prompts and messages, you can
see how this other button combination can be used in the same way.

Both of these control event functions are virtually the same. In each function, there is an
integer variable declared to capture the return value fromidsageBox function. Next,

the MessageBox function is called with a message to be displayed to the user, a title for
the message box, and a combination of a button combination ID and an icon ID.

When the return value is captured from th@sageBox function, that value is passed

through a switch statement to determine which value was returned. A message is dis-
played to the user to indicate which button was clicked on the message box. You can just
as easily use one or twostatements to control the program execution based on the

user’s selection, but the return value being an integer lends itself to using a switch
statement.

If you compile and run your application at this point, you can click either of the top two
buttons and see a message box, as in Figure 5.2. When you click one of the message box
buttons, you see a message in the edit box on the main dialog, indicating which button
you selected, as in Figure 5.3.

FIGURE 5.2. Yes. No. Cancel Dialog
TheMessageBox Wwith \1‘) Press the es, No, or Cancel bution

three choices. e

FIGURE 5.3. 4Dialogs
A message is dISp|ayed Abort, Retry, lanore
based on which button ke |

was clicked. | CwsonDideg | _ wichopion_|

Dialog Results: |Tes! el el

Exit

|90

Day 5

Using Common Dialogs

Using common dialogs is not quite as simple and easy as usingstageBox function,
but it's still quite easy. The Microsoft Foundation Classes (MFC) provides several C++
classes for common Windows dialogs. These classes are listed in Table 5.6.

TABLE 5.6. COMMON DIALOG CLASSES.

Class Dialog Type

CFieDiabog File selection

CFontDialog Font selection
CColoDialog Color selection
CPageSetupDialog Page setup for printing
CPrniDialog Printing

CFindReplaceDialog Find and Replace

The common dialogs encapsulated in these classes are the standard dialogs that you use
every day in most Windows applications to open and save files, configure printing

options, print, perform find and replace on documents, and so on. In addition to these
choices, a series of OLE common dialog classes provide several common functions to
OLE or ActiveX components and applications.

All these dialogs are used in the same manner, although the individual properties and
class functions vary according to the dialog functionality. To use one of these dialogs,
you must follow these steps:

1. Declare a variable of the class type.

2. Set any properties that need to be configured before displaying the dialog to the
user.

3. Call thebomodal method of the class to display the dialog to the user.

4. Capture the return value of theviodal method to determine whether the user
clicked the OK or Cancel button.

5. If the user clicks the OK button, read any properties that the user may have set
when using the dialog.

To better understand how this works, you'll add ¢thebaog class to your application.
To do this, add a function to the clicked message on the File Open button using the Class
Wizard. Edit this function, adding the code in Listing 5.2.

Getting User Feedback—Adding Dialog Boxes to Your Application 91 |

LISTING 5.2. THE OnFileogpen FUNCTION.

1:void CDiglogsDig:OnFHeopen()

A

3./ TODO: Add your control natification handler code here
4

5 M

6: //MY CODE STARTS HERE

Y

8

9 CHeDilogm bFe(TRUE)
10

11: /' Showthe Fie apendialog and capiure the resuit
12 if(m_ldFle. DoModal) =IDOK)

¢

14 /Gethefienameseeced

15 m sResuis=m ldFeGetHieName();

16 IUpokietedsog

17: UpdateDaia(FALSE);
B}

19

20: [

21: //MY CODE ENDS HERE
22: [

2}

In this code, the first thing that you do is declare an instance cfithisg class. This
instance is passeatkUEas an argument to the class constructor. This tells the class that it
is a File Open dialog. If you passFALSE, it displays as a File Save dialog. There’s no

real functional difference between these two, only a visual difference. You can pass many
more arguments to the constructor, specifying the file extensions to show, the default
starting file and location, and filters to use when displaying the files. All the rest of these
constructor arguments have default values, so you don’t have to supply any of them.

After creating the instance of the File Open dialog, you catldt&dal function. This is

a member function of thebaog ancestor class, and it is available in all dialog windows.
The DoModal function displays the File Open dialog to the user, as shown in Figure 5.4.
The return value of theoModal function is examined to determine which button the user
clicked. If the user clicks the Open button, thek value is returned, as with the
MessageBox function. This is how you can determine whether your application needs to
take any action on what the user selected with the dialog window.

There are two modes in which a dialog window can be displayed to the

Day 5

FIGURE 5.4. Urer
. . Lockjn | /D= -] e e

The File Open dlalog. [Debug T Day5 dow A DaSDlgepp] Stdbfeepr
| Jres #DaySh # DayShigh #] Stddfuh
2] DayS aps | DaySnch A MzaDla.cpp
] Dy cho #] DayS.opt *]
8] Days cpp] Days pl 2] ReadMe

DayS.dsp @EDay5ic #]Resourceh

< | 2
Fiepame: [MsgDlah m
Files of type: | -] e

user. The first is as a modal window. A modal window halts all other user
interaction while it is displayed. The user cannot do anything else in the
application until the dialog is closed. A good example of a modal dialog
window is a message box where the user cannot continue working with the
application until she clicks one of the buttons on the message box.

" Note

The second mode in which a dialog window can be displayed to the user is
as a modeless window. A modeless window can be open while the user is
doing something else in the application, and it doesn’t prevent the user
from performing other tasks while the dialog is visible. Good examples of a
modeless dialog window are the Find and Find and Replace dialogs in
Microsoft Word. These dialog windows can be open and displayed on the
screen while you are still editing the document that you are searching.

To display the name of the file selected, you settkResuls variable to the return

value from thecetFileName method of thecAeDag class. This method returns only the
filename without the directory path or drive name, as shown in Figure 5.5. You can use
other class methods for getting the directory patirathName) or file extension

(GefFleEt).
FIGURE 5.5. B 4Dialag
Displaying the selected w _don. R g |
filename.

Custom Dialog

MzaDla.h

|

Dialog Results:

Esit

Getting User Feedback—Adding Dialog Boxes to Your Application 93 |

Creating Your Own Dialog Windows

Now you have an understanding of using standard dialogs. What if you need to create a
custom dialog for your application? This task is fairly simple to do because it is mostly a
combination of the process that you have already used to create and use the main dialog
windows in all your applications and the methods you employed to use the common
dialogs. You have to work through a few additional steps, but they are few and you
should be comfortable with them soon.

Creating the Dialog Window

For the custom dialog that you will add to your application, you will provide the user

with a edit box in which to enter some text and a group of radio buttons from which the
user can select one. When the user clicks the OK button, your application will display

the text entered by the user in the display area of the main application dialog window.
There is another button that the user can, can click to display which one of the radio but-
tons was selected. This exercise enables you to see how you can use custom dialog win-
dows to gather information from the user and how you can read the user’s selections
after the dialog window is closed.

To create a custom dialog for your application, you need to

¢ Add another dialog to your application resources.

« Design the dialog window layout.

« Declare the base class from which the dialog will be inherited.

« Attach variables to the controls on the dialog.
After doing these things, your custom dialog will be ready for your application. To
accomplish these tasks, follow these steps:

1. Select the Resource View tab in the project workspace pane.

2. Right-click the Dialogs folder, and select Insert Dialog from the pop-up menu.

3. Right-click the new dialog in the resource tree view, and select Properties from the
pop-up menu.
4. Change the object ID for the new dialogdb_MESSAGEDLG

5. When editing the new dialog window, do not delete the OK and Cancel buttons.
Move them to the location shown in Figure 5.6.

| 94 Day 5

FIGURE 5.6. x|
. Enter a message: [Edt
The custom dialog
window layout.
Select an Option
" Dption 1 " Oplion 3
" Dption 2 " Optjon 4 —

6. Design the rest of the window using the object properties in Table 5.7.

TABLE 5.7. THE CUSTOM DIALOG CONTROL PROPERTY SETTINGS.

Object Property Setting
Static Text ID IDC_STATIC
Caption Enter a &message:
Edit Box ID IDC_MESSAGE
Multiline Checked
Auto Vscroll Checked
Group Box ID STATIC
Caption Select an Opfion
Radio Button ID IDC_OPTION1
Caption &Option 1
Group Checked
Radio Button ID IDC_OPTION2
Caption O&ption 2
Radio Button ID IDC_OPTION3
Caption Op&iion 3
Radio Button ID IDC_OPTION4
Caption Opt&ion 4

7. After you design the dialog, open the Class Wizard. You see the dialog in
Figure 5.7.

FIGURE 5.7 Adding a Class BE
IDD_MESSAGEDLE e
The Adding a Class T e e e R

anew class for t. ‘rou can also select an Cancel

d Ia|Og . existing class

€ Select an evisting class

Getting User Feedback—Adding Dialog Boxes to Your Application 95 |

8. Leave the selection on this dialog at the default setting of Create a New Class and
click OK. Another dialog appears to allow you to specify the name for the new
class and the base class from which it is inherited.

9. Enter the class nanmsgDlg into the Name field, and make sure that the Base
Class is set tabiaog , as shown in Figure 5.8.

FIGURE 5.8. Now Class -5
. Class information
The New Class dialog. - T ———
File: name: MzaDlg cpp ﬂ
LChange..

Base class ,h‘
Dialog 1D: 1D0_MESSAGEDLG =

Automation
& None

€ Automation

c [Pa5Mabla

10. Click OK, leaving the other settings on this dialog at their defaults.

11. Once the Class Wizard opens, attach the variables to the controls on the new dialog
as specified in Table 5.8.

TABLE 5.8. CONTROL VARIABLES.

Object Name Category Type
IDC_MESSAGE m_sMessage Value CSting
IDC_OPTION1 m_Option Value i

You should notice two things in the way that you configured the control properties and
variables in the custom dialog. First, you should have selected the Group property on
only the first of the radio buttons. This designates that all the radio buttons following

that one belong to a single group, where only one of the radio buttons may be selected at
a time. If you select the Group property on all the radio buttons, they are all independent
of each other, allowing you to select all the buttons simultaneously. This property makes
them behave somewhat like check boxes, but the primary difference is that the user
would find it difficult to uncheck one of these controls due to the default behavior where
one radio button in each group is always checked. The other difference is in their appear-
ance; the radio buttons have round selection areas instead of the square areas of check
boxes.

|96

Day 5

N“tﬂ Because this is the C++ programming language, all numbering begins with

The other thing to notice is that you declared a single integer variable for the one radio
button with the Group property checked. This variable value is controlled by which radio
button is selected. The first radio button causes this variable to have a value of 0, the sec-
ond sets this variable to 1, and so on. Likewise, if you want to automatically select a par-
ticular radio button, you can set this variable to one less than the sequence number of the
radio button in the group of radio buttons.

0, not 1. Therefore, the first position in an array or a set of controls is posi-
tion 0. The second position is position 1. The third position is number 2, and
so on.

You have now finished all that you need to do to the second dialog window to make it
ready for use. You would expect to needuatiteData or two in the code behind the
dialog, but because you didn’t remove the OK and Cancel buttons from the dialog, the
UpdateData call is already performed when the user clicks the OK button. As a result,
you don’t have to touch any code in this second dialog, only in the first dialog.

Using the Dialog in Your Application

Now that your custom dialog is ready for your application, using it is similar to the way
that you use the common dialogs that are built into Windows. First, you have to declare
an instance of the custom dialog class, which calls the class constructor and creates an
instance of the class. Next, you call the dialag®siodal method and capture the return
value of that function. Finally, you read the values of the variables that you associated
with the controls on the dialog.

Creating the Dialog Instance

Before you can use your custom dialog in your application, you have to make your main
dialog window aware of the custom dialog, its variables, and methods and how your
main dialog can interact with your custom dialog. You accomplish this by including the

header file for your custom dialog in the main source file for your main application dia-
log. Follow these steps:

1. Select the File View tab on the workspace pane.

2. Expand the Dialog Files and Source Files folders.

3. Double-click thebaogsDgepp ~ file. This opens the source code file for the main
application dialog in the editing area of Developer Studio.

Getting User Feedback—Adding Dialog Boxes to Your Application 97 |

4. Scroll to the top of the source code file wheretthiee statements are located,
and add an include for thesgbigh file before theDaogsDgh ~ file, as in Listing
5.3.

LISTING 5.3. THE HEADER FILE INCLUDES.

1:// DialogsDig.opp : implementation fie

21

3

4:#ndude “stdafx h’

5:#indude ‘Dialogsh’

6:#indude “MsgDigh”

7:#indude ‘DialogsDigh”

8

9: #ifdef DEBUG
10: #define new DEBUG_NEW
11: #undef THIS_FILE
12:staticchar THIS FILE[|=__ FLE_;

13 #endif

14
1S
16: // CAboutDg dialog used for App About

It is important that you place thidue statement for theisgDigh file before the

#ndude statement for theaogsDgh file. The reason is that you will be adding a vari-

able declaration for your custom dialog to the main dialog class in the main dialog’s
header file. If theusgDigh header file is included after the header file for the main dia-
log, the compiler will complain loudly and will refuse to compile your application until
you move theindude of themsgDigh file above thefndude of theDaogsDgh file.

The #indude statement is what is known as a compiler directive in the C and

Nﬂtﬂ C++ programming languages. What it tells the compiler to do is read the
contents of the file named into the source code that is being compiled. It is
used to separate class, structure, and function declarations into a file that
can be included in any source code that needs to be aware of the informa-
tion in the header file. For more information on how the #ndude statements
work, and why you use them, see Appendix A, “C++ Review.”

Now that yjou have made your main application dialog aware of the custom dialog that

| 98 Day 5

you created, you need to declare a variable of your custom dialog. Follow these steps:

1. Select the Class View tab in the workspace pane.

N

Right-click thecDialogsDig class to bring up the pop-up menu.
Select Add Member Variable from the pop-up menu.

Specify the Variable Type @&ssgDlg, the Variable Name as_dMsgDlg, and the
Access as Private. Click OK to add the variable to your main dialog.

oW

If you expand th&bDidogsDig class in the tree view, you should see the instance of your
custom dialog as a member of the main application dialog class. This means that you are
ready to begin using the custom dialog in your application.

Calling the Dialog and Reading the Variables

Now that you have added your custom dialog to the main application dialog as a variable
that is always available, not just as a local variable available only within a single function
(as with thecreDeog ~ variable), you can add code to use the dialog. To do this, follow
these steps:

1. Open the Class Wizard and add a function to the clicked event message of the
IDC_BCUSTOMDIALOGULtON.

2. Add a function for the clicked event message CLICKED for theIiDC_
BWHICHOPTIONDUttON.

3. Edit theonBeustomdialog ~ function, adding the code in Listing 5.4.

LISTING 5.4. THE OnBcustomdialog ~ FUNCTION.

1: void CDialogsDlg::OnBeustomdialogy()

A

3./ TODO: Add your control natification handler code here
4

LS

6: //MY CODE STARTS HERE

7 I

8

9. //Showthe message dialog and capiure the resuit
10: if (m_dMsgDig.DoModal () = IDOK)

1

12. [Theuserchecked OK display the message the
13 /Jusertypedinonthemessagedislog

14: m_sResults=m_dMsgDlg.m_sMessage;
15 /Upcketeddog

16: UpdateData(FALSE);

17: //Enablethe Which Option buiton

18 m_cWhichOption.EnableWindow(TRUE);

Getting User Feedback—Adding Dialog Boxes to Your Application 99 |

19}

p0:

20

22 /MY CODE ENDS HERE
23 I

24}

4. Edit theonBwhichoption ~ function, adding the code in Listing 5.5.

LisTING 5.5. THE OnBwhichoption ~ FUNCTION.

1: void CDialogsDig::OnBwhichoption()

A

3. //'TODO: Add your control natification handler code here
4

S

6: //MY CODE STARTS HERE

7

8

9 // Determine which radio bution was selected, and display

10: /lamessage for the user to showwhich one was selected.

11: switch(m_dMsgDlg.m_iOption)

2{

cae0 /Westtefstradobutor’?

m sResuis="Thefistopionwes selecied”,

lesk

casel /\Wasitthe second radiobuiton™?
m_sResuits =“The second option wes selected.”;

lesk

cae2 [Westthethidradobuton?
m_sResuis="The thid optionwes seleced”;

lesk

cae3 /Wasithefourthradiobution’?
m_sResuits="The fourth optionwes selected.’;

lesk

defauit //\Were none ofthe radio butions selected?
m_sResuits ="No opionwas selected.;

e =:

2

NBHRBNRBOBRNGORE

IUpdete he dialog
UpdateData(FALSE);

M
//MY CODE ENDS HERE
M

BHEREBRER

| 100

Day 5

In the first listing, you called theoModal method of the custom dialog, which displayed
the dialog for the user, waiting for the user to click one of the two buttons on the dialog,

as in Figure 5.9.

If the user clicks the OK button, you copy the message the user typed in

the custom dialog into the edit box variable to be displayed to the user. After updating
the dialog display with the new variable values, you enable the Which Option button, as
shown in Figure 5.10. If the user clicks the Cancel button, none of this is done. The dia-
log display is not changed.

FiGure 5.9.

The custom dialog
allows the user to
enter a message.

Ficure 5.10.

The message entered
on the custom dialog is
displayed for the user.

Message and Dption Dialog

Enter amessage: [This iz & test message

Select an Option
© Dption 1 @ Dplion 3
© Ogion2 € Opfjond

Cancel

1 4 Dialogs
Yes, No, Cancel Ahbort, Rety, lancre
Eile Open

Dislog Results: [This is a test message

Exit

When the user clicks the Which Option button, you pass the radio button variable on the
custom dialog to a switch statement, selecting a message that tells the user which radio
button was selected, as shown in Figure 5.11. Notice that in both of these functions, you
can access the control variables on the custom dialog directly from the main dialog. That
is because the Class Wizard automatically declares the variables associated with controls
as public, making them completely accessible outside the dialog class. You can change
this by placing anee access specifier where the: access specifier is. You don’t

want to place anything after thgarFx_DATA line, where the variables are declared,
because the variables are declared within an MFC Class Wizard macro, which enables
the Developer Studio wizards to locate and manipulate the variables as needed without
interfering with the Visual C++ compiler when you compile your application.

Getting User Feedback—Adding Dialog Boxes to Your Application

101 |

Ficure 5.11. -4 Dialogs
The option selected on _Yeuto Gl | bon ety ano |
the custom dialog is meomn |

displayed for the user, _ Demoae |

Dialog Results: [The third option was selected.

Ezxit

Summary

Today you learned how you can use additional dialog windows in your application to
provide interactive experience for your users. You learned about the options available to
you with the simplevessageBox function, how you can provide your users a variety of
button combinations, and how you can determine which button the user selects. You saw
how you can use this information to determine which path to take in your application
logic.

You also learned about some of the common dialogs that are built into the Windows
operating systems and how they have been encapsulated into C++ classes in the MFC
class library. You learned how you can use the File Open dialog to present the user with
the standard file selection dialog and how you can determine which file the user selected.

Finally, you learned how you can design your own additional dialogs that you can add to
your applications to get information from the user and how you can capture that informa-
tion and use it in your application.

Q&A

Q There was no code added to the custom dialog. Do | have to design my custom
dialogs this way, or can | add code to them?

A The custom dialog windows are no different from the main dialog windows that
you have been using in all your applications so far. If you need to control the
behavior of the dialog on an interactive basis, you can put as much code into the
dialog as you need. You didn't add any code to the custom dialog today because
there wasn’t any need to add any code. The only functionality that the dialog
needed to perform was calling tbgdateData function before closing, which is
automatically done by thenokfunction. Because you did not delete the OK and
Cancel buttons, you already had this functionality built in.

| 102

Day 5

What happens if | specify two or more button combinations in the same

MessageBox function call?

Nothing happens. Your application compiles just fine, but whemékegeBox

function is called, nothing happens. The message box does not open, and the user
does not get to answer the question you are presenting.

How can | integrate the File Open dialog into my application where it opens

in a specific directory that | specify?

ThecreDaog class has a public property calledofn . This property is a struc-

ture that contains numerous attributes of the File Open dialog, including the initial
directory. This structure is defined as thrENFILENAMEStructure in Listing 5.6.

LisTING 5.6. THE OPENFILENAMBTRUCTURE.

1:typedef structtagOFN{/ oin
2 DWORD ISudSze

3 HWND hwndOwner;
4: HINSTANCE hinstance;
5 LPCTSTR |etFle;

6 LPTSTR pstQusomAer;
7. DWVORD nVaxCusHeer,
8 DWORD nHetdex

19 DWORD ICusDaiz;

20: LPOFNHOOKPROC IpfnHook;
21: LPCTSTR IpTemplateName;
22:} OPENFILENAME;

You can set any of these attributes before callingtivedal class method to con-

trol the behavior of the File Open dialog. For instance, if you set the starting direc-
tory to C\Temp before calling theoModal method, as in Listing 5.7, the File Open
dialog opens in that directory.

Getting User Feedback—Adding Dialog Boxes to Your Application 103 |

LISTING 5.7. THE REVISED OnFileopen FUNCTION.

1:void CDiglogsDig:OnFHeopen()

A

3./ TODO: Add your control natification handler code here
4

i

/IMY CODE STARTS HERE

i

0o NG

9 CHeDilogm bFe(TRUE)
10

11 /nisizetesatingdeday

12 m ldFem oinlpstriniialDir="C\Temp\';

13

14: /' Showthe Fie apendialog and capiure the resuit
15: if(m_ldFle. DoModal) =IDOK)

B

17, IGetthefierameseced

18 m sResuts=m ldFe GetFeName);

19 /Updaethedsog

20. UpdateData(FALSE);
2}

2

23 [

24: /MY CODE ENDS HERE
250 i

X}

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the possible return codes that your application might receive from the
MessageBox function call when you specify thes_RETRYCANCEutton combina-
tion?
2. What are the common dialogs that are built into the Windows operating systems
that are defined as MFC classes?

| 104

Day 5

3. What is the difference between a modal dialog and a modeless dialog?

4. How can you display a File Save dialog for the user instead of the File Open dialog
that you did have in your application?

5. Why did you not need to create any functions and add any code to your custom
dialog?

Exercises
1. Modify your application so that it includes the directory with the filename in the
application. (Hint: ThesetFileName function returns the path and filename that was
selected in the File Open dialog.)
2. Add a button on the custom dialog that callsmbageBox function with a Yes or
No selection. Pass the result back to the main application dialog.

WEEK 1

DAY 6

Creating Menus for Your
Application

Most Windows applications use pull-down menus to provide the user a numbe
of functions without having to provide buttons on the window. This enables yo
to provide your users a large amount of functionality while preserving most of
your valuable screen real estate for other stuff.

Today you will learn

- How to create menus for your Visual C++ application
- How to attach a menu to your application’s main dialog window
- How to call application functions from a menu

- How to create a pop-up menu that can be triggered with the right mouse
button

- How to set up accelerator keys for keyboard shortcuts to menus

| 106

Day 6

Menus

Back when the first computer terminals were introduced and users began using computer
software, even on large mainframe systems software developers found the need to pro-
vide the users with some sort of menu of the functions that the computer could perform.
These early menus were crude by today’s standards and were difficult to use and navi-
gate. Menus have progressed since then; they've become standardized in how they are
used and easy to learn.

The software designers that first came up with the idea of a graphical user interface
(GUI) planned to make computer systems and applications easier to learn by making
everything behave in a consistent manner. Menus used for selecting application function-
ality were one part of the GUI design that could be more easily learned if they all

worked the same. As a result, a number of standard menu styles were developed.

Menu Styles

The first menu styles that were standardized are the pull-down and cascading menus.
These are the menus with the categories all listed in a row across the top of the applica-
tion window. If you select one of the categories, a menu drops down below the category,
with a number of menu entries that can be selected to trigger various functions in the
application.

A variation on this menu style is tlhascading menuwvhich has another submenu that
opens to the right of a menu entry. This submenu is similar to the pull-down menu, with
a number of entries that trigger application functions. The menu designers placed no
limit on how many cascading menus can be strung together, but it quickly became clear
to most developers that more than two cascading levels is a little unwieldy.

Eventually, a third style of menu was developed, callpd@upor context mend-a

menu that pops up in the middle of the application area, floating freely above the appli-
cation work area. This is also called a context menu because the specific menu that pops
up is dependent on the selected object or workspace area where the cursor or mouse
pointer is.

Keyboard Shortcut-Enabling Menus

When users began working with keyboard-intensive applications, such as word proces-
sors, it was discovered that taking your hands off the keyboard to use the mouse to make
menu selections dramatically reduced productivity. Software designers decided that they
needed to add keyboard shortcuts for the various menu entries (especially the most fre-
guently used menu options). For this reason, keyboard shortcuts (accelerators) and
hotkeys were added.

Creating Menus for Your Applications 107 |

Hotkeysare letters that are underlined in each menu entry. If you press the Alt key with
the underlined letter, you can select the menu entry that contains the underlined letter.
This is a means of navigating application menus without taking your hands off the key-
board.

For more advanced users, application designers ddgdmbard shortcuior accelera-

tors. An accelerator is a single key combination that you can press to trigger an applica-
tion function instead of having to navigate through the application menus. This allows
advanced users to avoid the overhead of using menus for the most common application
functions. To enable users to learn what accelerators are available in an application, the
key combination is placed on the menu entry that it can be used to replace, positioned at
the right edge of the menu window.

Menu Standards and Conventions

Although there are no standards in how menus are designed, there are a number of con-
ventions for how they are designed and organized. All these conventions are available in
Windows Interface Guidelines for Software Desfmblished by Microsoft for use by
Windows software developers. The purpose of this publication is to facilitate the devel-
opment of consistent application behaviors, which will help accomplish one of the pri-
mary goals behind the development of GUI systems. The conventions are as follows:

- Use single-word menu categories across the top menu bar. A two-word category
can easily be mistaken for two one-word categories.

- The File menu is located as the first menu on the left. It contains all file-oriented
functions (such as New, Open, Save, Print, and so on), as well as the Exit function.
The EXxit option is located at the bottom of the menu, separated from the rest of the
menu entries by a border.

- The Edit menu is next to the File menu. The Edit menu contains all editing func-
tions such as Copy, Cut, Paste, Undo, Redo, and so on.

- The View menu contains menu entries that control and affect the appearance of the
application work area.

- The Window menu is used in Multiple Document Interface (MDI) style applica-
tions. This has functions for controlling the child windows, selecting the current
window, and altering the layout. This menu is the next-to-last menu from the right
end of the menu bar.

- The Help menu is the final menu on the right end of the menu bar. It contains
menu entries that provide instruction or documentation on the application. If the
application has any copyrighted or corporate information that needs to be available
for viewing, this should be located as the final entry on this menu, labeled About
<application name>

| 108 Day 6

Designing Menus

Menus are defined as a resource in Visual C++ applications. Because they are a resource,
you can design menus in the Visual C++ editor through the Resource View tab on the
workspace pane. When you first create a dialog-style application, there won't be a menu
folder in the resource tree, but you can change that.

Nlltﬂ Various aspects of Windows applications are considered to be resources,
including window layouts, menus, toolbars, images, text strings, accelera-
' tors, and so on. All these features are organized in what is known as a
resource file, which is used by the Visual C++ compiler to create these
objects from their definitions. The resource file is a text file with an .rc file-

name extension and contains a textual description of all the various objects,
including IDs, captions, dimensions, and so on.
Some resources, such as images and sounds, cannot be described in text, but

have to be stored in a binary format. These resources are stored in individ-
ual files, with the filenames and locations included in the resource file.

Creating a Menu

Creating a menu is not difficult. You will follow several steps:

1. Create the application that will house the menu.

n

Add a menu resource to your project.
3. Customize the menu resource to include the menu items for your application.
4. Add functionality to your menu by connecting routines to your menu items.

Creating the Application
For the example in this chapter, you will create a simple dialog-style application that
contains a single button and a menu. To create your application, do the following:
1. Create a new MFC AppWizard application, naming the projedis.
2. Select the default AppWizard settings on all screens. For the dialog title, enter
Menus.
3. When the AppWizard has generated your application shell, delete all the controls
from the dialog.
4. Add a single button to the dialog. Name the butborexiT , and specify the cap-
tion ase&i .

Creating Menus for Your Applications 109 |

5. Add a function to the button using the Class Wizard. Change the code in this func-
tion to callonok Remember, thenokfunction causes the application to close.

Nlllﬂ If you don’t remember how to add the onOKfunction, review the section
) “Closing the Application™ on Day 2, “Using Controls in Your Application,”

for an example.

Adding and Customizing a Menu

Now that you have the basic application built, it's time to start creating a menu for the
application. To create a menu, you will first add a menu resource to your project. When
you add the resource, Visual C++ automatically invokes the Menu Designer, which
allows you to customize the menu. The following steps show you how to add and cus-
tomize a menu:

1. Select the Resource View tab in the workspace pane.

2. Select the project resources folder at the top of the tree; in your example, this is
Menus.

3. Right-click the mouse to bring up a pop-up menu.
4. Select Insert from the pop-up menu.

5. In the Insert Resource dialog that opens, select Menu from the list of available
resources, as in Figure 6.1. Click the New button.

FlGURE 61 Insert Resource
Resource type: -Naw
The Insert Resource @ Acceleralor (|
d. | [Bitmap {mpott
lalog. T Cursor B
Dialog —
Icon ancel
B
abe Sting Table
=4 Toolbar
Wersion

6. The Menu Designer opens in the editing area of Developer Studio. The first menu
spot is highlighted, as shown in Figure 6.2.

| 110 Day 6

FIGURE 6.2. i Menus - Miciosoft Visual C++ - [Menus.ic - IDR_MENU1 [Menu)]
Fie Edt View Inseit Poject Buld Took Window Help -l&] x|
An em menu. E
pty | ‘Dﬂ- (=)= | & 2 | v 2. ”ﬁ]ﬁl@f ‘ﬁﬂtlTHSTVLE_FLAT ﬂ|"]n

CMenusDlg [T 8 class members) [=I[@ CMenusDIg [H 2N Uy
) .
=23 Menus resources =
() Dislog
(D lean
=43 Menu

Ey[IDR_MENUT
(] String Table
(] Version

=13 Class. |Heco. =] File¥i..

lelx

Build 4 Debug) Findin Files1 j Findin Files2 7] 4| |

=

I J
e

/

Ready

At this point, you have created the menu resource and you are ready to customize it by
adding menu items. To add a menu item, follow these steps:

1. Right-click the mouse on the highlighted area and select Properties from the pop-
up menu.

2. Enter the menu item’s Caption. For this example, eferand close the
Properties dialog.

Nﬂtﬂ You are in the menu Properties dialog to specify the text that the user will
: see on the menu bar while the application is running. Because the Pop-up
check box is checked (by default on any menu items on the top-level menu

bar), this menu element doesn’t trigger any application functionality and
thus doesn’t need to have an object ID assigned to it.

3. The first drop-down menu location is highlighted. To add this menu item, right-
click the mouse again on the highlighted area and select Properties from the pop-
up menu.

4. Enter an ID and caption for the menu item. For this example, enter
IDM_FILE_HELLO for the ID andgHelo for the Caption. Close the dialog.

Creating Menus for Your Applications 111 |

Nﬂtﬂ This time in the menu Properties dialog, you not only specify the text that
, the user will see when the menu is opened from the menu bar, but you also
' specify the object ID that will be used in the event message handler to
determine what function receives each of the menu events.

At this point you have created a menu with a single menu item. You can continue to add
menu items by repeating steps 3 and 4 of the preceding list for each of the highlighted
areas. You can also add separators onto the mesepaatoris a dividing line that runs
across the menu to separate two functional areas of menu selections. To add a separator,
perform the following steps:

FIGURE 6.3 Menu ltem Propertis

% Generdl | Evtended Sives |

107 | =] Caption: [

I lecive. Breaks —

= Chiecked = Erged. 5 HEl

Specifying a menu sep-
arator.

ot |

1. Select the highlighted area where you want the separator to be placed. In the exam-
ple you created, the second drop-down menu location should be highlighted. Open
the properties dialog as you did in step 3 in the preceding list. To add a separator,
simply select the Separator option, as shown in Figure 6.3, and close the dialog.

To complete your sample program, follow the same steps | just described to add an Exit
item to your File menu and a second menu called Help with one menu item called
About. The following steps, which resemble the preceding list of steps, walk you through
adding these additional items:

1. Open the properties dialog for the third drop-down location and specify the ID as
IDM_FILE_EXIT and the caption a=xt . Close the dialog.

2. Select the second top-level menu location and open the properties dialog. Specify.
the caption agHelp and close the dialog.

3. Open the properties dialog for the first drop-down location on the second top-level
menu. Specify the ID as_HELP_ABOUTand the caption asabout . Close the dia-
log.

At this point, your menu is created; however, it is not attached to your application.

| 112

Day 6

Attaching the menu to
the dialog window. Fort name: M5 Sans Seif [pE—

Attaching the Menu to Your Dialog Window

You now have a menu that you can use in your application. If you compile and run
your application at this point, however, the menu doesn’t appear. You still need to
attach the menu to your dialog window. You can attach a menu by following these
steps:

1. Open the dialog painter by double-clicking the primary application dialog in
the Dialog folder in the Workspace pane. For this example, double-click on
IDD_MENUS_DIALOG

2. Select the entire dialog window, making sure that no controls are selected, and
open the dialog’s properties dialog. (What you are doing is opening the prop-
erties for the dialog window itself, not for any of the controls that might be on
the window.)

3. Select the menu you have designed from the Menu drop-down list box, as
shown in Figure 6.4.

F|G URE 6 X 4 . Dialog Properties

R General | Stles | More Styles | Estended Stles |

1D [DD_DAYE DIALOG =] Caption: [Menus

Fontsize: 8
Font... % Pos: O ¥ Pos: |0 ClEss rame; !

If you compile and run your application, you find that the menu is attached to the appli-
cation dialog, as shown in Figure 6.5. You can select menu entries as you do with any
other Windows application—with one small difference. At this point, when you select
one of the menu entries, nothing happens. You still need to attach functionality to your
menu.

FIGURE 6.5. & Menus X

Help

The menu is now part | &
of the application dia-

Attaching Functionality to Menu Entries

Now that you have a menu as part of your application, it sure would be nice if it actually
did something. Well, before your menu can do anything, you have to tell it what to do,
just like everything else in your Visual C++ applications. To attach some functionality to
your menu, follow these steps:

Creating Menus for Your Applications 113 |

FIGURE 6.6. Adding a Class B

The menu

of the application.

. IDR_MENLI1 is a new resource. Sinceitisa
MU [esoUIce you may want to select an
IS now part existing view class to associate it with. You can Canee]

also create a new class for it

" Create a new class

(% Gelect an existing ciass

1. Open the Menu Designer to your menu.
2. Open the Class Wizard from the View menu.
3. The Adding a Class dialog is displayed for you, just as it was yesterday when you

FIGURE 6.7.

added a second dialog. Leave the dialog selection on Select an Existing Class and
click OK (see Figure 6.6).

Yesterday, when you were adding a second dialog window to your application, you
needed to create a new C++ class for that window. For today’s menu, you want to
attach it to the existing C++ class for the dialog window to which the menu is
attached.

Choose the C++ class of the primary dialog window from the list of available
classes in the Select Class dialog. For this example, ssleqisDlg, as shown in
Figure 6.7. This tells Visual C++ that all the functionality that you will call from

the various menu entries is part of the same dialog class of the window that it's
attached to.

Select Class [21x]

The Menu resource [DR_MENU1 -
R

The Select Class dia- e b e e

log.

lst below or bring & new class into
ClassWizard using Create Class.

Class fist

For the menu elements that you want to use to trigger new functions in your application,
you can add event-handler functions through the Class Wizard, just as you can with con-
trols that you place on the dialog window.

For this example, add a function for tib&_FILE_HELLO object (the Hello menu) on the

COM

MANBvent message. Name the funct@relo and add the code in Listing 6.1 to

the function.

| 114 Day 6

LISTING 6.1. THE ONHELLO FUNCTION.

1: vod CMenusDIg:OnHello()

A

3. //TODO: Add your command handler code here
4

5. M

6: //MY CODE STARTS HERE
7 I

8

9 //Displayamessagefortheuser

10: MessageBox(Helothere’, ‘Helo');
KK

12: i

13: /MY CODE ENDS HERE
14 M

15}
N“tﬂ The COMMANBvent message is the message that is passed to the application
window when a menu entry is selected. Placing a function on this event
' message has the same effect as placing a function on the menu entry selec-
tion.

You can call existing event handlers from menu elements by adding the existing function
to the meniccommMANBvent. You can do this by adding a function to the menu object ID
and then specifying the existing function name instead of accepting the suggested func-
tion name.

To reuse thensdi function for the Exit menu element, reopen the Menu Designer and
then reopen the Class Wizard. When the Class Wizard is displayed, add a function for
theIDM_FILE_EXIT object on thecoMMANBvent message. Do not accept the default
function name presented to you by the Class Wizard. Enter the functioroname

This automatically attaches the existingit function that you created with your Exit
button earlier.

To round out your example’s functionality, add a function toibhelELP_ABOUTObject
on thecoMmMANBvent message. Edit the function as in Listing 6.2.

LISTING 6.2. THE ONHELPABOUTFUNCTION.

1: void CMenusDIg::OnHelpAbout()

A

3. //TODO: Add your command handler code here
4

Creating Menus for Your Applications 115 |

M
//MY CODE STARTS HERE
M

I/ Dedlare aninstance of the Aboutwindow
CAboutDig digAbout;

. I/ Show the About window
digAbout DoModal();

ERREBoeom~nowm

15: i

16: /MY CODE ENDS HERE
7. i

18}

You attached the File | Exit menu entry to an existing function that closes the application.
On the File | Hello, you added a new function that calledtiieageBox function to dis-

play a simple message to the user. With Help | About, you added another function that
declared an instance of the About dialog window and callagbitsdal method.

If you compile and run your application, you find that all the menu entries are working.
If you select Help | About, as shown in Figure 6.8, you see the application About dialog
(see Figure 6.9). If you select File |Hello, you seelee message box, as shown in
Figure 6.10. And if you select File | Exit, your application closes.

FIGURE 6.8. e
The Help | About
menu entry.

FIGURE 6.9.
1 Menus Version 1.0
The About dialog. s

FIGURE 6.10.

Hello there

The Hello there mes- '
sage box.

| 116

Day 6

N t There are two dialog event messages that you can use to trigger your con-
ole ,)
, text menu. The event that you’d expect to use is the WM_RBUTTONDOWN

Creating Pop-Up Menus

Most Windows applications have what are called either pop-up or context menus, which
are triggered by the user right-clicking an object. These are ¢alfedip menubecause

they pop up in the middle of the application area, not attached to a menu bar, the window
frame, or anything else on the computer screen (not counting the mouse pointer). These
menus are often referred to@mtext menubecause the contents of a menu depend on

the context in which it is opened; the elements available on the menu depend on what
objects are currently selected in the application or what the mouse pointer is positioned
over.

To provide a pop-up menu in your application, you have two approaches available. You
can either design a menu specifically for use as a pop-up menu, or you can use one of
the pull-down menus from the primary menu that you have already designed. If you
design a menu specifically for use as a pop-up menu, you will need to skip the top-level,
menu bar element by placing a space or some other text in the caption, knowing that it
will not be seen. You will see how this works when you build a custom menu specifically
for use as a pop-up menu on Day 11, “Creating Multiple Document Interface
Applications,” in the section “Adding a Context Menu.”

Every drop-down portion of a menu can also be used as a pop-up menu. To use it in this
way, you must get a handle to the submenu (the drop-down menu) and then call the
TrackPopupMenu function on the submenu. The rest of the pop-up menu functionality is
already covered in the other menu building and coding that you have already done. To
add a pop-up menu to your application, follow these steps:

1. Using the Class Wizard, add a function for\he_CONTEXTMERVeENt message
in your dialog window.

event, which is triggered by the user right-clicking. The other event that can
(and should) be used is the WM_CONTEXTME NMent, which is intended for
use specifically to trigger a context menu. This event is triggered by a couple
user actions: One of these is the release of the right mouse button, and
another is the pressing of the context menu button on one of the newer
Windows-enabled keyboards.

2. Edit the function, adding the code in Listing 6.3.

Creating Menus for Your Applications 117 |

LISTING 6.3. THE ONCONTEXMENUFUNCTION.

1: void CMenusDIg:: OnContextMenu(CWnd* pWnd, CPoint point)
// TODO: Add your message handler code here

M
/MY CODE STARTS HERE
My

IDecbrelbcavarietes
CMenu*m_IMenu; // Apointer to the menu
CPointm_pPoint; // Acopy ofthe mouse pasiion

1/ Copythe mouse pasiion b alocal variable
m_pPoint=poirt;

15. //Convertthe postion toa screen position

16: ClientToScreen(&m_pPoint);

17: /| Getapointer to the window menu

18: m_IMenu-GetMenu();

19 /Getaponterothefistsubmenu

20: m_IMenu = m_IMenu->GetSubMenu(0);
21: // Showthe Popup Menu

22: m_IMenu->TrackPopupMenu(TPM_CENTERALIGN + TPM_LEFTBUTTON,
23 m pPontx,m_pPoity, this, NULL);

24

25: i

26: //MY CODE ENDS HERE

27 i

28}

SEREBooNoumrwN

ai

~

In Listing 6.3, the first thing that you did was make a copy of the mouse position. This

mouse position is a relative position within the window area. It must be converted to an
absolute position on the entire screen area for displaying the pop-up menu. If you don't
convert the position coordinates, you can’t predict where your pop-up menu will appear:

After you convert the position to an absolute position, you get a pointer to the window
menu. This pointer should always be a local pointer within the function where you are
going to use it because the location of the menu might change as the application runs.
From the menu pointer, you next get a pointer to the first drop-down menu (submenu
numbering begins with 0, like just about everything else in C/C++). After you have a
pointer to the submenu, you can treat it as a reguianuclass instance.

The final piece in this puzzle is the call to tt)eenumember functiorrackPopupMenu .

| 118

Day 6

This function takes five arguments and uses them to determine where and how to show
the pop-up menu. The first argument is a combination of two flags. The first flag,
TPM_CENTERALIGNcenters the pop-up menu on the mouse point. You can also use
TPM_LEFTALIGNOr TPM_RIGHTALIGNinstead. These flags line up the left or right edge of
the pop-up menu with the mouse position. The second part of this flag combination is
TPM_LEFTBUTTONWhich makes the pop-up menu trigger from the left mouse button.
You can also usePM_RIGHTBUTTORD make the menu trigger from the right mouse but-
ton.

The second and third arguments to thekPopupMenu function specify the screen posi-

tion for the pop-up menu. This is the absolute position on the screen, not a relative posi-
tion within the window area. The fourth argument is a pointer to the window that
receives the menu command messages. The final argument is a rectangle that the user
can click without closing the pop-up menu. By passiogL, you specify that if the user

Ficure 6.11. 5 Monus

File Help
The pop-up menu in
action.

clicks outside the pop-up menu, the menu closes. This code enables you to include a
pop-up menu in your application, as shown in Figure 6.11.

Creating a Menu with Accelerators

One of the original keyboard shortcuts for selecting menu entries were accelerator keys.
As mentioned earlier in the chapter, accelerator keys are specific key combinations, usu-
ally the Ctrl key combined with another key, or function keys, that are unique within the
entire application. Each of these key combinations triggers one menu event function.

The way that accelerator keys work is similar to the way menus work. They are also an
application resource that is defined in a table in the resource tab of the workspace pane.
Each table entry has an object ID and a key code combination. After you define the
accelerators, you can attach functionality to the object IDs. You can also assign accelera-
tor entries the same object ID as the corresponding menu entry so that you have to define
only a single entry in the application message map.

After you define all your accelerator keys, you can add the key combination to the menu

Creating Menus for Your Applications 119 |

entry so that the user will know about the accelerator key combination. Addhe end

of the menu entry caption, followed by the key combination.\The replaced in the

menu display by a tab, which separates the menu caption from the accelerator key com-
bination.

Unfortunately, accelerator keys don’t work in dialog-style windows, so you cannot add
them to today’s application. You will learn how to attach accelerator keys to menus in a
few days when you learn about single and multi-document interface style applications.

Summary

Today you learned about menus in Visual C++ applications. You learned how to use the
tools in Visual C++ to create a menu for use in your application and then how to attach
the menu to a window in your application. After you had the menu attached to your win-
dow, you learned how to attach functionality to the various menu entries. Later in the
day, you learned how you can use a portion of your menu as a pop-up, or context, menu.
Finally, you learned how accelerator keys are added to most applications.

Q&A

Q Do I have to name my menu items the same names everyone else uses?
For example, a lot of applications use File and Help. Can | name my menus
something else?

A You can name your top-level menus anything you want. However, there are ac-
cepted menu name conventions that place all file-oriented functionality under a
menu labeled File and all help-related functionality under a menu labeled Help. If
you have a menu with entries such as Broccoli, Corn, and Carrots, you will proba-
bly want to call the menu Vegetables, although an equally valid label would be
Food or Plants. In general, if you want to make your application easy for your
users to learn, you will want to use menu labels that make sense for the entries 0
n the pull-down portion of the menu.

Why can't | specify a single character as an accelerator key?

O

A The single character would trigger thva1_KEYnessages, not the menu messages.
When the designers of Windows were deciding how accelerator keys would work,
they decided that single-character keys would most likely be input to the active

| 120

Day 6

application. If they had allowed single-character accelerators, Windows wouldn't
be able to determine whether the character was input or a shortcut. By requiring a
key combination (with the exception of function keys), the designers ensured that
Windows won't have to make this determination.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions are provided in Appendix B, “Answers.”

Quiz

1. What event message does a menu selection send to the window message queue?

PN

How do you attach a menu to a dialog window?
Which existing class do you specify for handling event messages for the menu?
What event message should a pop-up menu be triggered by?

Exercises

1.

Add a button to the main window and have it call the same function as the Hello
menu entry.

Add a pop-up menu to your application that uses the Help drop-down menu as the
pop-up menu.

WEEK 1

DAY 7

Working with Text
and Fonts

In most Windows applications, you don't need to worry about specifying fonts,
much less their weight, height, and so on. If you don't specify the font to be
used, Windows supplies a default font for your application. If you do need to
use a particular font, you can specify a font to use for a particular dialog win-
dow through the dialog properties. Sometimes, however, you want or need to
control the font used in your application. You might need to change the font
being used or allow the user to select a font to use in a particular instance. It is
for those circumstances that you will learn how to change and list fonts today.
Among the things that you will learn are

* How to build a list of available fonts.
« How to specify a font for use.
e How to change fonts dynamically.

| 122

Day 7

Finding and Using Fonts

One of the first things that you need to know when working with fonts is that not every
system that your applications run on will have the same fonts installed. Fonts are speci-
fied in files that can be installed and removed from Windows systems with relative ease.
Every computer user can customize his system with whatever combination of fonts he
wants. If you specify a font that doesn't exist on the system, Windows will choose either
the system default font or what the operating system considers to be a reasonably close
alternative font.

What you can do instead is ask the operating system what fonts are available. This
method allows you to make your own decisions on which font to use or let the user make
the decision. When you ask what fonts are available, you can limit the types of fonts that
are listed, or you can choose to list them all and select various fonts based on various
attributes.

Listing the Available Fonts

To get a list of all available fonts on a computer, you call a Windows API (Application
Programming Interface) function calleslmFontFamiiesex . This function tells Windows

that you want a list of the fonts on the system. Before you start using this function and
expecting it to pass you a big list of available fonts, you need to understand how it gives
you the list.

Callback Functions

One of the key arguments to th@mFontFamiiesEx ~ function is the address of another
function. This second function is what is known as a callback function, which is called

by the operating system. For almost every enumeration function in the Windows operat-
ing system, you pass the address of a callback function as an argument because the call-
back function is called once for each of the elements in the enumerated list. In other
words, you have to include a function in your application to receive each individual font
that is on the system and then build the list of fonts yourself.

When you create this function to receive each font and build your list, you cannot define
your callback function in any way you want. All callback functions are already defined in
the Windows API. You have to use a specific type of callback function to receive the list
of fonts. For getting a list of fonts, the function typ&ismrFontFampProc . This function

type specifies how your function must be defined, what its arguments must be, and what
type of return value it must return. It does not specify what your function should be
named or how it needs to work internally. These aspects are left completely up to you.

Working with Text and Fonts 123 |

The EnumFontFamiliesEx Function

The EnumFontFamiiesex ~ function, which you call to request the list of available fonts,
takes five arguments. A typical use of this function follows:

I Create adevice context variable

CCienDCdc ths);

Il Declare a LOGFONT structure

LOGFONT ILogFont;

1 Speciy the character set

ILogFont.fCharSet = DEFAULT_CHARSET;

I Spediyaforis

ILogFont.lfFaceName[0] = NULL;

//'Must be zero unless Hebrew or Arabic

ILogFontifPitchAndFamily =0;

I'Enumerate the font families

“EnumFontFamiliesEx((HDC) dc, &lLogFont,
(FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);

The first argument is a device context, which can be an instance afighec class.

Every application running within the Windows operating system has a device context.
The device context provides a lot of necessary information to the operating system about
what is available to the application and what is not.

The second argument is a pointer too&FONTBtructure. This structure contains infor-
mation about the fonts that you want listed. You can specify in this structure which char-
acter set you want to list or whether you want all the fonts in a particular font family. If
you want all the fonts on the system, you passLin the place of this argument.

The third argument is the address of the callback function that will be used to build your
list of fonts. Passing the address of your callback function is a simple matter of using the
function name as the argument. The Visual C++ compiler takes care of replacing the
function name with the function address. However, you do need to cast the function as
the type of callback function that the function requires.

The fourth argument islepARAMvalue that will be passed to the callback function. This
parameter is not used by Windows but provides your callback function with a context in
which to build the font list. In the example, the value being passed is a pointer to the
window in which the code is being run. This way, the callback function can use this
pointer to access any structures it needs to build the list of fonts. This pointer can also be
the first node in a linked list of fonts or other such structure.

The fifth and final argument is alwaygs This reserved argument may be used in future
versions of Windows, but for now, it must beso that your application passes a value
that won’t cause the function to misbehave.

| 124

Day 7

The EnumFontFamProc Function Type

When you create your callback function, it must be defined as an independent function,
not as a member of any C++ class. A typmaimFontFamProc function declaration

follows:

int CALLBACK EnumFontFamProc(

LPENUMLOGFONT Ipelf,

LPNEWTEXTMETRIC Ipntm,
DWORD nFontType,

long IParam)
{

I Create a pointer to the dialog window
CMyDlg* pwnd = (CMyDIg*) IParam;

/1 Add the fort name to the list box

pWnd->m_ctiFontlist AddStriing(ipelf->elfLogFontfFaceName);

/I Retum 1 to continue font enumeration

retmX;
}
The first argument to this function is a pointer teEalWMLOGFONTEStructure. This
structure contains information about the logical attributes of the font, including the font
name, style, and script. You may have numerous fonts listed with the same name but dif-
ferent styles. You can have one for normal, one for bold, one for italic, and one for bold
italic.

The second argument is a pointer toE&V TEXTMETRICEStructure. This structure con-

tains information about the physical attributes of the font, such as height, width, and
space around the font. These values are all relative in nature because they need to scale
as the font is made larger or smaller.

The third argument is a flag that specifies the type of font. This value may contain a
combination of the following values:
* DEVICE_FONTYPE
* RASTER_FONTYPE
* TRUETYPE_FONTYPE
Finally, the fourth argument is the value that was passed intndinEontFamiliesEx
function. In the example, it was a pointer to the dialog on which the list of fonts is being

built. If you cast this value as a pointer to the dialog, the function can access a list box
control to add the font names.

The return value from this function determines whether the listing of fonts continaes. If
is returned from this function, the operating system quits listing the available fonts. If

Working with Text and Fonts 125 |

is returned, the operating system continues to list the available fonts.

Using a Font

To use a particular font in an application, you call an instance afrthe class. By call-

ing thecreateFont method, you can specify the font to be used, along with the size, style,
and orientation. Once you've created a font, you can tell a control or window to use the
font by calling the object’'setFont method. An example of this process follows:

CFontm_fFont;, // The fontto be used

/I Create the font to be used

m_fFont.CreateFont(12, 0, 0, 0, FW_NORMAL,
0, 0, 0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,
CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
FF_DONTCARE, m_sFontName);

"I] The CFont variable used in the previous code should be declared as a mem-

ber variable of the class in which this code is placed. In the sample code, it is
declared above where it is used to show how it is declared. This variable
should not be declared or used as a local variable in a function.

I Setthefontforthe display area
m_ctiDisplay Text.SetFont(&m_fFont);

Seems simple enough—ijust two function calls—but thateFont function needs an

awful lot of arguments passed to it. It is these arguments that makeatérent

method a flexible function with a large amount of functionality. Once you create the font,
using it is a simple matter of passing the font tos#nt method, which is a member

of thecwndclass and thus available to all window and control classes in Visual C++. This
means that you can use this technique on any visible object within a Visual C++ application.

To understand how th&eateFont function works, let’s look at the individual arguments
that you have to pass to it. The function is defined as

BOOL CreateFont(
nnHegh,
ntnWidth,
int nEscapement,
ntnOriertaiion,
intn\Weight,

| 126

Day 7

BYTEbisic

BYTE bUnderiine,

BYTE cStrikeOut,

BYTE nCharSet,

BYTE nOutPrecision,

BYTE nClipPrecssion,

BYTE nQualty,

BYTE nPitchAndFamily,
LPCTSTR IpszFaceName);

The first of these argumentsteight , specifies the height of the font to be used. This
logical value is translated into a physical value. If the valoe asreasonable default
value is used. If the value is greater or less thahe absolute height is converted into
device units. It is key to understand that height valua® @ind-10 are basically the
same.

The second argumentyidth , specifies the average width of the characters in the font. This
logical value is translated into a physical value in much the same way as the height is.

The third argumentEscapement , determines the angle at which the text will be printed.
This value is specified in 0.1-degree units in a counterclockwise pattern. If you want to
print vertical text that reads from bottom to top, you supply as the value for this
argument. For printing normal horizontal text that flows from left to right, supply

this value.

The fourth argumentoieniaion , determines the angle of each individual character in

the font. This works on the same basis as the previous argument, but it controls the out-
put on a character basis, not a line-of-text basis. To print upside-down characters, set this
value t01800. To print characters on their backs, set this valisto

The fifth argumentpweight , specifies the weight, or boldness, of the font. This can be

any value frono to 1000, with 1000 being heavily bolded. You can use constants

defined for this argument to control this value with ease and consistency. These constants
are

listed in Table 7.1.

TABLE 7.1. FONT WEIGHT CONSTANTS.

Constant Value
FW_DONTCARE 0
FW_THIN 100
FW_EXTRALIGHT 200

FW_ULTRALIGHT 200

Working with Text and Fonts 127 |

FW_LIGHT 300
FW_NORMAL 400
FW_REGULAR 400
FW_MEDIUM 500
Constant Value
FW_SEMIBOLD 600
FW_DEMIBOLD 600
FW_BOLD 700
FW_EXTRABOLD 800
FW_ULTRABOLD 800
FW_BLACK 900
FW_HEAVY 900

The actual interpretation and availability of these weights depend on the font. Some fonts
only haveFrw_NORMAIFW_REGULARandrFw_BoOLDveights. If you specifgw_DONT-
CARE a default weight is used, just as with most of the rest of the arguments.

The sixth argumentit |, specifies whether the font is to be italicized. This is a boolean
value;o indicates that the font is not italicized, and any other value indicates that the font
is italicized.

The seventh argumemtndeiire , specifies whether the font is to be underlined. This is
also a boolean value;indicates that the font is not underlined, and any other value indi-
cates that the font is underlined.

The eighth argumenéstikeout , specifies whether the characters in the font are dis-
played with a line through the character. This is another boolean value using a non-zero
value asTRUEando asFALSE

The ninth argumentcharSet , specifies the font’s character set. The available constants
for this value are listed in Table 7.2.

TABLE 7.2. FONT CHARACTER SET CONSTANTS.

Constant Value
ANSI_CHARSET 0
DEFAULT_CHARSET 1
SYMBOL_CHARSET 2

SHIFTJIS_CHARSET 128

| 128

Day 7

OEM_CHARSET 255

The system on which your application is running might have other character sets, and the
OEM character set is system dependent, making it different for systems from different
manufacturers. If you are using one of these character sets, it is risky to try to manipulate
the strings to be output, so it's best to just pass along the string to be displayed.

The tenth argumentpurredson , specifies how closely the output must match the
requested font’s height, width, character orientation, escapement, and pitch. The available
values for this argument are

* OUT_CHARACTER_PRECIS

e OUT_DEFAULT_PRECIS

* OUT_DEVICE_PRECIS

e OUT_RASTER_PRECIS

e OUT_STRING_PRECIS

* OUT_STROKE_PRECIS

e OUT_TT_PRECIS
TheOUT_DEVICE_PRECIS OUT_RASTER_PRECISandouT_TT_PRECISvalues control which
font is chosen if there are multiple fonts with the same name. For instance, if you use the
OUT_TT_PRECISvalue and specify a font with both a TrueType and raster version, then

the TrueType version is used. In fact, ther_TT_PRECISvalue forces the system to use a
TrueType font, even when the specified font does not have a TrueType version.

The eleventh argumentpPedsn |, specifies how to clip characters that are partially
outside of the display area. The values for this argument are

* CLIP_CHARACTER_PRECIS

* CLIP_DEFAULT_PRECIS

* CLIP_ENCAPSULATE

* CLIP_LH_ANGLES

* CLIP_MASK

* CLIP_STROKE_PRECIS

e CLIP_TT_ALWAYS

These values can lmred together to specify a combination of clipping techniques.

The twelfth argumentQuaty , specifies the output quality and how carefully the GDI
(Graphics Device Interface) must attempt to match the logical font attributes to the phys-

Working with Text and Fonts 129 |

ical font output. The available values for this argument are

e DEFAULT_QUALITY

* DRAFT_QUALITY

* PROOF_QUALITY
The thirteenth argumentpichandramiy , specifies the pitch and family of the font. This
value consists of two values that areed together to create a combination value. The
first set of available values is

e DEFAULT_PITCH

* VARIABLE_PITCH

* FIXED_PITCH
This value specifies the pitch to be used with the font. The second set of available values
specifies the family of fonts to be used. The available values for this portion of the argu-
ment are

e FF_DECORATIVE

* FF_DONTCARE

* FF_MODERN

* FF_ROMAN

* FF_SCRIPT

* FF_SWISS
The font family describes in a general way the appearance of a font. You can use the font
family value to choose an alternative font when a specific font does not exist on a system.
The final argumentpszFacename , is a standard C-style string that contains the name of

the font to be used. This font name comes from the font information received by the
EnumFontFamProc callback function.

Using Fonts

Today you will build an application that allows the user to select from a list of available
fonts to be displayed. The user will be able to enter some text to be displayed in the
selected font, allowing the user to see what the font looks like.

Creating the Application Shell

To begin today’s application, follow these steps:

1. Create a new project workspace using the MFC AppWizard. Name the project

130 Day 7

FIGURE 7.1. pay7.

lThe maindigied the same defaults that you used for the previous day’s projects, giving the
ayout. application a title ofonts .

3. Design the main dialog as in Figure 7.1, using the properties in Table 7.3.

¥ Day? - Microsoft Visual C++ - [Day?.rc - IDD_DAY7_DIALDG [Dialog]]
ZlFile Edt View Inset Project Build Layout Tools Window Help & x|
2 = $ 2~ ™ B R G4 [laglOGFONT 1[5
[Coay701n ~][ioC_EAar v][Br_CLICKED A~ ! 2
1= N T T T P T I PRI
- f'jv;;:;w'm‘ [Evesometor e |
= lcon . Im!:l
_'IJ : Select a Font x
T : o
: ™o
= x ™
] EH
] @ B
: ¢ m
: Font Sample - B
- = e
i = HE
I e = * ab
4 Class. | 4] Reso | 2] Filevi : & = -
g = m 5 C®
ﬁDay?.ExE — 0 error(s). 0 warning(s) %
» I\ Build { Debug & Find in Files 1) Find in Files2 /] 4| | v
Ready 191,178 7 43x14
TABLE 7.3. CONTROL PROPERTY SETTINGS.
Object Property Setting
Static Text ID IDC_STATIC
Caption &Enter Some Text:
Edit Box ID IDC_ESAMPTEXT
Static Text ID IDC_STATIC
Caption &Selecta Font
List Box ID IDC_LFONTS
Group Box ID IDC_STATIC
Caption Font Sample
Static Text ID IDC_DISPLAYTEXT
(inside group box; size to Caption Empty string

fill the group box)
Command Button ID IDC_EXIT

Working with Text and Fonts 131 |

Caption E&xi

4. Using the Class Wizard, add the variables in Table 7.4 to the controls on the dialog.

TABLE 7.4. CONTROL VARIABLES.

Object Name Category Type
IDC_DISPLAYTEXT m_ctiDisplayText Control CStatc
m_strDisplayText Value CSting
IDC_LFONTS m_ctiFontList Control ClistBox
m_strFontName Value CSting
IDC_ESAMPTEXT m_strSampText Value CSting

5. Attach a function to thc_exiT button to close the application, as in the previous
day’s applications.

Building a List of Fonts

To be able to create your list of fonts, you need to add your callback function to get each
font list and add it to the list box that you placed on the dialog window. To do this, edit
theDay7Digh header file and add the function declaration in Listing 7.1 near the top of
the file. This function cannot be added through any of the tools available in Visual C++.
You need to open the file and add it yourself.

LISTING 7.1. THE CALLBACK FUNCTION DECLARATION IN THE Day7DIg.h HEADER FILE.

1: #if _MSC_VER > 1000

2: #pragma once

3: #endif //_MSC_VER > 1000

4

5: int CALLBACK EnumFontFamProc(LPENUMLOGFONT Ipelf,
6: LPNEWTEXTMETRIC Ipntm, DWORD nFontType, long IParam);
7

SUMHHITT i

9://CDay7Dig dislog
10

11: dass CDay7Dig - public CDialog
12.
13.
14.

132 Day 7

Once you add the function declaration to the header file, opevafimg.cpp source-
code file, scroll to the bottom of the file, and add the function definition in Listing 7.2.

LISTING 7.2. THE CALLBACK FUNCTION DEFINITION IN THE Day7DIg.cop SOURCE FILE.

1: int CALLBACK EnumFontFamProc(LPENUMLOGFONT Ipelf,
2: LPNEWTEXTMETRIC Ipntm, DWORD nFontType, long IParam)
£t

4: //Creste apointerto the dialog window

5: CbDay7DIg* pWnd = (CDay7DIg*) IParam;

5

7. IAddthefontrameothelstbox

8 pWnd>m_ctiFontList AddSting(petf->elfiLogFont.fFaceName);

9. //Retum 1 to continue fontenumeration

10 eunl;

1}

Now that you have the callback function defined, you need to add a function to request
the list of fonts from the operating system. To add this function, follow these steps:
1. Select the Class View tab on the project workspace pane.

2. Select theDay7DIg class, right-click the mouse, and select Add Member Function
from the pop-up menu.

3. Specify the function type asi , the function declaration a@Boti , and the
access asiee . Click the OK button to close the dialog and add the function.

4. Edit the function definition as in Listing 7.3.

LisTING 7.3. THE AFonList FUNCTION.

1:vod CDay7Dig:HIFont_ist)

X

3 LOGFONTTH;

4

5. /niiaizethe LOGFONT strudLe

6. [fCharSet=DEFAULT_CHARSET;
7. sropyffFaocName,),

8 [Cearteltbox

9. m_diFontl istResetContent();

10: /Createadevice contextvariabie

111 CCenDCdc(his);

12 /Enumerate the fontfamiies

13 :EnumFontFamiiesEx(HDC) de, &,
14: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
15}

Working with Text and Fonts 133 |

5. Edit theonniDaog ~ function to call theFroti function, as in Listing 7.4.

LISTING 7.4. THE EDITED OninitDialog FUNCTION.

1: BOOL CDay7DIg::OnlnitDialog()
2

3 CDalogrOnniDeby);

4 .

5.

G .

7. /TODO. Addextraintaizaionhere
8

o M

10: //MY CODE STARTS HERE
13 M

12

13 /Htefortitox

14 HroiH)

15

M

/MY CODE ENDS HERE
M

reim TRUE; //retum TRUE unlessyou setthe focustoacontrol

BBBEESG

}

If you compile and run your application now, you should find that your list box is filled
with the names of all the fonts available on the system. However, there’s one aspect of
this list that you probably don’t want in your application. Figure 7.2 shows many dupli-
cate entries in the list of fonts in the list box. It would be nice if you could eliminate

FIGURG{uge duplicates and have only one line per font.
Listing all the fonts in

the system.
Yy ¥ Fonts o=
Enter Some Text ||
Select aFont [Abadi MT Condensed -

Abadi MT Condenzed
Algerian
Algenian
Airial
Avrial
Airial
Avrial
Airial
Avrial
Airial Black. j

Font Sample

Exit

1134 Day 7

It turns out that the&numrFontFamiliesex ~ function call is synchronous in nature. This
means that it doesn’t return until all the fonts in the system are listed in calls to your
callback function. You can place code in theti function to remove all the dupli-
cate entries once the list box is filled. To do this, modifyrHaei function as in
Listing 7.5.

LISTING 7.5. THE MODIFIED AFoniLit FUNCTION.

J.{vudGDay?DUFRm_sto

2

3 niCout, /Thenumberdons

4 ntiCuCaunt; /Thecurentfort

5 CStingstCufot; /Theaurentfontrame

6. CStingstPrevFont="; //Thepreviousfontname
7. LOGFONTIH;

8

9 /Iniiaizethe LOGFONT strudLe

10: [fifCharSet=DEFAULT_CHARSET;

11 siopy(fiFaceName, ™),

12 /Ceartrelgthox

13 m_diFontListResetContert();

14 //Create adevice contextvariabie

15 CCenDCdc(his);

16; /Enumeratethe fontfamiies

17 :EnumFontFamiiesEx(HDC) dc, &K,

18: (FONTENUMPROC) EnumFontFamProc, (LPARAM) this, 0);
19 /Getthenumber offorisinthe istbox

20 iCount=m_ctiFontListGetCounty);

21 /Loopfiomtrelestentyntrelsthoxipthets,

22 ['searchingforand deleting the duplicate ertries

23 for (CurCount=iCount; iCurCount>0; iCurCount-)
2{

2 [Getthecumentfontname

26 m_dFontistGefText((CurCourt- 1), stCurFort);
27. I'sitthesameasthe previousfontname?

28 ferCuFont=sPreor)

a{

D Mestendet

3 m dFonlistDeleieSting([CuCourt-1));

2}

33 /Setthe previous fontname tothe current font name
4 sPefot=dCufo;

&}

X}

Notice that ther loop started at the end of the list and worked backward. This allowed
you to delete the current entry without worrying about manipulating the loop counter to

Working with Text and Fonts 135 |

prevent skipping lines in the list box. If you compile and run your application, there
shouldn’t be any duplicate entries in the list of available fonts.

Setting the Font Sample Text

Before you can display the font for the user, you need to place some text into the display
area. The edit box near the top of the dialog is where the user enters text to be displayed
in the font selected. To add the functionality, do the following:

1. Edit theonniDdog ~ function to add code to initialize the edit box and display text,
as in Listing 7.6.

LISTING 7.6. THE MODIFIED OninitDialog FUNCTION.

1: BOOL CDay7DIg::OnlnitDialog()
2

3 CDalogrOnniDey);

4.

5.

G .

7. ITODO: Addextraintieizationhere
8

o M

10: /MY CODE STARTS HERE
13 diiim

12

13 /Rtrefriithox

14 HroiH)

15

16 /nibizethetextiobeenered

17: m_strSampText="Testng";

18: //Copythetextiothe fontsample area
19: m_stDisplayText=m_strSampText,
20 /Updatethedalog

21: UpdateData(FALSE);

2

23 i

24: [/MY CODE ENDS HERE
25: i

%
27: reum TRUE; /rem TRUE unlessyousetthefocusioacontrol
28}

2. Using the Class Wizard, add a function oneReCcHANGEvent message for the
IDC_ESAMPTEXTedit box control.

136 Day 7

3. Edit the function you just added, adding the code in Listing 7.7.

LISTING 7.7. THE OnChangeEsamptext FUNCTION.

1: void CDay7Dlg::OnChangeEsamptext()
A
3 /TODC ftissaRICHEDIT contrd, the contrawiinat
4 [lserdthisnaliication uniessyouoverridethe
[CDiglog:OniniialUpdate()
5. [funcionand cal CRIchEdiCr().SetEventMask()
6. /lwiththe EN_CHANGE flag ORed into the mask.
7
8. //'TODO: Add your control natification handler code here
Q
10: i
11: //MY CODE STARTS HERE
2. i

13
14: [Updaiethe vaiiabeswihihe diatog conrols
15: UpdateData(TRUE);

15

17: //Copythe cumenttextto the fontsample
18 m stDisplayText=m_strSampText,
19

20: /Updatethe dislog with the variables

21: UpdateData(FALSE);

2

23 i

24: /MY CODE ENDS HERE

25 i

2}

If you compile and run your application, you should be able to type text into the edit box
and see it change in the font display area in the group box below.

Selecting a Font to Display

Before you can start changing the font for the display area, you'll need to bavie a
member variable of the dialog class that you can use to set and change the display font.
To add this variable, follow these steps:

1. In the Class View of the workspace pane, right-click the mouse @p#enlg
class. Select Add Member Variable from the pop-up menu.

2. Specify the variable type asont, the variable name as fSampFont , and the
access agiae . Click the OK button to close the dialog box and add the variable.

When adding the code to use the selected font, you'll add it as a separate function that is

Working with Text and Fonts 137 |

not attached to a control. Why you do this will become clear as you proceed further
through building and running today’s application. To add the function to display and use
the selected font, follow these steps:

1. In the Class View of the workspace pane, right-click the mouse ap#henlg
class. Select Add Member Function from the pop-up menu.

2. Specify the function type asd , the function declaration aatMyFont , and the
access agiae . Click the OK button to close the dialog and add the function.

3. Edit the function, adding the code in Listing 7.8.

LISTING 7.8. THE SetMyFont FUNCTION.

1: void CDay7Dlg::SetMyFont()

X

3 CRedRedt; /Theredangedfhedspayarea
4 niHeght /Theheghtafthedsplayarea

5

6. /Hasafontbeenseleced?
7. if(m_stFontName=")
&

9 /Getthedmensonsofthe fontsample display area

10: m_ctDisplayTextGetwWindowRect(&Rec);

11 /Caogeteareahegt

12 iHeght=1Rectiop-Rectbatiom;

13 /Veesueteheghtsposive

¥ i<

16; /Releasethecurertiont

17 m_fSampFontDetach();

18 /Cresiethefontibbeused

190 m fSampFontCreateFont({Height-5), 0,0, 0, FW_NORMAL,

20 0,0,0, DEFAULT_CHARSET, OUT_CHARACTER_PRECIS,

21 CLIP_CHARACTER_PRECIS, DEFAULT_QUALITY, DEFAULT_PITCH |
22 FF_DONTCARE, m_stFontName);
33
24;

1 Setthefontiorthe sample dsplay area
25. m_ciDisplayText.SetFont{&m_fSampFont);
&}
21}

4. Using the Class Wizard, add a function toiths_SELCHANGEVent message for
theiDC_LFONTSslist box. Edit the function, adding the code in Listing 7.9.

| 138

Day 7

LISTING 7.9. THE OnSelchangelLfonts ~ FUNCTION.

1: void CDay7DIg::OnSelchangel fonts()
: /' TODO: Add your conrol natification handler code here

My
//MY CODE STARTS HERE
M

IUpdaiethe variableswihthe didog conrols
UpdateData(TRUE),

- ISettefontiorhesampe
SetyFort)

- M

16: //MY CODE ENDS HERE
17 [

18}

GRBREBooNouswn

font.

FIGURE 7.3. 7% Fonts 55
Displaying the selected EnesomeTet [festing
Select aFont [Abadi MT Condenzed -
Algerian
Airial
il Black
Arial Mamow
Avial Founded MT Bold
Book Antiqua
EBiookman Old Style
Book:chelt Symbol 1
Enm:shgll $ymhnl 3 ﬂ
Font Sample
Téstng
! Lin
Exit

In the setmyFont function, you first checked to make sure that a font had been selected.
Next, you retrieved the area of the static text control that will be used to display the font.
This enables you to specify a font height just slightly smaller than the height of the area
you have available to display the font in. After you calculated the height of the static text
control and made sure that it is a positive value, you created the selected font and told
the static text control to use the newly created font.

In the onselchangeLfonts ~ function, you copy the control values to the attached variables
and then call theetmyFont function to use the selected font. If you compile and run

your application, you should be able to select a font and see it displayed in the sample
static text control, as in Figure 7.3.

Working with Text and Fonts 139 |

Summary

Tod

ay you learned how to use fonts in Visual C++ applications. You learned how to get a

list of the available fonts that are loaded on the system and then how to create a font for

use

on a display object. You learned how you can create and use callback functions to get

a list of resources from the Windows operating system. You also learned how you can
access controls from the callback function using a window pointer that you passed to the
function requesting the resource list.

Q&A

Q The createFont function has a lot of arguments to specify and pass. Is there

any other alternative to using this function?

A Yes, there is, although you still specify all of the same information. A structure

calledLoGFoNToNtains all the same attributes that are passed twetaEont

function. You can declare an instance of this structure, initializing the attributes to
default values, and then pass this structure tartherontindirect function. If you
make numerous font changes, this approach is preferable because you could use
the same instance of the structure, modifying those attributes that are changing
from the current settings and using it to create the various fonts.

The way that you use this alternative way of creating the font is to declare an
instance of theoGFONTtructure as a member of the dialog class and then initial-
ize all the attributes before calling themyFont function. In theSetmyFont func-

tion, you modify it as shown in Listing 7.10.

LisTING 7.10. THE MODIFIED SetMyFont FUNCTION.

1: void CDay7DIg::SetMyFont()

BREBow~Nouswn

IHesafontbeensslected?
if(m_stFontName =)

{
IAssumethethefortsizehes aleady beenniisizedinthe
I'm_LogFontsiucire. Thisaloasyou o only have o spedy

Hefortreme.

tescpy(m_ILogFontifFaceName, m_strFontName);
ICrestethefontiobeused
m_fSampFont.CreateFontindirect(&m_ILogFont);

ISethefrifriresampedsiyaea
m_ciDisplay Text SetFont&m fSampFont);

| 140

Day 7

1}
17}

Q How can I limit the fonts in my list to just the TrueType fonts?

A You can check theFontType argument to your callback function to determine the
font type. For instance, if you want to include only TrueType fonts in your list of
fonts, you modify your callback function to mask tifentType argument with the
TRUETYPE_FONTTYPEONStant and check to see if the resulting value equals the
TRUETYPE_FONTTYPEalue, as in the following:
int CALLBACK EnumFontFamProc(LPENUMLOGFONT Ipelf,

LPNEWTEXTMETRIC Ipntm, DWORD nFontType, long IParam)

{
I Create a pointer to the dialog window
CDay7DIg* pWnd = (CDay7DIg*) IParam;

[Limithe kstio TrueTypefonts
if (nFontType & TRUETYPE_FONTTYPE) == TRUETYPE_FONTTYPE)

{
fAddthe fontname tothe istbox

pWnd->m_ctiFontList. AddString(
Ipelf>elflogFontfFaceName);
}
I/ Retum 1 to continue font enumeration

reunl;

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. How can you specify that the text is to be underlined?

2. How can you print your text upside down?

3. How many times is thenumFontFamProc callback function called by the operating
system?

Working with Text and Fonts

141 |

FIGUREAGBICiSes

fon wih e i 5 €1

using the font name to display the font, as in Figure 7.4.

name.

FIGURE 7.5.

%ck box to switch between using the entered text to display the font and

J= Fonts

=

EnterSome T [Tading

Select aFont [AbadiMT Condenzed

izl
rial Black.

rial Narmow

rial Fiounded MT Bold
Bk Artiqua
Eioakman Ui Style
Bookshell Symbol 1
Bioakshell Symbol 2
Bockshelf Symbol 3

™ Use Entered Text

Font Sample

ALGERIAN

]

Exit

Displaying the selected

font in itadicsAdd a check box to display the font sample in italics, as in Figure 7.5.

J= Fonts

=

EnterSome T [Tading

Select aFont [AbadiMT Condenzed

izl
rial Black.

rial Narmow

rial Fiounded MT Bold
Bk Artiqua
Eioakman Ui Style
Bookshell Symbol 1
Bioakshell Symbol 2
Bockshelf Symbol 3

¥ Use Entered Text

Font Sample

TESTING

¥ ltalic

]

Exit

WEEK 1

In Review

Well, you've made it through the first week. By this point,
you've gotten a good taste for what's possible when building
applications with Visual C++. Now it's time to look back over
what's been covered and what you should have learned up to
this point.

What you might want to do at this point, to cement your
understanding of how you can use these elements in your
own applications, is to try designing and building a couple of
simple applications of your own. You can use a variety of
controls and add some additional dialogs, just so you can
make sure that you do understand and are comfortable with
these topics. In fact, you might want to try out all the topics
that I've covered up to this point in small applications of your
own design. That’s the true test of your understanding of how
the concepts work. You might also want to dive into the MFC
documentation to learn a little about some of the more
advanced functionality that | haven't covered to see if you
can figure out how you can use and incorporate it into your
applications.

One of the most important things that you should understand
at this point is how you can use controls and dialog windows
in your applications to get and display information to the
user. This is an important part of any Windows application
because just about every application interacts with the user in
some way. You should be able to place any of the standard
controls on a dialog in your application and be able to incor-
porate them into your application without any problem.
Likewise, you should be comfortable with using the standard
message box and dialog windows provided to your applica-
tion by the Windows operating system. You should also be

| 144 Week 1

able to create and incorporate your own custom dialog windows into any application you
might want to build. If you don't feel comfortable with any of these topics, you might
want to go back and review Day 2 to get a better understanding of how you can use con-
trols and Day 5 to understand how you can incorporate standard and custom dialog win-
dows into your applications.

Another key skill that you will be using in the majority of your applications is the ability
to build and incorporate menus into your applications. You need to have a firm under-
standing of how to design a good menu, how to make sure that there are no conflicting
mnemonics, and how you can attach application functionality to the menu selections. At
this point, you should be able to create your own customized menus, with entries for
each of the various functions that your application performs, and integrate it with your
application with no problems. If you aren’t 100% comfortable with this topic, you might
want to go back and study Day 6 a little more.

You will find that there are various situations in which you need to have some means of
triggering actions on a regular basis or in which you need to keep track of how long

some process has been running. For both of these situations, as well as numerous others,
you'll often find yourself turning to the use of timers in your application. If you are even
slightly foggy on how you can integrate timers into your applications, you will definitely
want to go back and review Day 4.

Understanding how you can use text and fonts in your applications will allow you to
build more flexibility into the appearance of your applications—to give your users the
ability to customize the appearance as they want. You will be able to examine the avail-
able fonts on the computer on which your application is running and, if a font that you
want to use in your application isn’t available, choose another font that is close to use
instead. If you still have any questions on how the font infrastructure in Windows works
and how you can use it in your applications, you'll want to go back and review Day 7
once more.

Depending on the nature of your application, being able to capture and track mouse and
keyboard actions by the user can be very important. If you are building a drawing appli-
cation, this is crucial information. If you are building an application that needs to include
drag-and-drop capabilities, this is important once again. There are any number of situa-
tions in which you'll want to include this functionality into your applications. By this

point, you should understand how you can capture the various mouse events and deter-
mine which mouse buttons are involved in the event. You should also be able to capture
keyboard events in situations where the keyboard input isn’t captured by any controls
that are on the window. If you don't feel like you have a complete grasp of this, you
should take another look at Day 3.

In Review 145|

Finally, you should be familiar with the Visual C++ development environment, the
Developer Studio. You should have a good understanding of what each area of the envi-
ronment is for and how you can use the various tools and utilities in building your appli-
cations. You should be comfortable with using the workspace pane to navigate around
your application project, locating and bringing into the various editors and designers any
part of your application. You should be comfortable with locating and redesigning the
icon that will be displayed to represent your application and with finding any member
functions or variables in any of your application’s classes.

By now you should be getting fairly comfortable working with Visual C++. If you feel
like you understand all the topics that I've covered so far, you are ready to continue for-
ward, learning more about the various things that you can do, and functionality that you
can build, using Visual C++ as your programming tool. With that said, it's on to the sec-
ond week...

WEEK 2

At a Glance

In the second week, you'll dive into several more involved
topics. These topics are still very much core to building
Windows applications. You'll find yourself using what you
learn in this week, along with what you learned during the
first week, in just about all the applications that you build
with Visual C++.

To start the week, on Day 8, you'll learn how to draw
graphics in a Windows application. You'll learn how to

draw simple lines, rectangles, and ellipses. What's more
important—you’ll learn about the device context and how you
can use it to draw your graphics without worrying

about the graphics hardware your users might or might not
have in their computers.

On Day 9, you'll learn how easy it is to incorporate ActiveX
controls into your applications. You'll see how Visual C++
builds custom C++ classes around the controls that you add
to your project, enabling you to interact with an added control
just as if it were another C++ object.

On Day 10, you'll learn how to build a basic Single
Document Interface (SDI) application. You'll learn about the
Document/View architecture that is used with Visual C++ for
building this style of application, and you'll learn how you
can use it to build your own applications.

On Day 11, you'll learn how you can apply what you learned
about building SDI applications to building Multiple
Document Interface (MDI) applications. You'll see how you
can use the same Document/View architecture to create MDI
applications, some of the most common style of Windows
applications available today.

| 148

Week 2

On Day 12, you'll learn how you can create and modify your own toolbars and status
bars. You'll learn how you can attach toolbar buttons to menus in your application and
how you can add additional toolbars. You'll also learn how you can place your own infor-
mational elements on the status bar at the bottom of most Windows applications and how
you can keep the status bar updated with the status of your application.

On Day 13, you'll see how you can use the structure provided for you by the
Document/View architecture to save and restore the data created in your application.
You'll learn how flexible this facility is and how you can store different data types in the
same file, restoring them to your application just as they were when you first saved them.

Finally, rounding out the week on Day 14, you'll learn how easy it is to build a database
application with an ODBC database. You'll learn how to query a set of records from the
database and how to allow the user to edit and modify them, saving the changes back to
the database.

When you finish this week, you'll be well prepared for tackling most basic application
development tasks with Visual C++. You might want to take a short break at that point to
experiment a bit—trying to build various types of applications, pushing your skills, and
learning what your limits are (and aren’t)—before jumping into the final week of more
advanced topics.

WEEK 2

DAY 8

Adding Flash—
Incorporating Graphics,
Drawing, and Bitmaps

You've probably noticed that a large number of applications use graphics and
display images. This adds a certain level of flash and polish to the application.
With some applications, graphics are an integral part of their functionality.
Having a good understanding of what'’s involved in adding these capabilities to
your applications is a key part of programming for the Windows platform.

You've already learned how you can draw lines and how you can string a series
of these lines together to make a continuous drawing. Today, you're going to go
beyond that capacity and learn how you can add more advanced graphics capa-
bilities to your applications. Today, you will learn

* How Windows uses a device context to translate drawing instructions into
graphics output.

* How you can determine the level of control you have over the graphics
output through different mapping modes.

| 150 Day 8

* How Windows uses pens and brushes to draw different portions of the graphics
image.
* How you can load and display bitmaps dynamically.

Understanding the Graphics Device Interface

The Windows operating system provides you with a couple of levels of abstraction for
creating and using graphics in your applications. During the days of DOS programming,
you needed to exercise a great deal of control over the graphics hardware to draw any
kind of images in an application. This control required an extensive knowledge and
understanding of the various types of graphics cards that users might have in their com-
puters, along with their options for monitors and resolutions. There were a few graphics
libraries that you could buy for your applications, but overall, it was fairly strenuous pro-
gramming to add this capability to your applications.

With Windows, Microsoft has made the job much easier. First, Microsoft provides you
with a virtual graphics device for all of your Windows applications. This virtual device
doesn’t change with the hardware but remains the same for all possible graphics hard-
ware that the user might have. This consistency provides you with the ability to create
whatever kind of graphics you want in your applications because you know that the task
of converting them to something that the hardware understands isn’t your problem.

Device Contexts

Before you can create any graphics, you must have the device context in which the
graphics will be displayed. The device context contains information about the system, the
application, and the window in which you are drawing any graphics. The operating sys-
tem uses the device context to learn in which context a graphic is being drawn, how
much of the area is visible, and where on the screen it is currently located.

When you draw graphics, you always draw them in the context of an application win-
dow. At any time, this window may be full view, minimized, partly hidden, or completely
hidden. This status is not your concern because you draw your graphics on the window
using its device context. Windows keeps track of each device context and uses it to deter-
mine how much and what part of the graphics you draw to actually display for the user.

In essence, the device context you use to display your graphics is the visual context of
the window in which you draw them.

The device context uses two resources to perform most of its drawing and graphics func-
tions. These two resources are pens and brushes. Much like their real-world counterparts,
pens and brushes perform similar yet different tasks. The device context uses pens to

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 151|

draw lines and shapes, whereas brushes paint areas of the screen. It's the same idea as
working on paper when you use a pen to draw an outline of an image and then pick up a
paintbrush to fill in the color between the lines.

The Device Context Class

In Visual C++, the MFC device context class (CDC) provides numerous drawing func-
tions for drawing circles, squares, lines, curves, and so on. All these functions are part of
the device context class because they all use the device context information to draw on
your application windows.

You create a device context class instance with a pointer to the window class that you
want to associate with the device context. This allows the device context class to place
all of the code associated with allocating and freeing a device context in the class con-
structor and destructors.

Nﬂtﬂ Device context objects, as well as all of the various drawing objects, are clas-
sified as resources in the Windows operating system. The operating system
has only a limited amount of these resources. Although the total number of
resources is large in recent versions of Windows, it is still possible to run out
of resources if an application allocates them and doesn’t free them correctly.
This loss is known as a resource leak, and much like a memory leak, it can
eventually lock up a user’s system. As a result, it’s advisable to create these
resources in the functions where they will be used and then delete them as
soon as you are finished with them.

Following this advised approach to using device contexts and their drawing
resources, you use them almost exclusively as local variables within a single
function. The only real exception is when the device context object is created
by Windows and passed into the event-processing function as an argument.

The Pen Class

You have already seen how you can use the pen ckssto specify the color and

width for drawing lines onscreeapen is the primary resource tool for drawing any kind

of line onscreen. When you create an instance affbeclass, you can specify the line

type, color, and thickness. After you create a pen, you can select it as the current drawing
tool for the device context so that it is used for all of your drawing commands to the

| 152

Day 8

device context. To create a new pen, and then select it as the current drawing pen, you
use the following code:

/I Create the device context

CDC dcfthis);

/| Create the pen

CPenlPen(PS_SOLID, 1, RGB(0, 0,0));

I/ Selectthe pen as the cument drawing pen

dc.SelectObject(&IPen);

You can use a number of different pen styles. These pen styles all draw different patterns
when drawing lines. Figure 8.1 shows the basic styles that can be used in your applica-
tions with any color.

FIGURE 8.1. PS_SOLID
Windows pen styles.
PS_DOT
PSDASH = = — — = = — = — — — — —
PS_DASDOT _____________________

PSﬁDASHDOTDOT — e s e e e s s e -_—

PS_NULL

PS_INSIDEFRAME

Nlltﬂ When you use any of these line styles with a pen thickness greater than 1,
all of the lines appear as solid lines. If you want to use any line style other
than PS_SOLID, you need to use a pen width of 1.

Along with the line style that the pen should draw, you also have to specify the pen’s
width and color. The combination of these three variables specifies the appearance of the
resulting lines. The line width can range from 1 on up, although when you reach a width
of 32, it’s difficult to exercise any level of precision in your drawing efforts.

You specify the color as a RGB value, which has three separate values for the brightness
of the red, green, and blue color components of the pixels on the computer screen. These
three separate values can range from 0 to 255, arrfstfeinction combines them into

a single value in the format needed by Windows. Some of the more common colors are
listed in Table 8.1.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 153 |

TABLE 8.1. ComMON WINDOWS COLORS.

Color Red Green Blue
Black 0 0 0
Blue 0 0 255
Dark blue 0 0 128
Green 0 255 0
Dark green 0 128 0
Cyan 0 255 255
Dark cyan 0 128 128
Red 255 0 0
Dark red 128 0 0
Magenta 255 0 255
Dark magenta 128 0 128
Yellow 255 255 0
Dark yellow 128 128 0
Dark gray 128 128 128
Light gray 192 192 192
White 255 255 255

The Brush Class

The brush clasgBrush , allows you to create brushes that define how areas will be filled

in. When you draw shapes that enclose an area and fill in the enclosed area, the outline is
drawn with the current pen, and the interior of the area is filled by the current brush.
Brushes can be solid colors (specified using the same RGB values as with the pens), a
pattern of lines, or even a repeated pattern created from a small bitmap. If you want to
create a solid-color brush, you need to specify the color to use:

CBiush ISoidBrush(RGB(255, 0, 0));

To create a pattern brush, you need to specify not only the color but also the pattern
to use:

CBrush IPattemBrush(HS_BDIAGONAL, RGB(0, 0, 255));

After you create a brush, you can select it with the device context object, just like you do

with pens. When you select a brush, it is used as the current brush whenever you draw
something that uses a brush.

| 154

Day 8

As with pens, you can select a number of standard patterns when creating a brush, as
shown in Figure 8.2. In addition to these patterns, an additional style of beugitMAR,

uses a bitmap as the pattern for filling the specified area. This bitmap is limited in size to
8 pixels by 8 pixels, which is a smaller bitmap than normally used for toolbars and other
small images. If you supply it with a larger bitmap, it takes only the upper-left corner,
limiting it to an 8-by-8 square. You can create a bitmap brush by creating a bitmap
resource for your application and assigning it an object ID. After you do this, you can
create a brush with it by using the following code:

CBitmap m_bmpBitmap;

I/ Load the image
m_bmpBitmap.LoadBitmap(IDB_MYBITMAP);
I Create the brush

CBrush IBitmapBrush(&m_bmpBitmap);

FIGURE 8.2.

Standard brush HS_SOLID

poliy weowcom

HS_CROSS

HS_HORIZONTAL

HS VERTICAL | | | | | | | | | |

'I'iI] If you want to create your own custom pattern for use as a brush, you can

create the pattern as an 8-by-8 bitmap and use the bitmap brush. This
allows you to extend the number of brush patterns far beyond the limited
number of standard patterns.

The Bitmap Class

When you want to display images in your applications, you have a couple of options.
You can add fixed bitmaps to your application, as resources with object IDs assigned to

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 155|

them and use static picture controls or an ActiveX control that displays images. You can
also use the bitmap classitmap , to exercise complete control over the image display.

If you use the bitmap class, you can dynamically load bitmap images from files on the
system disk, resizing the images as necessary to make them fit in the space you've
allotted.

If you add the bitmap as a resource, you can create an instancecsinthe class using
the resource ID of the bitmap as the image to be loaded. If you want to load a bitmap
from a file, you can use theadimage API call to load the bitmap from the file. After
you load the bitmap, you can use the handle for the image to attach the image to the
CBitmap class, as follows:
/Loadthe bimapfie
HBITMAP hBitmap = (HBITMAP)::Loadimage(AfxGetinstanceHandle(),

m_sFileName, IMAGE_BITMAP, 0, 0,

LR_LOADFROMFILE | LR_CREATEDIBSECTION);

I Attach the loaded image to the CBitmap object.
m_bmpBitmap.Attach(hBitmap);

After you load the bitmap into theBitmap object, you can create a second device con-

text and select the bitmap into it. When you've created the second device context, you
need to make it compatible with the primary device context before the bitmap is selected
into it. Because device contexts are created by the operating system for a specific output
device (screen, printer, and so on), you have to make sure that the second device context
is also attached to the same output device as the first.

I/ Create a device context

CDC dcMem;

II'Make the new device context compatible with the real DC

dcMem.CreateCompatibleDC(dc);

I/ Select the bitmap into the new DC
dcMem.SelectObject(&m_bmpBitmap);

When you select the bitmap into a compatible device context, you can copy the bitmap
into the regular display device context usingdite function:

1l Copy the bitmap to the display DC

de->BitBit(10, 10, bm.bmWidth,
bm.bmHeight, &dcMem, 0, O,
SRCCOPY);

You can also copy and resize the image usingtiesst function:

I/ Resize the bitmap while copying it to the display DC
dc->StretchBH(10, 10, (RectWidth() - 20),
(RectHeight() - 20), &dcMem, 0,0,
bm.bmWidth, bm.bmHeight, SRCCOPY);

| 156 Day 8

By using thesrehBt ~ function, you can resize the bitmap so that it will fit in any area
on the screen.

Mapping Modes and Coordinate Systems

When you are preparing to draw some graphics on a window, you can exercise a lot of
control over the scale you are using and the area in which you can draw. You can control
these factors by specifying the mapping mode and the drawing area.

By specifying the mapping mode, you can control how the coordinates that you specify
are translated into locations on the screen. The different mapping modes translate each
point into a different distance. You can set the mapping mode by usisgtth@&Mode

device context function:

dc->SetMapMode(MM_ANSIOTROPIC);

The available mapping modes are listed in Table 8.2.

TABLE 8.2. MAPPING MODES.

Mode Description

MM_ANSIOTROPIC Logical units are converted into arbitrary units with arbitrary axes.

MM_HIENGLISH Each logical unit is converted into 0.001 inch. Positive x is to the
right, and positive y is up.

MM_HIMETRIC Each logical unit is converted into 0.01 millimeter. Positive X is to
the right, and positive y is up.

MM_ISOTROPIC Logical units are converted into arbitrary units with equally scaled
axes.

MM_LOENGLISH Each logical unit is converted into 0.01 inch. Positive X is to the

right, and positive y is up.

MM_LOMETRIC Each logical unit is converted into 0.1 millimeter. Positive x is to the
right, and positive y is up.

MM_TEXT Each logical unit is converted into 1 pixel. Positive x is to the right,
and positive y is down.

MM_TWIPS Each logical unit is converted into 1/20 of a point (approximately
1/1440 inch). Positive x is to the right, and positive y is up.

If you use either theiM_ANSIOTROPI®r MM_ISOTROPIOMapping modes, you can use
either thesetwindowExt Or Setviewportext functions to specify the drawing area where
your graphics should appear.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 157|

Creating a Graphics Application

To get a good understanding of how you can put all of this information to use, you'll
build an application that incorporates a lot of what I've covered so far today. This appli-
cation will have two independent windows, one with a number of options to choose for
the shape, tool, and color to be displayed. The other window will act as a canvas, where
all of the selected options will be drawn. The user can select whether to display lines,
squares, circles, or a bitmap on the second window. The user can also specify the color
and choose whether to display the pen or brush for the circles and squares.

Generating the Application Shell

As you have learned by now, the first step in building an application is generating the ini-
tial application shell. This shell provides the basic application functionality, displaying
your first application dialog, along with all startup and shutdown functionality.

For the application that you will build today, you need to start with a standard dialog-
style application shell. You can create this for your application by starting a new
AppWizard project, providing a suitable project name, sudbegiss . After you are in

the AppWizard, specify that you are creating a dialog-style application. At this point, you
can accept all of the default settings, although you won't need ActiveX support, and you
can specify a more descriptive window title if you want.

Designing the Main Dialog

After you make your way through the AppWizard, you're ready to start designing your
primary dialog. This window will contain three groups of radio buttons: one group for
specifying the drawing tool, the next to specify the drawing shape, and the third to spec-
ify the color. Along with these groups of radio buttons, you'll have two buttons on the
window: one to open a File Open dialog, for selecting a bitmap to be displayed, and the
other to close the application.

To add all these controls to your dialog, lay them out as shown in Figure 8.3 and specify
the control properties listed in Table 8.3.

| 158

Day 8

FIGURrE 8.3.

G glat - Microzoft Visual Ce+ - [gist.rc - IDD_GTST_DIALOE [Dialog]]

. . Sleie Edt Miew et Boect Buld Lapow Toos Window Help _|8|
The main dialog e _
| N D EEE M E R G [sehddes =%
ayout. .
Y CGIDlg =][l cles menbens)][& CGsibly = E ||| e L
- _dgtst T ; : -
= =9 Bilmag B x| -]
raveang Taod i
e © Black
] B " Blye
: Bimp C Gieen
3 " Cya
I aving Shape 3
= © Ling
© Cicle
Squane iothite
e Bimzp Esit
Z[Linking
4
by Build Debun b Findin Files 1 3 Findin Files2 3 4| |
| HO
Ready BB R L TR

Sstart| @2, AW EyioborOuteok Ex [on glst - Micrasof... 3 MSDN Linaw e | 3 Exploring - E \us

TABLE 8.3. CONTROL PROPERTY SETTINGS.

Object Property Setting
Group Box ID IDC_STATIC
Caption Drawing Tool
Radio Button ID IDC_RTPEN
Caption &Pen
Group Checked
Radio Button ID IDC_RTBRUSH
Caption &Brush
Radio Button ID IDC_RTBITMAP
Caption B&itmap
Group Box ID IDC_STATIC
Caption Drawing Shape
Radio Button ID IDC_RSLINE
Caption &line
Group Checked
Radio Button ID IDC_RSCIRCLE

Caption

&Cide

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

159 |

Object Property Setting

Radio Button ID IDC_RSSQUARE
Caption &Square

Group Box ID IDC_STATIC
Caption Color

Radio Button ID IDC_RCBLACK
Caption Bl&ack
Group Checked

Radio Button ID IDC_RCBLUE
Caption Blaue

Radio Button ID IDC_RCGREEN
Caption &Green

Radio Button ID IDC_RCCYAN
Caption Cya&n

Radio Button ID IDC_RCRED
Caption &Red

Radio Button ID IDC_RCMAGENTA
Caption &Magenta

Radio Button ID IDC_RCYELLOW
Caption &Yellow

Radio Button ID IDC_RCWHITE
Caption &White

Command Button ID IDC_BBITMAP
Caption Bi&tmap

Command Button ID IDC_BEXIT
Caption E&xt

When you finish designing your main dialog, you need to assign one variable to each of
the groups of radio buttons. To do this, open the Class Wizard and assign one integer
variable to each of the three radio button object IDs there. Remember that only the object
IDs for the radio buttons with the Group option checked will appear in the Class Wizard.
All of the radio buttons that follow will be assigned to the same variable, with sequential
values, in the order of the object ID values. For this reason, it is important to create all of
the radio buttons in each group in the order that you want their values to be sequenced.

| 160

Day 8

To assign the necessary variables to the radio button groups in your application, open the
Class Wizard and add the variables in Table 8.4 to the objects in your dialog.

TABLE 8.4. CONTROL VARIABLES.

Object Name Category Type
IDC_RTPEN m_iTool Value in
IDC_RSLINE m_iShape Value in
IDC_RCBLACK m_iColor Value ion

While you have the Class Wizard open, you might want to switch back to the first tab
and add an event-handler function to the Exit button, calling ttexfunction in the

code for this button. You can compile and run your application now, making sure that

you have all of the radio button groups defined correctly, that you can’t select two or
more buttons in any one group, and that you can select one button in each group without
affecting either of the other two groups.

Adding the Second Dialog

When you design the main dialog, you'll add the second window that you'll use as a
canvas to paint your graphics on. This dialog will be a modeless dialog, which will
remain open the entire time the application is running. You will put no controls on the
dialog, providing a clean canvas for drawing.

To create this second dialog, go to the Resources tab in the workspace pane. Right-click
the Dialogs folder in the resource tree. Select Insert Dialog from the pop-up menu. When
the new dialog is open in the window designer, remove all of the controls from the win-
dow. After you remove all of the controls, open the properties dialog for the window and
uncheck the System Menu option on the second tab of properties. This will prevent the
user from closing this dialog without exiting the application. You'll also want to give this
dialog window an object ID that will describe its function, suclbasPAINT_DLG.

After you finish designing the second dialog, create a new class for this window by
opening the Class Wizard. When you try to open the Class Wizard, you’ll be asked if you
want to create a new class for the second dialog window. Leave this option at its default
setting and click the OK button. When asked to specify the name of the new class on the
next dialog, give the class a suitable name, sudpaadg , and be sure that the base

class is set tabaog . After you click OK on this dialog and create the new class, you

can close the Class Wizard.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

161 |

Note

You need to make sure that the new dialog is selected when you try to open
the Class Wizard. If the dialog is not selected, and you’ve switched to another
object, or even some code in your application, the Class Wizard will not
know that you need a class for the second dialog in your application.

Now that you have the second dialog defined, you need to add the code in the first dia-
log window to open the second dialog. You can accomplish this by adding two lines of

code to themniniDilog

function in the first window’s class. First, create the dialog using
thecreate method of thecDialog class. This function takes two arguments: the object ID

of the dialog and a pointer to the parent window, which will be the main dialog. The sec-

ond function will be theshowwindow function, passing the valiew _sHo\as the only

argument. This function displays the second dialog next to the first dialog. Add a couple

of lines of variable initialization to make yooiiDiog

LisTING 8.1. THE OniniDialog FUNCTION.

function resemble Listing 8.1.

1: BOOL CGraphicsDig:OninitDialogy)

A

3 CDebgOnniDaty);

4

A

S8BIBHRRYBREBBY

/' TODO: Addextrainitiaizationhere

- i

/MY CODE STARTS HERE

o

1N nialize the variables and update the dislog window
m Cdor=0;
m_iShape=0;
m iTod=0;
UpdateData(FALSE);

I/ Create the second dialog window

: m_digPaintCreate(IDD_PAINT_DLG, this);
: /] Show the second dialog window

m_dlgPaint.ShowWindow(SW_SHOW);

continues

| 162 Day 8

LISTING 8.1. CONTINUED

44:

45: iy

46: /MY CODE ENDS HERE

47: Ny

48:

49: reium TRUE; //retum TRUE unlessyou setthe focus ibacontrol
501}

Before you can compile and run your application, you'll need to include the header for
the second dialog class in the source code for the first dialog. You'll also need to add the
second dialog class as a variable to the first—which is a simple matter of adding a mem-
ber variable to the first dialog class, specifying the variable type as the class type, in this
casecrainDg , giving the variable the name that you used in Listingr8.dgPaint , and
specifying the variable access as private. To include the header file in the first dialog,
scroll to the top of the source code for the first dialog and add an include statement, as in
Listing 8.2.

LISTING 8.2. THE INCLUDE STATEMENT OF THE MAIN DIALOG.

1:// GraphicsDigopp: implemertaiionfie
21

3

4:#ndude stk

5:#ncude Graphics

6:#incde PanDight
7-#ndude'GraphicsDigh'”

8

Conversely, you'll need to include the header file for the main dialog in the source code
for the second dialog. You can edit this fitenDgep , making the include statements
match those in Listing 8.2.

If you compile and run your application, you should see your second dialog window
open along with the first window. What you’ll also noticed is that when you close the
first dialog, and thus close the application, the second dialog window also closes, even
though you didn't add any code to make this happen. The second dialog is a child win-
dow to the first dialog. When you created the second dialog, on line 41 of the code list-
ing, you passed a pointer to the first dialog window as the parent window for the second
window. This set up a parent-child relationship between these two windows. When the

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 163|

parent closes, so does the child. This is the same relationship the first dialog window has
with all of the controls you placed on it. Each of those controls is a child window of the
dialog. In a sense, what you've done is make the second dialog just another control on
the first dialog.

Adding the Graphics Capabilities

Because all of the radio button variables are declared as public, the second dialog will be
able to see and reference them as it needs to. You can place all of the graphic drawing
functionality into the second dialog class. However, you do need to place some function-
ality into the first dialog to keep the variables synchronized and to tell the second dialog
to draw its graphics. Accomplishing this is simpler than you might think.

Whenever a window needs to be redrawn (it may have been hidden behind another
window and come to the front or minimized or off the visible screen and now in view),
the operating system triggers the dialagigant function. You can place all the func-
tionality for drawing your graphics in this function and make persistent the graphics you
display.

Now that you know where to place your code to display the graphics, how can you cause
the second dialog to call i@rant function whenever the user changes one of the selec-
tions on the first dialog? Well, you could hide and then show the second dialog, but that
might look a little peculiar to the user. Actually, a single function will convince the sec-
ond window that it needs to redraw its entire dialog. This functigtse , requires no
arguments and is a member function ofc¢hendclass, so it can be used on any window

or control. Thendie ~ function tells the window, and the operating system, that the
display area of the window is no longer valid and that it needs to be redrawn. You can
trigger theonPaint function in the second dialog at will, without resorting to any awk-

ward tricks or hacks.

At this point, we have determined that all of the radio buttons can use the same function-
ality on their clicked events. You can set up a single event-handler function for the clicked
event on all of the radio button controls. In this event function, you'll need to synchronize
the class variables with the dialog controls by callingeteData function and then

tell the second dialog to redraw itself by callingritgse ~ function. You can write a sin-

gle event handler that does these two things with the code in Listing 8.3.

| 164 Day 8

LisTING 8.3. THE OnRSelection FUNCTION.

1: void CGraphicsDIg:OnRSelection()

A

3 //'TODO: Add your control natification handier code here
4

5. /Synchronzethe data

6. UpdateData(TRUE);

7: IRepaintthe second dalog

8 m dgPartinvelosie();

%

Drawing Lines

You can compile and run your application at this point, and the second dialog redraws
itself whenever you choose a different radio button on the main dialog, but you wouldn'’t
notice anything happening. At this point, you are triggering the redraws, but you haven’t
told the second dialog what to draw, which is the next step in building this application.

The easiest graphics to draw on the second dialog will be different styles of lines because
you already have some experience drawing them. What you’ll want to do is create one
pen for each of the different pen styles, using the currently selected color. After you have
created all of the pens, you'll loop through the different pens, selecting each one in turn
and drawing a line across the dialog with each one. Before you start this loop, you need
to perform a few calculations to determine where each of the lines should be on the dia-
log, with their starting and stopping points.

To begin adding this functionality to your application, you first add a color table, with

one entry for each of the colors in the group of available colors on the first dialog. To
create this color table, add a new member variable to the second dialogretass, |

and specify the variable type ssic const COLORREF , the name as _crColors[g] , and

the access as public. Open the source code file for the second dialog class, and add the
color table in Listing 8.4 near the top of the file before the class constructor and destruc-
tor.

LISTING 8.4. THE COLOR TABLE.

1: const COLORREF CPaintDIg:m_crColors[8] ={
2 RGE(0,0,0) /Bak

3 RGH(0,02%) /BLe

4 RGB(02%, 0), /Geen

5 RGB(0,2%5,25%5), /Cyan

6 RGB(2%, 0,0) /Red

7: RGB(25%5, 0,255), /Magenta

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 165|

8 RGB(25,25%, 0), /Yelow

9 RGB(255,255,255) /\Whie

10¥

L M
12:/CPainDig dislog

With the color table in place, you can add a new function for drawing the lines. To keep
theonPaint function from getting too cluttered and difficult to understand, it makes more
sense to place a limited amount of code in it to determine what should be drawn

on the second dialog and then call other more specialized functions to draw the various
shapes. With this in mind, you need to create a new member function for the second dia-
log class for drawing the lines. Declare this as a void function, and specify its declaration
as Drawline(CPaintDC *pdc, intiColor) and its access as private. You can edit this function,
adding the code in Listing 8.5.

LisTING 8.5. THE DrawLine FUNCTION.

1: void CPainDig: Drawd ine(CPainDC *pdc, intiColor)

I/ Dedare and create the pens
CPenlSoidPen (PS_SOLID, 1, m aCaorsiiColor);
CPenDotPen (PS_DOT, 1, m_crColorsfiColor));
CPenIDashPen (PS_DASH, 1, m_crColorsfiColor));
CPen IDashDotPen (PS_DASHDOT, 1, m_crColorsfiColor]);
CPen IDashDotDotPen (PS_DASHDOTDOT, 1, m_crColorsfiColor]);
CPenINulPen (PS_NULL, 1, m aColorsfiColor]);
;. CPenlinsidePen (PS_INSIDEFRAME, 1, m_crCalors[iColor]);

- [/ Calculate the distance between each ofthe ines
CPontpSart
CPointpend;
rtDs=RedtHe /8,
;. CPen*0OdPen;
22 [Spediythestaringpoints
23 pSaty=Rediop;
24 pSatx=Redtkt;

REBEBSBEEBREBO® YT LN

continues

| 166 Day 8

LISTING 8.5. CONTINUED

%5 pEndy=pSaty;

2 pEndx=RedrgHt,

Zii

28 //Loopthroughthe different pens

2 f=0i<7i)

DA

3L /Whichpenaeweon?

2 anichf)

RB{
0 /s

I0dPen=pdc=>SeledtObed(&ISoidPen);

besk

el /Da

pdc>SeledObjec(@DatPen);
besk

a2 [Desh

Jpdc=>SeledOblect(&DashPen);
besk

a3 /DeshDat

pdc->SelectObject@DashDaotPen);
besk
case4: /DashDatDat
pdc->SelectObject(@DashDatDotPen);
besk
a5 N
ppdc>SeledObied@NUPen);
besk

&6 e

ppdc>SeledObed(&lInsidePen);
besk
}
I'Move downtothe next position
pSaty=pSatty-+Ds,
pEndy=pSaty,

IDawtelne
pdc>MoveTo(pStart);
pdc=>LineTofpEnd);

}

63 /'Seectheaigralpen

64: pdc>SelectObject({OldPen);
65}

BRI3BHEIFHIBBLEEBBISHIRLIESBRBIABHR

Now you need to edit thenPaint function so that thentine function is called when it

needs to be called. Add this function through the Class Wizard as an event-handler func-
tion for thewmM_pPAINTMESSage. You'll notice that the generated code for this function
creates &praintDC variable instead of the normal CDC class. ThanDC class is a

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 167|

descendent of the CDC device context class. It automatically calbsgtiraent and

EndPaint API functions that all Windows applications must call before drawing any
graphics during th&/mMm_PAINTEVENt message processing. It can be treated just like a reg-
ular device context object, calling all of the same functions.

When you are in thenpaint function, you need to get a pointer to the parent window so
that you can check the values of the variables tied to the groups of radio buttons to deter-
mine the color, tools, and shape to be drawn on the second dialog. This information tells
you whether to call therawtine function or another function that you haven't written

yet.

To add this functionality to your application, add an event handler fowthee AINT
message on the second dialog class, adding the code in Listing 8.6 to the function creat-
ed in your class.

LISTING 8.6. THE OnPaint FUNCTION.

1: void CPainDig-OnPaini)
A
CPainDC dcthis) /device contextorpaining

/' TODO: Add your message handler code here

I Getapointer to the parentwindow
CGraphicsDig “pWind = (CGraphicsDigH)GetParent();
/'Dowe haveavald porter?

10 iEwWhd)

-

12 /stetdabimeg?

13 if(EWnd>m iTod=2)

“{

5}

161 ese /Noweredaningashepe

17 {

18 /Aewedanigaine?

19 if{EWhd>m_iShape=0)

2 Drawline(&dc, piwind>m _iColor);

2}

2}

23 //Donoatcal CDialog:OnPaint() for painting messages
243}

Qo NDAM~W

At this point, if you compile and run your application, you should be able to draw lines
across the second dialog, as shown in Figure 8.4.

| 168

Day 8

FIGURE 8.4.

Drawing lines on the
second dialog.

Drawing Circles and Squares

Now that you have the basic structure in place, and you can see how you can change
what is drawn on the second dialog at will, you are ready to add code to the second dia-
log to draw the circles and squares. To draw these figures, you e theand

Rectange device context functions. These functions will use the currently selected pen
and brush to draw these figures at the specified location. With both functions, you pass a
CRect Object to specify the rectangle in which to draw the specified figurer&haye

function fills the entire space specified, and#ie function draws a circle or ellipse
where the middle of each side of the rectangle touches the edge of the ellipse. Because
these functions use both the pen and brush, you'll need to create and select an invisible
pen and invisible brush to allow the user to choose either the pen or the brush. For the
pen, you can use the null pen for this purpose, but for the brush, you'll need to create a
solid brush the color of the window background (light gray).

When you calculate the position for each of these figures, you need to take a different
approach from what you used with the lines. With the lines, you were able to get the
height of the window, divide it by 8, and then draw a line at each of the divisions from
the left edge to the right edge. With the ellipses and rectangles, you'll need to divide the
dialog window into eight even rectangles. The easiest way to do this is to create two
rows of figures with four figures in each row. Leave a little space between each figure so
that the user can see the different pens used to outline each figure.

To add this functionality to your application, add a new function to the second dialog
class. Specify the function type as void, the declaratiamaagegion(CPaintDC *pdc, int

Colo, intiTod intiShepe) , and the access as private. Edit the code in this function,
adding the code in Listing 8.7.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps

169 |

LISTING 8.7. THE DrawRegion FUNCTION.

1 void CPantDig-DrawRegion(CPaintDC *pac, intiColor, intiToo, int
[J iShape)

4

GERREBO®N2ar 0N

I/ Dedare and create the pens

CPeniSoidPen (PS_SOLID, 1,m_aCoorsiColor);
CPen|DotPen (PS_DOT, 1,m_arColorsiColor]);
CPen|IDashPen (PS_DASH, 1, m_crColorsfiColor]);
CPenIDashDotPen (PS_DASHDOT, 1, m_crColorsfiColor]);

CPen IDashDotDotPen (PS_DASHDOTDOT, 1, m_crColors[iColor]);

CPenNulPen (PS_NULL, 1, aColorsiColor);

: CPenlinsidePen (PS_INSIDEFRAME, 1,m aColorsiColor);

- [/ Dedare and create the brushes
;- CBrushISolidBrush(m_aColarsfiColor]);

CBrush IBDiagBrush(HS_BDIAGONAL, m_crColors[iColor]);

;. CBrush ICrossBrush(HS_CROSS, m_crColorsfiColor]);

CBrush IDiagCrossBrush(HS_DIAGCROSS, m_crColorsfiColor]);
CBrushIFDiagBrush(HS_FDIAGONAL, m_crColorsfiColor]);
CBrush IHorizBrush(HS_HORIZONTAL, m_crColorsfiColor]);
CBrush MertBrush(HS_VERTICAL, m_crColorsfiColor]);

CBrush INUIBrush(RGB(192, 192, 192));

I Caouiethe size ofhe drawing regions
CRedRett;

I Loop through al of the brushes and pens:

& OE0T7iH)
B{

I1Selecthe approprisie penardbreh

| 170

Day 8

LISTING 8.7. CONTINUED

continues

BRSBBIBRRERRBIIIIANINESIBRIBARIRRSBBIFHALIRREE®SES

10dPen=pdc>SeledtObeci(&iSoidPen);
I0dBrush =pdc>SeledtObled(&SoidBrush),
besk
cael /Dat-BackDegordl
IDeeminethelbcaionforthisigue.
DanRedkt=DanRedkt+Hoz,
DranRedright=DranRectiet-+Midh
II'Selectthe gppropriste penandbrush
pdc>SeledObet(&DatPen);
pdc=>SelectObec(&BDagBIush);
besk
a2 /Desh-OossBush
IDeeminethelocaionfortisigure
DranRedist=DranRedtkt-+iHoz
DanRedtight=DranRectiet-+Midh;
I1Selectthe appropriate penandbrush
Jpdc>SeledOblect(&DashPen);
pdc>SeledtObied(@ICrossBrush);
besk
case3: //DashDat-Dagondl Oross
IDeamirethe bcaionfortsigue.
DanRedtit=DranRetet+Haz,
DranRedright=DranRectiet-+Midh;
I1Selectthe appropriate penandbrush
pdc>SelectObect(&DashDotPen);
beskDOIC->Se|EBGlObJed(' (&DigCrossBiush);
case4: //DashDat Dot-Fowerd Diagonal
IDeeminethelbcaionforthisigue.
ISattheseoondrov
DranRectiop=DranRectiop+iVert,
DanRett=Redkt+5

II'Selectthe gppropriate penandbrush
pdc>SelectObject(&DashDatDotPen);
fplc>SelectObjed(&FDagBILSH);
besk
@5 INd-Haizod
IDeemiretre bcaionfortsigure.
DanRedit=DanRetkt-+Haz,
DanRedtight=DranRectiet+Midh;
I1'Selectthe appropriate penandbrush
pdc>SeledOhed(&NUPen);
pdc=>SeledObedi(@HorizBrush),
besk

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 171|

B @x6 frek-\Vetd
. /Deeminethebcaionfortsigue.
DranRectiet=DranRectkt-+Hoz,
DanRectight=DranRectiet-+Mfdy
II'Selectthe gppropriate penandbrush
pdc=>SeledObed(@insdePen),
pdc=>SeledtObec(&\VertBrush),
besk
}
TWhichiodarewe using?
f(Tod=0)
ppoc>SelectObecNulBLsh);
ee
Jpdc=>SeledObedNulPen);
/'\Which shepe are we drawing?
fShepe=1)
poc>ElseDranRed);

R

BERBRRBE8BIBH

=
~

0

EEBER

Now that you have the capability to draw the circles and squares in the second dialog,
you'll need to call this function when the user has selected either of these two figures
with either a pen or a brush. To do this, add the two lines starting at line 21 in Listing 8.8
to theonPaint function.

LISTING 8.8. THE MODIFIED OnPaint FUNCTION.

1: vod CPaintDig-OnPaint)
CPantDC dcfthis); / device contextfor painting
/I TODO: Add your message handler code here

I/ Getapointer to the parentwindow
CGraphicsDig *pwWid = (CGraphicsDig)GetParert();
/'Dowe have aveld ponter?

10 fwWnd)

1{

12 /stetodabimeg?

13 ifEWnd>m iTod=2)

u{

5}

16 eke /Noweredawingashepe

©ONODUMWN

172 Day 8

continues

LISTING 8.8. CONTINUED

7

18 /Aewedanigaine?

19 (M iSepe=0

2 Drawdine(@dc, pivihd>m _iColor);

2 e Meredanigadpsearedange

22 DrawRegion(&dc, pwind-=>m_iColor, pWnd-=>m_iTod,
0 pWnd->m_iShape);

3}

2}

25. [/Donoatcal CDislog:OnPaint() for painting messages

%}

Now you should be able to compile and run your application and display not only lines,
but also squares and circles, switching between displaying the outlines and the filled-in

Ficurdigute without any outline, as shown in Figure 8.5.

Drawing rectangles on
the second dialog.

Loading Bitmaps

Now that you can draw various graphic images on the second dialog window, all that's
left is to add the functionality to load and display bitmaps. You could easily add the
bitmaps to the resources in the application, give them their own object IDs, and then use
the LoadBitmap andMAKEINTRESOURCEINctions to load the bitmap intocaitmap class

object, but that isn't extremely useful when you start building your own applications.
What would be really useful is the ability to load bitmaps from files on the computer

disk. To provide this functionality, you use thedimage API function to load the

bitmap images into memory and then attach the loaded imagedsitha object.

To do this in your application, you can attach a function to the bitmap button on the first
dialog that displays the File Open dialog to the user, allowing the user to select a bitmap

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 173|

to be displayed. You'll want to build a filter for the dialog, limiting the available files to
bitmaps that can be displayed in the second dialog. After the user selects a bitmap, you'll
get the file and path name from the dialog and load the bitmap usingadireage func-

tion. When you have a valid handle to the bitmap that was loaded into memory, you'll
delete the current bitmap image from ttemap object. If there was a bitmap loaded

into thecsitmap object, you'll detach thesitmap object from the now deleted image.

After you make sure that there isn’'t already an image loaded iTBithep object, you

attach the image you just loaded into memory, usingitive function. At this point,

you want to invalidate the second dialog so that if it's displaying a bitmap, it displays the
newly loaded bitmap.

To support this functionality, you need to add a string variable to hold the bitmap name,
and acsitmap Vvariable to hold the bitmap image, to the first dialog class. Add these two
variables as listed in Table 8.5.

TABLE 8.5. BITMAP VARIABLES.

Name Type Access
m_sBitmap CSting Pudc
m_bmpBitmap CBitmap Pudc

After you add the variables to the first dialog class, add an event-handler function to the
clicked event of theimap button using the Class Wizard. After you add this function,
edit it, adding the code in Listing 8.9.

LISTING 8.9. THE OnBbitmap FUNCTION.

1: vod CGraphicsDig:OnBbitmap()

2

3/ TODO: Addyour control nafification hander code here

4

5 /BudaferorusenteHeOpendely

6. siaticcharBASED CODE szHiterf] =Bitrmap Hes (“bmp)fbmp[’;
7. ICesiethe HeOpendialog

8 CHeDialogm IdFie(TRUE, “bmp’,m_sBimap,

9: OFN_HIDEREADONLY | OFN_OVERWRITEPROMPT, szFiler);
10:

11: //Showthe He Open dialog and capture the resut

12 if(m IdFle DoModak) =IDOK)

13{

14 [Getthefienamesseced

15 m sBimap=m_ldFie GetPathName),

16. /Loedtessecedbimepte

1174 Day 8

continues

LISTING 8.9. CONTINUED

17 HBITMAP hBitmap = (HBITMAP) :Loadimage(AixGetinstanceHandle(),
18 m sBimap,IMAGE BITMAP,0,0,
19: LR_LOADFROMFILE | LR_CREATEDIBSECTION);

20:

21: /Dowehaveavald handefortheloadedimage?
2 e

B{

24 |Deeetecurertbimep

25 if(m_bmpBimap DeleteObed()

% [fteewesahbimepdeachi

2. m_bmpBimapDelach();

28 [Atachthecurentyloededbimepiothe bimap doect
29 m_bmpBitmap Atiach(hBitmap);

a}

3L /invaldate the second delogwindow

32 m dgPartinvelcbie();

R}

4}

Displaying Bitmaps

Now that you can load bitmaps into memory, you need to display them for the user. You
need to copy the bitmap from theimap object to aBITMAP structure, using the

GetBitmap function, which will get the width and height of the bitmap image. Next,

you'll create a new device context that is compatible with the screen device context.
You'll select the bitmap into the new device context and then copy it from this second
device context to the original device context, resizing it as it's copied, using the

SrechBt function.

To add this functionality to your application, add a new member function to the second
dialog class. Specify the function type as void, the function declaration as

Nlltﬂ Notice that you have declared the window pointer being passed in as a
pointer to a CWndobject, instead of the class type of your main dialog. To
declare it as a pointer to the class type of the first dialog, you'd need to
declare the class for the first dialog before the class declaration for the sec-
ond dialog. Meanwhile, the first dialog requires that the second dialog class
be declared first. This affects the order in which the include files are added
to the source code at the top of each file. You cannot have both classes

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 175|

declared before the other; one has to be first. Although there are ways to
get around this problem, by declaring a place holder for the second class
before the declaration of the first class, it’s easier to cast the pointer as a
pointer to the first dialog class in the function in this instance. To learn how
to declare a place holder for the second class, see Appendix A, “C++
Review.”

ShowBitmap(CPaintDC *pdc, CWnd *pWnd) , and the function access as private. Edit
the function, adding the code in Listing 8.10.

LisTING 8.10. THE ShowBitmap FUNCTION.

1: void CPaintDIg::ShowBitmap(CPaintDC *pdc, CWnd *pWhd)

Convertthe poniertoaponter iothe main dielog dass
CGraphicsDig “p\Wd = (CGraphicsDigr)oWnd,
BITMAP bm;

I Gettheloaded bimap
IpWnd->m_bmpBitmap.GetBitmap(&bm);
CDCdcMem;

I Create adevice context o load the bimapinto
dcMem.CreateCompatibleDC(pdc);

11: //'Selectthe bitmap into the compatible device context

12: CBitmap* pOldBitmap = (CBitmap*)dcMem.SelectObject

O (IpWnd->m_bmpBitmap);

13 CRedRed;

14 [Cetthedspayarea

15 GetCientRed(Red);

16: IRectNommalizeRed);

17: /| Copy and resize the bitmap to the dialog window

18

19

20

2.

BEQONO0R®N

: pdc>StretchBI(10, 10, (RectWidth() - 20),
(RediHeigt)-20),8daviem,0,0,
bm.bmWidth, bm.bmHeight, SRCCOPY);

Now that you have the ability to display the currently selected bitmap on the dialog,
you'll need to add the functionality to call this function to daeaint function in the
second dialog. You can determine whether a bitmap has been specified by checking
the value of then_sBitmap variable on the first dialog. If this string is empty, there is no
bitmap to be displayed. If the string is not empty, you can cabtteBitmap function.

1176 Day 8

To add this last bit of functionality to this application, editdheant function, adding
lines 15 through 18 from Listing 8.11.

LisTING 8.11. THE MODIFIED OnPaint FUNCTION.

1: vod CPanDigOnPaint)
X
CPanDC dofthis)/ device corextior paining

/I TODO: Add your message handler code here

1/ Getapointer to the parentwindow
CGraphicsDig *pwind = (CGraphicsDig)GetParent();
//Dowe have aveld pornter?

100 #EwWhd)

{

12 /stetodabimgg?

13 if(EWnd>m iTod=2)

u{

15 /isthereabimapselededandloaded?

16 fEWhd>m SBimapE")

QOO NODAM~W

7. ICght

18 ShonBimep(@&dc pwid);
9}

20 ese /Noweredaningashepe
2 {

2 [Aewedanigaine?

23 f(miSrepe=0

24 DrawLine(&dc, piwind>m _iColor);

5 ee Meredanvgadpsearedange

26 DranRegion(&dc, pwind=>m_iColor, pWWnd->m_iTod,
. pwdem Shge)

B}

2}

30 //Donotcal CDialog:OnPaint() for painting messages

313

FIGURENB #Biis point, you should be able to select a bitmap from your system and display it in

ShowifgasiEBAR Hialog, as shown in Figure 8.6.
the second dialog.

Adding Flash—Incorporating Graphics, Drawing, and Bitmaps 177 |

Summary

What a way to start the week! You learned a lot today. You learned how Windows uses
device context objects to allow you to draw graphics in the same way every time, without
having to worry about what hardware users might have in their computers. You learned
about some of the basic GDI objects, such as pens and brushes, and how they are used to
draw figures on windows and dialogs. You also learned how you can load bitmaps from

the system disk and display them onscreen for the user to see. You learned about the dif-
ferent pen and brush styles and how you can use these to draw the type of figure you
want to draw. You also learned how you can specify colors for use with pens and brushes
so that you can control how images appear to the user.

Q&A

Q Why do | need to specify both a pen and a brush if | just want to display one
or the other?

A You are always drawing with both when you draw any object that is filled in. The
pen draws the outline, and the brush fills in the interior. You cannot choose to use
one or the other; you have to use both. If you only want to display one or the other,
you need to take special steps.

Q Why do all of the pen styles become solid when | increase the pen width
above 1?

A When you increase the pen width, you are increasing the size of the dot that is used
to draw with. If you remember Day 3, “Allowing User Interaction—Integrating the
Mouse and Keyboard in Your Application,” when you first tried to draw by captur-

| 178

Day 8

ing each spot the mouse covered, all you drew were a bunch of dots. Well, when
you increase the size of the dots that you are drawing the line with, the gaps
between the dots are filled in from both sides, providing an unbroken line.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've

learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What are the three values that are combined to specify a color?

2. What do you use to draw on windows without needing to know what graphics card
the user has?

3. What size bitmap can you use to make a brush from it?
4. What event message is sent to a window to tell it to redraw itself?
5. How can you cause a window to repaint itself?

Exercises

1. Make the second dialog window resizable, and make it adjust the figures drawn on
it whenever it's resized.

2. Add a bitmap brush to the set of brushes used to create the rectangles and ellipses.

WEEK 2

DAY 9

Adding ActiveX Controls
to Your Application

In today’s application develop market, there are thousands of prebuilt compo-
nents that you can plug into your applications, extending the functionality of
your applications instantaneously. Originally the domain of Visual Basic pro-
grammers, now you can use readily available ActiveX controls with just about
any Windows programming language, including Visual C++. Today you will
learn how you can add ActiveX controls to your Visual C++ applications, tak-
ing advantage of their existing functionality. Some of the topics that you will
cover today are

¢ What ActiveX controls are and how they work.

¢ How you can add ActiveX controls to your project workspace.

* How you can use the ActiveX control in your Visual C++ application.
* How to call the various methods associated with the ActiveX control.

How to handle events that are triggered by the ActiveX control.

| 180 Day 9

What Is an ActiveX Control?

An ActiveX control is a software component that can be plugged into many different pro-
grams and used as if it were a native part of the program. It's similar to the concept of
separate stereo components. If you buy a new tape deck, you can just plug it into the rest
of your stereo and it works with everything else you already have. ActiveX controls bring
this same type of interoperability to software applications.

ActiveX used to be called OLE 2.0. OLE 2.0 was Microsoft’s technology for combining
two or more applications to make them work as one (or at least to switch between the
various applications within the same application shell). This idea was an expansion from
the original OLE (Object Linking and Embedding) technology, which only enabled you
to combine documents created with different applications into a single document. When
revamping OLE technologies to work in a distributed environment (such as on the
Internet), Microsoft decided to also revamp the name. Thus, ActiveX was born.

ActiveX and the IDispatch Interface

The ActiveX technology is built on top of Microsoft's COM (Component Object Model)
technology, utilizing its interface and interaction model for making ActiveX control inte-
gration fairly seamless. The COM technology defines how ActiveX objects are constructed
and how their interfaces are designed. The ActiveX technology defines a layer that is
built on top of COM, what interfaces various objects should support, and how different
types of objects should interact.

Nlllﬂ Microsoft’s COM technology defines how applications and components can
interact through the use of interfaces. An interface is like a function call
into an ActiveX component. However, COM specifies how that function call
must be built and called, and what supporting functionality must accom-
pany the function call.

There are interfaces, like the Iunknown interface, that are required in every
COM object, and which are used to query the component to find out what
other interfaces are supported by the component. Each interface supports a
specific set of functionality; you might have one interface to handle the
visual appearance of the control, another to control how the control
appearance interacts with the surrounding application, another that triggers
events in the surrounding application, and so on.

Adding ActiveX Controls to Your Application 181 |

One of the key technologies in ActiveX controlgigomation Automation enables an
application embedded within another application to activate itself and control its part of
the user interface or document, making its changes and then shutting itself down when
the user moves on to another part of the application that isn’'t controlled by the embedded
application.

This process is what happens when you have an Excel spreadsheet embedded within a
Word document. If you click the spreadsheet, Excel becomes active and you can edit the
spreadsheet using Excel, even though you're still working in Word. Then, once you finish
making your changes to the spreadsheet, Excel closes itself down and you can continue
working in Word.

One of the keys to making automation work is a special interface call@gpthe

(also known as the dispinterface) interface. Dgech interface consists of a pointer

to a table of available methods that can be run in the ActiveX control or embedded appli-
cation. These methods have ID numbers, called DISPIDs, which are also loaded into a
table that can be used to look up the ID for a specific method. Once you know the
DISPID for a specific method, you can call that method by callingnitke method of
theDspach interface, passing the DISPID to identify the method to be run. Figure 9.1
shows how theispach interface uses thewke method to run methods in the ActiveX

object.
FIGURE 9.1. IDispatch::Invoke(DISPID)
TheDspatch ActiveX '
interface. Client

o—1 > \ Object

dispinterface

—= Invoke () {switch (DISPID)
1: MethodX () ;

il 2: MethodY () ;

vtable 3: MethodZ () ;

| 182

Day 9

Nﬂtﬂ Don’t confuse the use of the terms container and server with the term client

ActiveX Containers and Servers

To embed one ActiveX object within another ActiveX object, you have to implement the
embedded object as an ActiveXrver and the object containing the first object must be
an ActiveXcontainer Any ActiveX object that can be embedded within another is an
ActiveX server, whether it is an entire application or just a small ActiveX control. Any
ActiveX object that can have other ActiveX objects embedded within it is an ActiveX
container.

in the previous figure. The client is the object calling the other object’s
Dispetch interface. As you’ll learn in a page or so, both the container and
server call the other’s IDspach interfaces, making each one the client of the
other.

These two types of ActiveX objects are not mutually exclusive. An ActiveX server can
also be an ActiveX container. A good example of this concept is Microsoft's Internet
Explorer Web browser. Internet Explorer is implemented as an ActiveX server that runs
within an ActiveX container shell (that can also house Word, Excel, PowerPoint, or any
other ActiveX server application). At the same time that Internet Explorer is an ActiveX
server running within the browser shell, it can contain other ActiveX controls.

ActiveX controls are a special instance of an ActiveX server. Some ActiveX servers are
also applications that can run on their own. ActiveX controls cannot run on their own and
must be embedded within an ActiveX container. By using ActiveX components in your
Visual C++ application, you automatically make your application an ActiveX container.

Most of the interaction between the ActiveX container and an ActiveX control takes
place through threespach interfaces. One of theswypech interfaces is on the con-

trol, and it is used by the container to make calls to the various methods that the ActiveX
control makes available to the container.

The container provides twospaich interfaces to the control. The first of themigech

interfaces is used by the control to trigger events in the container application. The second
interface is used to set properties of the control, as shown in Figure 9.2. Most properties
of an ActiveX control are actually provided by the container but are maintained by the
control. When you set a property for the control, the container calls a method in the con-
trol to tell the control to read the properties from the container. Most of this activity is
transparent to you because Visual C++ builds a series of C++ classes around the ActiveX
control’s interfaces. You will interact with the methods exposed by the C++ classes, not
directly calling the control'Dispaich interface.

Adding ActiveX Controls to Your Application

183 |

FIGURE 9.2.

An ActiveX container
and control interact
primarily through

a fewIDispatch
interfaces.

Adding an ActiveX Control to Your Project

ActiveX
Container

IDispatch
(events)

(N

(2
IDispatch
(properties)

(N

ActiveX
Control

N

IDispatch

>()

4

Looking into how ActiveX controls work can be deceptive because of how easy it really
is to use them in your applications. Visual C++ makes it easy to add ActiveX controls to
your applications and even easier to use them. Before you begin adding the ActiveX con-

trol to your application, let’s create an application shell into which you will add an

ActiveX control:

1. Create a new MFC AppWizard project nameiteX .

2. Use the same defaults on the AppWizard as in previous days, but leave the check
box for ActiveX Controls checked on the second AppWizard step. Give your appli-

cation the titleactivex Controls

3. Once you generate an application shell, remove all the controls and add a single
command button.

4. Set the button’s ID t@mc EXIT and its caption t@sxt .
5. Using the Class Wizard, add a function to your command button on the

BN_CLICKEDevent message.

6. Edit the function you just created, calling theokfunction, as on earlier days.

Registering the Control

Before you add an ActiveX control to your dialog window, you need to register the con-

trol, both with Windows and with Visual C++. There are two possible ways to register
the ActiveX control with Windows. The first way is to run any installation routine that
came with the ActiveX control. If you do not have an installation routine, you need to
register the control manually. To register the control manually, follow these steps:

1. Open a DOS shell.

2. Change directory to where the ActiveX control is on your system.
3. Run theegsw32 command, specifying the name of the ActiveX control as the

184 Day 9

only command-line argument. For instance, if you were registering a control
namedvycTL.0cXand it was located in yowINDOWS\SYSTEMirectory, you
would perform the following:

C:\WINDOWS> CD system
C:\WINDOWS\SYSTEM> regsvr32 MYCTL.OCX

[:a“tiu“ It is preferable to run any installation routine that comes with the control
because registering the control manually might not enable the control for
development usage. Controls can be licensed for development or deploy-
ment. If a control is licensed for deployment, you will not be able to use it in
your Visual C++ applications. This is a mechanism that protects control devel-
opers by requiring that developers purchase a development license for con-
trols; they can’t just use the controls they may have installed on their system
with another application.

Nﬂtﬂ COM and ActiveX objects store a lot of information in the Windows Registry
database. Whenever an application uses an ActiveX object, the operating
system refers to the information in the Windows Registry to find the object
and to determine whether the application can use the object in the way
that it requested. Using the regswi32exe utility to register an ActiveX control
places most of the required information about the control into the system
Registry. However, there may be additional information about the control
that needs to be in the Registry for the control to function properly.

Now that the ActiveX control that you want to use is registered with the operating sys-
tem, you need to register it with Visual C++ and add it to your project. To do this, follow
these steps:

1. Select Project | Add To Project | Components and Controls from the Visual C++
menu.

2. In the Components and Controls Gallery dialog, navigate to the Registered ActiveX
Controls folder, as in Figure 9.3.

Adding ActiveX Controls to Your Application

185 |

FIGUre 9.3.

The ActiveX controls
that can be added to
your project.

Components and Controls Gallery

Choose a companent ta insert inta pour project:
Lookin: | _i Regitered ctivell Contiols | = s

i B Commen Dizlag Contral,
L) ActiveS stup et Object o] COusteDos Class
e Activet Plugin Object T Cupstal Fiepon Coniral 4.
B anibution Control] Diata Command Contrel
] Calendar Contiol 8.0] Diata Riange Faater Conl
I Chart Fit] Diata Riange Header Cor
EIN| il
File name: | Ingert

Close

Path to controk
[

3. Select the control you want to register, such as the Microsoft FlexGrid control, and

click the

Insert button.

4. Click OK on the message box asking whether you want to insert this component in

your proj

ect.

5. On the Confirm Classes dialog, click the OK button to add the C++ classes speci-
fied, as in Figure 9.4.

FiGURe 9.4.

Visual C++ tells you
what classes will be
added to your project.

6. Click the Close button on the Components and Controls Gallery dialog to finish

Confim Classes
The checked glassles] will be generated from
the Active Cantrol. Click on a class name to

browse or edit its attibutes.
Canecel

v CRowCurzor
¥ COleFont
 CFicture

Class name Base class
CMSFledGrid Cwind
Headz fil:

[MSFlexGrid

Implementation file:
[MSFlexGrid.cop

adding controls to your project.

7. The FlexGrid control should have been added to the Control Palette for your dialog
window, as in Figure 9.5.

| 186

Day 9

FIGURE 9.5. =
. 3
The ActiveX control A bl
FlexGrid is added to Mo
x ™
the Control Pglette for
use on your dialog @ B
windows. O Gz
- B2
= e
=B
a6 [
€

& ——The FlexGrid control

If you examine the Class View area of the workspace pane, you see the four classes that
Visual C++ added to your project. Expand the class trees and you see humerous methods
for these classes. Visual C++ created these classes and methods by examining the
ActiveX control that you just added and created class methods to call each of the methods
in the control'sDispach interface.

Nﬂtﬂ If you use older ActiveX controls in your Visual C++ applications, Visual C++
might not be able to generate the classes and methods to encapsulate the
control’s functionality. The information in the control that provided Visual
C++ with the information necessary to build these classes and methods is a
more recent addition to the ActiveX specification. As a result, older controls
might not provide this information, making them more difficult to use with
Visual C++.

Adding the Control to Your Dialog

Now that you have added the FlexGrid control to your project, you can add it to your dia-
log window just as you would any other control. Set the control properties as in Table 9.1.

TABLE 9.1. CONTROL PROPERTY SETTINGS.

Object Property Setting
FlexGrid control ID IDC_MSFGRID
Rows 20
Cols 4
MergeCells 2-Restit Rows
Format <Region |< Product

(FormatString) < Employee [>Sales

Adding ActiveX Controls to Your Application 187 |

FIGURE 9.6. Microsoft FlexGrid Control, version 6.0 Propeties

ActiveX controls have —
a property tab that
contains all control
properties.

Once you add the control to your dialog window, you will notice that there is an addi-
tional tab on the properties dialog with all the control properties, as in Figure 9.6. You
can choose to use this tab to set all the properties on the control, or you can go through
the other tabs to set the properties, just as you would with the standard controls.

44 @ General | Corhiol | Ste | Font | Color | Picture

AlowBig5election True
Allowlserfesizing 0-None
Appeaiance 1-30
BackCalar 0x80000005
BackColorBkg 0400808060
BackColorFived 0480000007
BackCalorSel 0x80000000
Borderstyle 1 - Single
)

DataSource <Hot bound to 5 DataSource>
Enabled True
FilStyle 0-Single =

Once you have finished setting all the properties for the control, you'll need to add a
variable for the control so that you can interact with the control in your code. To add this
variable, open the Member Variables tab on the Class Wizard and add a variable for the
control. Because you are adding a variable for an ActiveX control, you can only add a
control variable, so the only thing available for you to specify is the variable name. For
this example application, name the variableFGrd

Using an ActiveX Control in Your Application

Once Visual C++ has generated all the classes to encapsulate the ActiveX control, work-
ing with the control is a simple matter of calling the various methods and responding to
control events just like the standard controls. You'll start with using the control methods
to get information about the control and to modify data within the control. Then you'll
learn how to respond to control events with Visual C++.

Interacting with the Control

The application that you are building today will generate a number of product sales over
five sales regions with four salespeople. You will be able to scroll through the data,
which will be sorted by region and product, to compare how each salesperson did for
each product.

To make this project, you will build an array of values that will be loaded into cells in
the grid. The grid will then be sorted in ascending order, using the FlexGrid control’'s
internal sorting capabilities.

188 Day 9

Loading Data into the Control

The first thing you will do is create a function to load data into the FlexGrid control. Add
a new function to theactvexDlg class by right-clicking the Class View of the work-

space and choosing Add Member Function. Specify the Function Type ahe

Function Declaration asadData , and the access as Private. Click the OK button and
edit the function, adding the code in Listing 9.1.

LiSTING 9.1. THE LoadData FUNCTION.

1:vod CActiveXDig::LoadData()

X

3 niCount /Mhegdionvaourt

4. CStingkAmourt; /Thesaesamount
5
6 /iniiaizetherandomnumber generaior

7: sand(unsgned)ime(NULL))

8 [CreaeArayintecortd

9 for(iCount=m_dFGidGetFedRoAs();
10 iCount<m dFGid GatRons(;ICountH)
1q{

12 /Gergaietelstaoumn(egon)vales

13 m dFGidSefTextAray(GenlD{Court, 0), RandomStingValue(O));
14 /Generate the second coumn (product) values

15 m dFGidSefTextAray(GenlD{Court, 1), RandomStingValue(L));
16 /Generaethethid coumn (employee) valles

17: m dFGid SefTextAmray(GenlD{Court, 2), RandomStingValue(2));
18 /Gereraethesaesamountvales

19 sAmountFomat(%&d 00", rand();

20 /Popubietefouthodum

21 m dFGidSefTextAray(GenlDCourt, 3), KAmount);

2
Ay
24
)
26
27
28

: [/ Merge the common subsequent rows in these columns
;- m_diFGiid SetMiergeCol(0, TRUE);
;- m_diFGiid SetMergeCol(L, TRUE),
- m_diFGid SetMergeCal2, TRUE),

In this function, the first thing that you do is initialize the random number generator.
Next, you loop through all of the rows in the control, placing data in each of the cells.
You get the total number of rows in the control by callingdk&ows method and the
number of the header row by calling therixedRows method. You are able to add data

Adding ActiveX Controls to Your Application 189 |

to the control cells by calling thetTextaray method, which has the cell ID as the first
argument and the cell contents as the second argument, both of which are generated by
functions you'll be creating in a few moments.

Once you have data in the grid cells, you sabergecal , which tells the control that it
can merge cells in the first three columns if adjacent rows contain the same value.
Finally, you sort the control, using another function you have yet to create.

Calculating the Cell ID

The cells in the FlexGrid control are numbered sequentially from left to right, top to bot-
tom. With your control, the first row, which contains the headers (and is already populat-
ed), has cells 0 through 3, the second row cells 4 through 7, and so on. Therefore, you
can calculate the ID of a cell by adding its column number to the total number of columns
in the control, multiplied by the current row number. For instance, if your control has
four columns, and you are in the third column and fourth row, you can calculate your cell
ID as 2 + (4 * 3) = 14. (Remember that the column and row numbers start with O, so the
third column is 2 and the fourth row is number 3.)

Now that you understand how you can calculate the cell ID, you need to implement that
formula in a function. Add a new function to theivexDlg class using the same

method as for thecadData function. The type of this function should iae and the
description should beeniDintm iRow, intm iCol) . Once you add the function, edit it

with the code in Listing 9.2.

LISTING 9.2. THE GenlD FUNCTION.

1:int CActiveXDig::GenlD(intm_iRow, intm _iCol)

A

3. /I Getthe number of columns

4 ntiCos=m dFGUGACOS()

5

6. [/ Generate anID based on the number of columns,
7: Ilthe cument column, and the currentrow

8 retum(m_iCa+iCas*m iRow);

9

Generating Random Data

To populate the first three columns in the grid, you want to randomly generate data. In

the first column, you want to put region names. In the second column, you want to put
product names. And in the third column, you want to put salesperson names. By using a
switch statement to determine which column you are generating data for and then using a

| 190 Day 9

modulus division on a randomly generated number in another switch statement, you can
randomly select between a limited set of data strings.

To implement this functionality, add another function todhevexblg class with a type
of csiing and a description tfandomStringValue(int m_iColumn) . Edit the resulting
function, adding the code in Listing 9.3.

LisTING 9.3. THE RandomStringValue ~ FUNCTION.

1: CStiing CActiveXDlg::RandomStringValue(int m_iColumn)
A

3 CSiigkSy; /Mhereumsiing

4 tiCase JARomMveleD

5

6. //Which column are we generating for?

7. switch(m_iColumn)

&

9 a0 /Thefistoomn(egon)

10: //Generate arandom value between Oand 4
1 ICase=(and)%5)

122 /Whatvalue was generated?

12-Mdinestregin
ES=Mdnet:

casel: //The second column (product)
/| Generate arandom value between O and 4
ICase=(and)%65),
\Whatvalue was generated?
awich(Cese)

EEB8YBHRBBRBBBNBMN
g

Adding ActiveX Controls to Your Application 191 |

-

10-Dodecs

iig
:

11-Thrgames

T it

Rig
5

12-Wheichamecalis

T

13-RourdTus
ESr="Raurd Tuis;

BE

14-\Nees

;

iwiq

case2 [/ Thethird column (employee)
/| Generate arandom value between 0and 3
iCase=(and)%04)
\Whatvalue was generated?
sich(Caee)

—~

iiged
'k

N-Haey

g%ﬁﬂ?ﬁg%@@BEwﬁadﬁwwﬁl58893833@@88%%&&&8&@@8&&@&&ﬁ&ﬁ
g §%§§§§§§§§
£ 89 ¢

% /Retmthegeneratedsting

8e
g
&

| 192

Day 9

Sorting the Control

To sort the Grid control, you need to select all the columns and then set the sort to
ascending. To implement this functionality, add one more function toathexbig
class with a type obd and a definition oboSort . Edit the function as in Listing 9.4.

LISTING 9.4. THE DoSort FUNCTION.

1: vod CActiveXDig::DoSort()

I Setthe curent column o coumn O
m_dFGid SetCalQ0);

' Setthe column selection o al comns
m_diFGid SetCaSel(m diFGid GetCals() - 1));
11 Generic Ascending Sort

m_dFGid.SeiSort(1);

L0 NDM A WN

In theDosSort function, you set the current column to the first column usingdiea
method. Next you select from the current column to the last column usisgcise!
method, effectively selecting all columns in the control. Finally, you tell the control to
sort the columns in ascending order by usingstiet method, passing as the flag

for the sort order.

Now that you have all the functionality necessary to load the control with data, you need
to call theLoadData function in theonniDaog ~ function to load the data before the con-
trol is visible to the user. Edit theiniDaog ~ function as in Listing 9.5 to load the data.

LisTING 9.5. THE OniniDialog FUNCTION.

1: BOOL CActiveXDig:OnlinitDialog()
]

3 CDelgOniniDaboy)

4.

5.

6 .

7. ITODO Addextranisizaionhere
8

o M

10: /MY CODE STARTS HERE
11

12

13 /Loaddetainiothe Gid control

14 LoadDaia();

15

16: /i

Adding ActiveX Controls to Your Application 193 |

17: /MY CODE ENDS HERE
18l

19
20. rem TRUE; /rem TRUE unlessyou setthe focustoacontral
2}

If you compile and run your application at this point, you find that it is loading the data
and sorting it, as in Figure 9.7.

% ActiveX Controls
Region Product [Employee | Sale: « |
FIGURE 97 Dodads Myra 2526300 |
Harvey 2678500
Flound Tuits
. Midwest Pago 1M07.00
The FlexGrid pOpU|ated Thingamaiigs Harvey 25386.00
: ‘whatchamaca Dore 24319.00
with data. Notheant | 20883 Dore 8087.00
oSt Round Tuts Harvey 24940.00
Dodads Dore 22211007
4 »
Esit

Responding to Control Events

If you play with your application at this point, you know that the Grid control does not
respond to any input that you might try to give it. If you click one of the cells and try to
change the value, it doesn’t respond. What you need to do is add a control event to han-
dle the input. ActiveX controls make several events available for use in Visual C++ appli-
cations. You can use the Class Wizard to browse through the available events and deter-
mine which events you need to give functionality and which to ignore. Most ActiveX
controls don’t have any default functionality attached to the available events but instead
expect you to tell the control what to do on each event.

You are going to add two control events to capture the mouse clicks and movements. You
will add functionality to allow the user to click a column header and drag it to another
position, thus rearranging the column order. To implement this functionality, you have to
capture two control events, when the mouse button is pressed down and when it is
released. On the first event, you need to check whether the user clicked a header, and if
so, you capture the column selected. On the second event, you need to move the selected
column to the column on which the mouse button was released.

To accomplish this functionality, you need to create a new class variable to maintain the
clicked column number between the two events. Add a new variable ¢acteDig

class, just like you added the functions earlier, specifying the type, #ise variable

name asn_iMouseCol , and the access as Private.

Capturing the Column Selected

| 194

Day 9

To capture the mouse click event for the control, follow these steps:

1. Using the Class Wizard, add a function for theseDown event message for the
IDC_MSFGRIDObject.

2. Edit the function using the code in Listing 9.6.

LISTING 9.6. THE OnMouseDownMsfgrid FUNCTION.

1: vod CActiveXDig::OnMouseDownMsfgrid(short Button, short Shit, long 0x
longy)

A

3 //'TODO: Add your control natification handler code here
4

5. Ml

6: //MY CODE STARTS HERE

7 Wi

8

9 /Ddtheuserddonadatarowandnatthe

10: /headerrow?

11 if (m_ctiFGrid GetMouseRow() =0)

24

13 /ifsothenzeroautthecoumnvarisbe

14 Jadet

15 m iMouseCa=0;

16 eun

17}

18 /Savethe coumndickedon

19: m_iMouseCol =m_ctiFGrid.GetMouseCol();
20

20 i

22: [IMY CODE ENDS HERE

23 i

24}

In this function, you checked the row clicked by calling deeMouseRow method. If the

row is not the first row, then zero out the column-holding variable and exit the function.
Otherwise, you need to get the column clicked by callingstfi@ouseCol method. You

can store the returned column number innthi®ouseCol variable that you just added to
the class.

Moving the Column Where Released

Now that you are capturing the selected column number, you need to capture the column
on which the mouse is released. To capture the mouse release event for the control, fol-
low these steps:

1. Using the Class Wizard, add a function for tveseup event message for the

Adding ActiveX Controls to Your Application 195 |

IDC_MSFGRIDObject.
2. Edit the function using the code in Listing 9.7.

LISTING 9.7. THE OnMouseUpMsfgrid FUNCTION.

1: vod CActiveXDig::OnMouseUpMsfgrid(short Button, short Shift, long x,
O longy)

/' TODO: Add your control nafification handier code here

M
/MY CODE STARTS HERE
M

'fthe selecied coumnwes the frstcoumn,
Itherésnathingtodo
if (m_iMouseCol=0)
Ieun
ITumthe control redraw off
m_ctiFGrid. SetRedraw(FALSE);
I/ Change the selected column position
m_ciFGrid.SetColPosition(m_iMouseCol, m_ctiFGrid GetiMouseCol();
IResotthegid
Dosor);
J Tumredraw back on
m_ctiFGrid.SetRedram(TRUE);

M
/MY CODE ENDS HERE
M

RERRELENSGRBEPSERBeo oo s N

21}

In this function, you first check to see if there is a selected column to be moved. If not,
you exit the function with nothing to do. If there is a column selected, you turn off the
redraw on the control using tlsetRedraw method so that none of the movement is seen
by the user. Next, you move the selected column to the release column using the
SetCoPesion method. Once you move the column, you resort the grid by calling the
DoSort function. Finally, you turn the control’s redraw back on so that the control is
refreshed to show the user the moved column. If you compile and link your application,
you should now be able to grab column headers and move the columns about, as in
Figure 9.8.

| 196

Day 9

FIGURE 9.8.

 ActiveX Controls
The FIexGrid With Employee Fiegion [Product, | Sale: =
Flound Tuts 2330601
reordered columns. Midwest Thingamajgs 18292.0
. widgels 221300
Mothesst Thingamaigs 16887.00
Thingamaigs 15238.0
Nothwest I3 e ois 17200.00
— Midwest Dodads 836800
Y Mothesst Flound Tuts 30009.00 ¥
4 »
Ext

Today you learned how you can use ActiveX controls in your Visual C++ applications to
easily extend your application’s functionality. You learned the basics of how ActiveX
controls work and how they interact with the containing application. You also learned
how you can add an ActiveX control to your development project so that you can use it
in your application. You saw how Visual C++ creates C++ classes to encapsulate the
ActiveX controls that you add and how you can interact with the control through the
exposed methods of these generated C++ classes. You also saw how you can capture
events that are generated by the ActiveX control so that you can program your applica-
tion to react to the events.

Q&A
Q

A

How can | determine what methods are available to me when working with an
ActiveX control?

By examining the C++ classes that Visual C++ builds to encapsulate the control,
you can get a good idea of what functionality is available to you. If you have docu-
mentation for the control, you can compare it to the C++ class to determine which
class method calls which control method. You can examine the events listed for the
control in the Class Wizard to determine which events are also available.

How can | use the ActiveX controls that were installed on my machine with
another application in my Visual C++ applications?

It depends on how the controls are licensed and what application installed the con-
trols. If the controls were installed by another application development tool,
chances are that you have a development license for the control, in which case you
should be able to use them in your Visual C++ applications. If the controls were
installed by an end-user application, such as Word or Quicken, then odds are that
you have only a runtime license for the control. If you want to use these controls in
your own applications, you need to contact the control developer to acquire a
development license for the controls.

Adding ActiveX Controls to Your Application 197 |

Q Because the FlexGrid control does not allow me to enter data directly into the

control, how can | let my users enter data into the grid as if they were using a
spreadsheet?

To implement this functionality for the FlexGrid control, you need to add a floating
Edit Box control to your window. Your code needs to determine which cell the user
wants to edit and float the edit box in front of that cell. This arrangement allows

the user to feel as if he is entering data directly into the cell. Another approach is to
have a data-entry field outside the grid, much like is used in Excel, into which the
user enters the data. You can highlight the cells as the user maneuvers around the
Grid control to give the user visceral feedback for her actions.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1.
2.
3.

4.
5.

How does an ActiveX container call methods in an ActiveX control?
How does an ActiveX control trigger events in the container application?

What AppWizard option must be selected for ActiveX controls to work properly in
a Visual C++ application?

How does Visual C++ make it easy to work with ActiveX controls?
Why might it be difficult to work with older controls in Visual C++?

Exercise

Modify the application so that the user can double-click a column header and make it the
first column in the grid.

WEEK 2

DAY 10

Creating Single Document
Interface Applications

Today you will learn a different way of approaching application development
with Visual C++ than you have used with the previous days’ lessons. Today you
will learn how to create Single Document Interface (SDI) applications. An SDI
application is a document-centric application that can only work with one docu-
ment at a time, and can only work with one type of document.

Some good examples of SDI applications are Notepad, WordPad, and Paint. All
of these applications can do only one type of task and can only work on one
task at a time. WordPad is almost like an SDI version of Word. It's able to per-
form a large number of the tasks that Word does, but although Word allows you
to work on numerous documents at the same time, WordPad limits you to only
one document.

Some of the things that you will learn today are

* The Document/View architecture that Visual C++ uses for creating SDI
applications.

| 200

Day 10

» How to create an SDI application shell.

« How to separate your data from the visual representation of the data.
« How to encapsulate your data in its own C++ class.

* How to create interaction between the data and the menus.

The Document/View Architecture

When you create an SDI application, more classes are created for an SDI application
than for a dialog-style application. Each of these classes serves a specific purpose in how
SDI applications operate. Ignoring the About window dialog class, four specific classes
make up an SDI application:

* ThecwinApp-derived class

e TheCFrameView -derived class
¢ ThecbDocument-derived class
e Thecview-derived class

The cwinApp class creates all the other components in the application. It is the class that
receives all the event messages and then passes the messagesriméliew and
cview classes.

The crrameview class is the window frame. It holds the menu, toolbar, scrollbars, and
any other visible objects attached to the frame. This class determines how much of the
document is visible at any time. Very little (if any) of your programming efforts on SDI
applications will require making any modifications or additions to either of these first
two classes.

The cDocument class houses your document. This class is where you will build the data
structures necessary to house and manipulate the data that makes up your document. This
class receives input from tlawiew class and passes display information toctview

class. This class is also responsible for saving and retrieving the document data from

files.

Thecview class is the class that displays the visual representation of your document for
the user. This class passes input information t@tweument class and receives display
information from thecDocument class. Most of the coding that you will do for this class
consists of drawing the document for the user and handling the input from the user. The
Cview class has several descendent classes that can be used as the ancestor for the view
class. These descendent classes are listed in Table 10.1.

Creating Single Document Interface Applications

TABLE 10.1. THE CView DESCENDENT CLASSES.

Class Description

CEditview Provides the functionality of a edit box control. Can be used to
implement simple text-editor functionality.

CFormView The base class for views containing controls. Can be used to provide
form-based documents in applications.

CHtmIView Provides the functionality of a Web browser. This view directly han-
dles the URL navigation, hyperlinking, and so on. Maintains a history
list for browsing forward and back.

ClistView Provides list-control functionality in the Document/View architecture.

CRichEditView Provides character and paragraph formatting functionality. Can be
used to implement a word-processor application.

CScrolView Provides scrolling capabilities tocxiew class.

CTreeView Provides tree-control functionality in the Document/View architecture.

All four of these classes work together to make up the full functionality of an SDI appli-
cation, as shown in Figure 10.1. By taking advantage of this architecture, you can build
powerful document-centric applications with relative ease.

Ficure 10.1.

The Document/View
architecture.

Messages passed to the
frame window and view

object

Application object
(CWinApp)

(CFrameView)

Frame window

View object
(CView)

[m] >]

Document object
(CDocument)
Two-way flow of
information between
the document and the
view objects

201 |

| 202

Day 10

N“tﬂ Don’t let the term document mislead you. This doesn’t mean that you can
only create applications such as word processors and spreadsheets. In this sit-
uation, the term document refers to the data that is processed by your
application, whereas view refers to the visual representation of that data.
For instance, the Solitaire application could be implemented as a
Document/View application, with the document being the cards and their
position in the playing area. In this case, the view is the display of the cards,
drawing each card where the document specifies it should be.

Creating an SDI Application

To get a good idea of how the Document/View architecture works, and of how you can
use it to build applications, you will build a new version of the drawing application you
created on Day 3, “Allowing User Interaction—Integrating the Mouse and Keyboard in
Your Application.” In this version, the user’s drawing will be persistent, which means it
is not erased each time another window is placed in front of the application. This version

will also be able to save and restore drawings.

Building the Application Shell

To create the application shell for today’s application, follow these steps:
Create a new AppWizard project. Name the prajagio.

On the first step of the AppWizard, select Single Document.

Use the default values on the second step of the AppWizard.

ok b e

On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. In the Advanced Options dialog, enter a three-letter file extension for the files that
your application will generate (for exampéia¢ or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Use the default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, you can choose the base class on which
your view class will be based. Leave the base classiag and click Finish. The

AppWizard will generate the application shell.

On the third step of the AppWizard, uncheck the support for ActiveX Controls.

Creating Single Document Interface Applications

203 |

Creating a Line Class

One of the first issues that you will need to tackle is how to represent your data in the
document class. For the drawing application, you have a series of lines. Each line con-
sists of a starting point and ending point. You might think that you can use a series of
points for the data representation. If you do this, you also have to make special accom-
modations for where one series of lines between points ends and the next begins. It
makes much more sense to represent the drawing as a series of lines. This allows you to
store each individual line that is drawn on the window without having to worry where

one set of contiguous lines ends and where the next begins.

Unfortunately, the Microsoft Foundation Classes (MFC) does not have a line object
class, although it does have a point object clazsi(). | guess you'll just have to create
your own line class by following these steps:

1. In the Class View tab of the workspace pane, select the top-level object in the tree
(Day10 classes). Right-click the mouse and select New Class from the pop-up

menu.

2. In the New Class dialog, select Generic Class for the class type Chmtefor the
class name and click in the first line in the Base Class list box. Entiest as the
base class, leaving the class access as public, as in Figure 10.2.

Ficure 10.2.
The New Class Wizard.

New Class
Class bype:

Clazs intormation

Hame:

File name:

Base classfes)

[Generic Ciaze

-] oK

Cancel |

[CLine

Linel.cpp

Change

Derived From
CObject

As
public

3. When you click the OK button to add thane class, you may be told that the
Class Wizard cannot find the appropriate header file for inheritingLilee class
from thecobject class, as in Figure 10.3. Click on the OK button on this message

box.

| 204

Day 10

Ficure 10.3. Microsoft Visual C++

Warning about
including the base

The New Class Wizard could nat find the appropriate header filels] to include for the bass
¥\ classles) CObjeet I you chaose to derive fiam the class(es) anyway. you may need to
manualy add the apprapriats header fie(s) to D:\MSVS yProjects\Dayl D\Line2 b

class definition. [ezsad]

" Note

The appropriate header class is already included in the CLine class files. Until
your compiler complains because it can’t find the definition for the CObject
class, don’t worry about this message. However, if you are using a base class
that’s a bit further down the MFC class hierarchy, you might need to heed
this message and add the appropriate header file to the include statements
in the class source code file.

Constructing the CLine Class

At this time, yourcLine class needs to hold only two data elements, the two end points of
the line that it represents. You want to add those two data elements and add a class con-
structor that sets both values when creating the class instance. To do this, follow these
steps:

1.
2.

In the Class View tab of the workspace pane, seledtike class.

Right-click thecLine class and choose Add Member Variable from the pop-up
menu.

Entercroint as the variable type amd ptFrom as the variable name, and mark the
access as Private. Click OK to add the variable.

Repeat steps 2 and 3, naming this variabl&To .

Right-click thecLine class and choose Add Member Function from the pop-up
menu.

Leave the function type blank, and ertgtie(CPoint ptFrom, CPoint piTo) for the
function declaration. Click OK to add the function.

7. Edit the new function, adding the code in Listing 10.1.

LisTING 10.1. THE CLine CONSTRUCTOR.

1: CLine::CLine(CPaint ptFrom, CPoint ptTo)

A

3 /nisizethefomandioporis
4: m_ptFrom = ptFrom;
5. m _ptTo=pftTo;

6}

Creating Single Document Interface Applications 205 |

In this object constructor, you are initializing the from and to points with the points that
were passed in to the constructor.

Drawing the cLine Class

To follow correct object-oriented design, yauire class should be able to draw itself so
that when the view class needs to render the line for the user, it can just pass a message
to the line object, telling it to draw itself. To add this functionality, follow these steps:

1. Add a new function to thetine class by selecting Add Member Function from the
pop-up menu.

2. Specify the function type asd and the function declaration agw(CDC *pDC) .

3. Add the code in Listing 10.2 to timeaw function you just added.

LisTING 10.2. THE CLine Draw FUNCTION.

1: void CLine::Dram(CDC * pDC)
2

3 /Dawteire

4: pDC->MoveTo(m_ptFrom);
5. pDC->LineTo(m_ptTo);

6}

This function is taken almost directly from the application you built a week ago. It's a
simple function that moves to the first point on the device context and then draws a line
to the second point on the device context.

Implementing the Document Functionality

Now that you have an object to use for representing the drawings made by the user, you
can store theseline objects on the document object in a simple dynamic array. To hold
this array, you can add@bArray member variable to the document class.

ThecobArray class is an object array class that dynamically sizes itself to accommodate
the number of items placed in it. It can hold any objects that are descended from the
CObject class, and it is limited in size only by the amount of memory in the system.
Other dynamic array classes in MFC includéngAray , CByteArray , CWordArray ,
CDWordArray , andcpPrAray . These classes differ by the type of objects they can hold.

Add thecobArray to Cbay10Doc, using the Add Member Variable Wizard and giving it a
name ofm_oaLines .

Adding Lines

| 206 Day 10

The first functionality that you need to add to the document class is the ability to add
new lines. This should be a simple process of getting the from and to points, creating a
new line object, and then adding it to the object array. To implement this function, add
a new member function to tlemay10Doc class, specifying the type asner and the
declaration agddLine(CPoint ptrrom, CPoint ptTo) with public access. Edit the function,
adding the code in Listing 10.3.

LisTING 10.3. THE CDay10Doc AddLine FUNCTION.

1: ClLine * CDay10Doc::AddLine(CPoint ptFrom, CPoint ptTo)
A

3. /CreateanewClineobject

4: Cline*pLine=new CLine(pt-rom, pTo);

Sy

6{
7. IAddthenewineiothedbectaray

8 m oalinesAdd(pLine),
9 /Maktedocumentasdity

12/ Didwe runintoamemory exception?

13: catch (CMemoryException* perr)

14 {

15 /Depayamessageiorteuser,gvinghimorherthe

16. /bedrens

17. AixMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
18 /Ddweceseainedoed?

19 g

At first, this function is understandable. You create a aaw instance, passing the
from and to points as constructor arguments. Right after that, however, you have some-

thing interesting, the following flow control construct:
Iy
A
3.

4.
5.

Creating Single Document Interface Applications 207 |

12}

What is this? This construct is an example of structured exception handling. Some code
could fail because of a factor beyond your control, such as running out of memory or
disk space, you can placaya section around the code that might have a problem. The
ty section should always be followed by one or mara sections. If a problem occurs
during the code in thg section, the program immediately jumps to ¢hen sections.
Eachcatch section specifies what type of exception it handles (in the case afdthe
function, it specifically handles memory exceptions only), and if there is a matching
cach section for the type of problem that did occur, that section of code is executed to
give the application a chance to recover from the problem. If therecigtnasection for

the type of problem that did occur, your program jumps to a default exception handler,
which will most likely shut down your application. For more information on structured
exception handling, see Appendix A, “C++ Review.”

Within thetyy section, you add the neguine instance to the array of line objects. Next,
you call thesetModiiedFag ~ function, which marks the document as “dirty” (unsaved) so
that if you close the application or open another file without saving the current drawing
first, the application prompts you to save the current drawing (with the familiar Yes, No,
Cancel message box).

In thecatch section, you inform the user that the system is out of memory and then clean
up by deleting theLine object and the exception object.

Finally, at the end of the function, you return thiee object to the calling routine. This
enables the view object to let the line object draw itself.

Getting the Line Count

The next item you will add to the document class is a function to return the number of
lines in the document. This functionality is necessary because the view object needs to
loop through the array of lines, asking each line object to draw itself. The view object
will need to be able to determine the total number of lines in the document and retrieve
any specific line from the document.

Returning the number of lines in the document is a simple matter of returning the num-
ber of lines in the object array, so you can just return the return value frazasize
method of thecobArray class. To implement this function, add a new member function to

| 208 Day 10

the cbay10Doc class, specifying the type as and the declaration @&stLineCount with
public access. Edit the function, adding the code in Listing 10.4.

LisTING 10.4. THE CDay10Doc GetLineCount ~ FUNCTION.

1: int CDay10Doc::Getl ineCount()
A

3 /Reunthearaycount

4 retumm_oalinesGetSize();

5

Retrieving a Specific Line

Finally, you need to add a function to return a specific line from the document. This is a
simple matter of returning the object at the specified position in the object array. To
implement this function, add a new member function toctbey10Doc class, specifying

the type agline* and the declaration &t inefntninde) with public access. Edit the
function, adding the code in Listing 10.5.

LisTING 10.5. THE CDayl0Doc Getline FUNCTION.

1: CLine * CDay10Doc::GetLine(int nindex)
A

3 /Reumaponierpthelnecect

4 [atthespediedpontinthedoectanray

5. retum (CLineYm_oaLinesinindex);

6

Nﬂtﬂ Notice that the object being returned had to be cast as a pointer to a ClLine
object. Because the CObArray class is an array of CObjects , every element that
is returned by the array is a CObject instance, not a Cline object instance.

Showing the User

Now that you have built the capability into the document class to hold the drawing, you
need to add the functionality to the view object to read the user’s drawing input and to
draw the image. The mouse events to capture the user input are almost identical to those
you created a week ago. The second part of the functionality that you need to implement

Creating Single Document Interface Applications 209 |

is drawing the image. You will make an addition to a function that already exists in the
view object class.

Before adding these functions, you need to add a member variablecatheview

class to maintain the previous mouse point, just as you did a week ago. Add a member
variable to thecbay1oview class through the workspace pane, specifying the type as
cpoit , the name asi_ptPrevPos , and the access as private.

Adding the Mouse Events

To add the mouse events to capture the user’s drawing efforts, open the Class Wizard and
add functions to theDpayioview class for thevm_LBUTTONDOWMM_LBUTTONYRNd
WM_MOUSEMO®gent messages. Edit the functions as in Listing 10.6.

LisTING 10.6. THE CDay10View MOUSE FUNCTIONS.

1: void CDay10View::OnLButtonDown(UINT nFlags, CPoint point)
/' TODO: Add your message handier code here and/or call defauit

M
/MY CODE STARTS HERE
M

1/ Capiure the mouse, so no ather applicaion can
I grabitifthe mouse leaves the window area
SetCaplurey);

ISavethe poit

m_ptPrevPos = point;

ERBREBooNourwN

- N

16: /MY CODE ENDS HERE

17: I

18

19 CView:OnLButtonDown(nHags, point);

2

2t

22: void CDay10View::OnLButtonUp(UINT nFlags, CPoint point)
23

24: J/'TODO: Add your message handler code here and/or call defavit

M
//MY CODE STARTS HERE
M

ERBNIBH

I Have we captured the mouse?

continues

210 Day 10

LisTING 10.6. CONTINUED

if(GetCapiure) —=this)
¥sorekesetsoahergpicaionscan
Traet

ReleaseCaplure)

T

/IMY CODE ENDS HERE
38 My

e
40 CView:OnlLButtonUp(nHags, point);

41}

Vi

43: void CDay10View::OnMouseMove(UINT nFlags, CPaint point)
24:{

45: //TODO: Add your message handler code here and/or call defavit
46

a7 Wi

48: /MY CODE STARTS HERE

49: [y

50

51: //Checkioseeifthe leftmouse butionis doan

52 if (nFlags & MK_LBUTTON) == MK_LBUTTON)

L8HRBER

R{

54: //Havewe captured the mouse?
% HGaCapue)—=tt)

B{

57. ICettheDeviceCoriext

58 OCenDCdts)

5

60 /Addtelreithedocument

6L CLine *pLine = GetDocument(}=>AddLine(m_ptPreviPos, poirt);
62

63 /Dawterertsiechdie

64 plre>Dam&);

&b

66 /Saeteanertportastepevousport
67. m pPewos=port;

8}

&}

70

T I

72: /IMY CODE ENDS HERE

73 I

74

75: CView:OnMouseMove(nHags, point);

76}

Creating Single Document Interface Applications 211 |

In theonLButtonDown function, the first thing you do is call tisetCapure function.

This function “captures” the mouse, preventing any other applications from receiving any
mouse events, even if the mouse leaves the window space of this application. This
enables the user to drag the mouse outside the application window while drawing and
then drag the mouse back into the application window, without stopping the drawing. All
mouse messages are delivered to this application until the mouse is released in the
OnLButtonUp function, using theeleaseCapture ~ function. In the meantime, by placing

the GetCapture function in ar¥ statement and comparing its return valuétg you can
determine whether your application has captured the mouse. If you capture the mouse,
you want to execute the rest of the code in those functions; otherwise, you don't.

In the onMouseMove function, after you create your device context, you do several things
in a single line of code. The line

CLine *pLine = GetDocument()->AddLine(m_ptPreviPos, point);

creates a new pointer tacane class instance. Next, it calls tbetDocument function,

which returns a pointer to the document object. This pointer is used to call the document
class’saddLine function, passing the previous and current points as arguments. The
return value from theddLine function is used to initialize theLine object pointer. The

Cline pointer can now be used to call the line objemi’sv function.

Nﬂtﬂ A pointer is the address of an object. It is used to pass an object more effi-
ciently around a program. Passing a pointer to an object, instead of the
object itself, is like telling someone that the remote control is “on the couch
between the second and third cushion, beside the loose pocket change™
instead of handing the remote to the person. Actually, in programming
terms, handing the remote to the person requires making an exact copy of
the remote and handing the copy to the other person. It is obviously more
efficient to tell the person where to find the remote than to manufacture
an exact copy of the remote.

The notation > denotes that the object’s functions or properties are
accessed through a pointer, as opposed to directly through the object itself
with the period (.) notation.

Drawing the Painting

In the view class, the functiapnDraw is called whenever the image presented to the user
needs to be redrawn. Maybe another window was in front of the application window, the
window was just restored from being minimized, or a new document was just loaded
from a file. Why the view needs to be redrawn doesn’t matter. All you need to worry

212 Day 10

about as the application developer is adding the code tontivaw function to render
the document that your application is designed to create.

Locate theonDraw function in thecbay10view class and add the code in Listing 10.7.

LisTING 10.7. THE CDay10View OnDraw FUNCTION.

1: void CDay10View::OnDraw(CDC* pDC)

CDay10Doc* pDoc = GetDocument();
ASSERT _VALID(pDoc);

/I TODO: add draw code for native data here
i

/IMY CODE STARTS HERE
I

I/ Getthe number of ines in the document
intiCount=pDoc>GetlineCount();

RERNEBvo~oumswn

15: / Arethere anyinesinthe document?
16 #Courd

17 {

1B iR

19 Qieflig

2

21: /Loopthroughthe inesinthe document
2 frPos=0Pes<iCourtiPos+)

B{

2 |Cetthefomandipportioreachine
25 pline=pDoc>GetinePos),

A /Dawtere

27 pine>Draw(pDC);

B}

A}

0

3L

32: //MY CODE ENDS HERE
33 My

%}

In this function, the first thing you did was find out how many lines are in the document
to be drawn. If there aren’t any lines, then there is nothing to do. If there are lines in the
document, you loop through the lines using doop, getting each line object from

the document and then calling the line objeptisv function.

Creating Single Document Interface Applications 213 |

Before you can compile and run your application, you'll need to include the header file
for theae class in the source code file for the document and view classes. To add this
to your application, edit both of these fil&myf10Doc.cpp andbDay10vView.cpp), adding
thelreh file to the includes, as shown in Listing 10.8.

LisTING 10.8. THE CDay10Doc indudes

1:#ndude‘stdaixh’
2:#include “Day10.h”

3: #include “MainFm.h”
4:#indude‘Lineh’

5: #include “Day10Doc.h”

At this point, you should be able to compile and run your application, drawing figures in
it as shown in Figure 10.4. If you minimize the window and then restore it, or if you
place another application window in front of your application window, your drawing
should still be there when your application window is visible again (unlike the applica-
tion you built a week ago).

Ficure 10.4. £ Untitled - Day10 M=l E3
.) File Edt Wiew Help

Drawing with your (R XS

application.

Ready MUM

Saving and Loading the Drawing

Now that you can create drawings that don’t disappear the moment you look away, it'd
be nice if you could make them even more persistent. If you play with the menus on your
application, it appears that the Open, Save, and Save As menu entries on the File menu
activate, but they don’t seem to do anything. The printing menu entries all work, but the
entries for saving and loading a drawing don’t. Not even the New menu entry works!
Well, you can do something to fix this situation.

214 Day 10

Deleting the Current Drawing

If you examine th&Dbay10Doc class, you'll see thenNewDocument function that you

can edit to clear out the current drawing. Wrong! This function is intended for initializing
any class settings for starting work on a new drawing and not for clearing out an existing
drawing. Instead, you need to open the Class Wizard and add a function on the
DeleteContents ~ event message. This event message is intended for clearing the current
contents of the document class. Edit this new function, adding the code in Listing 10.9.

LisTING 10.9. THE CDayl10Doc DeleteContents ~ FUNCTION.

1: void CDay10Doc::DeleteContents()
/' TODO: Add your spedialized code here and/or call the base dass

M
/MY CODE STARTS HERE
M

I Getthe number dfiresinthe dectanay
intiCount=m_oalines GetSize();

1 iR

12

13 /Arethereanyobedsintearay?

1 fCary

15¢

16: /Loopthroughtheanay, deleting each object
17 forPos=0Pos<iCountPost)

18 dekem calinediPos)

19 /Resttearay

20 m_oalinesRemoveAl);

2

2

=
Boo~Noaswn

'}

23 i

24: JIMY CODE ENDS HERE
25 I

2

27: CDocument:DeleteContents();
28}

This function loops through the object array, deleting each line object in the array. Once
all the lines are deleted, the array is reset by callingeitsveAl method. If you compile

and run your application, you'll find that you can select File | New, and if you decide not
to save your current drawing, your window is wiped clean.

Creating Single Document Interface Applications 215 |

Saving and Restoring the Drawing

Adding the functionality to save and restore your drawings is pretty easy to implement,
but it might not be so easy to understand. That's okay; you'll spend an entire day on
understanding saving and restoring files, also known as serialization, in three days. In the
meantime, find thessze function in thecbay10Doc class. The function should look
something like

1: void CDay10Doc::Serialize(CArchive& ar)

A

3 fasoiy)

4

5 /TODO:addsbingoodehere

a}

Teae

&

9 /TODO:addlcadingcode here

10}

1}

Remove all the contents of this function, and edit the function so that it looks like
Listing 10.10.

LisTING 10.10. THE CDay10Doc Seridize FUNCTION.

1: void CDay10Doc::Serialize(CArchive& ar)

g
/MY CODE STARTS HERE
M

IIPassthe seriaizaiononothe djectarray
m oelinesSeriize(@);

M

11: /MY CODE ENDS HERE
12:

13}

=
Boo~Nourwn

This function takes advantage of the functionality ofdbearray class. This object
array will pass down its array of objects, calling #s#= function on each of the
objects. This means that you need to adeha function to thecLine class. Specify it
as awd function type with the declaration edaize(CAchives.ar) . Edit the function,
adding the code in Listing 10.11.

| 216

Day 10

LisTING 10.11. THE Cline Seridize FUNCTION.

1:vod ClLine:Serialize(CArchive &ar)
A

3 COgeatSaeiz@),

4

5 fiaksSoig)

6. ar<<m_ptFHrom<<m_ pfTo;
Tee

8 ar>>m ptHrom>>m ptTo;
3

This function follows basically the same flow that the origasele ~ function would
have followed in th&bay10Doc class. It uses the I/O stream functionality of C++ to save
and restore its contents.

At this point, if you compile and run your application, you expect the save and open
functions to work. Unfortunately, they don’t (yet). If you run your application and try to
save a drawing, a message box will tell you that the application was unable to save the
file, as in Figure 10.5.

Ficure 10.5. AT
Unable to save 3 L
drawings.

The reason that you are unable to save your drawing is that Visual C++ must be told that
a class should be serializable. To do this, you add one line toitheclass header file

and one line to theLine source code file. Open tloeine header file reh), and add the
DECLARE_SERIALline in Listing 10.12 just after the first line of the class definition.

LisTING 10.12. THE Lireh EDIT FOR SERIALIZATION.

1:dassCLine: pubic CObject
A

3. DECLARE_SERIAL (CLine)

4piic

5 CLine(CPoirtptFrom, CPaintptTo, UINT nWidth, COLORREF arColor);

Next, open theLine source code file, and add thLEMENT_SERIALline in Listing 10.13
just before the class constructor functions.

Creating Single Document Interface Applications 217 |

LisTING 10.13. THE Linecpp EDIT FOR SERIALIZATION.

1://Line.gpp: implementation of the CLine dass.
2/
s
4

5:#indude “stafc b’

6:#include “Day10.h”

7:#ndude‘Lineh’

8

9: #ifdef_DEBUG

10: #undef THIS_FILE

11:staficchar THIS_FILE[=_FILE

12: #define new DEBUG_NEW

13 #endif

14

15: IMPLEMENT_SERIAL (CLine, CObject, 1)
16: [T i
17:/ Construction/Destruction

18: [T i
19

20: CLine:CLine()

21{

2

23}

Now if you compile and run your application, you should be able to draw your own self-
portrait and save it for posterity, as shown in Figure 10.6.

FIGURE 10 6 . 2 SelfPortrait.dhc - Day10 [O[]
. File Edit Yiew Help
My self-portrait. 0=

/ %M\

Fleady NUM

| 218

Day 10

Interacting with the Menu

Now that you have a working drawing program, it would be nice if the user could choose
the color with which she wants to draw. Adding this functionality requires making
changes in theline class to associate the color with the line anddey10Doc to main-

tain the currently selected color. Finally, you need to add a pull-down menu to select the
desired color.

Adding Color to the CLine Class

The changes to thatine class are fairly straightforward. The first thing that you need to
do is to add another member variable todtie class to hold the color of each line.

Next, you need to modify the class constructor to add color to the list of attributes to be
passed in. Third, you need to modify thraw function to use the specified color. Finally,
you need to modify thessze function to save and restore the color information along
with the point information. To do all these things, follow these steps:

1. Select theline class in the Class View tab of the workspace pane. Right-click the
mouse and select Add Member Variable from the pop-up menu.

2. Specify the variable type a®LORREFthe name as _crColor , and the access as
private. Click OK to add the variable.

3. Right-click thecLine constructor in the Class View tree. Select Go to Declaration
from the pop-up menu.

4. AddCOLORREF crColor as a third argument to the constructor declaration.

5. Right-click thecline constructor in the Class View tree. Select Go to Definition
from the pop-up menu.

6. Modify the constructor to add the third argument and to set theolor member
to the new argument, as in Listing 10.14.

LisTING 10.14. THE MODIFIED CLine CONSTRUCTOR.

1: CLine::CLine(CPoint ptFrom, CPoint ptTo, COLORREF crColor)
2

3 /nisizethefomandioporis

4: m_ptFrom = ptFrom;

5. m _ptTo=pfTo;
6. m aCoor=caColor,
7}

7. Scroll down to the@raw function and modify it as in Listing 10.15.

Creating Single Document Interface Applications 219 |

LisTING 10.15. THE MODIFIED Draw FUNCTION.

1:void CLine::Dram(CDC * pDC)

A

3 /Cregleapen

4: CPenlpen(PS_SOLID,1,m cColor);
5

6. [Setthe newpenasthe drawing object
7. CPen*pOldPen = pDC->SelectObject(&lpen);
8 /Dawteire

9: pDC->MoveTo(m_ptFrom);

10: pDC->LineTo(m_ptTo);

11: /Resetthe previouspen

12: pDC->SelectObject(pOldPen);

13}

8. Scroll down to thesde function and modify it as in Listing 10.16.

LisTING 10.16. THE MODIFIED Seridize FUNCTION.

1:vod Cline:Setiaize(CAchive &2x)

A

3 OOged:Seize@)

4

5 fiasSoiy)

6: ar <<m_ptFrom <<m_ptTo << (DWORD) m_crColor,
Tee

8: ar>>m_ptFrom >>m_ptTo >>(DWORD) m_crColor;
3

The only part of any of these steps that should be a surprise is that you are capturing the
return value from theelectObiect ~ function when you are specifying the pen to use in
drawing the lines. You didn't do this last week. The return value frorsettebiect

function is the pen that was in use before you changed it. This way, you can use the pre-
vious pen to restore it to the device context when you are done drawing.

Adding Color to the Document

The changes that you need to make tocibgy10Doc class are just slightly more exten-
sive than those made to there class. You need to add a member variable to hold the
current color and a color table to convert color IDs into RGB values. You need to initial-
ize the current color variable in tk@NewDocument function. Then, you need to modify
theAddLine function to add the current color to théne constructor. Finally, you add a
function to return the current color. That’s all that you need to do for now until you start

| 220 Day 10

adding menu message handlers for setting the current color. To do these things, follow
these steps:

1. Select thebay10Doc class in the Class View tab on the workspace pane. Right-
click the mouse and choose Add Member Variable from the pop-up menu.

2. Specify the variable type as\t, the name as_ncColor , and the access as private.
Click OK to add the variable.

3. Repeat step 1.

4. Specify the variable type asafic const COLORREF ,” the name as_crColors[g]
and the access as public.

5. Open thecbay10Doc source codebayl0Doc.cpp) and add the population of the
m_crColors color table as in Listing 10.17.

LisTING 10.17. THE COLOR TABLE SPECIFICATION.

1. /MAFRX_MSG_MAP

2: END_MESSAGE_MAP()

3

4: const COLORREF CDay10Doc::m_crColors[8] = {
5 RGE(0,0,0), /Back

6 RGB(0,02%) /BLe

7. RGB(02%, 0), /Geen

8 RGB(0,2%5,256), /Cyen

9 RGB(Z%, 0,0, /Red

10: RGB(255, 0,255), /Magernta

11: RGB(255,255, 0), /'Yelow

12: RGB(255,255,255) //\White

B}

14

A5 T i
16: // CDay10Doc construction/destruction
17.

18: CDay10Doc::CDay10Doc()

19.

2.

2.

2}

6. Scroll down to th@®nNewDocument function and edit it as in Listing 10.18.

Creating Single Document Interface Applications 221 |

LisTING 10.18. THE MODIFIED OnNewDocument FUNCTION.

1: BOOL CDay10Doc::OnNewDocument()

if {CDocument:OnNewDocument())
reLmFALSE,

/'TODO: add renifalization code here
1/ (SDI documents wil reuse this document)

M
//MY CODE STARTS HERE
M

ﬁ;swmﬂmmh_@m

13 /hisizethecdoriobiadk

14: m_nColor =ID_COLOR_BLACK - ID_COLOR_BLACK;
15

16: M

17: /IMY CODE ENDS HERE

18: i

reum TRUE;
}

RBB

7. Scroll down to theddLine function, and modify it as in Listing 10.19.

LisTING 10.19. THE MODIFIED AddLine FUNCTION.

1: CLine * CDay10Doc::AddLine(CPaint ptFrom, CPoint ptTo)

A

3. /Createanew Cline object

4: Cline*pLine =new CLine(ptFrom, ptTo, m_crColorsim_nColor]);
Sy

6{

7. IAddtherewineibthecbectanay
8 m oalinesAdd(pLine);

9 /Maktedocumentasdity

12: //Didwe runinto amemory exception?

13:{ catch (CMemoryException™* per)

“

15 /Dsplayamessageforthe user,gvnghimorherthe

16. /bedrens

17: AixMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
18 /Ddweceseainedied?

19 i

continues

| 222 Day 10

LisTING 10.19. CONTINUED

af

8. Add a new member function to theayioDoc class. Specify the function type as
UINT, the declaration asetCdor , and the access as public.

9. Edit theGetCdor function, adding the code in Listing 10.20.

LisTING 10.20. THE GetColor FUNCTION.

1: UINT CDay10Doc::GetColor()

2

3 /Reumthecunentooor

4: retumID_COLOR_BLACK +m_nColor;

5

In theonNewDocument and theGetCoor functions, the color is added and subtracted from
ID_COLOR_BLACK This is the lowest nhumbered color menu ID when you add the menu
entries. These calculations maintain the variable as a number between 0 and 7, but when
working with the menus, they allow comparison with the actual menu IDs.

Modifying the Menu

Now comes the fun part. You need to add a new pull-down menu to the main menu. You
need to add menu entries for all the colors in the color table. You need to add message
handlers for all the color menu entries. Finally, you need to add event handlers to check
the menu entry that is the current color. To do all of this, follow these steps:

1. Select the Resource View tab in the workspace pane. Expand the tree so that you
can see the contents of the Menu folder. Double-click the menu resource.

2. Grab the blank top-level menu (at the right end of the menu bar) and drag it to the
left, dropping it in front of the View menu entry.

3. Open the properties for the blank menu entry. Specify the captamias. Close
the properties dialog.

Creating Single Document Interface Applications

223 |

4. Add submenu entries below the Color top-level menu. Specify the submenus in

order, setting their properties as specified in Table 10.2. You should wind up with a

menu looking like Figure 10.7.

Ficure 10.7.

The Color menu as
designed.

: Color &

" "Black

Blue
Green
Cyan
Fed
Magenta
Yellow

White

TABLE 10.2. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID ID_COLOR_BLACK
Caption &Black

Menu Entry ID ID_COLOR_BLUE
Caption B&lue

Menu Entry ID ID_COLOR_GREEN
Caption &Green

Menu Entry ID ID_COLOR_CYAN
Caption &Cyan

Menu Entry ID ID_COLOR_RED
Caption &Red

Menu Entry ID ID_COLOR_MAGENTA
Caption &Magenta

Menu Entry ID ID_COLOR_YELLOW
Caption &Yelow

Menu Entry ID ID_COLOR_WHITE
Caption &White

5. Open the Class Wizard. Select ¢mmay10Doc in the Class Name combo box.
6. Add functions for both theommMANBNdUPDATE_COMMAND_Vent messages

for all the color menu entries.

7. After the final menu entry function has been added, click Edit Code.

8. Edit the Black menu functions as in Listing 10.21.

| 224 Day 10

LisTING 10.21. THE BLACK MENU FUNCTIONS.

1: void CDay10Doc::OnColorBlack()

// TODO: Add your command handler code here
g

/MY CODE STARTS HERE

M

ISetthe aumentodoriobiack
m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;

=
EBoo~Nouswn

12:

13: /MY CODE ENDS HERE
14: I

15}
16:

17: void CDay10Doc::OnUpdateColorBlack(CCmdUI* pCmdUl)

18

19: //TODO: Add your command update Ul handler code here

2

20 [

22: /MY CODE STARTS HERE

23 i

%4

25 |/ Determine if the Black menu entry should be checked

26: pCmdUl->SetCheck(GetColor() == ID_COLOR_BLACK ?1:0);
o7

28

- J
29: //IMY CODE ENDS HERE
30: M
3L}

9. Edit the Blue menu functions as in Listing 10.22. Edit the remaining menu func-
tions in the same way, substituting their menu IDSHOCOLOR_BLUE

LisTING 10.22. THE BLUE MENU FUNCTIONS.

1: void CDay10Doc::OnColorBlue()
// TODO: Add your command handler code here
M

/MY CODE STARTS HERE
My

©Q 00N wWN

. /Setthecurentodorioblue

Creating Single Document Interface Applications 225 |

10: m_nColor =ID_COLOR_BLUE - ID_COLOR_BLACK;
1t

12: i

13: /MY CODE ENDS HERE

14: I

15

16:

17: void CDay10Doc::OnUpdateColorBlue(CCmduUl* pCmduUl)
18{

19: //TODO: Add your command update Ul handler code here
2

20 [

22: /IMY CODE STARTS HERE

23 i

24;

25: /I Determine if the Blue menu entry should be checked

26; pCmdUI->SetCheck(GetColor() == ID_COLOR_BLUE ?1:0);
27,

Sl

29: //MY CODE ENDS HERE

30 M

3L}

In the first of the two menu functions, the@mmANfunction, the current color variable

is set to the new color. If you add the menu entries in the correct order, their ID numbers
are sequential, starting with_COLOR_BLACK Subtractingd_coLOR_BLACKrom the

menu ID should always result in the correct position in the color table for the selected
color. For example, the Black color is position 0 in the color table2OLOR_BLACK-
ID_COLOR_BLACK= 0. Blue is position 1 in the color table. Becairs&OLOR_BLUE

should be one greater tham COLOR_BLACKID_COLOR_BLUE— ID_COLOR_BLACK= 1.

The second function, the?DATE_COMMAND_function, may need a little explaining.

The UPDATE_COMMAND_vent is called for each menu entry just before it is displayed.
You can use this event message function to check or uncheck the menu entry, based on
whether it is the current color. You can also use this event to enable or disable menu
entries or make other modifications as necessary. The code in this function

pCmdUl->SetCheck(GetColor() == ID_COLOR_BLUE ? 1:0);

does several things. First, themdul object that is passed in as the only argument is a
pointer to a menu object. TlsetCheck function can check or uncheck the menu entry,
depending on whether the argument passedix (1 checksp unchecks). The argu-
ment portion for thesetCheck function is a flow-control construct that can be somewhat

| 226

Day 10

Ficure 10.8. 2 Untitled - Day10

Specifying the current = e o
color on the menu. Green

confusing if you haven't spent a large amount of time programming in C/C++. The
first half

GetColor() == ID_COLOR_BLUE

is a simple boolean conditional statement. It results in a true or false result. The portion
following this conditional statement

?1.0

is basically arie statement in shorthand. If the conditional statement is then
the value ia, and if the statement t& , the value i®. This is a fancy way of placing
ange flow control within the argument to another function.

If you compile and run your application, you should be able to change the color that you
are drawing with. When you pull down the color menu, you should see the current draw-
ing color checked on the menu, as in Figure 10.8.

Eile Edit 'width Wiew Help

Blue

Cyan

v Bed
Magenta
Yellow
white

Summary

Whew! What a day! You learned quite a bit today because this was a packed chapter. You
initially learned about the SDI style application and about a couple of standard applica-
tions that you have probably used that are SDI applications. You next learned about the
Document/View architecture that Visual C++ uses for SDI applications. You learned to
create a simple class of your own for use in your drawing application. You created a
drawing application that can maintain the images drawn using it. You learned how you
can save and restore documents in the Document/View architecture. You also learned
about thecobarray object array class and how you can use it to create a dynamic object
array for storing various classes. Finally, you learned how you can check and uncheck
menu entries in MFC applications.

Creating Single Document Interface Applications 227 |

Q&A

Q Is there any way that you can reduce the number aiomMANand UPDATE_
COMMAND_Ufunctions for the menus?

A Yes, you can send all the colooMMANBvents to the same function. From there,
you can examine th@ value (which is passed as an argument) and compare it to
the menu IDs to determine which menu is calling the function. As a result, you can
write thecomMANfunction for the color menus as follows:

void CDay10Doc::0OnColorCommand(UINT nID)

{
/I TODO: Add your command handler code here

i
/MY CODE STARTS HERE
M

' Setthe curentcolortobiue
m_nColor =nID - ID_COLOR_BLACK;

M
/MY CODE ENDS HERE
i

}

For theuPDATE_COMMAND_unctions, you can do the same thing, only slightly
differently. In this case, you can examine plaendul->m_nID value to determine
which menu the function is being called for. This makesJ#®ATE_COMMAND_UI
function look like the following:

void CDay10Doc::OnUpdateColor(CCmdUI* pCmdUl)

{
// TODO: Add your command update Ul handler code here

i
/I MY CODE STARTS HERE
M

I/ Determine if the Blue menu entry should be checked
pCmdUl->SetCheck(GetColor() == pCmdUl->m_nID ? 1.: 0);

i
/I MY CODE ENDS HERE
i

228 Day 10

Q What's the difference between SDI and MDI applications?

A Although SDI applications can perform only one task, MDI (Multiple Document
Interface) applications can have multiple documents open at the same time. Plus, in
an MDI application, not all document types need be the same. You'll learn more
about MDI applications tomorrow.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does SDI stand for?
2. What functionality is in the view class?

3. What function is called to redraw the document if the window has been hidden
behind another window?

4. Where do you place code to clear out the current document before starting a new
document?

5. What is the purpose of the document class?

Exercise

Add another pull-down menu to control the width of the pen used for drawing. Give it
the following settings:

Menu Entry Width Setting
Very Thin 1

Thin 8

Medium 16

Thick 24

Very Thick 32

4 "I] In the pen constructor, the second argument is the width.

WEEK 2

DAY]J.

Creating Multiple
Document Interface
Applications

Today, you will learn how to build Multiple Document Interface (MDI) applica-
tions using Visual C++. You will be able to build applications that allow users
to work on multiple documents at one time, switching between the windows of
the application to do their work. In this chapter, you will learn

* The difference between SDI and MDI applications.

* How to create an MDI application.

¢ How to send multiple menu entries to a single event-handling function.

* How to add a context menu to a Document/View style application.

What Is an MDI Application?

As far as coding an MDI application with Visual C++, there’s little difference
between creating an SDI and an MDI application. However, when you get

| 230

Day 11

Ficure 11.1. Messages passed to the
The MDI Document/ / frame window and view

View architecture.

deeper into the two application styles, you'll find quite a few differences. Although an
SDI application allows the user to work on only one document at a time, it also normally
limits the user to working on a specific type of document. MDI applications not only
enable the user to work on multiple documents at the same time, but also MDI applica-
tions can allow the user to work on multiple types of documents.

An MDI application uses a window-in-a-window style, where there is a frame window
around one or more child windows. This is a common application style with many popu-
lar software packages, including Word and Excel.

Architecturally, an MDI application is similar to an SDI application. In fact, with a sim-
ple MDI application, the only difference is the addition of a second frame class to the
other classes that the AppWizard creates, as shown in Figure 11.1. As you can see, the
Document/View architecture is still very much the approach you use for developing MDI
applications as well as SDI applications.

object

Application object
(CWinApp)

=] Main Frame window
(CMainFrame)

B Child Frame window &

Two-way flow of (CChildView)
information between
the document and the

view objects

View object o
(CView)

Document object
(CDocument)

When you create an MDI application, you will create just one more class than you created
with an SDI application. The classes are

* ThecwinApp derived class

e ThecMbIFramewndderived class

e Thecwmpbichidwnd derived class

e ThecbDocument derived class

e Thecview derived class

Creating Multiple Document Interface Applications 231 |

The two MDI derived classesMDIFramewnd(the CMainFrame class in your project) and
CMDIChildwnd (the cchildFrame class in your project), are the only two classes that are
different from the SDI application that you created.

The first of these two classes, th@DIFramewndderivedCMainFrame , is the main frame

of the application. It provides an enclosed space on the desktop within which all applica-
tion interaction takes place. This frame window is the frame to which the menu and tool-
bars are attached.

The second of these two classes,afeichildwnd -derivedcchidFrame class, is the
frame that holds theview class. It is the frame that passes messages and events to the
view class for processing or display.

In a sense, the functionality of the frame class in the SDI application has been split into
these two classes in an MDI application. There is additional support for running multiple
child frames with their own document/view class instances at the same time.

Creating an MDI Drawing Program

Ficure 11.2. MFC AppWizard - Step 1 1]
Specifying an MDI T B o e o applcston ol you e focrete?

To get a good understanding of just how alike the Document/View architectures are for
the SDI and MDI applications, today you will implement that same drawing application
that you created yesterday, only this time as an MDI application.

Building the Application Shell
To create the application shell for today’s application, follow these steps:

1. Create a new AppWizard project. Name the prajegii.

2. On the first step of the AppWizard, select Multiple Documents, as shown in
Figure 11.2.

application. -]

| 232

Day 11

3. Use the default values on the second step of the AppWizard.

4. On the third step of the AppWizard, uncheck the support for ActiveX Controls.

5. On the fourth step of the AppWizard, leave all the default values. Click the
Advanced button.

6. In the Advanced Options dialog, enter a three-letter file extension for the files that
your application will generate (for exampéiag or dvp). Click the Close button to
close the dialog and then click Next to move to the next step of the AppWizard.

7. Use the default settings on the fifth step of the AppWizard.

8. On the sixth and final AppWizard step, leave the base clasgeasand click
Finish. The AppWizard generates the application shell.

Building the Drawing Functionality

Because you are creating the same application that you created yesterday, only as an
MDI application this time, you need to add the same functionality to the application that
you added yesterday. To save time, and to reemphasize how alike these two application
architectures are, perform the same steps you did yesterday to create tloéass and

add the functionality to thebay11Doc andcDay11view classes. Add the support into the
CDayl1Doc andcline classes for selecting colors and widths, but do not add any menu
event message handlers or create the color menu. When you finish adding all that func-
tionality, you should have an application in which you can open multiple drawings, all

drawing with only the color black.

" Gaution

Because you haven't created the menus yet, and the color initialization uses
the color menu IDs, you will probably have to hard-code the initialization of
the color to 0 to get your application to compile. Once you add the color
menu, the menu IDs should have been added, so you will be able to return
to using the IDs in your code. For the time being, change the line of code in
the onNewbDocument function in the CDay11Doc class from

m_nColor = ID_COLOR_BLACK - ID_COLOR_BLACK;
to
m_nColor=0;

You will also need to make the same sort of change to the GetCoor function
because it uses one of the color menu IDs also.

Creating Multiple Document Interface Applications 233 |

Adding Menu Handling Functionality

Now that you've got all the functionality in your application, you would probably like to
add the color menu so you can use all those available colors in your drawings. When you
expand the Resource View tree and look in the Menu folder, you'll find not one, but two
menus defined. Which one do you add the color menu to?

The IDR_MAINFRAMEMENU is the menu that is available when no child windows are open.
If you run your application and close all child windows, you'll see the menu change,
removing all the menus that apply to child windows. Once you open another document,
either by creating a new document or by opening an existing document, the menu
changes back, returning all the menus that apply to the documents.

TheIDR_DAY11TYPEMenNu is the menu that appears when a child window is open. This
menu contains all the functions that apply to documents. Therefore, this is the menu that
you need to add the color menu to. Add the color menu by following the same directions
as yesterday, using the same menu properties.

Once you add all the menus, you need to add the menu event handlers. Today, you are
going to take a different approach to implementing the menu event handlers than you did
yesterday. The Q&A section at the end of yesterday’s chapter had a discussion of using a
single event-handler function for all the color menus. That is what you are going to
implement today. Unfortunately, the Class Wizard doesn’t understand how to route multi-
ple menu event messages to the same function correctly, so you're going to implement
this yourself by following these steps:

1. Open theayliDoc.h header file.

2. Scroll down toward the bottom of the header file until you find the protected sec-
tion where theasFx_Msamessage map is declared (search for
II{AFX_MSG(CDay11Doc)).

3. Add the function declarations in Listing 11.1 before the line that you searched for.
(The string that you searched for is the beginning marker for the Class Wizard
maintained message map. Anything you place between it and the end marker,
IAFX_MSG , is likely to be removed or corrupted by the Class Wizard.)

LisTING 11.1. THE EVENT-HANDLER DECLARATIONS IN Dayll1Doc.h .

1: #ifdef_ DEBUG
2 vitualvod Assetvald) oong;

continues

234 Day 11

LISTING 11.1. CONTINUED

3. virtual void Dump(CDumpContext& dc) const;
A Hendf

5

6: protected:

7

8: // Generated message map functions
9. protected:
10: afx_msg void OnColorCommand(UINT nID);
11: afx_msg void OnUpdateColorUI(CCmdUI* pCmdUl);
12: J{AFX_MSG(CDay11Doc)
13: /NOTE - the ClassWizard wil add and remove member functions O here.
14: / DONOT EDIT whatyou see inthese blodks of generated [code!
15 IMAFX_MSG
16: DECLARE_MESSAGE_MAP()
17:privete:
18 UINTm nColor,
19: CObAraym oalines;
2}

4. Open theayl1Doc.cpp source-code file.

5. Search for the linBEGIN_MESSAGE_MA&nd add the lines in Listing 11.2 just after
it. It's important that this code be between BEsIN_MESSAGE_MAINMe and the
II{AFX_MSG_MAP line. If these commands are between/thierx_MsG_MAP and
IIMAFX_MSG_MAP lines, then the Class Wizard will remove or corrupt them.

LISTING 11.2. THE EVENT-HANDLER MESSAGE MAP ENTRIES IN Dayl1lDoc.cpp .

L T i

2:// CDay11Doc

3

4: IMPLEMENT_DYNCREATE(CDay11Doc, CDocument)

5

6: BEGIN_MESSAGE_MAP(CDay11Doc, CDocument)

7: ON_COMMAND_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE, OnColorCommand)
8: ON_UPDATE_COMMAND_UI_RANGE(ID_COLOR_BLACK, ID_COLOR_WHITE,

[0 OnUpdateColorUl)

9: If{AFX_MSG_MAP(CDayl1Doc)

10: /NOTE - the ClassWizard wil add and remove mapping macros 0 here.
11: / DONOT EDIT whatyou see inthese blocks of generated O code!

12: [PAFX_MSG_MAP
13: END_MESSAGE_MAP()

Creating Multiple Document Interface Applications 235 |

14

15: const COLORREF CDay11Daoc::m_crColors[8] = {
16 RGB(0,0,0), /Back

17: RGB(0, 0.2%), /Bue

18.

19.

.

6. Scroll to the bottom of the file and add the two event message handler functions in
Listing 11.3.

LisTING 11.3. THE COLOR MENU EVENT-HANDLER FUNCTIONS.

1: void CDay11Doc::OnColorCommand(UINT niD)

A

3 [Setthecurentador

4: m_nColor=nID-ID_COLOR BLACK;

5

(¢]

7: void CDay11Doc::OnUpdateColorUI(CCmdUl* pCmdul)

&

9. //Determine ifthe menu entry shouid be checked
10: pCmdUI->SetCheck(GetColor() = pCmdUl->m_nID ?1: 0);
11}

In Listing 11.1, the two function declarations that you added are specified as event mes-
sage handlers by th#x_msg function type declarations. These type of function declara-
tions need to have protected access. Otherwise, they are virtually identical to any other
class member function declaration.

In Listing 11.2, the two message map entrigs, COMMAND_RANGEd
ON_UPDATE_COMMAND_UI_RAN@Ee standard message map entries, but the Class

Wizard does not support or understand them. If you examine the message map entries
from the previous day’s applications, you will notice that thereoarecommANand
ON_UPDATE_COMMAND_message map entries. These macros have two arguments, the
message ID and the event-handler function name that should be called for the event mes-
sage. These new message map entries function in the same way, but they have two event
ID arguments instead of one. The two event ID arguments mark the two ends of a range
of event IDs that should be passed to the function specified. These two event IDs should
be the first and last menu entries you created when building the color menu.

236 Day 11

When you use theN_COMMAND_RANGESSage-map entry, the event message ID is
automatically passed as an argument to the event-handler function. This allows you to

" Nﬂtﬂ The message map is a mechanism used by Visual C++ and MFC to easily
specify event messages and the functions that should be called to handle the
event. These message-map commands are converted by the Visual C++ com-
piler into a fast and efficient map for calling the appropriate event functions
when a message is received by the application. Whenever you add a function
through the Class Wizard, you are not only adding the function to the code,
but you are also adding an entry into the message map for that class.

create the function in Listing 11.3 to handle the color selection event messages. If you
compile and run your application at this point, you should find that the color selection
functionality is all working just as it did yesterday, as shown in Figure 11.3.

< Dayl1 - Dayl11 [
Eie Edt widh Colr Miew Window Help
[= &
FIGURE 11.3.
Running the MDI {
application. E—

Adding a Context Menu

In most Windows applications, you can right-click the mouse and what is known as a
context menu, or pop-up menu, appears. Back on Day 6, “Creating Menus for Your
Application,” you implemented a simple pop-up menu. However, there is a mechanism
for creating and using these context menus when Windows thinks that the menu should
be opened. This process allows you to add context menus that behave more consistently
with other Windows applications (and if Microsoft changes how the context menus are
triggered with a new version of Windows, yours will still behave according to the

Creating Multiple Document Interface Applications 237 |

Windows standard).

An event messag@M_CONTEXTMEN8Jpassed to the event queue when the right mouse
button is released or when the context menu button is pressed (if you have a newer
Windows-enabled keyboard with the context menu button). If you place an event-handler
function on thevM_CONTEXTMERNMENt message, you can display a pop-up menu with
confidence that you are showing it at the appropriate time.

To add the context menu to your application, you create a new menu for use as the con-
text menu. To do this, follow these steps:

1.
2.
3.

In the Resource View tab on the workspace pane, right-click the Menu folder.
Select Insert Menu from the pop-up menu (or should | say context menu).

Select the new menu (still in the workspace pane), open its properties dialog, and
name the menwR_CONTEXTMENU

In the Menu Designer, specify the top-level menu caption as a single space. This
causes Visual C++ to add the first entry in the drop-down portion of the menu.

In the first drop-down menu entry, specify the captioavéisth and check the

Pop-up check box. (This causes the ID combo box to be disabled and an arrow to
display beside the caption, along with another menu entry to the right of the menu
entry you are modifying.)

Do not add any menu entries into the Width cascading menu at this time (that is
left for an exercise at the end of the chapter). Instead, select the menu entry below
the Width entry and open its properties dialog. Specify the captiemias and

check the Pop-up check box.

In the colors cascading menu, add the color menu entries as you did for the
IDR_DAY11TYPEMenu, using the same property settings. You can select the ID
from the drop-down list of IDs, if you would rather search for them instead of type.
When you finish, your menu should look like the one in Figure 11.4.

Select the Class View tab in the workspace pane.

Select the CDay11View class. Open the Class Wizard by selecting View |
ClassWizard from the menu.

238 Day 11

FIGURE 11.4. 5 Dayl1 - Microzoft Visual Ce+ - [Day11.sc - IDA_CONTEXTMENU (Menull
The context menu SJE B o Gech e B deeih v 151 x|
design SR = - o~ T E R G fraoPning =] 25
' =l =rs =l | coem ey m
Izl

4 Dayl1 resources * “widih s |
clor ¥

¥ 3 Clazsi..]{,_ Resw J = FI:"ch\\]

A [Linking Py

10. Add a function for th&vM_CONTEXTMERNVENt message on theayllview class.
11. Edit the function, adding the code in Listing 11.4.

LisTING 11.4. THE CDayl1View OnContextMenu FUNCTION.

1: void CDay11View::OnContextMenu(CWnd* pWnd, CPoint point)
/I TODO: Add your message handler code here

M

/MY CODE STARTS HERE

M

CMenumenu;

EBoo~Nouhrwn

I/ Load the context menu

12: menu.LoadMenu(IDR_CONTEXTMENU);
13/ Getthefirstsub menu the real menu)

14: CMenu *pContextMenu = menu.GetSubMenu(0);

16: // Display the context menu for the user

17: pContextMenu->TrackPopupMenu(TPM_LEFTALIGN |
18: TPM_LEFTBUTTON | TPM_RIGHTBUTTON,

19 pontx, ponty, AkGetVianWha();

2

20: [

Creating Multiple Document Interface Applications 239 |

22 /IMY CODE ENDS HERE
23 i
24}

This code should all look familiar to you from what you learned on Day 6. If you com-
pile and run your application now, you should be able to click your right mouse button
on the child window and change your drawing color from the context menu that opened,
as shown in Figure 11.5.

Ficure 11.5. - Dayi1 - Day11l [_[O[=]
. Fle Edi ‘widh Lo View ‘window Hep

Using the context nsg a7

menu to change FDap111 [[CI]

drawing colors.

MUK

Summary

That wasn't too bad; was it? After yesterday, you probably needed the easy day today,
along with all the review of what you did yesterday to help it all sink in. But you did get
to learn some new things today. You learned about MDI applications, what they are, and
how they differ from SDI applications. You learned how you could take a series of menus
and use a single event-handler function for all of them. You also learned how you can

create a menu specifically for use as a pop-up context menu and how you can integrate it

into an MDI application.

Q&A

Q Because it's basically the same code to create an MDI or SDI application, why
would | want to create an SDI application? Why wouldn’t | want to make all
my applications MDI applications?

A It depends on the application and how it's going to be used. You probably use both
types of applications on a daily basis. If you are writing a memo or working on a

| 240

Day 11

spreadsheet, you are probably using an MDI application. If you are browsing the
World Wide Web, your Web browser is most likely an SDI application. A simple

text editor such as Notepad would probably be more difficult for the user as an

MDI style application, but as an SDI application, it's just about right (for the task it
handles). Certain applications make more sense implemented as an SDI application
than as an MDI application. You need to think through how your application is

going to be used and determine which model it's more suited for.

Some entries on my color menu are changing to the wrong color. How can |
determine the problem?

The problem is that the color menu IDs are probably not in sequential order or are
out of order. You can check them by right-clicking on the Day11 resources in the
Resource View tab of the workspace pane. Select Resource Symbols from the pop-
up menu to display a list of the IDs and the numbers assigned to them in alphabeti-
cal order. Start with the Black ID and make sure that the numbers increase by 1
without skipping any numbers. Be sure to check these IDs in the order that the col-
ors appear on the menu (and in the color table imaleDoc.cpp file), not in the
alphabetical order in which they are displayed in this list. If you find some errors,
you have to close Visual C++ and openmheuceh file in a text editor to

renumber the IDs correctly. Once you make the corrections (be sure to delete any
duplicates), save your corrections, restart Visual C++, and recompile your applica-
tion. The color menu should work correctly.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1.
2.

What are the five base classes that are used in MDI applications?

Why do you have to place tlel_COMMAND_RANGESSage map entry outside
the section maintained by the Class Wizard?

What argument doesN_COMMAND_RANP&SS to the event function?
What event message should you use to display a pop-up menu?

Creating Multiple Document Interface Applications 241 |

Exercise

Add the pull-down and context menus for the width, using the same pen widths as
yesterday.

WEEK 2

DAY 12

Adding Toolbars and
Status Bars

When you created your SDI and MDI applications, they not only came with
default menus already attached, but also they came with simple toolbars to go
with the menus. These simple toolbars had the standard set of functions (New,
Open, Save, Print, Cut, Copy, and Paste) that are on the toolbars of most
Windows applications. Most applications don’t limit their toolbars to just this
standard selection of functions but have customized toolbars that reflect the
specific functionality of the application.

In addition to the toolbars, the SDI and MDI applications have a status bar at
the bottom of the frame that provides textual descriptions of the toolbar buttons
and menu entries. The status bar also has default areas that display whether the
Caps, Num, and Scroll Lock keys are on.

Today, you will learn

- How to design your own toolbar.
- How to attach your toolbar to the application frame.

| 244

Day 12

- How to show and hide your toolbar with a menu entry.

- How to place a combo box on your toolbar.

- How to display descriptions of your toolbar entries in the status bar.
- How to add your own status bar elements.

Toolbars, Status Bars, and Menus

One of the driving intentions behind the development of Graphical User Interfaces (GUI)
such as Windows was the goal of making computers easier to use and learn. In the effort
to accomplish this goal, GUI designers stated that all applications should use a standard
set of menus and that the menus should be organized in a standardized manner. When
Microsoft designed the Windows operating system, it followed this same philosophy,
using a standard set of menus organized in a standard order on most of its applications.

A funny thing happened once Windows became widely used. The application designers
found that new users still had a difficult time learning new applications and that
advanced users found the menus cumbersome. As a result, the application designers
invented toolbars as one solution to both problems.

A toolbar is a small band attached to the window frame or a dialog window that is float-
ing independent of the application frame. This band (or dialog) has a number of small
buttons containing graphic images that can be used in place of the menus. The applica-
tion designers place the most commonly used functions for their applications on these
toolbars and do their best to design graphical images that illustrate the functions the but-
tons serve.

Once advanced users learned what each of the toolbar buttons do, the toolbars were a hit.
However, novice users still had problems learning what the toolbar does. As a result, the
application designers went back to the drawing board to come up with ways to help the
new user learn how use the toolbar buttons.

One of the solutions was to use the information bar that many of them had begun placing
at the bottom of application windows to provide detailed descriptions of both menu
entries and toolbar buttons. One of the other solutions was to provide a little pop-up win-
dow with a short description of the button that appears whenever the mouse is positioned
over the button for more than a couple of seconds. The first of these solutions became
known as the status bar, and the second became known as tooltips. Both solutions are in
common practice with most Windows applications today.

If you want to design and use your own toolbars and status bars in your applications, you
might think that Visual C++ provides plenty of support for your efforts and even makes it

Adding Toolbars and Status Bars 245 |

easy to implement. After all, Microsoft's own application developers have been in the
forefront of developing these elements, and most, if not all, of Microsoft’'s Windows
applications are developed using its own Visual C++. Well, you are correct in making
that assumption, and today, you'll learn how to create your own custom toolbars and sta-
tus bars for your applications.

Designing a Toolbar

For learning how to create your own toolbar, you will modify the application that you
created on Day 10, “Creating Single Document Interface Applications,” the SDI drawing
application, to add a toolbar for selecting the color to use in drawing.

N“tﬂ Although the sample application you are working with today is an extension
to the application you built on Day 10, all file and class names have been
changed from Day10 to Toolbar. If you are making the changes in the Day
10 project, then when the following text specifies that you make changes to
the CToolbarDoc class, you should make the changes to the CDay10Doc class.
Likewise, when you are asked to edit the Toobarc file, you can edit the
Daylorc file.

If all you want to do is add a few additional toolbar buttons to the default toolbar that the
AppWizard creates when you start a new SDI or MDI application, you can pull up the
toolbar in the Visual C++ designer through the Resource View in the workspace pane
and begin adding new buttons. Just as in the Menu Designer, the end of the toolbar
always has a blank entry, waiting for you to turn it into another toolbar button, as shown
in Figure 12.1. All you have to do is select this blank button, drag it to the right if you
want a separator between it and the button beside it, or drag it to a different position if
you want it moved. After you have the button in the desired location, you paint an icon
on the button that illustrates the function that the button will trigger. Finally, double-click
the button in the toolbar view to open the button’s properties dialog and give the button
the same ID as the menu that it will trigger. The moment that you compile and run your
application, you will have a new toolbar button that performs a menu selection that you
chose. If you want to get rid of a toolbar button, just grab it on the toolbar view, and
drag it off the toolbar.

| 246 Day 12

FIGURE 12 1 % Toolbar - Microsoft Yisual C++ - [Toolbar.ic - IDR_MAINFRAME [(Bitmap]]
.. 44 File Edit Yiew Inseit Project Build Tools MWindow Help — @] x|
The toolbar designer. g = IO [| Gy [Cecordset 1|
I =1l | =R ooy
e = = L
e EEFEDEEN r
& I
+ _| Dislog (] | wawny S D
_lcon e
+ | Menu A
+ __| Sking Table H H
+ _| Toobar Eunnmmnnnnd

24 Cass... |) Reso... | =] Filevi.

x| =
4

¥ T, Build { Debug & Find in Files 1 & Findin File=2 3 4| | o
Ready
Astart| @ 244 %W 4 inbox-0..| 3)Exploring...| | Toolbar... |5 MSDH Li.. | B vuePrint - Nl - RE-c1]

Creating a New Toolbar

To insert a new toolbar, right-click on the Toolbar folder and select Insert Toolbar from
the pop-up menu. This creates an empty toolbar with a single blank button. As you start
drawing an icon on each of the blank buttons in the toolbar, another blank button is
added on the end.

For use in your drawing application, fill eight buttons with the eight colors available in
the drawing application.

Once you draw icons on each of the buttons in your toolbar, double-click on the first but-
ton in the toolbar view. This should open the toolbar button properties dialog. In the ID
field, enter (or select from the drop-down list) the ID of the menu that this toolbar button
should trigger. In the Prompt field, enter the description that should appear in the status
bar for this toolbar button. (If you entered a prompt for the menu, then this field is auto-
matically populated with the menu description.) At the end of the status bar description,
addwn and a short description to appear in the tooltips for the toolbar button.

Adding Toolbars and Status Bars 247 |

properties dialog.

] Nﬂtﬂ In C/C++, the \n string is a shorthand notation for “begin a new line.” In the
prompt for toolbar buttons and menu entries, this string is used to separate
the status bar descriptions of the menu entries and the tooltips pop-up
prompt that appears when the mouse is held over a toolbar button for a
few seconds. The first line of the prompt is used for the status bar descrip-
tion, and the second line is used for the tooltips description. The tooltips
description is only used with the toolbars, so there’s no reason to add this
for menu entries that will have no toolbar equivalents.

For example, for the black button on the toolbar that you are creating for your drawing
application, enter an ID ob_COLOR_BLACKand a prompt oflack drawing colornBlack ,
as shown in Figure 12.2.

FIGURE 12.2. Toolbar Button Properties
WP Gensl |
The toolbar button o =

widthe [16 Height: [15

Prompt: [Black drawing colorinBlack.

Once you finish designing your toolbar and have icons on all of your buttons with the
properties set for each button, you will change the toolbar ID. In the workspace pane,
right-click the new toolbar that you just added and open its properties dialog. Change the
toolbar ID to a descriptive name.

As an example, for the color toolbar that you created for your drawing application,
change the toolbar ID t@OR_TBCOLOR

Attaching the Toolbar to the Application Frame

In the previous SDI and MDI applications, you didn’t add any functionality that required
you to touch the frame window. Well, because the toolbar is attached to the frame, you'll
have to begin adding and modifying code in that module. If you opervidigrame

class to theoncreate function, you'll see where it's creating the existing toolbar and then
later in this function where the toolbar is being attached to the frame.

Before you can add your toolbar to the application frame, you need to add a variable to
the CMainFrame class to hold the new toolbar. This variable of tgp@iBar should be
protected in accessibility.

| 248

Day 12

To add your color toolbar to your draw application, right-click¢theinFrame class in

the Class View tab of the workspace pane. Select Add Member Variable from the pop-up
menu, and specify the variable typecasoBar , the name as_wndColorBar , and the

access as protected.

After you add a variable for your toolbar, you need to add some code dndiaete
function in thecmainFrame class to add the toolbar and attach it to the frame. Make the
modifications in Listing 12.1 to add the color toolbar to your drawing application.

LisTING 12.1. THE MODIFIED C ManFrame. OnCreate FUNCTION.

1: int CMainFrame::OnCreate(LPCREATESTRUCT IpCreateStruct)
2
3. if(CRameWnd:OnCreate(pCreateStruct) =-1)
4 |und,
5
6. if(Im wndToolBar.CreateEx(this, TBSTYLE FLAT,
OWS_CHILD | WS_VISIBLE | CBRS_TOP
7. |CBRS_GRIPPER|CBRS_TOOLTIPS|CBRS _FLYBY |
[0 CBRS_SIZE_DYNAMIC) ||
8 'm_wndToolBar.LoadToolBar(IDR_MAINFRAME))
el
10 TRACEX(Faiedtocreate tookar?),
1 eund; fboaese
12}
13
14: i
15: //IMY CODE STARTS HERE
16: M
17
18 //Addthe coortooker
19 niTBOD,
i
21
22 //Crestethe Color Toober
23 if(Im_wndColorBar.CreateEx(this, TBSTYLE_FLAT,WS_CHILD |
24: WS_VISIBLE|CBRS_TOP|CBRS_GRIPPER | CBRS_TOOLTIPS |
25. CBRS_FLYBY|CBRS_SIZE DYNAMIC) ||
26. 'm_wndColorBar.LoadToolBar(IDR_TBCOLOR))
Z{
28 TRACEO(Faledtoareste toobartT);
2 |und; [Hoaege
a}
31 /Andthe Black bution onthe toobar
32: iTBCtID = m_wndColorBar.CommandTolndex(ID_COLOR_BLACK);
3B f{TBAD>=0)
#{

Adding Toolbars and Status Bars

249 |

3. [Loopthroughthe buttons, seting themto actasradio
0 buttons
¥ ETBAD<(TBAD+8)iH)
37 m_wndColorBar SetBuitonStyle(, TBBS_CHECKGROUP);
B}
e
40 i
/MY CODE ENDS HERE
Himm

if(im_wndSiatusBar Createhis) ||
Im wndStatusBar.Setindicators(indicators,
szecifdcators)sizecfUNT))
o

48 TRACE((Faledto create siatus bar);

49 |und; fboaese

S

5L

52: /' TODO: Delete these three ines ifyou dontwant the toobar o
53 // bedodabe
m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);

A55RHQR

54
%
56. M
57: /MY CODE STARTS HERE
. M

1'Enable docking for the Color Tooker
m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);

-
//MY CODE ENDS HERE
.

BIRABBLBBE

(<]
N

883

EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

70: I
71: [/MY CODE STARTS HERE
72: I

74/ Dockthe Color Tookar
DockControlBar(&m_wndColorBar);

s

78: //MY CODE ENDS HERE
79 I

a0

8L r’ung,

&}

| 250

Day 12

Creating the Toolbar
The first part of the code you added,

if ('m_wndColorBar.CreateEx(this, TBSTYLE_FLAT, WS_CHILD |
WS_VISIBLE | CBRS_TOP | CBRS_GRIPPER | CBRS_TOOLTIPS |
CBRS_FLYBY | CBRS_SIZE_DYNAMIC) ||
'm_wndColorBar.LoadToolBar(IDR_TBCOLOR))

contains two separate functions that are necessary in creating a toolbar. The first func-
tion, CreateEx , creates the toolbar itself, whereas the secanaliToolBar , loads the tool-

bar that you designed in the toolbar designer. The second funeti@rpiBar , requires

a single argument, the ID for the toolbar that you want to create.

ThecreateEx function has several arguments that you can pass with the function. The
first argument, and the only required argument, is a pointer to the parent window. In this
case (which is normally the case), this argument is a pointer to the frame window to
which the toolbar will be attached.

The second argument is the style of controls on the toolbar that is to be created. Several
toolbar control styles are available for use, some of which have been introduced with the
last two versions of Internet Explorer. Table 12.1 lists the available styles.

TABLE 12.1. TOOLBAR CONTROL STYLES.

Style Description

TBSTYLE_ALTDRAG Allows the user to move the toolbar by dragging it while holding
down the Alt key.

TBSTYLE_CUSTOMERASE Generates aM_cuUsTOMDRAMessage when erasing the toolbar
and button background, allowing the programmer to choose when
and whether to control the background erasing process.

TBSTYLE_FLAT Creates a flat toolbar. Button text appears under the bitmap
image.

TBSTYLE_LIST Button text appears to the right of the bitmap image.

TBSTYLE_REGISTERDROP For use in dragging and dropping objects onto toolbar buttons.

TBSTYLE_TOOLTIPS Creates a tooltip control that can be used to display descriptive
text for the buttons.

TBSTYLE_TRANSPARENT Creates a transparent toolbar.

TBSTYLE_WRAPABLE Creates a toolbar that can have multiple rows of buttons.

The third argument is the style of the toolbar itself. This argument is normally a combi-
nation of window and control bar styles. Normally, only two or three window styles are
used, and the rest of the toolbar styles are control bar styles. The list of the normally
used toolbar styles appears in Table 12.2.

Adding Toolbars and Status Bars

TABLE 12.2. TOOLBAR STYLES.

Style Description
WS_CHILD The toolbar is created as a child window.
WS_VISIBLE The toolbar will be visible when created.

CBRS_ALIGN_TOP

CBRS_ALIGN_BOTTOM

CBRS_ALIGN_LEFT

CBRS_ALIGN_RIGHT

CBRS_ALIGN_ANY

CBRS_BORDER_TOP

CBRS_BORDER_BOTTOM

CBRS_BORDER_LEFT

CBRS_BORDER_RIGHT

CBRS_FLOAT_MULTI

CBRS_TOOLTIPS

CBRS_FLYBY

CBRS_GRIPPER

Allows the toolbar to be docked to the top of the view area of the
frame window.

Allows the toolbar to be docked to the bottom of the view area of
the frame window.

Allows the toolbar to be docked to the left side of the view area
of the frame window.

Allows the toolbar to be docked to the right side of the view area
of the frame window.

Allows the toolbar to be docked to any side of the view area of
the frame window.

Places a border on the top edge of the toolbar when the top of the
toolbar is not docked.

Places a border on the bottom edge of the toolbar when the top of
the toolbar is not docked.

Places a border on the left edge of the toolbar when the top of the
toolbar is not docked.

Places a border on the right edge of the toolbar when the top of
the toolbar is not docked.

Allows multiple toolbars to be floated in a single miniframe
window.

Causes tooltips to be displayed for the toolbar buttons.

Causes status bar message text to be updated for the toolbar but-
tons at the same time as the tooltips.

Causes a gripper to be drawn on the toolbar.

The fourth argument, which you did not provide in your code, is the size of the toolbar
borders. This argument is passed as a starwkerd rectangle class to provide the length
and height desired for the toolbar. The default valwef@s all of the rectangle dimen-
sions, thus resulting in a toolbar with no borders.

The fifth and final argument, which you also did not provide in your code, is the tool-
bar’s child window ID. This defaults teFXx_ibw_TOOLBARbut you can specify any
defined ID that you need or want to use for the toolbar.

251 |

| 252

Day 12

Setting the Button Styles
After you create the toolbar, there is a curious bit of code:

1/ Find the Black button on the toolbar
iTBCtIID = m_wndColorBar.CommandTolndex(ID_COLOR_BLACK);
(TBAID>=0)
{
I/ Loop through the buttons, setting them to act as radio buttons
for(EITBAID; i< (TBOID+8)H++)
m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP);
}

The first line in this code snippet uses degnmandTolndex toolbar function to locate the
control number of theo_coLoRr_BLAcCKbutton. If you design your toolbar in the order of
colors that you used on the menu, this should be the first control, with a indek’sf

best to use theommandTolndex function to locate the index of any toolbar button that

you need to alter, just in case it's not where you expect it to be. This function returns the
index of the toolbar control specified, and you use this as a starting point to specify the
button style of each of the color buttons.

In the loop, where you are looping through each of the eight color buttons on the toolbar,
you use theseButonSyle function to control the behavior of the toolbar buttons. The

first argument to this function is the index of the button that you are changing. The sec-
ond argument is the style of button that you want for the toolbar button specified. In this
case, you are specifying that each of the buttormsbe_CHECKGRoOURttons, which

makes them behave like radio buttons, where only one of the buttons in the group can be
selected at any time. The list of the available button styles is in Table 12.3.

TABLE 12.3. TOOLBAR BUTTON STYLES.

Style Description

TBSTYLE_AUTOSIZE The button’s width will be calculated based on the text on the button.
TBSTYLE_BUTTON Creates a standard push button.

TBSTYLE_CHECK Creates a button that acts like a check box, toggling between the

pressed and unpressed state.

TBSTYLE_CHECKGROUP Creates a button that acts like a radio button, remaining in the
pressed state until another button in the group is pressed. This is
actually the combination of theBBSTYLE_CHECKANATBSTYLE_GROUP
button styles.

TBSTYLE_DROPDOWN Creates a drop-down list button.

TBSTYLE_GROUP Creates a button that remains pressed until another button in the
group is pressed.

Adding Toolbars and Status Bars 253 |

Style Description

TBSTYLE_NOPREFIX The button text will not have an accelerator prefix associated with it.

TBSTYLE_SEP Creates a separator, making a small gap between the buttons on
either side.

Docking the Toolbar
The last thing that you do in the code that you add totbeate function in the
CMainFrame class is the following:

I Enable docking for the Color Toolbar
m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);

EnableDocking(CBRS_ALIGN_ANY); // (AppWizard generated line)

1/ Dock the Color Toolbar
DockControlBar(&m_wndColorBar);

In the first of these lines, you called the@bleDocking toolbar function. This function

enables the toolbar for docking with the frame window. The value passed to this toolbar
function must match the value passed in the follovérgleDocking function that is

called for the frame window. The available values for these functions are listed in Table
12.4. These functions enable the borders of the toolbar, and the frame window, for dock-
ing. If these functions are not called, then you will not be able to dock the toolbar with
the frame window. If a specific side is specified in these functions for use in docking,
and the sides do not match, you will not be able to dock the toolbar with the frame.

TABLE 12.4. TOOLBAR DOCKING SIDES.

Style Description

CBRS_ALIGN_TOP Allows the toolbar to be docked to the top of the view area of the
frame window.

CBRS_ALIGN_BOTTOM Allows the toolbar to be docked to the bottom of the view area of the
frame window.

CBRS_ALIGN_LEFT Allows the toolbar to be docked to the left side of the view area of
the frame window.

CBRS_ALIGN_RIGHT Allows the toolbar to be docked to the right side of the view area of
the frame window.

CBRS_ALIGN_ANY Allows the toolbar to be docked to any side of the view area of the
frame window.

CBRS_FLOAT_MULTI Allows multiple toolbars to be floated in a single miniframe window.
0 The toolbar will not be able to dock with the frame.

| 254

Day 12

The final function that you added was a frame window functosControBar , which

is passed the address of the toolbar variable. This function physically docks the toolbar to
the frame window. Because all of this code appears iortheate function for the

frame window, the toolbar is docked before the user sees either the window or the tool-
bar.

Now, after adding all of this code to thecreate function of theCMainFrame class, if
you compile and run your application, you'll find a working color toolbar that you can
use to select the drawing color, as shown in Figure 12.3.

FIGURE 12.3. 21 Untitled - Toolbar M= E
File Edit ‘width Color “iew Help

The color toolbar on 0O = =

the drawing pro- L]

gram.

f

Fieady NUM

Controlling the Toolbar Visibility

Now that you have your color toolbar on the frame of your drawing application, it would
be nice to be able to show and hide it just as you can the default toolbar and status bar
through the View menu. This is simple enough functionality to add, but it doesn’t neces-
sarily work the way you might expect it to.

The first thing you need to do is add a menu entry to toggle the visibility of the color
bar. Do this through the Menu Designer, adding a new menu entry on the View menu.
Specify the menu properties as shown in Table 12.5.

TABLE 12.5. COLOR BAR MENU PROPERTIES.

Property Setting
ID ID_VIEW_COLORBAR
Caption &Color Bar

Prompt Show or hide the colorbannToggle ColorBar

Adding Toolbars and Status Bars 255|

Updating the Menu

To determine whether the toolbar is visible or hidden, you can get the current style of the
toolbar and mask out for thves_viSIBLE style flag. If the flag is in the current toolbar

style, then the toolbar is visible. By placing this evaluation intsékemeck function in

the UPDATE_COMMAND_gvent message handler, you can check and uncheck the color
bar menu entry as needed.

To add this functionality to your drawing program, add an event handler for the
UPDATE_COMMAND_@vent message on tie VIEw_CcoLORmenu. Be sure to add this
event-handler function into themainFrame class. (You're still making all of your coding
changes so far in the frame class.) Edit the event-handler function, adding the code in
Listing 12.2.

LISTING 12.2. THE MODIFIED C ManFrameOnU pdateViewC olorbar FUNCTION.

1: void CMainFrame::OnUpdateViewColorbar(CCmdUI* pCmdUl)
A

3. //TODO: Add your command update Ul handler code here

4 i

5: //IMY CODE STARTS HERE

6: Ml

7

8 //Checkthe siate ofthe colorioober

9. pCmdUI->SetCheck(((m_wndColorBar.GetStyle() & WS_VISIBLE) I=0));
10
13 i
12: //IMY CODE ENDS HERE
13 diiii
14}

Toggling the Toolbar Visibility

Because theTooBar class is derived from thewndclass (via thecContoBar class),

you might think that you could call tlehowwindow function on the toolbar itself to

show and hide the toolbar. Well, you can, but the background for the toolbar will not be
hidden along with the toolbar. All the user would notice is the toolbar buttons appearing
and disappearing. (Of course, this might be the effect you are after, but your users might
not like it.)

Instead, you use a frame window functighgwControBar , to show and hide the toolbar.
This function takes three arguments. The first argument is the address for the toolbar
variable. The second argument is a boolean, specifying whether to show the toolbar.

| 256

Day 12

(TRUEshows the toolbarALSE hides the toolbar.) Finally, the third argument specifies
whether to delay showing the toolbamr(Edelays showing the toolbaraLsE shows the
toolbar immediately.)

Once a toolbar is toggled on or off, you need to call another frame window function,
RecalcLayout . This function causes the frame to reposition all of the toolbars, status bars,
and anything else that is within the frame area. This is the function that causes the color
toolbar to move up and down if you toggle the default toolbar on and off.

To add this functionality to your drawing program, add an event handler forcthe

MAN Devent message on tie VIEwW_COLORmMenu. Be sure to add this event-handler
function into thecMainFrame class. (You're still making all of your coding changes so far
in the frame class.) Edit the event-handler function, adding the code in Listing 12.3.

LisTiING 12.3. THE MODIFIED C MahFrameOnViewC olorbar FUNCTION.

1: void CMainFrame::OnViewColorbar()
A
// TODO: Add your command handler code here

3

4

5 I

6: //MY CODE STARTS HERE
ya

8 BOOLbVisbe

9

10

I/ Checkthe state ofthe ocolortooloar
1. bVisble =((m wndColorBar.GetStyle() & WS_VISIBLE) =0);

=

12

13 /Toggethe coorber

;. ShowControBar(&m_wndColorBar, bVisible, FALSE);
. IReshufletheframe

16: Recalc ayou);

G

8 i

19: //MY CODE ENDS HERE
20 [

21}

At this point, after compiling and running your application, you should be able to toggle
your color toolbar on and off using the View menu.

Adding Toolbars and Status Bars 257 |

Adding a Combo Box to a Toolbar

It's commonplace now to use applications that have more than just buttons on toolbars.
Look at the Visual C++ Developer Studio, for example. You've got combo boxes that
enable you to navigate through your code by selecting the class, ID, and function to edit
right on the toolbar. So how do you add a combo box to a toolbar? It's not available in
the toolbar designer; all you have there are buttons that you can paint icons on. You can’t
add a combo box to any toolbar by using any of the Visual C++ wizards. You have to
write a little C++ code to do it.

To learn how to add a combo box to a toolbar, you'll add a combo box to the color tool-
bar you just created. The combo box will be used to select the width of the pen the user
will use to draw images. (If you haven't added the support for different drawing widths
from the exercise at the end of Day 10, you might want to go back and add that now.)

Editing the Project Resources

To add a combo box to your toolbar, the first thing that you need to do is what Visual
C++ was designed to prevent you from having to do. You need to edit the resource file
yourself. You cannot do this through the Visual C++ Developer Studio. If you try to open
the resource file in the Developer Studio, you will be popped into the Resource View tab
of the workspace pane, editing the resource file through the various resource editors and
designers. No, you'll have to edit this file in another editor, such as Notepad.

Close Visual C++, the only way to guarantee that you don't write over your changes.
Open Notepad and navigate to your project directory. Open the resource file, which is
named after the project with.ia filename extension. Once you open this file in Notepad,
scroll down until you find the toolbar definitions. (You can search for the word “tool-
bar.”) Once you've found the toolbar definitions, go to the end of the Color toolbar defin-
ition and add two separator lines at the bottom of the toolbar definition.

For instance, to make these changes to your drawing application, you need to navigate to
the Toolbar project directory and then opentdexrc file. (If you are adding these
toolbars to the MDI drawing application, you need to look for the Day11.rc file.) Search
for the toolbar section, and then add tSEPARATORINES just before the end of the
IDR_TBCOLORsection, as shown in Listing 12.4. Once you add these two lines, save the
file, exit Notepad, and restart Visual C++, reloading the project.

| 258 Day 12

LISTING 12.4. THE MODIFIED PROJECT RESOURCE FILE (Toobarrc).

L I
21

3/ Toober

&l

5

6: IDR_MAINFRAME TOOLBAR DISCARDABLE 16, 15
7:BEGIN

8 BUTTON ID_FILE NEW

9 BUTTON ID_FILE OPEN

10: BUTTON ID_FILE SAVE

11: SEPARATOR

12: BUTTON ID_EDIT CUT

13 BUTTON ID_EDIT COPY

14: BUTTON ID_EDIT PASTE

15: SEPARATOR

16: BUTTON ID FILE PRINT

17: BUTTON ID_APP_ABOUT

18: END

19

20: IDR_TBCOLOR TOOLBAR DISCARDABLE 16, 15
21:BEGIN

22: BUTTON ID_COLOR _BLACK
23 BUTTON ID_COLOR BLUE
24: BUTTON ID_COLOR_GREEN
25. BUTTON ID_COLOR CYAN
26 BUTTON ID_COLOR RED

27: BUTTON ID_COLOR_MAGENTA
28: BUTTON ID_COLOR YELLOW
29: BUTTON ID_COLOR WHITE
30: SEPARATOR

31: SEPARATOR

32: END

You added these twe®EPARATORINES in the toolbar definition so that the second separa-
tor can act as a place holder for the combo box that you are going to add to the toolbar.
There are two reasons that you had to make this edit by hand and not use the Visual C++
toolbar designer. The first reason is that the toolbar designer would not allow you to add
more than one separator to the end of the toolbar. The second reason is that, if you don’t
add anything else on the end of your toolbar after the separator, the toolbar designer
decides that the separator is a mistake and removes it for you. In other words, the Visual
C++ toolbar designer does not allow you to add the place holder for the combo box to
your toolbar.

Adding Toolbars and Status Bars 259 |

Next, you need to add the text strings that you will load into your combo box. To add
these strings, you need to open the string table in the Resource View of the workspace
pane. Here you find all of the strings that you entered as prompts in various properties
dialogs. This table has a number of IDs, the values of those IDs, and textual strings that
are associated with those IDs, as shown in Figure 12.4. You'll need to add the strings to
be placed into your toolbar combo box in the string table; each line in the drop-down list
must have a unique ID and entry in the strings table.

FIGURE 12.4 4% Toolbar - Micrasoft Visual C++ - [Teolbar.ic - String Table [String Table)]
abe File Edit View Insen Project Buld Took Window Help -8 %
The string table A 2E0 i mE o | — T
editor. | =l =T Sa- S 1
_Ix [1D Value
5 3 Toolbar resources DA MAINFRAME o \nT oolbz
R DS _WIDTH_WTHIN 123 Ve Thin
- Dcc‘ee'a o ID5_WIDTH_THIN 130 Thin
+ Dialog IDS_wIDTH_MEDIUM 131 Medum
[Jleon IDS_WIDTH_THICK 132 Thick
I Menu IDS_WIDTH_YTHICK 133 Vew Thick
=/ Sting Table ID_INDICATOR_COLOR 131 MAGENTA
o] Sting Table ID_WIDTH_VTHIN 32771 Verp thin drawing Inehivery Thin
+] Toolbar ID_WIDTH_THIN 32772 Thin drawing inebnT hin
] Version ID_WIDTH_MEDIUM 32773 Medium drawing lin\nMedium
ID_WIDTH_THICK. 32774 Thick drawing lineAnThick
ID_WIDTH_VTHICK. 2775 Verp thick diawing Inc\rivery Thick
ID_COLOR_BLACK 32776 Black drawing color\nBlack
ID_COLOR_BLUE 777 Blue diawing calotinBlue
ID_COLOR_GREEN 32778 Green drawing colorinGireen
ID_COLOR_CAM 32779 Cyan drawing colorbnCyan
ID_COLOR_RED 32780 Red diawing colorinfied
ID_COLOR_MAGENTA 32781 Magenta dianing colotiniagenta
w0 — ,:J’é = ID_COLOR_YELLOW 32782 ellow drawing colotiellow
30] gifero [Fiev I COLOR WHITE 32733 White diawing coloririwhite =
.| ——— Comfiguration: Toolbar — Wind2 Debug———————————————————— -
_l|conpiling
MainFrn crp
Linking
Toolbar.exe — 0 error(s). 0 warning(s) T
¥ [, Build { Debug & Find in Files 1 Find in Files2 % 4| | v
Ficady

MStart| | @ £y A W £inbox-Outlo.. | 3 Exploring - E-..|[42 Toolbar - .. %/ MSDH Librar... | E§VuePiint - PC..| < “214» 209PM

For instance, to add the strings for the combo box that you will be adding to the color
toolbar, insert a new string, either by selecting Insert|New String from the menu or by
right-clicking the string table and selecting New String from the pop-up menu.

In the String properties dialog, specify a string ID for the string and then enter the string
to appear in the drop-down list. Close the properties dialog to add the string. For the
strings in the Width combo box that you are going to add to the color toolbar, add the
strings in Table 12.6.

| 260 Day 12

TABLE 12.6. WIDTH TOOLBAR COMBO BOX STRINGS.

ID Caption
IDS_WIDTH_VTHIN Very Thin
IDS_WIDTH_THIN Thin
IDS_WIDTH_MEDIUM Medium
IDS_WIDTH_THICK Thick
IDS_WIDTH_VTHICK Very Thick

Creating the Toolbar Combo Box

Before you can add the combo box to the color toolbar, you need to create a combo box
variable that you can use for the combo box. Because you are not able to add this combo
box through any of the designers, you need to add it as a variableciaattreame

class.

To add the combo box variable to the main frame class for the color toolbar, select the
Class View tab in the workspace pane. Right-clickatenFrame class and select Add
Member Variable from the pop-up menu. Specify the variable typeasboBox the

name asn_ctiwidth , and the access as protected.

Once you add the combo box variable to the main frame class, you need to perform a
series of actions, all once the toolbar has been created:

1. Set the width and the ID of the combo box place holder on the toolbar to the width
and ID of the combo box.

2. Get the position of the toolbar placeholder and use it to size and position the
combo box.

3. Create the combo box, specifying the toolbar as the parent window of the combo
box.

4. Load the strings into the drop-down list on the combo box.

To organize this so that it doesn’t get too messy, it might be advisable to move the cre-
ation of the color toolbar to its own function that can be called frorotbeate func-

tion of the main frame class. To create this function, right-cliclctingnFrame class in

the workspace pane and select Add Member Function from the pop-up menu. Specify the
function type ag00L the function description aSeateColorBar , and the access as pub-

lic. Edit the new function, adding the code in Listing 12.5.

Adding Toolbars and Status Bars 261 |

LisTING 12.5. THE C ManFrame CreateC dorBar FUNCTION.

1: BOOL CMainFrame::CreateColorBar()

X
3 HiTBAD,
4 in i;
5

6. if(Im wndColorBar.CreateEx(this, TBSTYLE_FLAT,
O WS_CHILD | WS_VISIBLE | CBRS_TOP

7. |CBRS_GRIPPER|CBRS TOOLTIPS|CBRS _FLYBY |

0 CBRS_SIZE_DYNAMIC) ||
8 Im_wndColorBar.LoadToolBar(IDR_TBCOLOR))
o
100 TRACEQ(Failedtocreate toobart);
1 =unFALSE, /Hibaese
2}
13: iTBCtID = m_wndColorBar.CommandTolndex(ID_COLOR_BLACK);
14 {(TBAID>=0)
5{
16 frETBADi<(TBOD+8)i+)
17: m_wndColorBar.SetButtonStyle(i, TBBS_CHECKGROUP),
18}
19: //Add the Combo
20 ntnWidh=100;
21 intnHeght=125;

./ Configure the combo place holder
m_wndColorBar.SetButtoninfo(9, IDC_CBWIDTH, TBBS_SEPARATOR,
0 nWidth);

REBR

B n

1 Getthe colorbar height

27 CRedred;

28: m_wndColorBar.GetitemRect(9, &rect);
29: rectbatiom=recttop+nHeight,

0
3L //Create the combobox

32: m_ctiWidth.Create(WS_CHILD |WS_VISIBLE |WS_VSCROLL |

33: CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);
A

35/ Hthecombobox

%6 CSgsrSke;

37: if(szStyle.LoadSting(DS_WIDTH_VTHIN))

38 m_ciWidth AddSting(LPCTSTR)szStyle);

39 if(szStyleLoadSting(IDS WIDTH_THIN)

40: m_ciWidth. AddSting(LPCTSTR)szSyle);

41 if(szStyle.LoadSting(IDS_WIDTH_MEDIUM))

42 m_ciWidth. AddSting(LPCTSTR)szSYyle);

43 if(szStyle.LoadSting(IDS_WIDTH_THICK))

continues

| 262 Day 12

LISTING 12.5. CONTINUED

44: m_ctWidth AddSting(LPCTSTR)szStyle);
45; if(szStyle.LoadSting(IDS_WIDTH_VTHICK))
46. m_ctWidth AddSting(LPCTSTR)szStyle);
ar.

48 reunTRUE;

49}

On line 24 in Listing 12.5, you specify that the combo box should be created using the
objectiD IDc_cBWIDTH. This object ID is used to identify the combo box when the
combo box sends an event message to the application or when you need to specify what
list entry is displayed in the edit field. However, this object ID doesn't exist in your
application. Before you can compile the application, you'll need to add this ID to the
project resource IDs, just as you did on Day 4, “Working with Timers.” To add this ID to
your project, select the Resource view in the workspace pane. Select the top of the
resource tree and right-click the mouse to trigger the context menu. Select Resource
Symbols from the pop-up menu and add the ohjecic_cswIDTH. Make sure that you

add the new object ID with a unique numerical value so that it won't conflict with any
other objects in use in your application.

Configuring the Placeholder

After creating the toolbar and configuring all of the toolbar buttons, the first thing you
need to do is to configure the separator that is acting as the place holder for the combo
box you are about to create. You do this withdhmioninfo toolbar function, as fol-

lows:

m_wndColorBar.SetButtoninfo(9, IDC_CBWIDTH, TBBS_SEPARATOR, nWidth);

This function takes four arguments. The first argument is the current index of the control
in the toolbar—in this case, the tenth control in the toolbar (eight color buttons and two
separators). The second argument is the new ID of the toolbar control. This is the ID that
will be placed in the event message queue when a control event occurs. The third argu-
ment is the type of toolbar control this control should be. The fourth and final argument
is somewhat deceptive. If you look at the function documentation, the fourth argument is
the new index of the control in the toolbar. This is the position to which the control will

be moved. However, if the control is a separator, this argument specifies the width of the
control and doesn’t move it anywhere. Because this toolbar control is a separator, this
argument has the effect of setting it to be as wide as the combo box that you are going to
create.

Adding Toolbars and Status Bars 263 |

Getting the Toolbar Combo Box Position

Now that you have configured the toolbar separator as the place holder for the combo
box, you need to get the position of the combo box place holder on the toolbar so that
you can use it to set the position of the combo box:

m_wndColorBar.GetltemRect(9, &rect);

rectbottom = rect.top + nHeight;

In the first line, you called the toolbar functicatitemRect to get the position and size

of the placeholder for the combo box. In the next line, you added the height of the drop-
down list to the height that the combo box will eventually be.

Creating the Combo Box

Now that you've got a place holder sized correctly, and you have the position and size
for the combo box, it's time to create the combo box. You do this witbrélie combo
box function, as follows:

m_ctiWidth.Create(WS_CHILD | WS_VISIBLE | WS_VSCROLL |
CBS_DROPDOWNLIST, rect, &m_wndColorBar, IDC_CBWIDTH);

The first argument to the combo boxae function is the combo box style. Normally,
several style flags are combined to create a combination style value. Table 12.7 lists the
flags that you can use in this value.

TABLE 12.7. COMBO BOX STYLES.

Style Description

WS_CHILD Designates this as a child window (required).

WS_VISIBLE Makes the combo box visible.

WS_DISABLED Disables the combo box.

WS_VSCROLL Adds vertical scrolling to the drop-down list.

WS_HSCROLL Adds horizontal scrolling to the drop-down list.

WS_GROUP Groups controls.

WS_TABSTOP Includes the combo box in the tabbing order.

CBS_AUTOHSCROLL Automatically scrolls the text in the edit control to the right when the

user types a character at the end of the line. This allows the user to
enter text wider than the edit control into the combo box.

CBS_DROPDOWN Similar tocs_sIMPLE but the list is not displayed unless the user
selects the icon next to the edit control.

continues

| 264 Day 12
TABLE 12.7. CONTINUED
Style Description
CBS_DROPDOWNLIST Similar tocBs_bropDoOWHhut the edit control is replaced with a

static-text item displaying the currently selected item in the list.

CBS_HASSTRINGS The owner of the list box is responsible for drawing the list box con-
tents. The list box items consist of strings.

CBS_OEMCONVERT Text entered in the edit control is converted from ANSI to the OEM
character set and then back to ANSI.

CBS_OWNERDRAWFIXED The owner of the list box is responsible for drawing the list box con-
tents. The contents of the list are fixed in height.

CBS_OWNERDRAWVARIABLEThe owner of the list box is responsible for drawing the list box con-
tents. The contents of the list are variable in height.

CBS_SIMPLE The list box is displayed at all times.
CBS_SORT Automatically sorts the strings in the list box.

CBS_DISABLENOSCROLL List shows a disabled scrollbar when there are not enough items in
the list to require scrolling.

CBS_NOINTEGRALHEIGHT Specifies that the combo box is exactly the size specified.

The second argument is the rectangle that the combo box is to occupy. This argument is
the position within the parent window—in this case, the toolbar—that the combo box

will stay in. It will move with the parent window (the toolbar), staying in this position

the entire time.

The third argument is a pointer to the parent window. This is the address of the color
toolbar variable.

The fourth argument is the object ID for the combo box.

Populating the Combo Box

The final action that you have to do in creating the combo box on the color toolbar is
populate the drop-down list with the available items that the user can select from. You do
this with the combination of two functions:

if (szStyle.LoadString(IDS_WIDTH_VTHIN))
m_ctiwidth.AddString(LPCTSTR)szStyle);

The first function is asting function,LoadSting . This function takes a string ID and

loads the string matching the ID from the string table. The second function is a combo
box function,addsting , which adds the string passed in as an argument to the drop-
down list. By calling this function combination for each of the elements that should be in
the drop-down list, you can populate the combo box from the application string table.

Adding Toolbars and Status Bars 265|

Updating the OnCreate Function

After moving all of the code to create the color toolbar to a separate function, you can
update theoncreate function so that it calls thereateCooBar function where it used to
create the color toolbar, as in Listing 12.6.

LisTING 12.6. THE MODIFIED C ManFrameOnC reate FUNCTION.

1: int CMainFrame::OnCreate(LPCREATESTRUCT IpCreateStruct)

A

3. if(CFrameWnd:OnCreate(jpCreateStruct) =-1)

4 |urnd;

5

6. if(im wndToolBar.CreateEx(this, TBSTYLE_FLAT,

OWS_CHILD | WS_VISIBLE | CBRS_TOP

7. |CBRS GRIPPER|CBRS TOOLTIPS|CBRS FLYBY|
0 CBRS_SIZE_DYNAMIC) ||

8 Im wndToolBar.LoadToolBar(IDR_MAINFRAME))

B

10 TRACE((Faiedtoceatetoobar);

1 eund; fhooese

2}

N

M

15 /MY CODE STARTS HERE

6. M

17:

18 //Addthe oolortoober

19 {(OresieCooBan)

D

211 TRACEO(Faled b create color toobar T,
2 |und; feoaese

2}

24

25: i

26: //MY CODE ENDS HERE

2t i

28

29 f(m wndStatusBar Create(ts) |

30 m wndStatusBar.Setindicators(indicators,
3¢{ szeciidcators)sizea{UNT))

2

33 TRACEQ(Faledtocreate Status baiv),
¥ eund; feoaese

&}
X

37. ' TODO: Delete these three ines ifyou dontwarnt the toobar to
38/ bedodkable

39: m_wndToolBar.EnableDocking(CBRS_ALIGN_ANY);

=

continues

Day 12

LISTING 12.6. CONTINUED

40:

41 Ny

/MY CODE STARTS HERE
- M

GR&ED

./ Enable docking for the Color Toolar

46: m_wndColorBar.EnableDocking(CBRS_ALIGN_ANY);
a7

. M

/IMY CODE ENDS HERE

. I

EnableDocking(CBRS_ALIGN_ANY);
DockControlBar(&m_wndToolBar);

LR AR RN

SO
/MY CODE STARTS HERE
-l

8IS

59 // Dockthe Color Tookar
DockControlBar(&m_wndColorBar);

62: i
63: //MY CODE ENDS HERE
64: I

66 reunG,
67}

Now when you compile and run your application, you should have a combo box on the
end of your color toolbar, as in Figure 12.5. However, the combo box doesn’t do any-

thing yet.
FIGURE 12.5. 21+ Untitled - Toolbar MEE
File Edit ‘width Color “iew Help
The color toolbar 0O & =X
with a width combo LI very Thin_~]
box.

Fieady NUM

Adding Toolbars and Status Bars 267 |

Handling the Toolbar Combo Box Events

Adding an event handler for the combo box is fairly simple, although it does have to be
done by hand (because the Class Wizard doesn’t even know that the combo box exists).
You have to add aoN_CBN_SELCHANGENtry into the message map and then add the
actual message-handler function into tvainFrame class.

To start with, add the message-handler function by selectingvifagrrame class in

the workspace pane and selecting New Member Function from the pop-up menu.
Enter the function type as_msgvoid , the function definition asnSelChangewidth , and
the access as protected. Edit the new function as in Listing 12.7.

LISTING 12.7. THE OnSé&hangeW dh FUNCTION.

1: void CMainFrame::OnSelChangeWidth()
A

3. [Getthe new combo selection

4: intnindex=m_ctWidth GetCurSeX();

5 if(nNhdex—CB _ERR)

6 eun

7

8 /| Getthe active document

9: CToolbarDoc* pDoc = (CToolbarDoc*)GetActiveDocument();
10: /Dowe have avalid document?

11 fipDog)

12 [Setthenewdraningwidh

13 pDoc>Setwidth(nindex);

14

15}

In this function, you first get the current selection from the combo box. Remember that
the entries were added in order, anddBs_soRiflag was not specified in the combo

box creation, so the selection index numbers should correspond to the widths in the doc-
ument. As a result, you can get a pointer to the current document instance, using the
GetActiveDocument function, and then pass the new width to the document using its
Setwidih function.

For the combo box selection changes to call this message-handler function, you need to
add the appropriate entry to th®ainFrame message map. Scroll to the top of the
CMainFrame source code until you find the message map section. Add line 12 in Listing
12.8 to the message map.

| 268 Day 12

LisTING 12.8. THE MODIFIED C ManFrame MESSAGE MAP.

W

2:// CMainFrame

3

4: IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

5

6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)

7. IF{AFX_MSG_MAP(CMainFrame)

8 ON_WM_CREATE()

9: ON_COMMAND(ID_VIEW_COLORBAR, OnViewColorbar)
10: ON_UPDATE_COMMAND_UI(ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11: /HAFX_MSG_MAP

12: ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)
13: END_MESSAGE_MAP()

This message map entry
ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)

specifies that on combo box selection change events with the object ID of the color tool-
bar combo box, thenselchangewidth function should be called. Now if you compile

and run your application, you should be able to change the drawing width with the
combo box on the color toolbar.

Updating the Toolbar Combo Box

The one remaining problem with the combo box is that it needs to be updated if the user
selects a new value from the menu instead of the combo box. One of the most efficient
methods of doing this is to set the current selection in the combo box when any of the
menu selections are triggered. This requires a function in the main frame class that can
be called from the document class to accomplish this action. All the function in the main
frame needs to do is to set the current selection in the combo box.

To implement this function in the main frame, add a new member function to the
CMainFrame class, specifying the function type as void, the definition as

UpdateWidthCB(int nindex) , and the access as public. Once you add this function, edit the
function as in Listing 12.9.

Adding Toolbars and Status Bars 269 |

LisTING 12.9. THE C ManFramelU pdateW thCB FUNCTION.

1: void CMainFrame::UpdateWidthCB(int nindex)
A

3. /Setthe new selectionin the combo box

4: ' m wndColorBar.m_ctiWidth.SetCurSel(nindex);

5

This function uses a single combo box functissusel , which sets the current selec-
tion in the combo box drop-down list to the entry specified with the index number. The
edit control of the combo box is updated with the new selected list entry. If an index
number that doesn'’t exist in the drop-down list is supplied to the combo box, then the
function returns an error.

On the document side, you need to call this function in the main frame whenever the
appropriate menu event-handling functions are called. Because this could occur in sev-
eral functions, it makes the most sense to enclose the necessary functionality in a single
function. This function needs to get a pointer to the view associated with the document
and then, through the view, get a pointer to the frame, which can then be used to call the
UpdateWidthCB function that you just added to the main frame class.

To add this function to your application, select ttteolbarboc class in the workspace

pane, and select Add Member Function from the pop-up menu. Specify void as the func-
tion type,UpdateColorbar ~ (rtnindex) as the function definition, and private as the func-

tion access. Edit the function as in Listing 12.10.

LisTING 12.10. THe CToolbarDoc. UpdateColorbar ~ FUNCTION.

1: void CToolbarDoc::UpdateColorbar(int nindex)
A

3 /Getteposionaihefistview

4: POSITION pos=GetFrsiViewPaosition();
5 IDdwegetavald postion?

6. f(posENULL)

Hq

8 /Cetaparerbteviewntretposion

9 CView*pView=GetNextView(pos);
10. /Dowehaveavaidponierotheview?
1 fpven)

2{

13 /Getaponerbtefametroughteview

continues

| 270 Day 12

LisTING 12.10. CONTINUED

14 CMainFrame* pFrame = (CMainFrame®)pView- [GetTopLevelFrame();
15 /Ddwegetaponeriotefame?
16 fpHame)

17 Update the combo box onthe color tookber
18 Ihouhtefare
19 pFRrame>Update\WidthCB(nindex);

This function traces through the path that you have to follow to get to the application
frame from the document class. The first thing that you did was get the position of the
first view associated with the document, using GlErsivienPostion function. A docu-

ment may have multiple views open at the same time, and this function returns the posi-
tion of the first of those views.

The next functiongetNextview , returns a pointer to the view specified by the position.
This function also updates the position variable to point to the next view in the list of
views associated with the current document.

Once you have a pointer to the view, you can call the window function,

GetTopLevelFrame , which returns a pointer to the application frame window. You have to
call this function through the view because the document is not descended from the
cwndclass, although the view is.

Once you have a pointer to the frame window, you can use this pointer to call the func-
tion you created earlier to update the combo box on the toolbar. Now if you call this new
function from the Width menu command event handlers, as in Listing 12.11, the combo
box that you placed on the color toolbar is automatically updated to reflect the currently
selected drawing width, regardless of whether the width was selected from the combo
box or the pull-down menu.

Listing 12.11. AN uPDATED WIDTH MENU COMMAND EVENT HANDLER.

1: void CToolbarDoc:OnWidthVthin()

2

3. //TODO: Add your command handler code here
4 [Setthenewwidh

5 m_nWidh=0;

6: // Update the combo box on the color toolbar

7. UpdateCoarbar(0);

8

Adding Toolbars and Status Bars 271 |

Adding a New Status Bar Element

Earlier today, you learned how to specify status bar messages and tooltips for both tool-
bar buttons and menus. What if you want to use the status bar to provide the user with
more substantial information? What if, as in the Visual C++ Developer Studio, you want
to provide information about what the user is doing, where he is in the document he is
editing, or the mode that the application is in? This information goes beyond the Caps,
Num, and Scroll lock keys that Visual C++ automatically reports on the status bar.

It's actually easy to add additional panes to the status bar, as well as take away the panes
that are already there. To learn just how easy a change this is, you will add a new pane to
the status bar in your drawing application that will display the color currently in use.

Adding a New Status Bar Pane

Before you add a new status bar pane, you need to add a new entry to the application
string table for use in the status bar pane. This string table entry will perform two func-
tions for the status bar pane. The first thing it will do is provide the object ID for the sta-
tus bar pane. You will use this ID for updating the pane as you need to update the text in
the pane. The second function this string table entry will perform is size the pane. To size
the pane correctly, you need to provide a caption for the string table entry that is at least
as wide as the widest string that you will place in the status bar pane.

Add a new string to your application string table, using the same steps you used earlier
when adding the text for the combo box you placed on the color toolbar. Specify the
string ID asiD_INDICATOR_COLORand the caption adAGENTAthe widest string that

you will put into the status bar pane).

A small section in the first part of the main frame source code defines the status bar lay-
out. This small table contains the object IDs of the status bar panes as table elements, in
the order in which they are to appear from left to right on the status bar.

To add the color pane to the status bar, add the ID of the color pane to the status bar indi-
cator table definition, just after the message map in the source-code file for the main
frame. Place the color pane ID in the table definition in the position that you want it to

be on the status bar, as in line 18 of Listing 12.12.

| 272 Day 12

LISTING 12.12. A MODIFIED STATUS BAR INDICATOR TABLE DEFINITION.

LT T i
2:// CMainFrame
3
: IMPLEMENT_DYNCREATE(CMainFrame, CFrameWnd)

4
5
6: BEGIN_MESSAGE_MAP(CMainFrame, CFrameWnd)
7. II{AFX_MSG_MAP(CMainFrame)
8: ON_WM_CREATE()

9: ON_COMMAND(ID_VIEW_COLORBAR, OnViewColorbar)

10: ON_UPDATE_COMMAND_UI(ID_VIEW_COLORBAR, OnUpdateViewColorbar)
11 /JAFX_MSG_MAP

12: ON_CBN_SELCHANGE(IDC_CBWIDTH, OnSelChangeWidth)

13: END_MESSAGE_MAP()

14

15: static UINT indicators]]| =

16

17. ID_SEPARATOR, //saiusineindcaior

18: ID_INDICATOR_COLOR,

19: ID_INDICATOR_CAPS,

20: ID_INDICATOR_NUM,

21: ID_INDICATOR_SCRL,

2}

33

Pz

25: /| CMainFrame construction/destruction

If you want to drop any of the lock key indicators from the status bar, just remove them
from the indicators table definition. If you examine tiereate function, where the sta-
tus bar is created (just after the toolbars are created), you'll see where this table is used
to create the status bar with the following code:
if (m_wndStaiusBar.Create(this) |

Im_wndStatusBar.Setindicators(indicators,

sizeof(indicators)sizeof(UINT))

Once the status bar is created, $hisricaors function is called on the status bar to add
the panes as they are defined in the indicators table. The strings associated with the IDs
in the indicators table are used to initialize the panes and set their size. If you compile

and run your application at this point, you see the new color pane on the status bar with
the caption from the string table displayed within.

Adding Toolbars and Status Bars 273 |

Setting a Status Bar Pane Text

Once you've added the pane to the status bar, you can leptixere_ COMMAND_UI

event do all the updating of the pane. All you need to do is add an event handler for this
event on the object ID of the pane and use this event to set the pane text. Because the sta-
tus bar is always visible, theeDATE_COMMAND_@vent for the panes on the status bar

is triggered every time that the application is idle. This means that it is triggered after the
application is finished processing just about every keystroke and mouse movement. In
almost a week, on Day 18, “Doing Multiple Tasks at One Time—Multitasking,” you will

learn more about how often and when any tasks that are performed when the application

is idle are triggered.

In the event handler, you need to create a string containing the name of the current color
(or whatever other text you want to display in the status bar pane). Next, you have to
make sure that the pane is enabled. Finally, you need to set the text of the pane to the
string that you have created.

To implement this in your application, you need to createFMTE_COMMAND_@vent

handler. Once again, the Class Wizard does not know about the status bar pane, so you
have to create the message handler and add it to the message map yourself. To create the
message handler, add a new member function to the documenictlagarboc) with a

type ofafix msgvoid , a definition ofonUpdateindicatorColor (CCmdul *pCmdul) , and an

access of protected. Edit the newly created function, adding the code in Listing 12.13.

LisTING 12.13. THE OnUpdatelndicatorColor FUNCTION.

1: void CToolbarDoc::OnUpdatelndicatorColor(CCmdUl *pCmdUl)
2

3 CSiigsaCa,

4

5 /Whatisthecurertoolor?
6. swich(m_nColor)

7

8 0 /Bak

9 sSCoor="BLACK;

10 besk

1 el /BLe

12 sCdor='BLUE;

13 besk

14 cae2 [Green

continues

274 Day 12

LISTING 12.13. CONTINUED

SiColor="GREEN:
023
cae3 /Cyan
SCoor="CYAN}

BESRBBYNBNRBNRBBRESB R
It

-

33 /Enablethe status bar pane
34: pCmdUl->Enable(TRUE);
35 [Setthetextofthe siatusbar pane
36 /othecurentooor

37 pCmdUl->SetText(strColor);
38}

In this function, you followed three steps exactly: You created a string with the current
color name, made sure that the pane was enabled, and set the pane text to the string that
you had created.

Now, to make sure that your new message handler is called when it is supposed to be,
you need to add aDN_UPDATE_COMMAND_emtry to the message map at the top of the
document source code file, as specified in Listing 12.14.

LisTING 12.14. THE MODIFIED CToolbarDoc MESSAGE MAP.

AN/

2:// CToolbarDoc

3

4: IMPLEMENT_DYNCREATE(CToolbarDoc, CDocument)

5

6: BEGIN_MESSAGE_MAP(CToolbarDoc, CDocument)

7: ON_UPDATE_COMMAND_UI(ID_INDICATOR_COLOR, OnUpdatelndicatorColor)
8. /{{AFX_MSG_MAP(CToolbarDoc)

9: ON_UPDATE_COMMAND_UI(ID_WIDTH_VTHIN, OnUpdateWidthVthin)

10.

Adding Toolbars and Status Bars 275|

1.

12: ON_COMMAND(ID_WIDTH_VTHIN, OnWidthVthin)
13: IMAFX_MSG_MAP

14: END_MESSAGE_MAP()

After adding the message handler and message map entry, you should now be able to
compile and run your application and see the color status bar pane automatically updated
to reflect the current drawing color, as shown in Figure 12.6.

L Untitled - Toolbar H[s]
FIGURE 126 File Edt Width Color View Help
The drawing appli- 0= =
cation with the cur- @ ® CET |

rent color displayed
in the status bar.

Ready RED NUM

Summary

You learned quite a bit today. (Is this becoming a trend?) You learned how to design and
create your own toolbars. Along with learning how to design toolbars, you learned how
to specify status bar prompts for the toolbar buttons and menus, along with tooltips text
that will display after holding the mouse over toolbar buttons for a couple of seconds.
You learned how to create these toolbars and how to attach them to the application
frame. You also learned how you can control whether the toolbar is visible from a menu
entry.

Next you learned how to place a combo box on a toolbar so that you can provide your
application users with the same level of convenience that you have when using many
popular software packages. In learning how to add this combo box to the toolbar, you
learned how to create a combo box in code, without having to depend on the dialog
designers to create combo boxes, and how to populate the combo box drop-down list
with text entries. Then, you learned how to tie the combo box into your application by

| 276

Day 12

adding event handlers for the combo box events and how to update the combo box to
reflect changes made through the application menus.

Finally, you learned how to add your own panes to the status bar and how you can
update the pane to reflect the current status of the application.

Q&A
Q

A

In some applications, toolbars have the option of showing text, as in Internet
Explorer. How can | add text to my toolbar buttons?

Unfortunately, the toolbar designer provides no way to add text to the toolbar but-
tons. This means that you have to add the text to the buttons in your application
code, much in the same way that you had to specify for all of the color toolbar but-
tons to behave as radio buttons. You uses#igeiionText ~ function to set the text

on each toolbar button individually. This function takes two arguments: The first is
the index number of the button, and the second is the text for the button. If you
really want to place text on the toolbar buttons, you also have to resize the toolbar
to allow the room for the text to be displayed.

I made some changes to the color toolbar in the toolbar designer, and now |
get an assertion error every time | try to run my application. What happened?

The problem is that the toolbar designer found the separators you added to the
resource file as place holders for the combo box. The toolbar designer assumed
that these were mistakes and removed them for you. The error that you are getting
occurs because you are trying to work with a control in the color toolbar that
doesn't exist. To fix this problem, reopen the resource file in Notepad and again
add the two separators at the end of the color toolbar definition. Then, reload the
project into Visual C++ and recompile the application.

The combo box on my toolbars looks too big. How can | get it to fit within the
toolbar a little better?

To make the combo box fit within the toolbar like the combo boxes in the Visual
C++ Developer Studio, you need to do a couple of things. First, lower the top of
the combo box by 3; this places a small border between the top of the combo box
and the edge of the toolbar. Next, set the font in the combo box to a smaller font
that will fit within the toolbar better. You can experiment with fonts and pitches
until you have a font that you like for the combo box in the toolbar.

Adding Toolbars and Status Bars 277 |

Q

A

How can | set the text in the first section of the status bar other than by using
menu and toolbar prompts?

You can usesetwindowText t0 set the text in the first pane of the status bar. As a
default setting, the first pane in the status bar is a separator that automatically
expands to fill the width of the status bar with the other panes right-justified on the
bar. ThesetwindowText function, called on the status bar variable, sets the text in
the first pane only. If you want to set the text in any other pane, at any other time
than in theoN_UPDATE_COMMAND_event handler, you can use th&PaneText

function. There are two ways that you can set the text in the main part of the status
bar. The first is like this:

CSting myString="Thisis my string’

m_wndStatusBar.SetWindowText(myString);

The other method is

CString myStiing ="Thisis my string”
m_wndStatusBar.SetPaneText(0, myString);

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. How do you tie a toolbar button to a menu entry that triggers that same function?

N

3.
4,

How do you make sure that a toolbar can be docked with the frame window?
How can you remove the Num Lock status indicator from the status bar?
Why do you have to edit the resource file to add a combo box to a toolbar?

Exercises

1.
2.

Add another pane to the status bar to display the current width selected.

Add a button to the main toolbar that can be used to toggle the color toolbar on
and off, as in Figure 12.7.

| 278 Day 12

Ficure 12.7. 2 Untitled - Toolbar [_[o[=]
File Edit ‘width Color View Help
The color toolbar = EEN

on/off button.

Ready BLACK. MUM

WEEK 2

DAY 13

Saving and Restoring
Work—*File Access

Most applications provide the user the option of saving what has been created.
The creation can be a word-processing document, a spreadsheet, a drawing, or
a set of data records. Today, you will explore how Visual C++ provides you
with the means to implement this functionality easily. Today, you will learn

- How Visual C++ uses C++ streams to save information about your appli-

cation

- How to store your application data in binary files

- How to make your application objects serializable

- How you can store variables of differing data types into a single file

Serialization

There are two parts of serialization. When application data is stored on the sys-
tem drive in the form of a file, it is called serialization. When the application

| 280

Day 13

Ficure 13.1. = Application v

Thecarchive class
stores application data
inace object.

state is restored from the file, it is called deserialization. The combination of these two
parts makes up the serialization of application objects in Visual C++.

The CArchive and CFile Classes

Serialization in Visual C++ applications is accomplished througltAksve class. The
carchive class is designed to act as an input/output (I/O) streamder abject, as

shown in Figure 13.1. It uses C++ streams to enable efficient data flow to and from the
file that is the storage of the application data. Thenve class cannot exist without a

ok class object to which it is attached.

[[+]*

Application

Object

+]

Serialize
Function

CArchive

Thecarchive class can store data in a number of types of files, all of which are descen-
dants of thex class. By default, the AppWizard includes all the functionality to create
and open regulat®e objects for use witlcarchive . If you want or need to work with

one of these other file types, you might need to add additional code to your application
to enable the use of these different file types.

Saving and Restoring Work—File Access 281 |

The Serialize Function

Thecachive class is used in th&ise function on the document and data objects in
Visual C++ applications. When an application is reading or writing a file, the document
object'ssase function is called, passing tlwarchive object that is used to write to or
read from the file. In thesle function, the typical logic to follow is to determine
whether the archive is being written to or read from by callingavave kSoing or
lsloading functions. The return value from either of these two functions determines if
your application needs to be writing to or reading fromdheive class’s I/O stream. A
typical sse function in the view class looks like Listing 13.1.

LisTING 13.1. A TYPICAL Seridize FUNCTION.

1: void CAppDoc:Serialize(CArchive& ar)
2

3 [istheachivebengwitento?
4 frksSoiny)

S

6 /Yeswiemyvaige

7. ar<<m Myer,

8

e

10{

11: /No,readmyvarisble

120 ar>>m MyVar,

1}

14}

You can place as#e function in any classes you create so that you can call their
sse function from the documerssge ~ function. If you place your custom objects
into an object array, such as thebArray that you used in your drawing application for
the past three days, you can call the arragg® ~ function from the document’s

ssie function. The object array will, in turn, call tissse function of any objects
that have been stored in the array.

Making Objects Serializable

When you created thatine class on Day 10, “Creating Single Document Interface
Applications,” you had to add two macros before you could save and restore your draw-
ings. These two macroBECLARE_SERIALAaNdIMPLEMENT_SERIAL include functionality

in your classes that are necessary forsa® function to work correctly.

| 282

Day 13

Including the DECLARE_SERIALMacro

You must include th@ECLARE_SERIALMacro in your class declaration, as shown in

Listing 13.2. ThebECLARE_SERIALMacro takes a single argument, the class name. This
macro automatically adds to your class some standard function and operator declarations
that are necessary for serialization to work correctly.

LisTING 13.2. INCLUDING THE DECLARE_SERIALMACRO IN THE CLASS DECLARATION.

1: dass CMyClass : pubic CObject

A

3. DECLARE_SERIAL (CMyClass)
4pic

6 OMyClass()

7 \vittal~OVyCless);

g

Including the IMPLEMENT_SERIALMacro

You need to add the&PLEMENT_SERIALMacro to the implementation of your class. This
macro needs to appear outside any other class functions because it adds the code for the
class functions that were declared with bEeELARE_SERIALMACIO.

The IMPLEMENT_SERIALMacro takes three arguments. The first argument is the class
name, as in theECLARE_SERIALmMacro. The second argument is the name of the base
class, from which your class is inherited. The third argument is a version number that
can be used to determine whether a file is the correct version for reading into your appli-
cation. The version number, which must be a positive number, should be incremented
each time the serialization method of the class is changed in any way that alters the data
being written to or read from a file. A typical usage of I/ EMENT_SERIALMACrO is

provided in Listing 13.3.

LisTING 13.3. INCLUDING THE IMPLEMENT_SERIALMACRO IN THE CLASS IMPLEMENTATION.

1:)/ MyClass.cpp: implementation of the CMyClass dass.
g://

g: #ndude ‘sdlaix’

6:#incude “MyClass

;: #ifdef DEBUG

9: #undef THIS_FILE
10 staticchar THIS_FILEE_FILE.

Saving and Restoring Work—File Access 283 |

11: #define new DEBUG_NEW

12: #endif

13

14: IMPLEMENT_SERIAL (CMyClass, CObject, 1)
15: I
16: // Construction/Destruction

17: T
18

19: CMyClass::CMyClass()

20

21}

2

23: CMyClass:~CMyClass()

24{

x5}

Defining the Seidize Function

Along with the two macros, you need to includes@ge function in your class. This
function should be declared asoa function with a single argumentArchive 8&ar),

public access, and the virtual check box selected—producing the function declaration in
Listing 13.2. When you implement tlseése function for your class, you typically use

the same approach as that used in the document class, shown in Listing 13.1, where you
check to determine whether the file is being written to or read from.

Implementing a Serializable Class

When you begin designing a new application, one of the first things you need to design

is how to store the data in the document class that your application will create and oper-
ate on. If you are creating a data-oriented application that collects sets of data from the
user, much like a contact database application, how are you going to hold that data in the
application memory? What if you are building a word processor application—how are
you going to hold the document being written in the application memory? Or a spread-
sheet? Or a painting program? Or...you get the idea.

Once you determine how you are going to design the data structures on which your
application will operate, then you can determine how best to serialize your application
and classes. If you are going to hold all data directly in the document class, all you need
to worry about is writing the data to and reading the data frorastiee object in the
document'sssee function. If you are going to create your own class to hold your
application data, you need to add the serialization functionality to your data classes so
that they can save and restore themselves.

| 284

Day 13

Nﬂtﬂ A flat-file database is one of the original types of databases. It is a simple

In the application that you are going to build today, you will create a simple, flat-file
database application that illustrates how you can combine a mixture of data types into a
single data stream in the application serialization. Your application will display a few
fields of data, some of which are variable-length strings, and others that are integer or
boolean, and will save and restore them in a single data stream to and fioxahilke

object.

Creating a Serialized Application

You can create your own classes, which can also be serialized, for use in an SDI or MDI

application. In short, any application that works with any sort of data, whether a database
or a document, can be serialized. Now you will create a simple, flat-file database applica-
tion that you will serialize.

file-based database, with the records sequentially appended to the end of
the previous record. It has none of the fancy relational functionality that is
standard in most databases today. The database that you will build today is
closer to an old dBASE or Paradox database, without any indexes, than to
databases such as Access or SQL Server.

Creating the Application Shell

To get your application started, create a new AppWizard application. Give your applica-
tion a name, such &= |, and click OK to start the AppWizard.

In the AppWizard, select to create a single document style application using the
Document/View architecture. You can choose to include support for ActiveX controls in
the third AppWizard step, although it's not really necessary for the example that you will
build.

In the fourth step, be sure to specify the file extension for the files that your application
will create and read. An example of a file extension that you might want to sasé¢ds
serialize ondo for flat-file database.

In the sixth AppWizard step, you need to specify which base class to use for the applica-
tion view class. For a description of the different base classes available for inheriting the
view class from, refer to Day 10 in the section “The Document/View Architecture.” For
the sample application you are building, because it will be a database application, you'll

Saving and Restoring Work—File Access 285 |

find it easiest to useFormview as the base class from which your view class will be
inherited. This enables you to use the dialog designer for your application view.

Once you finish making your way through the AppWizard and let the AppWizard create
your application shell, you will see a large window canvas in the dialog designer as if
you had created a dialog-style application, only without the OK and Cancel buttons, as
shown in Figure 13.2.

FiGURrE 13.2. 50 Serialize - Micrasoft Visual C++ - [Serialize.rc - IDD_SERIALIZE_FORM [Dialag)]
. . =lEle Edt Yiew Incet Project Buid Layout Tools Window Help TR
The window designer e [T G PECARE SERAL Tn
for an SDI appl" [C5erializetiews |[iAN class members) [& CSerializeView ~|E -] 1=
cation. =y, . . o
+ I Serialize classes - T
3 Cont. B
B 3
TODQ: Place farm contrals on this dislag A abl
: Mo
: R
b
P =8
b s m
E o B
: = e
4 0hss. g Reso. | R] | < [= H LIL‘
T = =
B -
E|
3 © B
¥ i, Build 4 Debug) Find in Files 1 3 Findin Filez2 7] 4| | v
Fleady 00 7 30wEm

Designing Your Application Window

After you create an SDI or MDI application where the view class is based on the
CFormView class, you need to design your application view. Designing the view is much
like designing the window layout for a dialog window, but you don't need to worry about
including any buttons to close the window while either saving or canceling the work
done by the user. With an SDI or MDI application, the functionality to save and exit the
window is traditionally located on the application menus or on the toolbar. As a result,
you need to include only the controls for the function that your application window will
perform.

Nﬂtﬂ If you are building dialog-style applications, the AppWizard doesn’t provide
any serialization code in your application shell. If you need to serialize a
dialog-style application, you’ll need to add all this code yourself.

| 286 Day 13

For the sample application that you are building today, lay out controls on the window
canvas as shown in Figure 13.3 using the control properties listed in Table 13.1.

Ficure 13.3. 2 Serialize - Microsoft Visual C++ - [Serialize.ic - IDD_SERIALIZE_FORM [Dialog]]
. ZlEile Edt Wiew Insen Project Buld Lapout Took window Help 18] x|
The sample applica- e O R | G [PECIARE SERIAL =1 |%n
tion window layOUt' [CSerializetiew v][&0 class members]][¢ CSerializeView =5 - =] [EN
1= T

+ [Serialize classes - o T
:
Hame: ‘Ed\t x
— Age |Edit EHDM
—: Martal Status: " Single " Divorced ® @
' © Maried © widowed
A
F ™ Emploved s W3
_: First Previous Mest Last - BF
: Fecord 0ol 0 = &
o Class. [Ren. | RV |7 [, = H L,ﬂ
| - i3 ab
i m e
E e @ -
¥ T, Build { Debug & Find in Files1 & Findin File=2 7] 4| | >|L
Ready ':' 0o ["' 320 % 200
TaABLE 13.1. CONTROL PROPERTY SETTINGS.
Object Property Setting
Static Text ID IDC_STATIC
Caption &Name:
Edit Box ID IDC_ENAME
Static Text ID IDC_STATIC
Caption &Age
Edit Box ID IDC_EAGE
Static Text ID IDC_STATIC
Caption Marital SatLs:
Radio Button ID IDC_RSINGLE
Caption &Single
Group Checked
Radio Button ID IDC_RMARRIED
Caption &Mearried
Radio Button ID IDC_RDIVORCED

Caption &Divorced

Saving and Restoring Work—File Access 287 |

Object Property Setting

Radio Button ID IDC_RWIDOW
Caption &Widowed

Check Box ID IDC_CBEMPLOYED
Caption &Employed

Button ID IDC_BFIRST
Caption &Rt

Button ID IDC_BPREV
Caption &Previous

Button ID IDC_BNEXT
Caption Nex&t

Button ID IDC_BLAST
Caption &Last

Static Text ID IDC_SPOSITION
Caption Record 0 of 0

When you were developing dialog-style applications or windows, you attached variables
to the controls on the window in the dialog class. However, with an SDI or MDI applica-
tion, which class do you create the variables in? BecausgdieData function is a
member of thewndclass, and the view class is descended fronc thedclass,

although the document is not, then the view class is the most logical place to add the
variables that you will attach to the controls you placed on the window.

To attach variables to the controls in your sample application, open the Class Wizard and
add variables to the controls, specifying that the place to add them is the view class (in
this casecseidizeView). For the sample application, add the variables in Table 13.2 to

the controls specified.

TABLE 13.2. CONTROL VARIABLES.

Object Name Category Type
IDC_CBEMPLOYED m_bEmployed Value BOOL
IDC_EAGE m_iAge Value in
IDC_ENAME m_sName Value CSting
IDC_RSINGLE m iMaritalStatus Value it

IDC_SPOSITION m_sPosition Value CSting

| 288

Day 13

If you examine the source code for the view class, you will notice that therediray
function. If you are using therormview ancestor class for your SDI or MDI application,

you don't need to worry about tlemDraw function. Instead, you treat the view class very
much as you would the dialog class in a dialog window or dialog-style application. The
primary difference is that the data that you need to use to populate the controls on the
window are not in the view class, but in the document class. As a result, you need to
build the interaction between these two classes to pass the data for the controls back and
forth.

Creating a Serializable Class

When you create a form-based application, it is assumed that your application will hold
multiple records in the form and that the user will be able to scroll through the records to
make changes. The user will be able to add additional records or even remove records
from the record set. The challenge at this point in building this application is how you
represent this set of records, supporting all the necessary functionality.

One approach is to create a class that would encapsulate each record, and then hold these
records in an array, much as you did with the drawing application that you created and
enhanced over the past few days. This class would need to descend foamethe

class and would need to contain variables for all the control variables that you added to

the view class, along with methods to read and write all of these variables. Along with
adding the methods to set and read all of the variables, you need to make the class serial-
izable by adding thess#e function to the class, as well as the two macros that com-

plete the serialization of the class.

Creating the Basic Class

As you may remember from Day 10, when you want to create a new class, you can
select the project in the Class View tab of the workspace pane, right-click the mouse but-
ton, and select New Class from the context menu. This opens the New Class dialog.

In the New Class dialog, you specify the type of class, whether it's an MFC class, and
generic class, or a form class. To create a class that can contain one record’s data, you
most likely want to create a generic class. You'll learn more about how to determine
which of these types of classes to create on Day 16, “Creating Your Own Classes and
Modules.” The other things that you need to do are give your class a name and specify
the base class from which it will be inherited.

For your sample application, because the form that you created has information about a
person, you might want to call your class somethingdikeson . To be able to hold
your class in the object array, you need to giv®ifect as the base class. Just like on

Saving and Restoring Work—File Access 289 |

Day 10, the New Class dialog will claim that it cannot find the header with the base class
in it and that you need to add this. Well, it's already included, so you can ignore this
message. (On Day 16, you'll learn when you need to pay attention to this message.)

Once you create your new class, you'll need to add the variables for holding the data ele-
ments that will be displayed on the screen for the user. Following good object-oriented
design, these variables will all be declared as private variables, where they cannot be
directly manipulated by other classes. The variable types should match the variable types
of the variables that are attached to the window controls in the view class.

With the sample application you are creating, you need to add the variables in Table
13.3.

TABLE 13.3. CLASS VARIABLES FOR THE CPerson CLASS.

Name Type
m_bEmployed BOOL
m_iAge in
m_sName CSting
m_iMaritalStatus i rt

Adding Methods for Reading and Writing Variables

Once you create your class, you need to provide a means for reading and writing to the
variables in the class. One of the easiest ways to provide this functionality is to add
inline functions to the class definition. You create a set of inline functions to set each of
the variables and then make another set for retrieving the current value of each variable.

N[ltﬂ An inline function is a short C++ function in which, when the application is
being compiled, the function body is copied in place of the function call. As
a result, when the compiled application is running, the function code is exe-
cuted without having to make a context jump to the function and then
jump back once the function has completed. This reduces the overhead in
the running application, increasing the execution speed slightly, but also
makes the resulting executable application slightly larger. The more places
the inline function is called, the larger the application will eventually get.
For more information on inline functions, consult Appendix A, “C++
Review.”

290 Day 13

If you want to implement theet andset variable functions for youtPerson class in the
sample application that you are building, editthsonh header file, adding the lines in
Listing 13.4.

LisTING 13.4. THE Get AND Set INLINE FUNCTION DECLARATIONS.

4 IFundionsforsetingthe variables
5: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
6 vod SetManalSai[tiSa){m MaialSats=iSat}
7. vod SetAge(intiAge) {m_iAge=iAge}
8 void SetName(CString sName) { m_sName =sName;}
9 /FRundionsforgeting the cunert setings ofthe variables
10: BOOL GetEmployed() { retum m_bEmployed}
11 niGetMantalSatius)){retumm iMaialSas}
120 ntGetAge()freumm iAge}
13: CSting GetName() {retumm_sName}}
14; CPerson|);
15: witual~CPerson(;
16
17: privete:
18: BOOL m_bEmployed;
19 ntm MaielSats,
20 ntm iAge;
21: CStingm_sName;
2}

After you have the methods for setting and retrieving the values of the variables in your
custom class, you'll probably want to make sure that the variables are initialized when
the class is first created. You can do this in the class constructor by setting each of the
variables to a default value. For instance, in your sample application, you add the code in
Listing 13.5 to the constructor of tiegerson class.

LisTING 13.5. THE CPerson CONSTRUCTOR.

1: CPerson::CPerson()

A

3 Ineizetedsss\vaeles

4 m MaiaSats=0;

5 miAge=0

6: m_bEmployed = FALSE;
7: m sName=",

8

Saving and Restoring Work—File Access 291 |

Serializing the Class

After you have your custom class with all variables defined and initialized, you need to
make the class serializable. Making your class serializable involves three steps. The first
step is adding thesse ~ function to the class. This function writes the variable values

to, and reads them back from, thechive object using C++ streams. The other two

steps consist of adding tbECLARE_SERIALANdIMPLEMENT_SERIALMacros. Once you

add these elements, your custom class will be serializable and ready for your application.

To add thessse function to your custom class, add a member function through the
Class View tab in the workspace pane. Specify the function type as void, the function
declaration asSeriaize(CAThive 8ar) , and the access as public and check the Virtual
check box. This should add te&= function and place you in the editor, ready to
flesh out the function code.

Inthessde function, the first thing you want to do is to call the ancestati®

function. When you call the ancestor’s function first, any foundation information that has
been saved is restored first, providing the necessary support for your class before the
variables in your class are restored. Once you call the ancestor function, you need to
determine whether you need to read or write the class variables. You can do this by call-
ing CArchive 's kSoing method. This function returmRUEif the archive is being written

to andrALSEIf it's being read from. If th&soing function returnsSTRUE you can use

C++ 1/O streams to write all your class variables to the archive. If the function returns
FALSE, you can use C++ streams to read from the archive. In both cases, you must be
certain to order the variables in the same order for both reading and writing. If you need
more information about C++ streams, see Appendix A.

An example of a typicadsse function for your sample custom class is shown in
Listing 13.6. Notice that thererson variables are in the same order when writing to and
reading from the archive.

LisTING 13.6. THE CPerson.Serialize FUNCTION.

1: vod CPerson:Serialize(CArchive &ar)

A

3 /Catheancesioriuncion

4 COtectSereize(ar)

5

6 /Arwewtng?

7. fakSony)

8 Miieddtewaitesnade

9. ar<<m_sName <<m_iAge << m_iMaritalStatus << m_bEmployed;
10 ee
11 /Reedddtevaidbes nader
12 ar>>m_sName>>m_iAge >>m_ iMaritalStatus >>m_bEmployed;
13}

| 292 Day 13

Once you have thessie function in place, you need to add the macros to your custom
class. The first macr@eCLARE_SERIAL needs to go in the class header and is passed the
class name as its only argument.

For example, to add tHEECLARE_SERIALMAcro to the custormPerson class in your sam-

ple application, you add the macro just below the start of the class declaration, where it
will receive the default access for the class. You specify the class oesmie, , as the

only argument to the macro, as in Listing 13.7.

LiSTING 13.7. THE SERIALIZED CPerson CLASS DECLARATION.

1: dass CPerson : public CObject
A
3. DECLARE_SERIAL (CPerson)
4pc
5 /Fundionsforsetingthevariabes
6: void SetEmployed(BOOL bEmployed) { m_bEmployed = bEmployed;}
7: vod SetMaitalSatintiSa){m MaialSeis=iSat}
8 vod SetAge(intiAge){m_iAge=iAge}
9: void SetName(CString sName) { m_sName =sName;}
10 /Fundionsforgetiing the curent setiings ofthe variables
11: BOOL GetEmployed() { retum m_bEmployed;}
12 intGetVarialSats)){reumm MarialSatus}
13 intGetAge(){freumm iAge}
CString GetName() {retum m_sName;}
CPerson(),
witual~CPerson();

HbBER

18 pivaie;

19: BOOL m_bEmployed;
20 intm MarialSats,

21: ntm iAge;

22: Cstingm_sName;
23}

N[ltﬂ The default access permission for functions and variables in C++ classes is
public. All functions and variables that are declared before the first access
declaration are public by default. You could easily add all of the public class
functions and variables in this area of the class declaration, but explicitly
declaring the access permission for all functions and variables is better
practice—because that way, there is little to no confusion about the visibility
of any of the class functions or variables.

Saving and Restoring Work—File Access 293 |

Nﬂtﬂ Most C++ functions need a semicolon at the end of the line of code. The
two serialization macros do not, due to the C preprocessor, which replaces
each of the macros with all of the code before compiling the application. It
doesn’t hurt to place the semicolons there; they are simply ignored.

To complete the serialization of your custom class, you need to adaPtrBvENT_

SERIAL macro to the class definition. The best place to add this macro is before the
constructor definition in the CPP file containing the class source code. This macro takes
three arguments: the custom class name, the base class name, and the version number.
If you make any changes to te#ie function, you should increment the version num-
ber argument to th&PLEMENT_SERIALmMacro. This version number indicates when a file
was written using a previous version of gage function and thus may not be read-

able by the current version of the application.

N“tﬂ In practice, if you read a file that was written using a previous version of the
Ssee function in your class, your application will raise an exception, which
you can then catch using standard C++ exception-handling techniques. This
allows you to add code to your application to recognize and convert files
created with earlier versions of your application. For information on C++
exception handling, see Appendix A.

To add themPLEMENT_SERIALmMacro to your sample application, add it into the
personcpp file just before thecperson class constructor. PasBerson as the first argu-
ment (the class namea)pbject as the second argument (the base class)i aisdthe ver-
sion number, as in Listing 13.8.

LisTING 13.8. THE IMPLEMENT_SERIALMACRO IN THE CPerson CODE.

1: // Person.cpp: implementation of the CPerson dlass.
2/
S MU T i
4
5:#indude st h’
6:#ndudeSerigizeh’
7:#indude ‘Personh’
8
9: #ifdef _DEBUG
10: #undef THIS_FILE

continues

294 Day 13

LISTING 13.8. CONTINUED

11: staticchar THIS FILE[l=_FILE ;

12: #define new DEBUG_NEW

13: #endf

14

15: IMPLEMENT_SERIAL (CPerson, CObject, 1)
16: T T
17: // Construction/Destruction

18: M it
19

20: CPerson::CPerson()

2{

2 [rigizetedsss\vastkes

23 m MaiaSats=0;

24: m_iAge=0;

25: m_bEmployed = FALSE;

26. m_sName=""

21}

Building Support in the Document Class

When you build a form-based application, where the form on the window is the primary
place for the user to interact with the application, there is an unstated assumption that
your application will allow the user to work with a number of records. This means that
you need to include support for holding and navigating these records. The support for
holding the records can be as simple as adding an object array as a variable to the docu-
ment class, as you did back on Day 10. This allows you to add additional record objects
as needed. The navigation could be a number of functions for retrieving the first, last,
next, or previous record objects. Finally, you need informational functionality so that you
can determine what record in the set the user is currently editing.

To hold and support this functionality, the document class will probably need two vari-
ables, the object array and the current record number in the array. These two variables
will provide the necessary support for holding and navigating the record set.

For your example, add the two variables for supporting the record ceér@h objects
as listed in Table 13.4. Specify private access for both variables.

TABLE 13.4. DOCUMENT CLASS VARIABLES.

Name Type

m_iCurPosition i rt

m_oaPeople CObArray

Saving and Restoring Work—File Access 295 |

The other thing that you need to do to the document class to provide support for the
record objects is make sure that the document knows about and understands the record
object that it will be holding. You do this by including the custom class header file before
the header file for the document class is included in the document class source code file.
Because the document class needs to trigger actions in the view class, it's a good idea to
also include the header file for the view class in the document class.

To include these header files in your sample application, open the source-code file for the
document class and add the twauwe statements as shown in Listing 13.9.

LISTING 13.9. INCLUDING THE CUSTOM AND VIEW CLASSES IN THE DOCUMENT CLASS
IMPLEMENTATION.

1./ SetiaizeDoc.cpp : implementation of the CSerializeDoc dass
2/

3

4:#indude “Silaich’

5i#indudeSerigizeh’

8

7:#indude ‘Personh’

8:#ndude “SeriaizeDoch’”

9:#ndude “Seviaize\Viewh'’

10

11: #ifdef_DEBUG

12: #define new DEBUG_NEW

13: #undef THIS_FILE

14:siicchar THIS_FILE[[=__ FLE_;

15: #endif

16:

L7 T T i
18:// CSerigizeDoc

Adding New Records

Before you can navigate the record set, you need to be able to add new records to the
object array. If you add a private function for adding new records, you can add new

records to the set dynamically as new records are needed. Because new records should be
presenting the user with blank or empty data fields, you don’t need to set any of the

record variables when adding a new record to the object array, so you can use the default
constructor.

Following the same logic that you used to add new line records on Day 10, you should
add a new person record to the object array in your document class in today’s sample

| 296

Day 13

application. Once you add a new record, you can return a pointer to the new record so
that the view class can directly update the variables in the record object.

Once the new record is added, you will want to set the current record position marker to
the new record in the array. This way, the current record number can easily be deter-
mined by checking the position counter.

If there are any problems in creating the new person record object, let the user know that
the application has run out of available memory and delete the allocated object, just as
you did on Day 10.

To add this functionality to your sample application, add a new member function to the
document class. Specify the type as a pointer to your custom class. If you hamed your
custom classperson , the function type i€Person* . This function needs no arguments.

Give the function a name that reflects what it does, suslddagwRecord . Specify the

access for this function as private because it will only be accessed from other functions
within the document class. You can edit the resulting function, adding the code in Listing
13.10.

LisTING 13.10. THE CSerializeDoc.AddNewRecord FUNCTION.

1: CPerson * CSerializeDoc::AddNewRecord()
2

3. //Create anew CPerson object

4: CPerson *pPerson =new CPerson();

3y

2

7: I1Addthe newpersontothe obectarray

8 m_oaPeople Add(pPerson);

9 /Maktedocumentasdity

10 SetViodiedHeg);

110 /Setthenewposiionmark

122 m iCuPosiion=(m_caPeopleGetSize()- 1);
1B}

14: //Didwe runinto amemory exception?

15; catch (CMemoryException* perr)

B{

17: /Displayamessageforthe user, gving themthe
18 /bedrens

19: AixMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
20 /Ddwecesieainedged?

2l fpPasn)

2{

2R [Dekt

2% deepPason

Saving and Restoring Work—File Access 297 |

25 pPesn=NUL;
B}

27: [Deletethe excepiion oect
28 per>Dees()

2}

30 reumpPerson;

3L}

Getting the Current Position

To aid the user in navigating the record set, it's always helpful to provide a guide about
where the user is in the record set. To provide this information, you need to be able to
get the current record number and the total number of records from the document to dis-
play for the user.

The functions to provide this information are both fairly simple. For the total number of
records in the object array, all you need to do is get the size of the array and return that
to the caller.

For your sample application, add a new member function to the document class. Specify
the function type ast , the function name asetTotalRecords , and the access as public.
Once you add the function, edit it using the code in Listing 13.11.

LisTiNG 13.11. THE CSerializeDoc.GetTotalRecords FUNCTION.

1: int CSeriaizeDoc:GetTotalRecords()
A

3 /Reumtheanay count

4: reumm_oaPeople GeiSize();
5

Getting the current record number is almost just as simple. If you are maintaining a posi-
tion counter in the document class, this variable contains the record number that the user
is currently editing. As a result, all you need to do is return the value of this variable to
the calling routine. Because the object array begins with position 0, you probably need to
add 1 to the current position before returning to display for the user.

To add this function to your sample application, add another new member function to the
document class. Specify the typeiasthe function name asetCurRecordNbr , and the
access as public. Edit the function using the code in Listing 13.12.

| 298 Day 13

LisTING 13.12. THE CSerializeDoc.GetCurRecordNbr FUNCTION.

1: int CSeriaizeDoc::GetCurRecordNbr()
A

3 /Retumthe curentpostion

4 reum(m_iCurPosiion+1);

5

Navigating the Record Set

To make your application really useful, you will need to provide the user with some way
of navigating the record set. A base set of functionality for performing this navigation is

a set of functions in the document class to get pointers to specific records in the record
set. First is a function to get a pointer to the current record. Next are functions to get
pointers to the first and last records in the set. Finally, you need functions to get the pre-
vious record in the set and the next record in the set. If the user is already editing the last
record in the set and attempts to move to the next record, you can automatically add a
new record to the set and provide the user with this new, blank record.

To add all this functionality, start with the function to return the current record. This
function needs to check the value in the position marker to make sure that the current
record is a valid array position. Once it has made sure that the current position is valid,
the function can return a pointer to the current record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function typec@srson* (a pointer to the custom class), the
function name asetCurRecord , and the access as public. Edit the function, adding the
code in Listing 13.13.

LisTING 13.13. THE CSerializeDoc.GetCurRecord FUNCTION.

1: CPerson* CSerializeDoc::GetCurRecord()

A

3 /| Arewe ediing a valid record number?

4 if(m_iCuPosiion>=0)

5 [Yeseumtheanertrecod

6. retum(CPerson®m_caPeoplelm iCurPosition];
Tee

8 /NoreumNULL

9 reunNULL

10}

The next function you might want to tackle is the function to return the first record in the

Saving and Restoring Work—File Access 299 |

array. In this function, you need to first check to make sure that the array has records. If
there are records in the array, set the current position marker to 0 and return a pointer to
the first record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function typecesrson* (a pointer to the custom class), the
function name asefFistRecod , and the access as public. Edit the function, adding the
code in Listing 13.14.

LisTinG 13.14. THE CSerializeDoc.GetFirstRecord FUNCTION.

1: CPerson* CSeializeDoc::GetFrstRecord()
A

3 IAeterayrecodsinteanay?
4 if(m_oaPeople GetSize()>0)

5

6 /Yesmoepostion0

7. m QuPcsion=0;

8 /Reumtherecodinpostion0

9 retum(CPerson)m_ocaPeopie0);
0}

1 ee

12 /Norecors, retumNULL

13 EunNULL

14}

For the function to navigate to the next record in the set, you need to increment the cur-
rent position marker and then check to see if you are past the end of the array. If you are
not past the end of the array, you need to return a pointer to the current record in the
array. If you are past the end of the array, you need to add a new record to the end of the

array.
To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function typec@srson* (a pointer to the custom class), the
function name asetNextRecord , and the access as public. Edit the function, adding the
code in Listing 13.15.

LisTING 13.15. THE CSerializeDoc.GetNextRecord FUNCTION.

1: CPerson * CSerializeDoc::GetNextRecord()
A

3./ Aflerincrementing the posiion marker, arewe
4. [pesttheenddftheanay?

5. if(+m iCurPosiion <m oaPeople GetSize())

continues

300 Day 13

6. /No,reiumtherecord atthe newcurent posiion

LisTING 13.15. CONTINUED

7 retum(CPerson®m_ocaPeoplelm_iCurPosition];
8ee
9 /'Yesaddanewrecod

10: retumAddNewRecord();
11}

For the function to navigate to the previous record in the array, you need to make several
checks. First, you need to verify that the array has records. If there are records in the
array, you need to decrement the current position marker. If the marker is less than zero,
you need to set the current position marker to equal zero, pointing at the first record in
the array. Once you've made it through all of this, you can return a pointer to the current
record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function typecasrson* (& pointer to the custom class), the
function name asetPrevRecord , and the access as public. Edit the function, adding the
code in Listing 13.16.

LisTING 13.16. THE CSerializeDoc.GetPrevRecord FUNCTION.

1: CPerson* CSerializeDoc::GetPrevRecord()
A

3 /Aeteranyrecodsnteanay?

4 if(m_oaPeople GetSize()>0)

S

6. //Oncewe decrementthe cument posion,

7. larewebelowpostion0?

8 fm iCuPosin<0)

9 [fnsetherecadioposion0

100 miCuPEin=0;

11 /Reumtherecordatthe newcurrentposiion

12: retum (CPerson®)m_oaPeoplelm iCurPasiion];
1}

14 ee

15: /Noreoords, retumNULL
16 reumNULL

17}

For the function that navigates to the last record in the array, you still need to check to
make sure that there are records in the array. If the array does have records, you can get

Saving and Restoring Work—File Access 301 |

the current size of the array and set the current position marker to one less than the num-
ber of records in the array. This is actually the last record in the array because the first
record in the array is record 0. Once you set the current position marker, you can return a
pointer to the last record in the array.

To add this function to your sample application, add a new member function to the docu-
ment class. Specify the function typec@srson* (a pointer to the custom class), the
function name asetLastRecord , and the access as public. Edit the function, adding the
code in Listing 13.17.

LisTING 13.17. THE CSerializeDoc.GetlLastRecord FUNCTION.

1: CPerson* CSerializeDoc::GetlastRecord()
A

3 [Aeteranyrecodsintearay?

4 if(m_oaPeople.GetSze()>0)

i
6 /IMowebtebstposionntearay

7 m_iCuPasiion=(m_ocaPeople GeiSize()- 1);
8 /Reuntherecodintisposion

9 retum(CPerson®m_ocaPeoplelm_iCurPosition];
0}

1 e

12 /Norecords, reum NULL

13 reumNULL

14}

Serializing the Record Set

When filling in thesadze functionality in the document class, there’s little to do other
than pass thearchive object to the object array&iee function, just as you did on
Day 10.

When reading data from the archive, the object array will quergahee object to

determine what object type it needs to create and how many it needs to create. The object
array will then create each object in the array and caléiés function, passing the

CArchive Object to each in turn. This enables the objects in the object array to read their
own variable values from thearchive object in the same order that they were written.

When writing data to the file archive, the object array will call each objegts
function in order, passing therchive object (just as when reading from the archive).
This allows each object in the array to write its own variables into the archive as neces-

sary.

For the sample application, edit the document clasgs function to pass the

302 Day 13

Carchive Object to the object array®ie function, as in Listing 13.18.

Listing 13.18. THE CSerializeDoc.Serialize FUNCTION.

1:void CSeviaizeDoc: Sevialize{CAthive&. ar)
e

3 [Passtheserizaiononiothecectaray
4. m_oaPeope Seriaize@);

5

Cleaning Up

Now you need to add the code to clean up the document once the document is closed or
a new document is opened. This consists of looping through all objects in the object
array and deleting each and every one. Once all the objects are deleted, the object array
can be reset when you call #emoveAl function.

To implement this functionality in your sample application, add an event-handler func-
tion to the document class on theeteContents ~ event message using the Class Wizard.
When editing the function, add the code in Listing 13.19.

LisTING 13.19. THE CSerializeDoc.DeleteContents FUNCTION.

1:void CSerialzeDoc:DeleteContents()

A

3. /I'TODO: Add your spedialized code here andior call the base dass
4

5 M

6: //MY CODE STARTS HERE

7

8

9 /Gettherumberdfinesinthe doectanay

10: intiCount=m_oaPeople GetSize();

1 itRos

12

13 /Arethereanyodgedsinthearay?

14 fcar)

5{

16: /Loopthroughthearray, deleing eachoblect
17 forPos=0Pos<iCaurt Pos+)

18 deeem osPeopelPos)

19 /Resttearay

20 m oaPeopleRemoveAl();
2}

2

23 [
24: [/MY CODE ENDS HERE
25: [

Saving and Restoring Work—File Access 303 |

%
27: CDocument:DeleteContents();
28}

Opening a New Document

When a new document is started, you need to present the user with an empty form, ready
for new information. To make that empty record ready to accept new information, you
need to add a new record into the object array, which is otherwise empty. This results in
only one record in the object array. Once the new record is added to the array, you must
modify the view to show that a new record exists; otherwise, the view will continue to
display the last record edited from the previous record set (and the user will probably
wonder why your application didn’t start a new record set).

To implement this functionality, you will need to edit th@NewDocument function in

your document class. This function is already in the document class, so you do not need
to add it through the Class Wizard. The first thing that you do in this function is add a

new record to the object array. Once the new record is added, you need to get a pointer to
the view object. You use theiFisivienPosiion function to get the position of the view

4 Nl]IB One thing to keep in mind when writing this code is that you need to cast
the pointer to the view as a pointer of the class of your view object. The
GetNextvView function returns a pointer of type CView, so you will not be able
to call any of your additions to the view class until you cast the pointer to
your view class. Casting the pointer tells the compiler that the pointer is
really a pointer to your view object class and thus does contain all the func-
tions that you have added. If you don’t cast the pointer, the compiler will
assume that the view object does not contain any of the functions that you
have added and will not allow you to compile your application.

object. Using the position returned for the view object, you can useettetview

function to retrieve a pointer to the view object. Once you have a valid pointer, you can
use it to call a function that you will create in the view class to tell the view to refresh
the current record information being displayed in the form.

Locate theonNewDocument function in the document class source code, and add the
code in Listing 13.20. Before you will be able to compile your application, you will need
to add theNewDataSet function to the view class.

LisTING 13.20. THE CSerializeDoc.OnNewDocument FUNCTION.

continues

304 Day 13

1: BOOL CSerializeDoc::OnNewDocument()
2

3. if ({CDocument::OnNewDocument())

4 reuUnFALSE,
5

LisTING 13.20. CONTINUED

6. /TODO: addrenitaization code here

7. //(SDI documents wil reuse this document)
8

9

M
/MY CODE STARTS HERE
M

Ifunable to add anew record, retum FALSE
if (AddNewRecord())
rEUMFALSE,

I Getaponteriotheview
POSITION pas = GetfFrstViewPasition();
CSerializeView* pView = (CSerialize View*)GetNextView(pos);
ITeltheviewthatifsgatanewdataset
fpvew)
pVien->NewDataSex();

M
5. /IMY CODE ENDS HERE
26: [

RBRNRBoBESIREREBEREDS

N

reum TRUE;
}

BEBN

When opening an existing data set, you don't need to add any new records, but you still
need to let the view object know that it needs to refresh the record being displayed for
the user. As a result, you can add the same code tmthgenDocument function as you
added to th@nNewDocument, only leaving out the first part where you added a new
record to the object array.

Add an event-handler function to the document class fooibenDocument event
using the Class Wizard. Once you add the function, edit it adding the code in Listing
13.21.

LisTING 13.21. THE CSerializeDoc.OnOpenDocument FUNCTION.

1: BOOL CSerializeDoc::OnOpenDocument(LPCTSTR IpszPathName)

Saving and Restoring Work—File Access 305 |

if ({CDocument::OnOpenDocument(lpszPathName))
1eLUNFALSE,

/' TODO: Add your specialized creation code here

M
//MY CODE STARTS HERE
M

I Getaponterotheview
POSITION pos = GetFrstViewPasition();
CSerializeView* pView = (CSerialize View*)GetNextView(pos);
ITelteviewthetitsgatanewdaaset
fvew)
pVien->NewDataSet();

19: M

20: /MY CODE ENDS HERE
20:

2

23 runTRUE

24}

ERNBOROERNEBoow~oobrwN

©

Adding Navigating and Editing Support in the View
Class

Now that you've added support for the record set to your document class, you need to
add the functionality into the view class to navigate, display, and update the records.
When you first designed your view class, you placed a number of controls on the win-
dow for viewing and editing the various data elements in each record. You also included
controls for navigating the record set. Now you need to attach functionality to those con-
trols to perform the record navigation and to update the record with any data changes the
user makes.

Because of the amount of direct interaction that the form will have with the record
object—reading variable values from the record and writing new values to the record—it
makes sense that you want to add a record pointer to the view class as a private variable.
For your example, add a new member variable to the view class, specify the type as
CPerson* , give it a name such as pCurPerson , and specify the access as private. Next,

edit the view source code file and include the header file for the person class, as in
Listing 13.22.

LISTING 13.22. INCLUDING THE CUSTOM OBJECT HEADER IN THE VIEW CLASS SOURCE CODE.

continues

| 306

Day 13

1:// Seviglize\View.cpp : implementation of the CSerialize\View dass
2/

3

4:#indude “sidaich’

5i#indudeSerigizeh’

6

LISTING 13.22. CONTINUED

7:#incdude ‘Personh’”
8:#indude “SeriaizeDoch’
9:#ndude SeriaizeViewh'’

10

11: #fdef _DEBUG

12.

13.

14

Displaying the Current Record

The first functionality that you will want to add to the view class is the functionality to
display the current record. Because this functionality will be used in several different
places within the view class, it makes the most sense to create a separate function to per-
form this duty. In this function, you get the current values of all the variables in the

record object and place those values in the view class variables that are attached to the
controls on the window. The other thing that you want to do is get the current record
number and the total number of records in the set and display those for the user so that
the user knows his or her relative position within the record set.

In your sample application, add a new member function, specify the function type as
void, give the function a name that makes sense, suetpégeview , and specify the

access as private. In the function, get a pointer to the document object. Once you have a
valid pointer to the document, format the position text display with the current record
number and the total number of records in the set, usinGetb@RecordNbr and

GetTormlRecords ~ functions that you added to the document class earlier. Next, if you have
a valid pointer to a record object, set all the view variables to the values of their respec-
tive fields in the record object. Once you set the values of all of the view class variables,
update the window with the variable values, as shown in Listing 13.23.

LisTING 13.23. THe CSerializeView.PopulateView FUNCTION.

1: void CSerializeView::Popuiate\View()
A
3. [Getaponterto the curent document

Saving and Restoring Work—File Access 307 |

4: CSeriglizeDoc* pDoc = GetDocument()

5 fpDog)

6(

7: IDspaytheaurentrecod postioninthe set

8 m_sPosition.Fomat(“‘Record %d of %d”, pDoc->GetCurRecordNbr(),
9 pDoc>CefToaRecot();

10}

11: //Dowe haveavald record obect?

12: if(m_pCurPerson)

13

14 [Yesgetdditherecodveles

15: m_bEmployed =m_pCurPerson->GetEmployed();
16: m_iAge=m_pCurPerson>GetAge();

17 m_sName = m_pCurPerson->GetName();

18 m iMaitelSatius=m_pCurPerson>GetMaritalStatusy);
19}

20 /Updatethe display

21: UpdateData(FALSE);

2}

Navigating the Record Set

If you added navigation buttons to your window when you were designing the form, then
adding navigation functionality is a simple matter of adding event-handler functions for
each of these navigation buttons and calling the appropriate navigation function in the
document. Once the document navigates to the appropriate record in the set, you need to
call the function you just created to display the current record. If the document naviga-
tion functions are returning pointers to the new current record object, you should capture
that pointer before calling the function to display the current record.

To add this functionality to your sample application, add an event handler to the clicked
event for the First button using the Class Wizard. In the function, get a pointer to the
document object. Once you have a valid pointer to the document, call the document
object’'sGefFistRecord function, capturing the returned object pointer in the \deerson
pointer variable. If you receive a valid pointer, call HagiateView function to display

the record data, as in Listing 13.24.

LisTING 13.24. THE CSerializeView.OnBfirst FUNCTION.

1:vod CSeriaize\View:OnBirst()

A

3./ TODO: Add your control natiication handler code here
4

5. [/ Getapointer to the cument document

continues

308 Day 13

6. CSerializeDoc * pDoc = GetDocument();

7. fpDog)

&

9 /Getthefrstrecord fromthe document

10: m_pCurPerson =pDoc->GetHrstRecord();
11 if(m pCuPerson)

2{

LISTING 13.24. CONTINUED

13 /Depaytheaurentrecod
14 PopuaeVen),

5}

B}

17}

For the Last button, perform the same steps as for the First button, but call the document
object’sGetlastRecord ~ function, as in Listing 13.25.

LisTING 13.25. THE CSerializeView.OnBlast FUNCTION.

1:void CSerializeView:OnBlast()

|

3. //'TODO: Add your control natification handler code here
4

5. //Getapointer o the cumentdocument

6. CSeriglizeDoc* pDoc = GetDocument();

7. fhog)

8

9 /Getthelastrecordfromthe document

10: m_pCurPerson = pDoc->GetlastRecord();
1T if(m pCuPerson)

2{

13 /Depaytheaurentrecod

14 PopuaeVen)

5}

B}

17}

For the Previous and Next buttons, repeat the same steps again, but call the document
object’'sGetPrevRecord andGetNextRecord ~ functions. This final step provides your appli-
cation with all the navigation functionality necessary to move through the record set.

Also, because calling the documerg@NextRecord on the last record in the set automat-
ically adds a new record to the set, you also have the ability to add new records to the set
as needed.

Saving and Restoring Work—File Access 309 |

Saving Edits and Changes

When the user enters changes to the data in the controls on the screen, these changes
somehow need to make their way into the current record in the document. If you are
maintaining a pointer in the view object to the current record object, you can call the
record object’s various set value functions, passing in the new value, to set the value in
the record object.

To implement this in your sample application, add an event handler tnitheD event

for the Employed check box using the Class Wizard. In the function that you created,
first call theupdateData to copy the values from the form to the view variables. Check to
make sure that you have a valid pointer to the current record object, and then call the
appropriateset function on the record object (in this case, $a€mployed function as in
Listing 13.26).

LisTING 13.26. THE CSerializeView.OnCbhemployed FUNCTION.

1: void CSeridlizeView::OnChbemployed()

A

3. //'TODO: Add your control natification handler code here
4

5 ISyncthedaiaintheformwihthe varisbles

6. UpdateData(TRUE);

7. IN'fwe have avald person obied;, passthe daia changes it
8 if(m pCurPerson)

9 m_pCurPerson->SetEmployed(m_bEmployed);
10}

Repeat these same steps for the other controls, calling the appropriate record object func-
tions. For the Name and Age edit boxes, you add an event handlere thieANGE

event and call theetName andsetAge functions. For the marital status radio buttons,

add an event handler for tBa_cLICKEDevent and call the same event-handler function

for all four radio buttons. In this function, you call th#vaiaiSat function in the

record object.

Displaying a New Record Set

The last functionality that you need to add is the function to reset the view whenever a
new record set is started or opened so that the user doesn't continue to see the old record
set. You will call the event handler for the First button, forcing the view to display the

| 310

Day 13

first record in the new set of records.

To implement this functionality in your sample application, add a new member function
to the view class. Specify the function type as void, give the function the name that you
were calling from the document objestDataSet), and specify the access as public

(so that it can be called from the document class). In the function, call the First button
event handler, as in Listing 13.27.

LisTING 13.27. THE CSerializeView.NewDataSet FUNCTION.

1: void CSerialize1View:NewDataSet()
A

3 /Dpaytefistrecodintesst

4 OBi()

5

Wrapping Up the Project

Before you can compile and run your application, you need to include the header file for
your custom class in the main application source-code file. This file is named the same
as your project with the CPP extension. Your custom class header file should be included
before the header files for either the document or view classes. For your sample applica-
tion, you edit thesaiizeqp file, adding line 8 in Listing 13.28.

LisTING 13.28. INCLUDING THE RECORD CLASS HEADER IN THE MAIN SOURCE FILE.

1/ Serieize.cpp : Defnesthe dass behavors forthe application.
2/

3

4:#indude "stiafx h’

6

7-#include “MainFm.h’

8. #indude “Personh’

9 #indude “SeriaizeDoch’
10: #indude “Seviaize\Viewh'
1

12: #ifdef DEBUG

13.

14.

15.

Saving and Restoring Work—File Access 311 |

Ficure 13.4.

File Edt “iew Help
The running serializa- B& a7

tion application. =

Hame: ‘Davls Chapman

Age |37

Marital Status: " Single " Divorced
& Maried © Widowed

¥ Employed

First Previous Next Last

Fecord 1 of 4

Fleady HUM

At this point, you can add, edit, save, and restore sets of records with your application. If
you compile and run your application, you can create records of yourself and all your
family members, your friends, and anyone else you want to include in this application. If
you save the record set you create and then reopen the record set the next time that you
run your sample application, you should find that the records are restored back to the
state that you originally entered them, as in Figure 13.4.

Summary

Today, you learned quite a bit. You learned how serialization works and what it does. You
learned how to make a custom class serializable and why and how to use the two macros
that are necessary to serialize a class. You also learned how to design and build a form-
based SDI application, maintaining a set of records in a flat-file database for use in the
application. You learned how to use serialization to create and maintain the flat-file data-
base and how to construct the functionality in the document and view classes to provide
navigating and editing capabilities on these record sets.

Q&A

Q If I make any changes to one of the records in my record set after | save the
record set and then | close the application, or open a different set of records,
my application doesn’t ask if | want to save my changes. How do | get it to ask
me? How do | get my application to prompt for saving when data has been
changed?

| 312

Day 13

A One function call in theddNewRecord function in the document object is the key
to this problem. After adding a new record to the object array, you call the
SetModiiedFag ~ function. This function marks the document as “dirty.” When you
save the record set, the document is automatically set to a “clean” state (unless the
application is unable to save the record set for any reason). What you need to do
when saving the edits is set the document to the “dirty” state so that the application
knows that the document has unsaved changes.

You can fix this by adding some code to each of your data control event handlers.
Once you save the new value to the current record, get a pointer to the document
object and call the documésetvodiiedFag ~ function, as in Listing 13.29. If you
make this same addition to all the data change event handlers, your application will
ask you whether to save the changes you made since the last time the record set
was saved.

LisTING 13.29. THE MODIFIED CSerializeView.OnCbemployed FUNCTION.

1: void CSerialize View::OnChemployed()

2

3. //'TODO: Add your control natification handler code here

4

5 /Syncthedaiaintheformwihthe variables

6. UpdateData(TRUE);

7: I'fwe have avald person objed, pessthe data changes it
8 if(m_pCurPerson)

9 m_pCurPerson->SetEmployed(m_bEmployed);
10: //Getapointertothe document

11: CSerializeDoc * pDoc = GetDocument();

12 fioDog)

13 /Setthemodiied fieginthe document

14 pDoc>SetModiiedHagy);

15}

Q Why do | need to change the version number in theiPLEMENT_SERIALMAacCro
if | change thesase function in the record custom class?

A Whether you need to increment the version number depends on the type of change
you make. For instance, if you add a calculated field in the record class and you
add the code to calculate this new variable from the values you read in the vari-
ables from thecarchive object, then you ddhreally need to increment the version
number because the variables and order of the variables that you are writing to and
reading from the archive did not change. However, if you add a new field to the
record class and add the new field into the 1/0O stream being written to and read
from thecarchive 0bject, then what you are writing to and reading from the archive

Saving and Restoring Work—File Access 313 |

will have changed, and you do need to increment the version number. If ydu don
increment the version number, reading files created using the previous version of
your application will result in an “Unexpected file format” message instead of the
file being read. Once you increment the version number and you read a file written
with the old version number, you get the same message, but you have the option of
writing your own code to handle the exception and redirecting the archive to a con-
version routine to convert the file to the new file format.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using wha you
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What two macros do you have to add to a class to make it serializable?

2. How can you determine whether ttrechive object is reading from or writing to
the archive file?

3. What arguments do you need to pass toMREEMENT_SERIALMacro?

FIGURE 13 5 i 7 people_ser - Serialize

File Edit View Help
The running serializa- 02 a7
tion application with =
the person’s sex. Hame: ‘DavlsEhapmar\

Age |37

Marital Status: " Single " Divorced
& Maried © Widowed
Sex @ Male C Female

i Employed

povs | Net | Last

Record 1 of 4

Feady HUM

WEEK 2

DAY 14

Retrieving Data from
an ODBC Database

A large number of applications use a database. Everything from a personal
organizer to a large, corporate personnel system uses a database to store and
maintain all the records that the applications use and manipulate. Visual C++
provides you with four different technologies for using and accessing databases
in your applications, Data Access Objects (DAO), ODBC, OLE DB, and

ActiveX Data Objects (ADO). Today and tomorrow, you'll learn about two of
these technologies, how they differ, and how you can use them in your own
applications. Today, you will learn

- How the ODBC interface allows you to use a consistent way to access a
database.

- How Visual C++ uses therecordset class to provide access to an ODBC
data source.

- How you can create a simple database application using the Wizards in
Visual C++.

- How you can add and delete records from an ODBC database in Visual
C++.

| 316

Day 14

Nlltﬂ To be completely honest, there are numerous differences between the vari-

Database Access and ODBC

Most business applications work with data. They maintain, manipulate, and access
records of data that are stored in databases. If you build business applications, odds are
that you will need to be able to access a database with your applications. The question is,
which database?

There are a number of databases on the market. If you need to create a single-user appli-
cation that is self-contained on a single computer, you can use any one of humerous PC-
based databases, such as Microsoft's Access, FoxPro, or Borland’s Paradox. If you are
building applications that need to access large, shared databases, you are probably using
an SQL-based (Structured Query Language) database such as SQL Server or Oracle. All
of these databases provide the same basic functionality, maintaining records of data.
Each will allow you to retrieve several records or a single record, depending on your
needs. They'll all let you add, update, or delete records as needed. Any of these data-
bases will be able to serve your application’s needs, so you should be able to use any
database for one application and then switch to another for the next application, based on
the needs of the application and which database is most suited for the specific application
needs (or your employer’s whim).

ous databases that are available today. Each of these databases has specific
strengths and weaknesses, making one more suitable for a specific situation
than another. However, a discussion of the differences between any of these
databases is beyond the scope of this book. For the discussions of databases
today and tomorrow, you can assume that all of these databases are func-
tionally equal and interchangeable.

The problem that you will encounter when you switch from one database to another is
that each database requires you to use a different interface for accessing the database.
Therefore, you have to learn and use a whole new set of programming techniques and
functions for each database that you need to work with. This is the problem that the
ODBC interface was designed to correct.

The Open Database Connector (ODBC) Interface

Microsoft saw the incompatibility between database interfaces as a problem. Each data-
base had its own application development language that was well integrated with the
database but didn’t work with any other database. This presented a problem to any devel-
oper who needed to use one database for an application and then a different database for

Retrieving Data from an ODBC Database 317 |

the next application. The developer had to learn the specific development language for
each of the databases and couldn’t use any languages that she already knew. For pro-
grammers to work with any database with the programming language of the developer’s
choice, they needed a standardized interface that works with every database.

The Open Database Connector (ODBC) interface is implemented as a standard, SQL-
based interface that is an integral part of the Windows operating system. Behind this
interface are plug-ins for each database that take the ODBC function calls and convert
them into calls to the specific interface for that database. The ODBC interface also uses a
central set of database connection configurations, with a standardized way of specifying
and maintaining them. This setup allows programmers to learn and use a single database
interface for all databases. This also allowed programming language vendors to add
ODBC support into their languages and development tools to make database access all
but transparent.

The CRecordset Class

In the Visual C++ development environment, most of the ODBC functionality has been
encapsulated into two classeBgcordset andCbDatabase . TheCbDatabase class contains

the database connection information and can be shared across an entire application. The
CRecordset class encapsulates a set of records from the databaserebbraset class

allows you to specify a SQL query to be run, anddiReordset class will run the query

and maintain the set of records that are returned by the database. You can modify and
update the records in the record set, and your changes will be passed back to the data-
base. You can add or delete records from the record set, and those same actions can be
passed back to the database.

Connecting to the Database

Before thecRecordset class can perform any other functions, it has to be connected to a
database. This is accomplished through the use afsbase class. You don't need to
create or set theDatabase instance; the first instance of tbrecordset class does this

for you. When you create an application using the AppWizard and choose to include
ODBC database support, the AppWizard includes the database connection information in
the firstCRecordset -derived class that it creates. When ttRecordset class is created

without being passed@atabase Object, it uses the default connection information,

which was added by the AppWizard, to create its own database connection.

Opening and Closing the Record Set

Once thecRecordset 0bject is created and connected to the database, you need to open
the record set to retrieve the set of records from the database. Do this by caltipgnthe
member function of therecordset 0bject. You can call this function without any

| 318

Day 14

arguments if you want to take the default values for everything, including the SQL state-
ment to be executed.

The first argument to thepen function is the record set type. The default value for this,
AFX_DB_USE_DEFAULT_TYPRHS to open the record set as a snapshot set of records. Table
14.1 lists the four types of record set types. Only two of these record set types are avail-
able in the AppWizard when you are specifying the data source.

TABLE 14.1. RECORD SET TYPES.

Type Description

CRecordset:dynaset A set of records that can be refreshed by callingdhie function so that
changes made to the record set by other users can be seen.

CRecordset:snapshot A set of records that cannot be refreshed without closing and then
reopening the record set.

CRecordset:dynamic Very similar to thecRecordset:dynaset ~ type, but it is not available in
many ODBC drivers.

CRecordset:forwardOnly A read-only set of records that can only be scrolled from the first to the
last record.

The second argument to theen function is the SQL statement that is to be executed to
populate the record set. INuLLis passed for this argument, the default SQL statement
that was created by the AppWizard is executed.

The third argument is a set of flags that you can use to specify how the set of records is
to be retrieved into the record set. Most of these flags require an in-depth understanding
of the ODBC interface so you understand how the flags can and should be used in your
applications. Because of this, I'll discuss only a few of these flags in Table 14.2.

TABLE 14.2. RECORD SET OPEN FLAGS.

Flag Description

CRecordset:none The default value for this argument; specifies that no options affect how

the record set is opened and used.

CRecordset:appendOnly This flag prevents the user from being able to edit or delete any of the

existing records in the record set. The user will only be able to add new
records to the set of records. You cannot use this option with the
CRecordset:readOnly flag.

CRecordset:readOnly This flag specifies that the record set is read-only and no changes can be

made by the user. You cannot use this option with the
CRecordset:appendonly flag.

Retrieving Data from an ODBC Database 319 |

Once the user finishes working with the record set, you can catbthefunction to
close the record set and free any resources used by the record sete Thenction
doesn’t take any arguments.

Navigating the Record Set

Once you have a set of records retrieved from the database, you need to be able to navi-
gate the set of records (unless the set has only one recora)ReEbeset class provides
several functions for navigating the record set, allowing you to move the user to any
record. Table 14.3 lists the functions that you use to navigate the record set.

TABLE 14.3. RECORD SET NAVIGATION FUNCTIONS.

Function Description

MoveFirst Moves to the first record in the set.

MoveLast Moves to the last record in the set.

MoveNext Moves to the next record in the set.

MovePrev Moves to the previous record in the set.

Move Can be used to move a specific number of records from the current record or
from the first record in the set.

SetAbsolutePosiion Moves to the specified record in the set.

ISBOF ReturnsTRrUEIf the current record is the first record in the set.

ISEOF ReturnstrUEIf the current record is the last record in the set.

GetRecordCount Returns the number of records in the set.

Of all of these navigation and informational functions, only tvee and

SetAbsolutePosition , take any arguments. TlsexbsolutePosiion function takes a single
numeric argument to specify the row number of the record toward which to navigate. If
you pas®, it navigates to the beginning-of-file (BOF) position, wheregaskes you to

the first record in the set. You can pass negative numbers to this function to cause it to
count backward from the last record in the set. (For examptakes you to the last

record in the set;2 to the next-to-last record, and so on.)

The Move function takes two arguments. The first argument is the number of rows to
move. This can be a positive or negative number; a negative number indicates a back-
ward navigation through the record set. The second argument specifies how you will
move through the set of rows. The possible values for the second argument are listed in
Table 14.4 with descriptions of how they affect the navigation.

320 Day 14

TABLE 14.4. MOVE NAVIGATION TYPES.

Type Description

SQL_FETCH_RELATIVE Moves the specified number of rows from the current row.

SQL_FETCH_NEXT Moves to the next row, ignoring the number of rows specified. The same as
calling themoveNext function.

SQL_FETCH_PRIOR Moves to the previous row, ignoring the number of rows specified. The same
as calling thevioveprev function.

SQL_FETCH_FIRST Moves to the first row, ignoring the number of rows specified. The same as
calling themoverirst ~ function.

SQL_FETCH_LAST Moves to the last row, ignoring the number of rows specified. The same as
calling themoveLast function.

SQL_FETCH_ABSOLUTEMoves the specified number of rows from the start of the set of rows. The
same as calling thetabsolutePosiion function.

Adding, Deleting, and Updating Records

Navigating a set of records from a database is only part of what you need to be able to
do. You also need to be able to add new records to the record set, edit and update existing
records, and delete records. These actions are all possible through the various functions
that theCRecordset class provides. The functions that you will use to provide this func-
tionality to the user are listed in Table 14.5.

TABLE 14.5. RECORD SET EDITING FUNCTIONS.

Function Description

AddNew Adds a new record to the record set.

Delete Deletes the current record from the record set.

Bt Allows the current record to be edited.

Update Saves the current changes to the database.

Requery Reruns the current SQL query to refresh the record set.

None of these functions takes any arguments. However, some of them require following
a few specific steps to get them to work correctly.

To add a new record to the database, you can callddmeew function. The next thing

that you need to do is set default values in any of the fields that require values, such as
the key fields. Next, you must call thipdate function to add the new record to the data-
base. If you try to navigate to another record before callinggtee function, the new

Retrieving Data from an ODBC Database 321 |

record will be lost. Once you save the new record, you need to calidiegy function

to refresh the record set so that you can navigate to the new record and let the user edit
it. This sequence of function calls typically looks like the following:

/I Add a new record to the record set

m_pSet.AddNew();

I/ Setthe key field onthe new record

m_pSet.m_AddressID = m_INewlID;

I/ Save the new record to the database

m_pSet.Update();
I Refresh the record set

m_pSet.Requery();
/I Move to the new record
m_pSet.MoveLast();

When you need to delete the current record, you can simply cakhe function.

Once you delete the current record, you need to navigate to another record so the user
isn't still looking at the record that was just deleted. Once you delete the current record,
there is no current record until you navigate to another one. You do not need to explicitly
call theupdate function because the navigation functions call it for you. This allows you
to write the following code to delete the current record:

// Delete the current record

m_pSet.Delete();

//'Move to the previous record
m_pSet.MovePrev();

Finally, to allow the user to edit the current record, you need to cadttthiinction.

This allows you to update the fields in the record with the new values entered by the user
or calculated by your application. Once all changes are made to the current record, you
need to call thepdate function to save the changes:

I Alowthe userto edit the curent record

m_pSet Edit();
I/ Perform all data. exchange, updating the fields in the recordset

I Save the user's changes to the current record
m_pSet.Update();

You might be wondering how you get to the fields in the records to update them. When
the AppWizard creates thuRecordset -derived class for your application, it adds all the

fields in the records that will be in the record set as member variables in order of the
record set class. As a result, you can access the member variables in order to access and
manipulate the data elements in the database records that are members of the record set.

322 Day 14

Creating a Database Application Using ODBC

For the sample application that you will build today, you'll create an SDI application

with ODBC database support. The application will retrieve records from an ODBC data-
base, allowing the user to edit and update any of the records. You'll also add function-
ality to enable the user to add new records to the database and to delete records from the
database.

Preparing the Database

Before you can begin building an application that uses a database, you need a database to
use with your application. Almost every database that you can purchase for your applica-
tions comes with tools for creating a new database. You'll need to use these tools to cre-
ate your database and then use the ODBC administrator to configure an ODBC data
source for your new database.

For the sample application in this chapter, | used Access 95 to create a new database. |
used the Access Database Wizard to create the database, choosing the Address Book
database template as the database to be created. When the Database Wizard started, |
selected the default set of fields for including in the database and selected the option to
include sample data, as shown in Figure 14.1. | then accepted the rest of the default set-
tings offered in the Database Wizard.

FIGURE 14.1.
. The databass youvs chasen requies cettain fields. Passible additional fields are shown italic

| nc| ud i ng sam p|e data below. and map be in more than one table.

. Dl you want to add any optional fiekds?

in the database. Tables in the databace Fields in the table

Address information ¥ Addres: ID =
I First Mame
7 Last Name
¥ Spouse Hame
[Shidshan Mamas j

Do you want sample data in the database?
Having sample data can help you o learn to uss the database.

 ‘¥es, include sample data.

Cancel <Back Met > Eirich

Once you create the database, you need to configure an ODBC data source to point to
the database you just created. To do this, run the ODBC Administrator, which is in the
Control Panel on your computer.

Once in the ODBC Administrator, you'll add a new data source. You can do this by
clicking the Add button, as shown in Figure 14.2. This opens another dialog, which
allows you to select the database driver for the new data source, as shown in Figure 14.3.

Retrieving Data from an ODBC Database 323 |

Source dialog.

For the sample application that you will build today, because the database was created
using Access, select the Microsoft Access Driver and click the Finish button.

FlGURE 14 2 & DDBC Data Source Administrator
User DSH | System DSM | File DS | Diivers | Tracing | Connection Pagling | About |
The ODBC Data oo s
zer Data Sources:
P 4 Add..
Source Administrator. g
Hame [Driver
SOL Server Bemove
BREBAW=EDB S0L Server
dBASE File: Microzoft dBaze Driver [dbi] LConfigure.
demaapp Sybace SOL Anpwhere 5.0
Excel Files Mictasoft Excel Driver [* 4s)
ForPro Files Mictaioft FosPro Diiver [dbf)
MS Access 7.0 Database Micrasot Access Diiver [*mdb)
Parador Files Mictaisoft Paradox Diiver [*db |

PFC Sybase SOL Anywhere 5.0
pleexarn Sybace SOL Anywhers 5.0 AIL‘
4| | »

An DDBC User data source stores information about how ta connect ta
@ the indicated data provider. A User data source is only visible to you,
and can only be used on the current machine.

oK. Carcel | | hee |
FIGURE 14 3 Create New Data Source
Select a driver for which pou want b set up & data source:
The Create New Data
EN

ver [*.mdb

TSR 351102000 Micosaht Coporat
Driver [“dbf] 351102900 Micrasoft Corporat

P Mic
\<-5,,>/

7| Miocolt Excel Drver k) 351 102900 Microsoit Corpoat

| Microsoft FasPro Diiver (b 351102900 Microssh Comorat

Microzoft DDBC Driver for Oracle 200 006325 Microzoft Corpiorat

Micrasoft ODEC for Dracle 273730200 Micrasoft Corporat
Micrasoft Paradax Driver (db) 351102300 Micrasoft Corpor
Micrasoft Text Driver =, csv] 351102900 Micrasoft Corporat
Microzoft Text Diiver (*tst; “cev) 351102900 Micrasoft Comorat _
Nezrls 20N mAnn Wizinanie Crbhaar;

4 r T »

Firich cancel |

In the ODBC Microsoft Access Setup dialog, shown in Figure 14.4, you'll provide a
short, simple name for the data source. Your application will use this name to specify the
ODBC data source configuration to use for the database connection, so it should reflect
the function that the database will be serving, or it should be similar to the name of the
application that will be using this database. For the purposes of the sample application
database, name your data sourggcDg(for Teach Yourself Visual C++ Database) and
enter a description for the database in the next field.

Once you enter a name and description for the data source, you need to specify where
the database is. Click the Select button and then specify the Access database that you
created. Once you finish configuring the ODBC data source for your database, click the
OK button to add the new data source to the ODBC Administrator. You can click the OK
button to finish the task and close the ODBC Administrator because you are now ready
to turn your attention to building your application.

324 Day 14

FIGURE 14.4. ODBC Microsoft Access 97 Setup
. Data Source Name: |

The ODBC Microsoft ... | —

Access 97 Setup Database _ Lo |

dialog. Database: Help

Select | Create | Repait Compact |
Advanced..

System Database

@ Nong

" Dalabase:

g Optionz> >

Creating the Application Shell

For the sample application that you will build today, you'll create a standard SDI-style
application with database support. First, start a new project, selecting the AppWizard,
and give your application a suitable name, sucbbasibc.

On the first AppWizard form, specify that you want to build an SDI application. On the
second AppWizard form, specify that you want to include Database view with file sup-
port. Click the Data Source button to specify which data source you will use in your
application. In the Database Options dialog, specify that you are using an ODBC data
source, and select the ODBC configuration from the list that you configured for your
Access database, as shown in Figure 14.5. You can set the record set type to either
Snapshot or Dynaset.

X

F|GURE 145 Database Options [2]]

) Datasource oK.
The Database Options & goac. | L

dialog. cp (Tt

C OLEDB: [\w/ebSrDE

Fref

3

Recordset type
@ Snapshot " Dypaset la

Advanced

[

Once you click the OK button, another dialog opens, presenting you with the available
tables in the database you selected. Select the Addresses table, as shown in Figure 14.6,
and click the OK button to close this dialog and return to the AppWizard.

You can continue through the rest of the AppWizard, accepting all of the default settings.
When you reach the final AppWizard step, you'll notice that the AppWizard is going to
create an extra class. If you select this class, you'll see that it is derived from the
CRecordset class, and it is the record set class for your application. You'll also notice that

Retrieving Data from an ODBC Database 325|

the view class is derived from tlogecordview class, which is a descendent of the
CFormView class, with some added support for database functionality.

FIGURE 14.6. Select Database Tables
The Select Database ~ [scheadten:

. Cancel
Tables dialog.

Designing the Main Form

Once you create the application shell, you need to design the main form that will be used
for viewing and editing the database records. You can design this form using the standard
controls that are part of Visual C++, without adding any special ActiveX controls. For
designing the main form in your sample application, lay out the main form as shown in
Figure 14.7, and configure the controls with the properties specified in Table 14.6.

If you want to save a little time when building the example, you can leave
out most of the controls and database fields from the application. The key
fields that you’ll need to include are ID, First and Last Names, Birthdate, and
Send Card. If you want to leave out the other fields from the application,
that’s fine.

TABLE 14.6. CONTROL PROPERTY SETTINGS.

Object Property Setting
Static Text ID IDC_STATIC
Caption D
Edit Box ID IDC_EID
Static Text ID IDC_STATIC
Caption FirstName:
Edit Box ID IDC_EFNAME
Static Text ID IDC_STATIC
Caption Last Name:
Edit Box ID IDC_ELNAME

continues

| 326

Day 14

TABLE 14.6. CONTINUED

Object Property Setting

Static Text ID IDC_STATIC
Caption Spouse Name:

Edit Box ID IDC_ESNAME

Static Text ID IDC_STATIC
Caption Address:

Edit Box ID IDC_EADDR
Multiline Checked

Static Text ID IDC_STATIC
Caption (o1}

Edit Box ID IDC_ECITY

Static Text ID IDC_STATIC
Caption Sete:

Edit Box ID IDC_ESTATE

Static Text ID IDC_STATIC
Caption X

Edit Box ID IDC_EZIP

Static Text ID IDC_STATIC
Caption Country:

Edit Box ID IDC_ECOUNTRY

Static Text ID IDC_STATIC
Caption EMat

Edit Box ID IDC_EEMAIL

Static Text ID IDC_STATIC
Caption Home Phone:

Edit Box ID IDC_EHPHONE

Static Text ID IDC_STATIC
Caption Work Phone:

Edit Box ID IDC_EWPHONE

Static Text ID IDC_STATIC
Caption Extension:

Edit Box ID IDC_EWEXT

Static Text ID IDC_STATIC
Caption Fax

Retrieving Data from an ODBC Database

327 |

Object Property Setting

Edit Box ID IDC_EFAX

Static Text ID IDC_STATIC
Caption Bithoate:

Edit Box ID IDC_EDOB

Check Box ID IDC_CBCARD
Caption Send Card

Static Text ID IDC_STATIC
Caption Notes:

Edit Box ID IDC_ENOTES
Multiline Checked

FIGURE 14.7. 55 testdhs - Microsoft Visual Cr-s - testdbS.rc - IDD_TESTDBS._FORM (Dialog)]

The main form design.

=|Fle Edit View Insert Froject Build Layout Tools Window Help

LBl

= I E R 4 [CRecordset =14
[CTestdoTviews |[iAN class members) "+][CTestdbSView RN 1=
- testdbs classes - = —
+ ™ CAboutDlg - [T R ml
" ChainFrame — Bl
. 3
E-°13 CTestdbSApp First Name: [Egit HomeProne: [Egw]
+ " CTestdbSDoc - Y T
+ " CTestdbSSet a (=tEns =
. Edt otk Ph i -
" CTestdbSview d B abl [O
1 Glohals : SpoweMame B Eyenson @ B ®
AT it R (I @ B
a
-k . 2 m o
; pindate e = o
E o e I™ SendCard O H e
: end Can =
g State: [Eqi B
7 Notes: [Edit £ H
Zip [Edit =
E Counvy. [Edr
3 = = -l
E| =
i =
] Jebug {Findin Filez 1, Findin Files2 §, Resuls 7] 4| | [
| 488 13i %
Ready i 0.0 {7 30x200
stant| @ 2y W | ©inbox-0. | % MSDNLi.. |40 testdbS5... 3Exploring .| B vusPrint - RBal -t

Once you have added and configured all the controls on the main form for your applica-
tion, you're ready to begin associating the controls with database fields. When you click
the Member Variables tab of the Class Wizard and select a control to add a variable for,
you'll notice that the Add Member Variable dialog has a drop-down combo box where
you enter the variable name. If you click the arrow to drop down the list, you'll find that
it's filled with the fields in the record set, as shown in Figure 14.8. This enables you to
attach the database fields directly to the controls on the form. To attach the database
fields to the controls on your application form, add the variables specified in Table 14.7.

328 Day 14

FIGURE 148 Add Member Variable
The Add Member _c:;.
Variable dialog with e e

. m_pSet->m_Cil
record set fields. ogetm_ oty ks

m_pSet->m_Emailbddiess
m_pSet-rm_Fashumber

Deseription:

CString with lenath validation

TABLE 14.7. CONTROL VARIABLES.

Object Name

IDC_CBCARD m_pSet->m_SendCard
IDC_EADDR m_pSet->m_Address
IDC_ECITY m_pSet->m_City
IDC_ECOUNTRY m_pSet->m_Country
IDC_EEMAIL m_pSet->m_EmailAddress
IDC_EFAX m_pSet->m_FaxNumber
IDC_EFNAME m_pSet->m_FirstName
IDC_EHPHONE m_pSet->m_HomePhone
IDC_EID m_pSet->m_AddressID
IDC_ELNAME m_pSet->m_LastName
IDC_ENOTES m_pSet->m_Notes
IDC_ESNAME m_pSet->m_SpouseName
IDC_ESTATE m_pSet->m_StateOrProvince
IDC_EWEXT m_pSet->m_WorkExtension
IDC_EWPHONE m_pSet->m_WorkPhone

IDC_EZIP m_pSet->m_PostalCode

You probably noticed when it was time to attach a database field to the birthdate control
that the birthday field is missing from the list of database fields. If you look at the record
set class in the class view and expand its tree, you'll notice that the birthdate field is
included as one of the database fields, but it's not available in the list of available
columns for use with the controls. Double-click on the birthdate field in the record set
class to view its definition. You'll notice that theBithdate variable is declared as a

CTime variable. This is the reason that it's not available in the list of database fields that
can be attached to controls. There isn't a macro or function you can call for exchanging

Retrieving Data from an ODBC Database 329 |

data between a control anatame variable. This is also a problem becausedhee

variable type cannot handle dates before December 31, 1969. To use this database field,
you'll need to change its definition fromcaime to acColeDateTime variable type, as in

line 17 in Listing 14.1. Once you change the variable type of this database field, you will
be able to attach it to thec_EboBcontrol.

LISTING 14.1. THE DATABASE FIELD VARIABLE DECLARATIONS.

1: //FeldParam Data

2. I{AFX_FIELD(CTestdb5Set, CRecordset)
3 long m AddessD;

4 CSting m FsiName;
5. CSting m LastName;
6.

7.

8

16: CSting m_FaxiNumber;
17: COeDateTime m Birthdate;
18: BOOL m SendCard;

19 CSting m Nokes;

20: IBAFX FIELD

Nﬂtﬂ Normally, you do not want to edit the portions of code in your applications
that are created and maintained by the various wizards. The change | out-
line here is one of the few exceptions to this rule. This obstacle could
possibly be considered a bug in the Visual C++ AppWizard, although it’s
technically not a bug. You can convert the date/time database field to sev-
eral variable types when creating a class variable to represent that field.
CTime is one of these variable types; COleDateTime is another. Because these
are both equally valid choices, and the functions that populate this variable
can work with either, making this change is possible without dire conse-
quences.

Once you make the change to the variable type for tiBehtae variable in the record
set classdDbOdbcSet), and attach this database field to the Birthdate control on the
form, you might think that you are ready to compile and run your application.
Unfortunately, your application will not compile. You’ll get a compiler error stating that

| 330

Day 14

the DDX_FieldText cannot convert theoleDateTime variable type. What you need to do is
add the code to perform this conversion yourself. Return to the Class Wizard and delete
the variable that you added to tibe_EDOBcontrol. Add a new variable to this control.
Specify that the variable is tyf®leDateTime , and give the variable a name such as
m_oledtDOB . Pull up theDoDataExchange function in the view class;DbOdbcView, into

the editor, and add lines 4 through 6 and lines 26 through 28

to the function, as shown in Listing 14.2.

LisTING 14.2. THE CDbOdbcView DoDataExchange FUNCTION.

1: void CDbOdbcView::DoDataExchange(CDataExchange* pDX)

CRecordView::DoDataExchange(pDX);
1/ Copy the DOB from the record set to the view variable
if ()DX->m_bSaveAndValidate — FALSE)
m_oledtDOB=m_pSet>m_Birthdate;
IF{AFX_DATA_MAP(CTestdb5View)
DDX_FieldText(pDX, IDC_EID, m_pSet->m_AddressID, m_pSet);
DDX_FieldText(pDX, IDC_EFNAME, m_pSet->m_FirstName, m_pSet);
DDX_FieldText(pDX, IDC_ELNAME, m_pSet->m_LastName, m_pSet);
DDX_FieldText(pDX, IDC_ESNAME, m_pSet->m_SpouseName, m_pSet);
12: DDX_FieldText(pDX, IDC_ESTATE, m_pSet->m_StateOrProvince, m_pSet);
13: DDX_FieldText(pDX, IDC_ECITY, m_pSet->m_City, m_pSe);
14: DDX_FieldText(pDX, IDC_EADDR, m_pSet->m_Address, m_pSet);
15: DDX_FieldCheck(pDX, IDC_CBCARD, m_pSet->m_SendCard, m_pSet);
16: DDX_FieldText(pDX, IDC_ECOUNTRY, m_pSet->m_Country, m_pSet);
17: DDX_FieldText(pDX, IDC_EEMAIL, m_pSet>m_EmailAddress, m_pSet);
18: DDX_FieldText(pDX, IDC_EFAX, m_pSet->m_FaxNumber, m_pSet);
19: DDX_FieldText(pDX, IDC_EHPHONE, m_pSet->m_HomePhone, m_pSet);
20: DDX_FieldText(pDX, IDC_ENOTES, m_pSet->m_Notes, m_pSet);
21: DDX_FieldText(pDX, IDC_EWEXT, m_pSet->m_WorkExtension, m_pSet);
22: DDX_FieldText(pDX, IDC_EWPHONE, m_pSet->m_WorkPhone, m_pSet);
23. DDX_FieldText(pDX, IDC_EZIP, m _pSet->m_PostalCode, m_pSet);
24: DDX_Text(pDX, IDC_EDOB, m_oledtDOBY);
25. I[JAFX_DATA _MAP
26. /| Copy the DOB variable back from the view variable to the record
[st
27. if (pDX->m_bSaveAndValidate = TRUE)
28. m_pSet>m Birthdate =m_oledtDOB;
2}

PP OONO R WN

In addition to the above change, you have to remove the initialization of titsdate

variable in the set class. This is also code that was added by the AppWizard, and once
again you have to break the rules by modifying the code that you are never supposed to
touch. To make this change, you can take the simple approach by commenting out the

Retrieving Data from an ODBC Database 331 |

initialization of this variable in the set class constructor, in line 19 of Listing 14.3.

LisTiING 14.3. THE CDbOdbcSet CONSTRUCTOR.

1: CDbOdbcSet::CDbOdbcSet(CDatabase* pdb)

2 :CRecordset(pob)

£

4: J{AFX_FIELD_INIT(CTestdb5Set)
5. m_AddressiD=0;

6. m_FirstName=_T(");

7. m_LastName=_T(");

8 m_SpouseName=_T(*);
9 m Address=_T(");

10 m Cy=_T()

11: m_StateOrProvince =_T(*);
12: m_PostalCode=_T("),
13 m_Country=_T(");

14: m_EmailAddress=_T(*);
15: m_HomePhone =_T(*);
16: m_WorkPhone =_T(*);
17 m WorkExtension=_T(*);
18: m_FaxNumber=_T(");
19: /im Bithdate=0;

20: m_SendCard = FALSE;
21: m Notes=_T(");

22 m nFelds=17,

23 IJARX_FELD_INIT

24: m_nDefaultType = dynaset;
x5}

Now compile and run your application once again. You'll find that you have a fully func-
tioning database application that retrieves a set of records from the database and allows
you to scroll through them and make changes to the data, as shown in Figure 14.9.

Adding New Records

You've already created a fully functioning database application without writing a single

line of code. However, a few functions are missing. Most database applications let the
user add new records to the database. To add a new record to the database, you'll want to
figure out what the next ID number should be, so you'll scroll to the last record in the set
to get the ID and then increment it by one. Next, you'll callthenew function to add a

new record, set the ID field to the new ID you calculated, and then calpdlse func-

tion to save the new record. Finally, you'll call tReuery function to refresh the set of

records and then scroll to the last record in the set to let the user enter data into the new
record.

332 Day 14

FIGURE 14.9. 12 Untitled - testdb5 [_[O]x]
File Edit Becord View Help
The running appli- D& =) bR
cation. (LA EMail [nancyd@anpnhere.com
First Name: [Narcy Home Phone: [[504) 555-9557
Last Name: [Diavalio “Wark Phone: [|504) 555-9322
SpoussMame: [Faul Ewtension

Address: [E07 - 20th Ave. E. For [BONESSTTZZ
ey s [i5041 5557722

Bithdate a2
Cir [3eatle
™ Send Card
State: [

Motes:
i [ge122
County [osa

Ready HUM

] 'I'ip Because the ID field in the database in defined as an Autoincrement ~ field, you

do not normally specify your own ID for the field. However, because the
record set is creating a new record with the ID field, you need to assign a
valid ID to the record or you won’t be able to add it to the database. The
method used in this application will not work with any multiuser database
because each person would generate the same IDs for new records. In this
situation, a centralized method for generating new IDs, such as a counter
field in the database, is a better solution. The other option is to create a SQL
statement to insert a new record into the database that was missing the ID
field. This allows the auto-increment functionality to work correctly.

To add this functionality to your application, start by adding a function to your record set
class to determine the next ID number to be used. Add a member function to the record
set classcDbOdbeSet. Specify the function type as long, the function declaration as
GetMaxID , and the access as public. Edit the function, adding the code in Listing 14.4.

LisTING 14.4. THE CDbOdbcSet GetMaxID FUNCTION.

1: long CDbOdbcSet::GetMaxID()
2

3 IMowetbothelestrecod

4 Movelas(();

5 [reumteDaoithsrecod

6. reumm_AddressiD;

!

Retrieving Data from an ODBC Database 333|

Next, you'll need a menu entry that the user can select to add a new record to the data-
base. Add a new menu entry to the Record menu. Configure the new menu entry with the
properties in Table 14.8.

TABLE 14.8. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_RECORD_NEW
Caption N&ew Record

Prompt Add a new record\nNew Record

Using the Class Wizard, add an event-handler function fot theMANBvent message
for this menu to the view classbbodbcview. Edit this function, adding the code in
Listing 14.5.

LisTING 14.5. THE CDbOdbcView OnRecordNew FUNCTION.

1: void CDbOdbcView::OnRecordNew()

// TODO: Add your command handler code here
IGetapanieriotherecodset

CRecordset* pSet = OnGetRecordset();

I/ Make sure that any changes to the curent record
Ihavebeensaved

if (pSet>CanUpdate() && pSet>IsDeleted()

pSe>Ek()

(UpceeDet()

2 eun

13:

14 pSet>Upcaie();

15}

16: /GettheIDforthe newrecod
17: longm_INewlD =m_pSet->GetMaxID() + 1;
18 //Addthe newrecord

19: m_pSet->AddNew();
20 /SetteDinthe newrecod
21: m_pSet->m_AddressIiD =m_INewlID;
22 J|Savethe newrecord

23. m_pSet->Update();

24 [IRefreshthe record set

25: m_pSet->Requery();

26 //Move tothe newrecord
27 m_pSet>MoveLast();
28 [|Updatetheform

29: UpdateData(FALSE);
0}

EBELXOND O »®N

| 334

Day 14

Add a new toolbar button for the New Record menu, and then compile and run your
application. You should be able to add new records to the database, entering the data you
want into the records.

Deleting Records

The only functionality remaining is the ability to delete the current record from the data-
base. You'll need to add another menu entry to trigger this action. Once the action is trig-
gered, you'll verify that the user really does want to delete the current record and then
call thepelete function to remove the record. Once the record has been deleted, you'll
call themovepPrev function to navigate to the previous record in the set.

To add this functionality to your application, you'll need a menu entry that the user can
select to delete the current record from the database. Add a new menu entry to the
Record menu. Configure the new menu entry with the properties in Table 14.9.

TABLE 14.9. MENU PROPERTY SETTINGS.

Object Property Setting

Menu Entry ID IDM_RECORD_DELETE

Caption &Delete Record

Prompt Delete the current recordnDelete Record

Using the Class Wizard, add an event-handler function fot theMANBvent message
for this menu to the view classbbodbcview. Edit this function, adding the code in
Listing 14.6.

LisTING 14.6. THE CDbOdbcView OnRecordDelete FUNCTION.

1: void CTestdb5View::OnRecordDelete()

A

3. //'TODO: Add your command handler code here

4 [Makesurethe userwaris o dekete this record

5. ff(MessageBox(‘Are you sure youwart o delete this record?”,

6. ‘Delete this record?”, MB_YESNO | MB_ICONQUESTION) =
U IDYES)

L

8 /Deceterecod

9 m pSet>Del(),

100 /Movetothe previousrecod

11: m_pSet>MovePrew);

12 IUpdkietefom
13 UpdateData(FALSE);
u)

15}

Retrieving Data from an ODBC Database 335|

Add another button to the toolbar and associate it withDiMeRECORD_DELETEenu ID

so that the user can delete the current record without having to go to the menu. If you
compile and run your application at this point, you'll have a full-function database appli-
cation in which you can add, edit, and delete records, as shown in Figure 14.10.

FiIGURE 14.10. 2 Untitled - testdbS [[oI=]
Fle Edt Recod View Help
The completed appli- D& S K4t ?
cation. oo EMal [Javischa@ormamp et
First Mame: Davis Home Phone: [123-456-7890
LastMame: [Chapman Work Phone: [57 6543210
spoweeme Bow Eeemon [
Addiess: [123 Somewhere Fao [rgeedn
Bithdale: [7imr
City: [Nowhere X
P ZendCad
State: [T :
Mates
Zip: [7222
County: [
Fleady HUM

Today, you learned how you can use the ODBC interface to build database applications
that can be easily run against any database you might need to use. You saw how the
CRecordset class provides you with a substantial amount of functionality so that you can
provide database functionality in your applications. You also saw how the AppWizard
provides you with a large amount of database functionality without your typing a single
line of code.

Tomorrow, you will learn about Microsoft's newest database access technology, ActiveX
Data Objects, and how this can be combined with the ODBC interface to make your
database access even easier.

Q&A

Q Why would | want to use the ODBC interface instead of the Data Access
Objects?

A The Data Access Objects (DAO) use the Microsoft Jet database engine to perform
all of the database access. This adds at least a megabyte of overhead to your appli-
cation, and if you're using a SQL-based database, the database is already doing all
of the work that the Jet engine is doing for you. What's more, the Jet database

| 336

Day 14

engine uses the ODBC interface to access any SQL-based databases. As a result,
unless you are using PC-based databases, such as Access, FoxPro, or Paradox, you
get better performance from going directly to the ODBC interface yourself.

O

How can | add different record sets in an MDI application?

A You can add additiona@lRecordset -derived classes through the New Class Wizard
in an MDI application project. You need to specify that the new class is an MFC
class and that its base class isdRecordset class. The New Class Wizard will
have you specify the data source, just as the AppWizard had you do when creating
the shell for today’s application. Once you create the record set class, you can cre-
ate a new view class the same way, specifying the base cleBscasview . Once
you click the OK button, the New Class Wizard asks you to specify which of the
record set classes to use with the new record view class.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. What does ODBC stand for?
What functions can you use to navigate the record setReacardset object?

w N

What view class should you use with an ODBC application?

e

What sequence of functions do you need to call to add a new record to a record
set?

5. What function do you need to call before the fields inCieeordset object can be
updated with any changes?

Exercise

Add a menu entry and dialog to let the user indicate the record number to move to, and
then move to that record.

WEEK 2

In Review

Now that you've finished the second week, you should be
getting very comfortable working with Visual C++. You

should be beginning to understand how you can use the MFC
class hierarchy to provide a substantial amount of existing
functionality in your applications. You should also be starting
to understand how much supporting infrastructure your appli-
cations start with when you use the Visual C++ wizards to
construct as much of your application as you can.

This is a good time to take a little break and try some of the
things that you've learned on your own. Build an MDI appli-
cation, using a custom document type that you've come up
with yourself. See how you can save and restore the docu-
ment, as well as maintain it. Practicing on your own is key to
cementing your understanding of what you've learned in this
book. This will help you identify any areas that you might
need to go back and read again, as well as those areas where
you feel comfortable enough to not review.

By this time, you should have a good understanding of the
Document/View architecture and how it can be used to main-
tain the separation of the data from the representation of the
data that is displayed for the user. You've used this model for
both Single Document Interface (SDI) and Multiple
Document Interface (MDI) style applications, and you've
used it for reading and writing files to the disk drive. This
model is one of the main building blocks of MFC applica-
tions built with Visual C++. You should know where to place
any initialization information for a new set of data and where
to clean up when closing a set of data.

| 338

Week 2

You should also have a good understanding of how the SDI and MDI application styles
are alike and how they differ from each other and from the dialog application style. You
should have a good idea of when an application you are building should use one of these
styles and when it should use a different style. You should be able to create your own
SDI and MDI applications, as you need to, without any significant problems. If you've

got any questions about either of these areas, you might want to take another look at
Days 10 and 11 to review how the Document/View architecture works in both SDI and
MDI style applications.

You should understand how, in SDI and MDI style applications, you can save and restore
complex data structures in files on the system hard drive. You should be able to create
mixed-type objects that you create and maintain in the document object in your applica-
tions, be able to use tlsse function with thecarchive object to write the objects to

a file, and then be able to restore the objects at a later time. If you are having any trouble
understanding how this works or are running into any problems trying to implement this
functionality in your own applications, review Day 13.

Along with reading and writing files, you also have learned how you can design and
build toolbars for use in your SDI and MDI applications. At this point, you should be
completely comfortable with designing and creating your own toolbars and using them in
your applications. You should understand the importance of matching the toolbar button
ID to the ID of the menu for which the toolbar will be used as a substitute. You should
also have a basic understanding of creating and using your own customized status bar
elements in SDI and MDI applications. You should understand how you can use the
UPDATE_COMMAND_@vent message to evaluate and alter the status of menu, toolbar,
and status bar elements, relieving you of all the work of setting each of these elements,
and how to maintain their appearance and status yourself. If you aren’t clear on how you
can do any of these things, you might want to go back over Day 12 one more time.

You've seen how you can build a simple database application, pulling data from a data-
base through the ODBC interface. You should have a basic understanding of how you
can build database applications using this approach, how to maintain the data, how to
add new records, and how to delete records. You should know how all the database inter-
action is directed through the record set class and how you can directly control the data
through this object. If you're not sure of some of this, you might want to look back at

Day 14 for a quick refresher.

You learned how easy it is to add ActiveX controls to your projects and how Visual C++
builds C++ classes around the control, enabling you to interact with the control as if it
were just another C++ object. You should have a good grasp of how to add any ActiveX
control (armed with the documentation for the control) to your application and interact

In Review 339 |

with it in a seamless manner. You should be able to declare a variable for the control, set
the control’s properties, call its methods, and react to its events just as if it were a stan-
dard part of the Visual C++ development environment. If you aren’t sure how you can do
some of this, you might want to go back and reread Day 9.

Finally, you started this week by learning how to draw graphics on the windows of your
applications. You learned how to draw lines, circles, and squares, using a variety of pens
and brushes. You even learned how you can make a customized brush from a bitmap.
You learned how you can load a bitmap image from a file and display it for the user to
see. But most importantly, you learned about the device context and how it is used to
draw all these features on the windows of your applications. You should be able to use
these and other figure drawing device context methods to draw any image you might
want to draw on the window for the user to see and interact with. If you are unsure about
how you can do this, you probably want to look back at Day 8 once more.

By this time, you have built up quite a set of programming skills with Visual C++. You

are probably ready to tackle most of the smaller programming tasks you might
encounter—and maybe even a few not-so-small tasks. At this point, you are well on your
way to becoming an accomplished Visual C++ programmer. That said—now is not the
time to stop because there’s still more to be learned. There’s only one more week to go,
so tallyho!

WEEK 3

At a Glance

For the third and final week, you’ll be learning about several
of the more advanced aspects of building applications with
Visual C++. Some of these topics you’'ll use more than
others, but if you do much work with Visual C++, odds

are that you'll work with most, if not all, of these areas before
long.

You'll begin the week by picking up where you left off the
previous week with building database applications. On Day
15, you'll learn about Microsoft's latest database access tech-
nology, ActiveX Data Objects (ADO), and how you can
incorporate it into your Visual C++ applications to provide
database access to your application’s users. You'll learn how
using ADO is similar to and different from building database
applications using ODBC.

On Day 16, you'll learn how to create your own custom
classes and how to approach the design of these classes.
You'll also learn how to build your functionality into library
modules that you can give to other Visual C++ programmers
for use in their applications.

On Day 17, you'll learn a different means of allowing other
programmers to use your code by building DLLs. You'll learn
how to build two different types of DLLs: those that can be
used only by other Visual C++ applications and those that can
be used by applications built with any other Windows devel-
opment language or tool.

On Day 18, you'll learn how you can enable your applica-
tions to work on two or more separate tasks at the same time.
You'll learn how to trigger some background processing
whenever your application is sitting idle and how to spin off
independent threads that continue to work even when your
application is busy.

| 342

Week 3

On Day 19, you'll learn how to build your own ActiveX controls that can be used in
other applications or even in Web pages. You'll see how you can define the properties
and methods for your control and how you can trigger events in the containing applica-
tion from your control.

On Day 20, you'll learn how Internet applications communicate with each other using
the Winsock interface. You'll learn how you can use this same interface to enable your
applications to communicate over a network or even on the same machine.

Finally, on Day 21, you'll see how easy it is to incorporate the Microsoft Internet
Explorer Web browser into your own Visual C++ application. You'll learn how you can
control the Web browser, specifying what Web pages for it to display, and how you can
provide the user with information about what the browser is doing.

When you finish this final week, you'll be knowledgeable about most areas of Visual
C++ programming. Although there will still be areas and technologies that require more
in-depth study for you to master, you'll know and understand what those areas are all
about. You'll be prepared to dive head first into all areas of Visual C++ programming,
and by then you might already have identified some areas that you want to learn more
about than can be covered in this book.

You have only one week left to go, so go ahead and dive in and get going.

WEEK 3

DAY 15

Updating and Adding
Database Records
Through ADO

Now that you've gotten your feet wet with an ODBC database application, one
of the oldest Microsoft database access technologies, it's time to turn your
attention to the newest Microsoft database access technology, ActiveX Data
Objects (ADO). Designed for use with all of Microsoft’s programming and
scripting technologies, ADO presents the Visual C++ programmer with new
challenges in database programming, while still keeping the functionality famil-
iar. Today, you will learn

- How ADO works and how it uses the OLE DB technology for providing
simple database access.

- How you can build a simple ADO application in a couple of minutes
using ActiveX controls.

344

Day 15

’ H This chapter works with some features that may not be included in all
" Gaution P y

’ Nﬂtﬂ Many of the technologies bundled under the product name of Cairo will be

- How you can build a complete database application using regular forms controls.

- How you can use special ADO macros to build a custom record set class for use in
your database applications.

versions of Visual C++. Although ADO is an important new area of pro-
gramming with Microsoft data access technologies, this chapter discusses
some things that you may not have the ability to do with your version of
Visual C++.

What Is ADO?

A couple years ago, Microsoft designed a new data access technology called OLE DB.
This data access technology was intended to be much more than simply a way of getting
data into and out of databases. This technology was intended to be the means of access-
ing data, regardless of where that data may be located. Through the OLE DB technology,
you could access mail messages, spreadsheets, files, and so on. Anything that might have
data could possibly be accessed through the OLE DB technology. This was one of the
first technologies to be produced from the research and development of the object-
oriented file system at the heart of what Microsoft has been calling “Cairo” for the

past few years.

released some time next year in the Windows NT 5.0 operating system.

As you can imagine, with the range of functionality that OLE DB must have to access
data in all of those different sources, it might be quite complex to work with this tech-
nology. Well, it is. This is where ActiveX Data Objects come into play. ADO was
designed as another layer on top of OLE DB, specifically for providing database access.

One of the goals in designing ADO was to create a control that could be used to provide
data access and control in Web pages, caching the data records on the client. Part of the
reason for this goal was to allow a Web browser user to access an entire set of data
records, without having to pull down each individual record, one at a time, to navigate
and make changes to the records. Because of this capability with ADO, the ADO control
is distributed with Microsoft’s Internet Explorer Web browser (version 4.0 and above).

Updating and Adding Database Records Through ADO 345|

ADO Objects

To make ADO as easily usable in scripting languages such as VBScript as it is in pro-
gramming environments such as Visual Basic, Microsoft tried to keep the number of
objects to a minimum. As a result, you have a small number of basic objects:

+ Connection
- Bor

- Command
» Parameter

+ Recordset

-

Along with these objects, you have collection objects for containing collectiaas qf
Parameter , andrd objects.

The Connecion Object

The connecion object is used for establishing and maintaining a connection to a data-
base. This object is configured with the connection information, including database loca-
tion, user ID, and password, before opening the connection. Once all of this information
is appropriately configured, the connection object should hagéismethod called to

open the connection. Once thanecton 0bject goes out of scope, the connection is
automatically closed. If you want more control over closing and opening the database
connection, you can call thennecion 0bject'sCose method to close the connection.

The connecion object is also the object through which any high-level connection func-
tionality is controlled. This includes all transaction control, througtcthection
object’'sBeginTrans , CommitTrans , andRolbackTrans ~ methods.

The Error Object

Whenever a database error occurs, the error information from the database is placed into
an ADOErr object. The error information in the error object is the database error infor-
mation, not ADO error information. Whenever you encounter an error and need to look
up the error information to determine what went wrong, you'll need to examine the data-
base error codes and descriptions, not the ADO error codes.

The commandObject

The commandobject is used to execute commands in the database. You can use this
object to run SQL statements or call stored procedures (SQL functions that are stored in

| 346

Day 15

the database). Any time that a command returns rows of data, you need to attach the
Commandobject to arecordset Object for the returned data to be stored in.

When you call a stored procedure, as with functions in any other programming language,
you'll often need to pass parameters to the stored procedure. To pass these parameters,
you'll attach a series @farameter Objects to the&commandobject. Each of thearameter

objects will have the name of the parameter that it holds the value for, along with the
value that should be passed to the database for that particular parameter.

The parameter Object

The parameter 0bject is used for passing variables and for calling stored procedures or
parameterized queries. These are attachedtton@andobject for use in calling the
command that has been programmed intccihv@mandobject.

The Recordset Object

TheRecordset Object contains a set of records from the database. The set of records is
the result of a command being sent to the database that results in a set of records being
returned. You can navigate through Heeordset , much like you do with theecordset

objects for other database access technologies. You can also access the fields in each
record in therecordset through therd objects that are associated with Heeordset .

You can update the records in #eordset , and then use theecordset to update the
database. You can also insert new records inteedeeiset , or delete records and have
those changes made in the database.

The Fed Object

Therd object represents a single column in Haeordset . Eachrtd object contains

the column name, data value, and how the data value should be represented. Because
ADO was designed to be used in Microsoft’s scripting languages, and the only data type
available in these scripting languages is\di@t data type, theed objects always

contain avaient data value. The data value is automatically converted to the correct data
type when updating to the database. As the programmer working with the ADO objects,
you will have to convert the value fromvaiat to whatever data type you need it to be,

as well as convert it back tovaat when updating the value.

Using the ADO ActiveX Control

There are two different ways in which you can use the ADO control in your Visual C++
applications. The simple way to incorporate ADO into your application is through the
use of ActiveX controls. You can add the ADO data control to your Visual C++ project,
just like any other ActiveX control, as shown in Figure 15.1.

Updating and Adding Database Records Through ADO

347 |

Ficure 15.1.

Adding the ADO
ActiveX control to a
project.

Components and Contrals Gallery HE

Choose a component ta insert inta your project

Lockin | i Regitered Activel Contiok: = | =i1E
Bl Microzoft Animation Con
B} Microsolt Arimatian Con
El Microsoft Chart Contral, -
B Microsolt Comman Diala
B Microsoft Cammunicatior
T Microsolt Coolbar Contic

] MClw/ind . Corthiol

Mediaview 1.41k Cantiol

-, Microzoft Actives Het Spat Cortral 1.0
%9 Microsaft Activet Image Contral 1.0

i Microsolt Activei Upload Control, version 1.5
EEiMiciosoft ADO Dala Conirol, version E.0

L

[Micrasoft ADD Data Cantil, version 6.0k

=

File name:

Insert
Close
More Info

[Microzoft AD0 Data Contral 6.0

Fath to control
[E R INNT 3545 ystem32\MSADODC.OCX

Once you add the ADO control to your project, and place it on a window, you'll need to
specify the data connection in the control properties, as shown in Figure 15.2. You'll also
need to specify the source for the records that will be retrieved by the control, as shown

in Figure 15.3.

FIGURE 15.2.

Specifying the data-
base connection.

FIGUre 15.3.

Specifying the record
source.

Microsoft ADO Dats
44 R General

6,0 Propetties

Authentication

RecordSouree | Ce []v]

Sourze of Connection

€ Use Dats Link Fils

@ Uze ODBC Data Source Name

[Tewioe =] hew

[Cean. |

" Use Connection Sting

Other Attributes: |

Microsolt ADD Data Control, version 6.0 Proparties

P Genersl | Contil | Authenticstion | RecordSeucs | e [C]v)

FecordSournce
Command Type

[1- 2dCmdTent -]
Table or Stored Procedure Name

Command Text (5AL)

Select * fiom Addresse: =

To use the ADO control efficiently, you'll also want to use data-bound controls that are
ADO-enabled, such as the Microsoft DataGrid control. When you add these controls to
the window with the ADO control, you'll specify the ADO control as the data source

| 348

Day 15

for the control, as shown in Figure 15.4. If the control is designed to only provide access
to a single field in a record set, you'll also need to specify which field is to be used for

the control.

FIGURe 15.4.

Specifying the data
source.

%

Property

Layout | Color | Fort | Splts | Fomat 4l |

| Value |

Allowdddt ew
Allowdirows
AllowDelete
Allowlpdate
Appearance
BackColor
EBorderStyle
Caption
ColumnHeaders
Datahember
DataSource
DefColwidth
Enabled

Font
ForeColor

False =~
Tiue

False

Tiue

1-dbg3D

0x30000005

1 - dbgFixedSingle

DiatalGrid]

Tiue

<Notbound to a DataSources =

<Moot bound to & DataSource:

M3 Sans Serif
0x30000003 -

GO

x|

Once you add all these controls to the window and configure them, you can run your
application and have full database access through ADO without having written a single
line of code, as shown in Figure 15.5.

Ficure 15.5. 2 Untitled - SimpleAda HEE
R File Edit Yiew Help
A running ADO 0= EX
control database =
o (ML 4]» w]
application.
Datalridl
AddressID [Furstiame [Lastiame [SpouseMame [addr
] Hancy Davolio Paul 507
2 Anchew Fuler Arine 02
HE Janet Levering Rubert 722
4 Margaret Peacack Hichael 10
15 Jahn Buchanan 146
I Davis Chapman Dore 123
I Dore Terada Davis 123
I EE] Jahn Chapter Paul 507
HE] Pogo Terada 37
I EE] Hyra Terada 37
E] Harvey Chapman
E: Hyrieva Chapman 23
Ll | ; =
Ready MUM i

This is such a simple way to build database applications: Just place controls on a window
and configure the properties to tell it where to get the data. What's the downside of build-
ing ADO applications this way? First, using this approach involves a lot of unnecessary
overhead in building ADO applications. For each SQL query or table that you want to

pull in a separate record set, you have to add a separate ADO control. Each of these ADO
controls will establish a separate connection to the database, which could cause problems
with databases that have a limited number of connections available (not to mention the

Updating and Adding Database Records Through ADO 349 |

additional overhead on the application). Finally, not all data-bound controls are ADO
enabled. ADO is such a new technology that there are few controls that you can use with
it at this time. You may find some controls that allow you to retrieve and display data for
the user, but do not allow the user to change and edit the data. Others may not even pro-
vide you with that much functionality.

Importing the ADO DLL

If you look around in the MFC class hierarchy, you'll find that there are no classes for
use with ADO. If you don’t want to use the controls approach, then what are your
options? Do you have to create the classes yourself? No, Microsoft has provided other
means for you to create and use classes for each of the objects in ADO, through the use
of a new C++ precompiler directive callgohport .

The#mpot precompiler directive was first added to Visual C++ with the 5.0 release.
You can use this directive to import an ActiveX DLL that has been built with the
Dispech interface description included in the DLL. This directive tells the Visual C++
compiler to import the DLL specified by thenport directive and to extract the object
information from the DLL, creating a couple of header files that are automatically
included in your project. These header files have the filename extersiorandm

and are in the output directory for your project (the Debug or Release directory, the same
directory where you'll find the executable application after you've compiled your pro-
ject). These two files contain definitions of classes for each of the objects in the DLL
that you can use in your code. Teport directive also tells the compiler to include the
DLL as part of the project, eliminating the need to includeghdile for the DLL in

your project.

You can import the ADO DLL by placing the following code at the beginning of the
header file in which you are defining any database objects:
#define INTGUID
#import “C:\Program Files\Common Files\System\ADO\msado15.dII"

[rename_namespace(“ADOCG") rename(“EOF”, “EndOfFile”)
using namespace ADOCG;
In these four lines of directives, the first line defines a constant that needs to be defined
for ADO. The second imports the ADO DLL, creating the two header files mentioned
earlier. After the filename to be imported, this directive includes two attributes to the
#mport directive. The firstyename_namespace , renames the namespace into which
the DLL has been imported. This is followed with the line following#ihgort , where
the renamed namespace is specified as the one used. The second &iteibate,
renames an element in the header files that are created usifgpdhe directive.

| 350

Day 15

’ “l] When you work with these objects and functions, you need to use the cor-

The reason you rename elements in these header files is to prevent conflicts with another
element named elsewhere. If you examine the header file, the element specified is not
renamed in the file, but when the compiler reads the file, the element is renamed. The
final line includes the ADO header file, which contains the definition of some macros

that you will use when writing your ADO applications.

Connecting to a Database

Before you can use any of the ADO objects, you need to initialize the COM environment
for your application. You can do this by calling tiveeze API function, passing
NULL as the only parameter, as follows:

“Cornipize(NULL),
This enables you to make calls to ActiveX objects. If you leave out this one line of code

from your application, or don'’t put it before you begin interacting with the objects, you
get an COM error whenever you run your application.

When you are finished with all ADO activity, you also need to shut down the COM envi-
ronment by calling theounniize function, as follows:

ricize(

This function cleans up the COM environment and prepares your application for shutting
down.

Once you initialize the COM environment, you can create a connection to the database.
The best way to do this is not to declareo@ecton object variable, but to declare a
Connection ~ Object pointer, ConneconPr , and use it for all your interaction with the
Connection Object. Once you declarecannecion 0bject pointer, you can initialize it by
creating an instance of tlmennecton object, calling thecreaeinstance function, passing

it the uuID of the Connection Object as its only parameter, as follows:

_ConnectionPtr pConn;
pConn.Createlnstance(__uuidof(Connection));

rect number of underscore characters in front of the various object and
function names. The _ConnectionPtr object has only a single underscore char-
acter, whereas the __uuidof function has two.

Once you create the object, you can calldhen function to establish the connection to
the database. This function takes four parameters. The first parameter is the connection
definition string. This string defines the OLE DB data source for the database. It may be

Updating and Adding Database Records Through ADO 351 |

an ODBC OLE DB driver, where OLE DB is sitting on top of an ODBC data source, as
you'll use in your sample application. If you are using SQL Server or Oracle databases,

it may be a direct connection to the OLE DB interface provided by the database itself.
The second parameter is the user ID for connecting to the database. The third parameter
is the password for connecting to the database. The fourth parameter is the cursor type to
use with the database. These types are defined inséh@s4h header file that is creat-

ed by thesimport directive. A typical use of thepen function to connect to an ODBC

data source that doesn’t need a user ID or password is like the following:

pConn->Open(L"Provider=MSDASQL.1;Data Source=TYVCDB", L™, L™,
[0 adOpenUnspecified);

Executing Commands and Retrieving Data

Once you have the connection open, you can usenanandobject to pass SQL com-
mands to the database. This is the normal method of executing SQL commands with
ADO. To create @ommandobject, follow the same process that you used to create a
Connection Object. Declare @ommandobject pointer, Commandptr, and then create an
instance of it using theuld of thecommandobject, as follows:

_CommandPtr pCmd;
pCmd.Createlnstance(__uuidof(Command));

Once you create yomrommandobject, assuming that you have already established the
connection to the database, set the active connection propertyafrifieandobject to
the operconnecion 0object pointer, as follows:

pCmd->ActiveConnection = pConn;

Next, specify the SQL command to be executed by settingdineandText property of
the commandobject, as follows:

pCmd->CommandText = “Select * from Addresses”;

At this point, you have two options for how you execute this command and retrieve the
records. The first is to call tteommandobject’'sexecue method, which will return a

new Recordset Object, which you’ll want to set toRecordset Object pointer, as

follows:

_RecordsetPtr pRs;
pRs = pCmd->Execute();

The other approach to running the command and retrieving the records is to specify that
thecommandobject is the source for the records in Haerdset . This requires creating
theRecordset Object as follows:

_RecordsetPtr pRs;

pRs.Createlnstance(__uuidof(Recordset));
pRs->PutRefSource(pCmd);

| 352

Day 15

4
4

'l'il] Although placing all of the command and connection information into the

Now, you'll need to create twULLwairt values to pass as the first two parameters to
theRecordset 's Open method. The third parameter will be the cursor type to use, fol-

lowed by the locking method to use. Finally, the fifth parameter teddogiset 's Open

method is an options flag that indicates how the database should evaluate the command
being passed in. You do this with the following code:

Il Create the variant NULL

_variant tv\Uk

VNullvt=VT_ERROR;

vNull.scode = DISP_E_PARAMNOTFOUND;

1/ Open the recordset
pRs->Open(vNull, vNull, adOpenDynamic, adLockOptimistic, adCmdUnknown);

You could take another approach to accomplish all of the preceding tasks with only a few
lines of code. Skip the use of themmandandConnecton 0bjects altogether, placing all

the necessary connection information in #aerdset 's Open function. You can specify

the SQL command as the first parameter and the connection information as the second
parameter, instead of the twaLLs that you passed previously. This method reduces all

of the preceding code to the following few lines:

_RecordsetPtr pRs;
pRs.Createlnstance(__uuidof(Recordset));
pRs->Open(_T(“Provider=MSDASQL.1;Data Source=TYVCDB"),
_T(“select * from Addresses”), adOpenDynamic,
adLockOptimistic, adCmdUnknown);

Recordset Open function is fine for a simple application, such as the one that
you will build today, you are better off using the Connection object with any
application that has more than a couple of database queries. This allows you
to make a single connection to the database and use that one connection
for all interaction with the database.

Navigating the Recordset

Once you've retrieved a set of records from the database, and you are holding them in a
Recordset Object, you'll need to navigate the set of records. This functionality is avail-
able, just as you would expect, through theeFist , Movelast , MovePrevious , and

MoveNext functions. None of these functions take any parameters because they perform
the functions that you would expect them to perform.

Updating and Adding Database Records Through ADO 353|

Along with these functions, theecordset object also has two properti@yFandEOF

(which you should normally rename to prevent a collision with the default definition of
EOR, which can be checked to determine if the current record in the set is beyond either
end of the set of records.

Accessing Field Values

When you need to begin accessing the data values in each of the fields is where working
with ADO in Visual C++ begins to get interesting. Because ADO is intended to be easy
to use in Microsoft’s scripting languages, VBScript and JScript, which only have

vaat data types, all data elements that you'll retrieve from fields in the A&6diset

arevart values. They have to be converted into the data types that you need them to
be. There are two ways of doing this. The first way is the straight-forward way of retriev-
ing the values into et and then converting them, as in the following code:

_variant_tvFirstName;
CString strHrstName;

VFirstName = pRs->GetCollect(_varant_t(FirstName”));
vFirstName.ChangeType(VT_BSTR);
strFHrstName = vFirstName.bstrVal;

The not-so-straight-forward way to do this is actually the better way, and in the long run,
is a lot easier to work with. Microsoft has created a series of macros that perform the
conversion for you and that maintain a set of variables of the records in the set. To do
this, you'll define a new class to use as the interface for your record set. This class will
be a descendent of tlkeDORecordBinding class, which is defined in theih header

file, which you included just after thamport directive. This class will not have any con-
structor or destructor but will have a series of macros, along with a number of variables.
Each field in the set of records has two variablesnsigrediong , which is used to

maintain the status of the variable, and the field variable itself. These variables must be
regular C variables, and they cannot be C++ classes swashings. A simple example of

this class declaration is the following:

class CCustomRs:
public CADORecordBinding
{
BEGIN_ADO_BINDING(CCustomRs)
ADO_FIXED_LENGTH_ENTRY(1, adinteger, m_|IAddressID, IAddressIDStatus,
O FALSE)
ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,
[sizeof(m_szFirstName), IFirstNameStatus, TRUE)
ADO _FIXED LENGTH_ENTRY(3, adDate, m_ditBirthdate, IBirthdateStatus,
O TRUE)
ADO_FIXED_LENGTH_ENTRY(4, adBoolean, m_bSendCard, ISendCardStatus,
O TRUE)
END_ADO_BINDING()

| 354

Day 15

LONG m_I|AddressID;

ULONG IAddressIDStatus;

CHAR m_szFirstName[51];

ULONG IFirstNameStatus;

DATE m_dtBirthdate;

ULONG IBirthdateStatus;
VARIANT_BOOL m_bhSendCard;
ULONG ISendCardStatus;

)

Once you define this record layout class to match the record layout that will be returned
by your database query, you can declare a variable of this class for use in your applica-
tion, as follows:

CCustomRs m_rsRecSet;
Next, you need to create a pointer to/@RecordBinding interface, as follows:
IADORecordBinding *picRs = NULL;

This is a pointer to a o Mnterface that is part of the ADRecordset 0object. Once you
retrieve the set of records, you need to retrieve the pointer tabtbrecordBinding inter-
face and bind the custom record set class t@dtwriset 0bject, as in the following
code:

if (FAILED(pRs->Queryinterface(__uuidof{lADORecordBinding), (LPVOID 0 ®&picRs)))

_com_issue_error(E_NOINTERFACE);
picRs->BindToRecordset(&m_rsRecSet);

Now, as you navigate the records in the set, you just need to access the member variables
of your custom record class to retrieve the current value for each field.

The BEGIN_ADO_BINDINGand END_ADO_BINDINGMacros

The key to the second method of accessing the data values in the record set is in the
macros that are used in defining the record class. The set of macros start with the
BEGIN_ADO_BINDINGMacro, which takes the class name as its only parameter. This macro
sets up the structure definition that is created with the rest of the macros that follow.

The set of macros is closed by #¢D_ADO_BINDINGMacro. This macro doesn't take

any parameters, and it wraps up the definition of the record binding structure that is cre-
ated in the class. It is in the rest of the macros, which are used between these two, where
the real work is done.

The ADO_FIXED_LENGTH_ENTR¥acros
The ADO_FIXED_LENGTH_ENTRINacro is used for any database fields that are fixed in

Updating and Adding Database Records Through ADO 355|

size. It can be used with a date or boolean field, or even a text field that is a fixed size,
with no option for any variation in the database. There are two versions of this macro;
you add & to the end of the name of the second versi@®O(FIXED_LENGTH_ENTRY2

Both versions require the same first three and last parameters. The first version requires
an additional parameter that is not required in the second version. The first parameter is
the ordinal number of the field in the record set. This is the position in the field order as
returned by the SQL query that is run to populate the record set. The second parameter is
the data type of the field; the available data types are defined in the header file created by
the#mport directive. The third parameter is the variable into which the data value is to

be copied. For the first version of the macro, the fourth parameter is the variable for the
field status (thensgnediong that you defined with the variable for the actual value). The
last variable is a boolean that specifies whether this field can be modified.

The ADO_NUMERIC_ENTRMacros

You use theaDO_NUMERIC_ENTRmacros with numeric fields only. They are similar to

the ADO_FIXED_LENGTH_ENTRRnAcros in that there are two different versions of the

macro, named in the same way. In these macros, the first five parameters are the same in
both versions, along with the final parameter. Like withAbe_FIXED_LENGTH_ENTRY

macros, the first version has an additional parameter that is not used in the second ver-
sion.

The first three parameters for theO_NUMERIC_ENTRmacros are the same as those for

the ADO_FIXED_LENGTH_ENTRINacros, as are the last parameter and the next to last
parameter for the first version. It is the fourth and fifth parameters that are unique to
these macros. The fourth parameter specifies the precision of the value in this field of the
record set. The fifth parameter specifies the scale of the value. Both of these parameters
are crucial in correctly converting the value to and frorfsa data type.

The ADO_VARIABLE_LENGTH_ENTRMacros

The final series of macros is theo_VARIABLE_LENGTH_ENTRMacros. You use this

series of macros with database fields that are likely to vary in length. With a SQL-based
database, you want to use this series of macros witkaazy (variable-length charac-

ter string) columns. There are three versions of this macro. In all three versions, the first
four parameters are the same, and the final parameter is the same. It is the parameters
between them that vary.

The first parameter is the ordinal position of the column in the record set as returned by
the SQL query. The second parameter is the data type. The third parameter is the variable

| 356

Day 15

in which the data value should be placed. The fourth parameter for all versions of the
macro is the size of the variable into which the value is to be placed. This prevents the
data from being written past the end of the variable that you defined for it to be placed
in. As with the previous macros, the final parameter specifies whether the field is update-
able.

In the first version of this macro, there are two parameters between the fourth and final
parameters. The second version of this macro only has the first of these two parameters,
and the third version only has the second of these two parameters. The first of these two
parameters is the status variable for use with this field. The second of these two parame-
ters is the length of the field in the database. The preceding example used the second ver-
sion of this macro.

Updating Records

When you need to update values in a record in the recordset, how you handle it depends
on which of the two methods you used to retrieve the data elements from the recordset. If
you retrieved each field and converted it fromait yourself, you need to update each
individual field that has been changed. The update is done usiRecttiset object’s

Update method, which takes two variables, the field being updated and the new value for
the field. You could make this update using the following code:

_variant_tvName, Walue;

vName.SetString(‘FirstName”);

Walue.SetString(‘John’);

pRs->Update(vName, value);

If you created your record class and bound it to the recordset, updating the record is a lit-
tle simpler. Once you have copied the new values into the variables in the record class,
you can call the record-bound version of tlpeate function, as in the following:

picRs->Update(&m_rsRecSet);

This updates the record in tRecordset object to be updated with the values in the
record class that you have bound to the set.

Adding and Deleting

Adding and deleting records from an ADO recordset is similar to how you accomplish
it in other database access technologies. However, there are some slight subtleties to how
you perform the addition of new records.

For deleting the current record, you can callrberdset object’'sDekete method. This
method requires a single parameter that specifies how the delete is supposed to be done.

Updating and Adding Database Records Through ADO 357 |

Most likely, you'll pass thedaffectCurent value so that only the current record in the
recordset is deleted, as in the following code:

pRs->Delete(adAffectCurrent);
pRs->MovePrevious();

As with any other database access technology, once you've deleted the current record,
there is no current record, so you need to navigate to another record before allowing the
user to do anything else.

When you are adding a new record, you can calRébedset object'saddNew method.

Once you have added a new record, the new record is the current record in the record set.
If you check the variables in the record class that you created, you'll find that they are all
empty. However, you cannot just begin entering data values into these fields. To allow

the user to immediately enter the various data elements in the new record, you'll blank

out the values in the record class and pass this variable as the only parameter to the Add
New class. You need to call it through the record-binding interface pointer, as in the fol-
lowing example:

CSringsrBank="
COleDateTime dtBlank;

m_rsRecSetm_|AddressID = 0;
strepy(m_rsRecSetm_szFirstName, (LPCTSTR)strBlank);
m_rsRecSetm_dtBirthdate = (DATE)dtBlank;
m_rsRecSet.m_bSendCard = VARIANT_FALSE;
picRs->AddNew(&m_rsRecSet);

This allows you to provide the user with a blank record, ready for editing. Once the user
has entered all the various values in the record, copy all these values back to the record
variable. Then, call thepdate method to save the record.

Closing the Recordset and Connection Objects

Once you finish working with a record set, you'll close the record set by callingpdhe
method, as follows:

pRs>Close();

Once you finish all database interaction for the entire application, you'll also close the
connection to the database by calling ¢theecion object'sCese method:

pConn->Close();

Building a Database Application Using ADO

| 358

Day 15

The sample application that you will build today is another simple database application,
basically the same as the one you built yesterday. You'll use ADO to retrieve a set of
records from an Access database, providing functionality to navigate the record set. The
user will be able to make changes to the data in the record set, and those changes will be
reflected in the database as well. The user will also be able to add new records to the
record set and delete records as desired. You will accomplish all of this using ADO as the
means of accessing the database, which will go through the ODBC driver that was con-
figured yesterday.

Creating the Application Shell

The application that you will build today will be an SDI-style application. As with sev-
eral other sample applications that you build in the course of reading this book, every-
thing that you do in today’s application is just as applicable to an MDI or dialog-style
application. To start the application, you'll use the MFC AppWizard to build the applica-
tion shell, using most of the SDI-style application default settings.

To start your application, create a new AppWizard project, naming the project something
appropriate, such asAdo. Specify on the first panel of the AppWizard that you are

building an SDI-style application. Accept all the default settings for steps 2 through 5,
being sure to leave the second step stating that you want no database support included in
the application. On the final AppWizard step, specify that the view class should be inher-
ited from thecFormview class.

Once you finish creating your application shell, design the main dialog form for use in
your application. Add the standard controls for each of the fields in the Addresses table
from the database you used yesterday (or if you used a different database yesterday, add
controls for all the fields in the table that you used), as shown in Figure 15.6. Configure
the controls using the properties listed in Table 15.1.

TABLE 15.1. CONTROL PROPERTY SETTINGS.

./"

“Il If you want to save a little time when building the example, you can leave

out most of the controls and database fields from the application. The key
fields that you’ll need to include on the screen are ID, First and Last Names,
Birthdate, and Send Card. If you want to leave out the other fields from the
application, that’s fine. You will need to include these fields in the
CCustomRs class that you create in this chapter.

Updating and Adding Database Records Through ADO

359 |

FIGURE 15.6.

5 dbado - Miciosoft Visual C++ -

[DbAdo.ic - IDD_DBADO_FORM (Dialag)]

Th) f | ZlFile Edt View Inset Project Build Layout Tools Window Help 18]
e main form layout. PR o R ey sl
[CObAdoview = |[1anclzes members) v][V CDbAdaView ~|FE -] LIRS
-1 N T T T T O P RN TR
+ _1DbAdo e T =
_ Addisss 1D ’mi Email Address ’mi
—: First Name ’mi Home Phone: ’mi
- LastName [Eqr WokPhone [Egr
- SpouseMame [Eqt WerkEsenson [Egr
: Addess [Ege FawMumber [Em
: oy @ Bithdate [Eqr
= State OrProvince [Eqy SendCard
3 PostlCode [E3r Mo R =
7 Country ’mi
S0 | R | 5 - <]
| 488 13i
| =
|
L’T’\Euld Debug & Find in Files 1 J, Find in Files2 3 4| | >|L
Ready I% 0.0 7 3204200
Object Property Setting
Static Text ID IDC_STATIC
Caption Address ID
Edit Box ID IDC_EDIT_ADDRESSID
Static Text ID IDC_STATIC
Caption First Name
Edit Box ID IDC_EDIT_FIRSTNAME
Static Text ID IDC_STATIC
Caption Last Name
Edit Box ID IDC_EDIT_LASTNAME
Static Text ID IDC_STATIC
Caption Spouse Name
Edit Box ID IDC_EDIT_SPOUSENAME
Static Text ID IDC_STATIC
Caption Address
Edit Box ID IDC_EDIT_ADDRESS

TABLE 15.1. CONTINUED

continues

| 360 Day 15

Object Property Setting
Static Text ID IDC_STATIC

Caption Qy
Edit Box ID IDC_EDIT_CITY
Static Text ID IDC_STATIC

Caption State Or Province
Edit Box ID IDC_EDIT_STATEORPROVINCE
Static Text ID IDC_STATIC

Caption Postal Code
Edit Box ID IDC_EDIT_POSTALCODE
Static Text ID IDC_STATIC

Caption Country
Edit Box ID IDC_EDIT_COUNTRY
Static Text ID IDC_STATIC

Caption Email Address
Edit Box ID IDC_EDIT_EMAILADDRESS
Static Text ID IDC_STATIC

Caption Home Phone
Edit Box ID IDC_EDIT_HOMEPHONE
Static Text ID IDC_STATIC

Caption Work Phone
Edit Box ID IDC_EDIT_WORKPHONE
Static Text ID IDC_STATIC

Caption Work Extension
Edit Box ID IDC_EDIT_WORKEXTENSION
Static Text ID IDC_STATIC

Caption Fax Number
Edit Box ID IDC_EDIT_FAXNUMBER
Static Text ID IDC_STATIC

Caption Bithdate
Edit Box ID IDC_EDIT_BIRTHDATE
Static Text ID IDC_STATIC

Caption Send Card
Object Property Setting

Updating and Adding Database Records Through ADO

361 |

Check Box ID IDC_CHECK_SENDCARD
Static Text ID IDC_STATIC

Caption Notes
Edit Box 1D IDC_EDIT_NOTES

Once you add all of the controls to the form, use the Class Wizard to attach variables to
each of these controls, as specified in Table 15.2. The variables should match the data

types of the columns in the database that the control will be used to display.

TABLE 15.2. CONTROL VARIABLES.

Object Name Category Type
IDC_CHECK_SENDCARD m_bSendCard Value BOOL
IDC_EDIT_ADDRESS m_strAddress Value CsSting
IDC_EDIT_ADDRESSID m_I|AddressID Value long
IDC_EDIT_BIRTHDATE m_oledtBirthdate Value COleDateTime
IDC_EDIT_CITY m_strCity Value Csting
IDC_EDIT_COUNTRY m_strCountry Value Csting
IDC_EDIT_EMAILADDRESS m_strEmailAddress Value CSting
IDC_EDIT_FAXNUMBER m_strFaxNumber Value Csting
IDC_EDIT_FIRSTNAME m_strFirstName Value CSting
IDC_EDIT_HOMEPHONE m_strHomePhone Value Csting
IDC_EDIT_LASTNAME m_strLastName Value CSting
IDC_EDIT_NOTES m_strNotes Value Csting
IDC_EDIT_POSTALCODE m_strPostalCode Value CSting
IDC_EDIT_SPOUSENAME m_strSpouseName Value Csting
IDC_EDIT_STATEORPROVINCE ~ m_strStateOrProvince Value CSting
IDC_EDIT_WORKEXTENSION m_strWorkExtension Value Csting
IDC_EDIT_WORKPHONE m_strWorkPhone Value CSting

Building a Custom Record Class

Before you go any further in building your application, you need to create your custom
record class that you will bind to the record set. This class will need public variables
for each of the columns in the database table that you are selecting, as well as status
variables for each of these columns. You'll also build the set of macros to exchange the

| 362 Day 15

column values between the record set and the class variables. To create this class, create
a new class using the same method you used in previous days, specifying that a generic
class. Specify a suitable class name, suatcastomRs, and specify the base class as
CADORecordBinding With public access.

Once you have created your new class, delete the constructor and destructor functions
from both the header and source code files for the new class. Edit the header file for
your new class, importing the ADO DLL and filling in the macros and variables, as in
Listing 15.1.

LisTING 15.1. THE CUSTOM RECORD CLASS.

1:#define INMTGUID

2: #import “C:\Program Files\Common Files\System\ADO\msado15.dll"
[rename_namespace(*ADOCG") rename(“EOF”, “EndOfFile”)

3: using namespace ADOCG;

4:#ndude'fosnth’

5

6: dass CCustomRs :

7. public CADORecordBinding

&

9: BEGIN_ADO_BINDING(CCustomRs)

10: ADO_FIXED_LENGTH_ENTRY(1, adinteger, m_lAddressID,

U |AddressIDStatus,FALSE)

11: ADO_VARIABLE_LENGTH_ENTRY2(2, adVarChar, m_szFirstName,
0 sizeof(m_szFirstName), IFirstNameStatus, TRUE)

12: ADO_VARIABLE_LENGTH_ENTRY2(3, adVarChar, m_szLastName,
[sizeof(m_szLastName), ILastNameStatus, TRUE)

13: ADO_VARIABLE_LENGTH_ENTRY2(4, adVarChar, m_szSpouseName,
[sizeof(m_szSpouseName), ISpouseNameStatus, TRUE)

14: ADO_VARIABLE_LENGTH_ENTRY2(5, adVarChar, m_szAddress,
0 sizeof(m_szAddress), |AddressStatus, TRUE)

15: ADO_VARIABLE LENGTH_ENTRY2(6, adVarChar, m_szCity,

0 sizeofim_szCiy),CityStatus, TRUE)

16: ADO_VARIABLE_LENGTH_ENTRY2(7, adVarChar, m_szStateOrProvince,
0 sizeof(m_szStateOrProvince), IStateOrProvinceStatus, TRUE)

17: ADO_VARIABLE_LENGTH_ENTRY2(8, adVarChar, m_szPostalCode,
[0 sizeof(m_szPostalCode), IPostalCodeStatus, TRUE)

18: ADO_VARIABLE LENGTH_ENTRY2(9, adVarChar, m_szCountry,
[sizeof(m_szCountry), ICountryStatus, TRUE)

19: ADO_VARIABLE_LENGTH_ENTRY2(10, adVarChar, m_szEmailAddress,
0 sizeof(m_szEmailAddress), IEmailAddressStatus, TRUE)

20: ADO_VARIABLE_LENGTH_ENTRY2(11, adVarChar, m_szHomePhone,
0 sizeof(m_szHomePhone), IHomePhoneStatus, TRUE)

21: ADO_VARIABLE_LENGTH_ENTRY2(12, adVarChar, m_szWorkPhone,
0 sizeof(m_szWorkPhone), WorkPhoneStatus, TRUE)

22: ADO_VARIABLE_LENGTH_ENTRY2(13, adVarChar, m_szWorkExtension,

Updating and Adding Database Records Through ADO

363 |

23:

24:

25:

26:

[sizeof(m_szWorkExtension), WorkExtensionStatus, TRUE)
ADO_VARIABLE_LENGTH_ENTRY2(14, adVarChar, m_szFaxNumber,
[0 sizeof(m_szFaxNumber), IFaxNumberStatus, TRUE)
ADO_FIXED LENGTH_ENTRY(15, adDate, m_dtBirthdate,
[0 IBirthdateStatus, TRUE)
ADO_FIXED_LENGTH_ENTRY(16, adBoolean, m_bSendCard,
[J ISendCardStatus, TRUE)
ADO_VARIABLE_LENGTH_ENTRY2(17, adLongVarChar, m_szNotes,
[sizeof(m_szNotes), INotesStatus, TRUE)

27: END_ADO_BINDING()

28:

20 pbic

30:
3L

BRESBEISHRES

ER&5GR

49:
50:
51:

LR

S8B8IGH

61:
62:

64}

LONG m_|AddressID;
ULONG |AddressIDStatus;
CHAR m_szFirstName[51];
ULONG IFirstNameStatus;
CHAR m_szLastName[51];
ULONG ILastNameStatus;
CHAR m_szSpouseName[51];
ULONG ISpouseNameStatus;
CHAR m_szAddress[256];
ULONG IAddressStatus;
CHAR m_szCity[51];
ULONG ICityStatss;
CHAR m_szStateOrProvince[21];
ULONG IStateOrProvinceStatus;
CHAR m_szPostalCode[21];
ULONG IPostal ;
CHAR m_szCountry{51];
ULONG ICountryStatuss;
CHAR m_szEmailAddress[51];
ULONG [EmailAddressStatus;
CHAR m_szHomePhone[31];
ULONG IHomePhoneStatus,
CHAR m_szWorkPhone[31];
ULONG WorkPhoneStatus,
CHAR m_szWorkExtension[21];
ULONG WorkExtensionStatus;
CHAR m_szFaxNumber[31];
ULONG IFaxNumberStatus;
DATE m_diBirthdate;
ULONG IBirthdateStatus;
VARIANT_BOOL m_bSendCard;
ULONG ISendCardStatus;
CHAR m_szNotes[65536];
ULONG INotesStatus;

| 364

Day 15

Once you've created this class, you need to add a variable to the document class. Add a
new member variable to the document class, specifying the variable tgpesasnRs,

the name as_rsRecSet , and the access as private. You'll also need to include the custom
record class header file in the document source code file, as in Listing 15.2.

LisTING 15.2. THE DOCUMENT SOURCE CODE INCLUDES.

1: // dbadoDoc.cpp : implementation of the CDbAdoDoc class
2/

3

4:#indude “stdafc b’

5:#include “dbadoh”

6

7:#include “CustomRs .h”

8: #include “dbadoDoc.h”

9: #finclude “dbadoView.h”

Another detail that you need to attend to before going any further is providing a way for
the view to get a pointer to the record class from the document class. This function
should return a pointer to the record class variable. To add this function to your applica-
tion, add a new member function to the document class, specifying the function type as
CcCustomRs*, the function declaration a&tRecSet , and the function access as public.

Edit this function, adding the code in Listing 15.3.

LisTING 15.3. THE CDbAdoDoc GetRecSet FUNCTION.

1: CCustomRs* CDbAdoDoc::GetRecSet()
A

3 /Reumapontertothe record object

4: retum&m rsRecSet;

5

One last piece of functionality that you'll add before getting to the real heart of ADO
programming is the function for reporting ADO and database errors. This function will
display a message to the user, reporting that an error occurred and displaying the error
code and error message for the user. To add this function to your application, add a new
member function to your document class. Specify the function tyme ashe function
declaration asenerateEror(HRESULT hr, PWSTR pwszDescription) , and the access as pub-

lic. Edit the function, entering the code in Listing 15.4.

Updating and Adding Database Records Through ADO 365|

LisTING 15.4. THE CDbAdoDoc GenerateError FUNCTION.

1: void CDbAdoDoc::GenerateError(HRESULT hr, PWSTR pwszDescription)
X

3 CStiggiEr;

4

5: //Formatand display the eror message

6. srEmorFomat{ Rurdime ermor %od %)), b, h);
7. stEmor+=Yi;

8 siEor+=pwszDesaripion;

9

10: AfMiessageBox(strErmor);

11}

Connecting and Retrieving Data

You can perform all of the connecting to the database and retrieving the record set in the
onNewDocument function in the document class. Before you can add this functionality,

you need to add a few more variables to the document class. You'll reetisat

object pointer, amboORecordBinding interface pointer, a couple of string variables for

holding the database connection string, and the SQL command to execute to populate the
record set. Add all of these variables to the document class as specified in Table 15.3.

TABLE 15.3. DOCUMENT CLASS MEMBER VARIABLES.

Name Type Access
m_pRs _RecordsetPtr Private
m_piAdoRecordBinding IADORecordBinding* Private
m_strConnection CSting Private
m_strCmdText CSting Private

In theonNewDocument function, you'll perform a series of steps for connecting and
retrieving the record set. First, you'll set the strings for the database connection and the
SQL command to be run. Next, you'll initialize tb@ Menvironment and initialize the

two pointers so that they are batbLL You'll create therecordset Object using the
Createlnstance function. Open th&ecordset , connecting to the database and running the
SQL command at the same time. Bind the record class to the record set using the
IADORecordBinding interface pointer. Finally, tell the view class to refresh the bound data,
displaying the initial record for the user using a view class function that you'll add in a
little while. To add all this functionality, edit th@nNewDocument function in the docu-

ment class, adding the code starting with line 8 in Listing 15.5.

366 Day 15

LisTING 15.5. THE CDbAdoDoc OnNewDocumentFUNCTION.

1: BOOL CDbAdoDoc::OnNewDocument()

if (CDocument:OnNewDocument())
reLNFALSE,

/' TODO: add renttiaizaion code here

1 (SDI documents will reuse this document)

I Set the connection and SQL command strings
m_strConnection =_T(“Provider=MSDASQL.1;Data Source=TYVCDB");
m_strCmdText=_T(‘select* from Addresses’);

P
EBoo~Nowhsrwn

12 //Iniialize the Recordsetand binding poiniers
13: m_pRs=NULL,;
14: m_piAdoRecordBinding = NULL;
15 /nifalize the COM environment
16 Conisize(NULL);
17ty
18{
19 /Creaetherecodsetabedt
20 m_pRs.Createlnstance(_uuidof(Recordset));
21:
22 [|Opentherecord setabect
23 m_pRs->Open((LPCTSTR)mM_strCmdText, (LPCTSTR)m_strConnection,
24: adOpenDynamic, adLockOptimistic, adCmdUnknown);
25
IGetaporterothe recod bindng interface:
if (FAILED(m_pRs->Queryinterface(_uuidof{ADORecordBinding),
(LPVOID*&m piAdoRecordBinding)))
_com issue_enorE_NOINTERFACE);
/Brdtherecod dassiptherecord set
m_piAdoRecordBinding->BindToRecordset(&m_rsRecSet);

BEBRBNB

3L

32

B [ICetaponierotheview

34 POSITION pos=GetFrstViewPosiion();

35: CDbAdoView* pView = (CDbAdoView*)GetNextView(pos);
X ipven

37 ISyncteddasetwihtheform

38 pView->RefreshBoundData();

[}

40 IAyeros?

41: catch(_com_eror &)

2{

43 IDgpbytheerr

44 GeneraeEnoe Eror), e Desaipion();

&}
46:

47 reun TRUE,
48}

Updating and Adding Database Records Through ADO 367 |

Before moving any further, it's a good idea to make sure that you add all the code neces-
sary to clean up as your application is closing. You need to close the record set and
release the pointer to the record binding interface. You'll also shut down the COM envi-
ronment. To add all this functionality to your application, add a function to the

DeleteContents ~ event message in the document class. Edit this function, adding the code
in Listing 15.6.

LisTING 15.6. THE CDbAdoDoc DeleteC ontents FUNCTION.

1: void CDbAdoDoc::DeleteContents()

A

3. //'TODO: Add your spedialized code here andlor call the base dass
4 [Closetherecodset

5 i(m pRy)

6. m pRs>Close);

7: I Dowe have aveld ponter to the record binding?
8 if(m_piAdoRecordBinding)

9 /Rebeset

10: m_piAdoRecordBinding->Release();

11: //'Setthe record setpointer to NULL

122 m_pRs=NULL,;

13

14: J/ Shut down the COM environment

16:

17: CDocument:DeleteContents();

18}

Populating the Form

To display the record column values for the user, you'll add a function for copying the
values from the record class to the view variables. This function first needs to get a
pointer to the record class from the document class. Next, it will check the status of each
individual field in the record class to make sure that it's okay to copy, and then it will
copy the value. Once all values have been copied, you campéadbata to display the
values in the controls on the form. To add this functionality to your application, add a
new member function to the view class. Specify the function typ# gghe function
declaration agefreshBoundData , and the access as public. Edit this new function, adding
the code in Listing 15.7.

368 Day 15

LiIsTING 15.7. THE CDbAdoView RefreshBoundData FUNCTION.

1: void CDbAdoView::RefreshBoundData()
A

3. CCustomRs*pRs;

4

5. //Getapointertothe documentobject

6. pRs=GetDocument(>GetRecSet();

¢

8 [IsteIOK
9 if(adHdOK =pRs>{AddressIDStatLis)
10 /Copytevale
11: m |AddressID=pRs>m |AddressID;
2 ee
13 /Ohewise setthevaletnO
14 m |AddressD=0;
15 /stheiedOK
16: if (adHdOK =pRs>IFrstNameStatus)
17. ICopytrevale
18 m_stFirstName =pRs>m_szFirstName;
19 ee
20 /Ohemise setthevalletoO
21 m stFstName=_T(");
22: if (adFIdOK = pRs->LastNameStatus)
23 m_strLastName = pRs->m_szLastName;
2% e
25, m stlastName=_T(*);
26: if (@dHdOK = pRs->ISpouseNameStatus)
27: m_strSpouseName = pRs->m_szSpouseName;
B de
29: m strSpouseName=_T(*);
30 if (edAdOK = pRs->|AddressStatus)
3L m strAddress =pRs->m_szAddress;
2 &
33 m srAddress=_T(");
34 if(edHdOK =pRs>{CitySiatLis)
3B m stiCiy=pRs>m szCly;
X &
37, msCy=_T(";
38 if(@dHdOK = pRs->IStateOrProvinceStatuis)
39: m_strStateOrProvince = pRs>m_szStateOrProvince;
L0 e
41 m stSeeOProvince=_T("),
42 if (adHdOK =pRs->IPosalCodeStatLs)
43: m _stiPostalCode = pRs->m_szPostalCode;
M e
45. m stPosElCode=_T(");
46: if (@dHdOK = pRs>ICountryStatuis)
47: m_strCountry = pRs->m_szCountry;,
8 ae

Updating and Adding Database Records Through ADO 369 |

49 m stCountry=_T("),

50: if (edFdOK = pRs->EmailAddressStatus)

51: m stEmailAddress =pRs->m_szEmailAddress;

32 ee

53 m stEmalAddress=_T(");

54: if (adFdOK == pRs->IHomePhoneStatus)

55: m_strHomePhone = pRs->m_szHomePhone;

5% ee

57. m_stHomePhone=_T(");

58: if (adFIdOK = pRs->WorkPhoneStatus)

59: m_stWorkPhone = pRs->m_szWorkPhone;

a0 e

6L m stWorkPhone=_T(");

62: if (@dHdOK = pRs>WorkExtensionStatLis)

63: m_stWorkExtension = pRs->m_sz\WorkExtension;

64 e

65 m stWorkExtenson=_T(");

66: if (adFdOK = pRs->IFaxNumberStatus)

67: m_strFaxNumber = pRs->m_szFaxNumber;

6B ex

69 m stFaxNumber=_T(");

70: if (@dFdOK = pRs>BithdateSaiLs)

71 m oedBithdate =pRs>m diBithdate;

2 ee

73 m_oedBithdaie=0L;

74 if (adFdOK = pRs>ISendCardStatus)

75: m_bSendCard = VARIANT_FALSE == pRs->m_bSendCard ? FALSE :
OTRUE;

6 ee

77 m_bSendCard=FALSE;

78: if (adHdOK = pRs>INotesStatLis)

79: m_stNotes=pRs>m_szNotes,

QO ee
8L m stNoes=_T("),
82

83 /Syncthe datawihthe controls
84: UpdateData(FALSE);
8}

'é N t Because you are working directly with the custom record class that you cre-
ole o ; : .

ated in this function, you must include the header file for your custom

record class in the view class source file, just as you did with the document

class source file.

| 370

Day 15

Saving Updates

When you need to copy changes back to the record set, reverse the process of copying
data from the controls on the form to the variables in the record class. You could take the
approach of copying all values, regardless of whether their values have changed, or you
could compare the two values to determine which have changed and need to be copied
back. Call the function that does this before navigating to any other records in the record
set so that any changes that the user has made are saved to the database. To add this
functionality to your application, add a new member function to the view class. Specify
the function type agid , the function declaration agdateBoundData , and the access as
private. Edit the function, adding the code in Listing 15.8.

LisTING 15.8. THE CDbAdoView UpdateBoundData FUNCTION.

1: void CDbAdoView::UpdateBoundData()
2
3. CCustomRs*pRs;

I/ Geta ponter to the document
pRs = GetDocument()->GetRecSet();

ISyncthe conraswih the varisbles
UpdateData(TRUE);
10:
11: /Hasthefield changed? If so, copy the value back
12: if(m_|AddressID =pRs>m_|AddressID)
13 pRs>m |AddressiD=m |AddressID;
14: if (m_strFirstName = pRs>m_szFirstName)
15 strepy(pRs->m_szFirstName, (LPCTSTR)m_strFirstName);
16: if (m_strLastName = pRs->m_szLastName)
17: strepy(pRs->m_szLastName, (LPCTSTR)m_strLastName);
18: if (m_strSpouseName != pRs->m_szSpouseName)
19: strepy(pRs->m_szSpouseName, (LPCTSTR)m_strSpouseName);
20: if(m_strAddress = pRs->m_szAddress)
21: strepy(pRs->m_szAddress, (LPCTSTR)m_strAddress);
22 if(m_stCity '=pRs>m_szCly)
23 stepy(pRs>m_szCity, LPCTSTR)m _strCity);
24: i (m_strStateOrProvince = pRs->m_szStateOrProvince)
25, stopy(pRs>m_szStateOrProvince,
0 (LPCTSTR)m_strStateOrProvince);

26: if(m_strPostalCode = pRs>m_szPostalCode)
27: strepy(pRs>m_szPostalCode, (LPCTSTR)m_strPostalCode);
28 if(m_strCountry '=pRs->m_szCountry)
29: strepy(pRs->m_szCountry, (LPCTSTR)m_strCountry);
30
3L
32

5
6:
7
8
9

;. if (m_stEmailAddress '= pRs->m_szEmailAddress)
strepy(pRs->m_szEmailAddress, (LPCTSTR)m_stfEmailAddress);
if (m_strHomePhone != pRs->m_szHomePhone)

Updating and Adding Database Records Through ADO 371 |

33 strepy(pRs->m_szHomePhone, (LPCTSTR)m_strHomePhone);
34 if (m_stWorkPhone != pRs->m_sz\WorkPhone)

35: strepy(pRs->m_szWorkPhone, (LPCTSTR)m_str'WorkPhone);
36: if (m_stWorkExtension '= pRs->m_sz\WorkExtension)

37 stepy(pRs>m_szWorkExtension, (LPCTSTR)m_stWorkExtension);
38: if (m_strFaxNumber = pRs->m_szFaxNumber)

39: strepy(pRs->m_szFaxNumber, (LPCTSTR)m_strFaxNumber);
40: if (DATE)m_oledtBirthdate) I= pRs>m_dBirthdate)

41: pRs>m_dBithdate = (DATE)m_oledBirthdate;

42: if(m_bSendCard =TRUE)

43: pRs->m_bSendCard = VARIANT_TRUE;

M e

45: pRs->m_bSendCard = VARIANT_FALSE;

46: if (m_stNotes I=pRs->m_szNotes)

47: strepy(pRs>m_szNotes, (LPCTSTR)m_strNotes);

48}

Navigating the Record Set

For navigating the record set, add a series of menus for each of the four basic navigation
choices: first, previous, next, and last. Becauserthedset object and the record-bind-

ing interface pointers are in the document object, the event messages for these menus
must be passed to the document class to update the current record and then to navigate to
the selected record. However, the view class needs to receive the event

message first because it needs to copy back any changed values from the controls on

the form before the update is performed. Once the navigation is complete, the view also
needs to update the form with the new record’s column values. Looking at the sequence

of where the event message needs to be passed, it makes the most sense to add the event
message handler to the view class, and from there, call the event message handler for the
document class.

To add this functionality to your application, add the four menu entries and the corre-
sponding toolbar buttons. Using the Class Wizard, add a event message handler function
to the view class for the command event for all four of these menus. Edit the event func-
tion for the Move First menu, adding the code in Listing 15.9.

LisTING 15.9. THE CDbAdoView OnDataFirst ~ FUNCTION.

1: void CDbAdoView::OnDataFirst()

A

3. //TODO: Add your command handler code here
4 [|Update the curentrecord

5. UpdateBoundData();

continues

372 Day 15

LISTING 15.9. CONTINUED

6 /Navigeiebthefistrecod

7. GetDocument(}->MoveFirst();

8 //Refreshtheformwith the new record's data
9 RefreshBoundData();

10}

Now add thevoweFist function to the document class and perform all the actual record
set functionality for this function. To add this, add a member function to the document
class in your application. Specify the function typeoas, the declaration agoverist

and the access as public. Edit this function, adding the code in Listing 15.10.

LisTiING 15.10. THE C DBADAoCc MOVEFIRST FUNCTION.

1: void CDbAdoDoc::MoveFirst()

X

3y

4

5 [Updatethecunentrecord

6: m_piAdoRecordBinding->Update(&m_rsRecSet);
7. IMorebtefistreod

8 m pRs>Moveris();

9}

100 /Ayemos?

11: catch(_com enor&e)

12

13 /Generatethe emormessage
14 GeneraieEnone Eron), e Desaipion();
15}

16}

Edit and add the same set of functions to the view and document classes for the
MovePrevious , MoveNext , andMoveLast ADO functions. Once you've added all these
functions, you should be ready to compile and run your application. Your application will
be capable of opening the Addresses database table and presenting you with each indi-
vidual record, which you can edit and update, as in Figure 15.7.

Updating and Adding Database Records Through ADO 373|

FiGure 15.7. 2 Untitled - DbAdo HEE
. Fie Edt Dats View Help
The running ER=7=| ER LR
application.
Address 1D Email Address m
FistMame [lancy HomePhone [0 555 9557
Lestbame [Gavoln WoikPhone [i50a)ses a2z
Spouse Mame [Paul Work Extension ,7
Address [507- 20 Ave EMapt. FaxMumber [[502] 555.7722
L Bithdae [Bremz
StateDrProvince fgm SedCad |-
PosalCode [oa1z Notes [
T T
Fieady HUM

Adding New Records

Now that you are able to retrieve and navigate the set of records in the database table, it
would be nice if you could add some new records to the table. You can add this function-
ality in exactly the same fashion that you added the navigation functionality. Add a

menu, trigger an event function in the view class from the menu, update the current
record values back to the record set, call a function in the document class, and refresh the
current record from the record set. As far as the menu and the view class are concerned,
the only difference between this functionality and any of the navigation menus and func-
tions is the ID of the menu and the name of the functions that are called, just as with the
different navigation functions. It's in the document function where things begin to

diverge just a little.

In the document class function for adding a new record, once you've updated the current
record, you'll make sure that adding a new record is an option. If it is, then you'll build

an empty record and add it to the record set. Once you've added the empty record, navi-
gate to the last record in the set because this will be the new record. At this point, you
can exit this function and let the view class refresh the form with the data values from
the new, empty record.

To add this functionality to your application, add a new menu entry for adding a new
record. Add a command event-handler function to the view class for this new menu,
adding the same code to the function as you did with the navigation functions, but call
the AddNewfunction in the document class. Now, add A@New function to the docu-
ment class. Add a new member function to the document class, specifying the type as
wd , the declaration asddNew, and the access as public. Edit the function, adding the
code in Listing 15.11.

374 Day 15

LisTING 15.11. THE CDbAdoDoc AddNew FUNCTION.

1: void CDbAdoDoc::AddNew()

X

3y

4

5 [Updatethecunentrecord

6: m_piAdoRecordBinding->Update(&m_rsRecSet);
7. [Canweaddanewrecod?

8 if(m_pRs>Supports@dAddNew))

Q {

10 /Ceseabarkrecod

11 OeaeBarkRecod),

12 /Addthebankrecod

13 m_piAdoRecordBinding->AddNew(&m_rsRecSet);
14 IMowebthebstreod

15 m_pRs>Movelasty

B}

17}

18 /Ayemrs?

19: catch(_com_enor &e)

DA

2. //Gereraeanenormessage

22 GereraieEnofeEmon),e Desapion(),
2}

24}

Now add the function that creates the blank record. In this function, you'll set each of the
field variables in the record class to an almost empty string. To add this function to your
class, add a new member function to the document class. Specify its tgpe @s dec-
laration asCreateBlankRecord , and its access as private. Edit this new function, adding the
code in Listing 15.12.

LisTING 15.12. THE CDbAdoDoc CreateBlankRecord FUNCTION.

1: void CDbAdoDoc::CreateBlankRecord()

A

3. /Createthe blank valuesto be used

4 CStingsiBark="

5. COleDateTime diBlank;

6]

7. ISeteachdfthe valuesinthe record obect

8. m_rsRecSetm |AddressID=0;

9: strepy(m_rsRecSetm_szFirstName, (LPCTSTR)strBlank);
10: strepy(m_rsRecSetm_szLastName, (LPCTSTR)strBlank);

Updating and Adding Database Records Through ADO

375 |

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
5}

strepy(m_rsRecSetm_szSpouseName, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szAddress, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szClity, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szStateOrProvinee, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szPostalCode, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szCountry, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szEmailAddress, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szHomePhone, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szWorkPhone, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_sz2WorkExtension, (LPCTSTR)strBlank);
strepy(m_rsRecSetm_szFaxNumber, (LPCTSTR)strBlank);
m_rsRecSetm_dtBirthdate = (DATE)dBlank;
m_rsRecSet.m_bSendCard = VARIANT_FALSE;
strepy(m_rsRecSetm_szNotes, (LPCTSTR)strBlank);

If you compile and run your application, you should be able to insert and edit new

records in the database table.

Deleting Records

The final piece of functionality that you'll add to your application is the ability to delete
the current record from the set. This function can follow the same form as all the naviga-
tion and add functions with a menu entry calling an event-handler function in the view
class. The function in the view class can even follow the same set of code that you used
in these previous functions, updating the current record, calling the corresponding func-

tion in the document class, and then refreshing the current record to the form.

In the document class function, the record deletion should follow almost the same path

that you took for adding a new record. Update the current record, check to see if it's

possible to delete the current record, check with the user to verify that he wants to delete

the current record, and then call teete function and navigate to another record in the
set.

To add this functionality to your application, add a new menu entry for the delete func-
tion and then attach an event-handler function for the menu’s command event in the view
class. Edit this function, adding the same code as in the navigation and add record func-

tions and calling theeete function in the document class. Now, add a new member
function to the document class. Specify the new function’s typai ashe declaration

asDeete , and the access as public. Edit this function, adding the code in Listing 15.13.

376 Day 15

LisTiING 15.13. THE CDbAdoDoc Delete FUNCTION.

1: void CDbAdoDoc::Delete()

A

3y

4

5 [Updatethecunentrecord

6: m_piAdoRecordBinding->Update(&m_rsRecSet);

7. ICanwedeeearecod?

8 if(m pRs>SupportsiadDelete))

9 {
10 /Makesuretheuserwanistodeee thisrecod
1 if (AViessageBox(‘Are you sure youwantto delete this

[record?’,

12: MB_YESNO |MB_ICONQUESTION)=IDYES)
B{

14 /Desetersod

15 m_pRs>Delete(adAfledCunent);
16 IMoebthepevousecod

17 m_pRs>MovePrevious();

B}

19}

D}

21: [Ayemos?

22 catch(_com_enor&e)

A

24: J|Generae anenormessage

2. GenerateEmoie Eron),e Desaipion();
&}

27}

When you compile and run your application, you should be able to delete any records
from the set that you want.

Summary

Today, you learned about Microsoft’s newest database access technology, ActiveX Data
Objects. You saw how you can use ADO as a simple ActiveX control to provide database
access through data-bound controls without any additional programming. You also
learned how to import the DLL, providing a rich set of data access functionality that you
can use and control in your applications. You learned how to retrieve a set of data,
manipulate the records in the set, and save your changes back in the database. You
learned two different ways of accessing and updating the data values in a record in the
record set and how you can do a little more work up front to save a large amount of work
in the midst of the application coding.

Updating and Adding Database Records Through ADO 377 |

Q&A

Because Visual C++ doesn’t support ADO with its wizards, why would | want
to use it?

ADO is the database access technology direction for Microsoft. It's still in the
early stages of this technology, but it will gradually become the data access tech-
nology for use with all programming languages and applications.

If ADO uses ODBC to get to my database, why wouldn’t | want to just go
straight to the ODBC interface to access my database?

ADO can use ODBC to access those databases that don’'t have a native OLE DB
interface. If you are using either Microsoft's SQL Server database or an Oracle
database, there are OLE DB interfaces available, in which case ADO would not go
through ODBC to get to the database. In these cases, using ADO gives your appli-
cation better performance than using the ODBC interface. With the upcoming oper-
ating system releases from Microsoft, you'll find that using ADO s likely to pro-
vide you with access capabilities that extend far beyond conventional databases.
ADO is a new technology that you'll start seeing in more use in the coming years.
Because of its growing importance, it's a good thing to start working with ADO

now so that you'll already be prepared to work with it when it's everywhere.

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz

1. What does ADO stand for?

o g A~ D

What does ADO use for database access?

What are the objects in ADO?

How do you initialize the COM environment?

How do you associateGannecon object with acommandobject?

How do you associateGmmandobject with and populate Recordset object?

378 Day 15

Exercise

Enable and disable the navigation menus and toolbar buttons based on whether the
recordset is at the beginning of fileqp or end of file EOF, renamed t@&ndofFe).

WEEK 3

DAY 16

Creating Your Own
Classes and Modules

Sometimes you need to build a set of application functionality that will be used
in an application that another programmer is working on. Maybe the functional-
ity will be used in a number of applications. Another possibility is that you

want to separate some functionality from the rest of the application for organi-
zational purposes. You might develop this separate set of functionality and then
give a copy of the code to your friend to include in his application, but then
every time you make any changes to your set of functionality, it has to be
reincorporated into the other set of application code. It would be much more
practical if you could give a compiled version of your functionality to the other
programmer so that every time you updated your part, all you had to hand over
was a new compiled file. The new file could just replace the previous version,
without having to make any changes to the other programmer’s code.

Well, it is possible to place your set of functionality into a self-contained com-
piled file, link it into another programmer’s application, and avoid adding any
new files to the finished application. Today, you will learn

380 Day 16

- How to design your own classes.
- How to create compiled modules that can be linked into other applications.
- How to include these modules into an application.

Designing Classes

You've already designed and built your own classes over the past few days, so the basics
of creating a new class is not a new topic. Why did you create these classes? Each of
the new classes that you created encapsulated a set of functionality that acted as a self-
contained unit. These units consisted of both data and functionality that worked together
to define the object.

Encapsulation

Object-oriented software design is the practice of designing software in the same way
that everything else in the world is designed. For instance, you can consider your car
built from a collection of objects: the engine, the body, the suspension, and so on. Each
of these objects consists of many other objects. For instance, the engine contains either
the carburetor or the fuel injectors, the combustion chamber and pistons, the starter, the
alternator, the drive chain, and so on. Once again, each of these objects consists of even
more objects.

Each of these objects has a function that it performs. Each of these objects knows how to
perform its own functions with little, if any, knowledge of how the other objects perform
their functions. Each of the objects knows how it interacts with the other objects and how
they are connected to the other objects, but that’s about all they know about the other
objects. How each of these objects work internally is hidden from the other objects. The
brakes on your car don't know anything about how the transmission works, but if you've
got an automatic transmission, the brakes do know how to tell the transmission that they
are being applied, and the transmission decides how to react to this information.

You need to approach designing new classes for your applications in the same way. The
rest of the application objects do not need to know how your objects work; they only
need to know how to interact with your objects. This principle, calfedpsulationis

one of the basic principles of object-oriented software.

Inheritance

Another key principle of object-oriented software design is the concaeph@ftance

An object can be inherited from another object. The descendent object inherits all the
existing functionality of the base object. This allows you to define the descendent object
in terms of how it's different from the base object.

Creating Your Own Classes and Modules 381 |

Let’s look at how this could work with a thermostat. Suppose you had a basic thermostat
that you could use in just about any setting. You could set the temperature for it to main-
tain, and it would turn on the heating or the air-conditioning as needed to maintain that
temperature. Now let’s say you needed to create a thermostat for use in a freezer. You
could start from scratch and build a customized thermostat, or you could take your exist-
ing thermostat and specify how the freezer version differs from the original. These differ-
ences might include that it's limited to turning on the air conditioning and could never
turn on the heater. You would probably also put a strict limit on the range of temperatures
to which the thermostat could be set, such as around and beldval32nheit, or ©

Celsius. Likewise, if you needed a thermostat for an office building, you would probably
want to limit the temperature range to what is normally comfortable for people and not
allow the temperature to be set to an extremely cold or hot setting.

With inheritance in creating your own classes, this method just described represents the
same principle that you want to apply. If possible, you should start with an existing C++
class that has the basic functionality that you need and then program how your class is
different from the base class that you inherited from. You have the ability to add new
data elements, extend existing functionality, or override existing functionality, as you

see fit.

Visual C++ Class Types

In most application projects, when you are creating a new class, you have a few options
on the type of class that you are creating. These options are

. Generic class
. MFC class
. Form class

Which of these types of classes you choose to create depends on your needs and what
your class will be doing. It also depends on whether your class needs to descend from
any of the MFC classes.

Generic Class

You use a generic class for creating a class that is inherited from a class you have already
created. This class type is intended for creating classes that are not inherited from any
MFC classes (although you have already seen where you need to use it to create classes
that are based on MFC classes). If you want to create a more specialized version of the
Cline class, for instance, @RredLine class, that only drew in red, you create it as a generic
class because it’s inherited from another class that you created.

| 382

Day 16

When you create a generic class, the New Class Wizard tries to locate the declaration of
the base class (the header file with the class declared). If it cannot find the appropriate
header file, it tells you that you might need to make sure that the header file with the
base class definition is included in the project. If the base class happens to be an MFC
class that is not accessible as an MFC class (sucbbiae), then you can ignore this
warning because the correct header file is already part of the project.

MFC Class

If you want to make a reusable class that is based on an existing MFC class, such as an
edit box that automatically formats numbers as currency, you want to create an MFC
class. The MFC class type is for creating new classes that are inherited from existing
MFC classes.

Form Class

The form class is a specialized type of MFC class. You need to create this type of class if
you are creating a new form style window. It can be a dialog, form view, or database
view class. This new class will be associated with a document class for use with the view
class. If you are building a database application, you will probably create a number of
this style of classes.

Creating Library Modules

When you create new classes for your application, they might be usable in other applica-
tions as well. Often, with a little thought and effort, classes you create can be made flexi-
ble enough so that they could be used in other applications. When this is the case, you
need some way of packaging the classes for other applications without having to hand
over all your source code. This is the issue that library modules address. They allow you
to compile your classes and modules into a compiled object code library that can be
linked into any other Visual C++ application.

Library modules were one of the first means available to provide compiled code to other
programmers for use in their applications. The code is combined with the rest of the
application code by the linker as the final step in the compilation process. Library mod-
ules are still a viable means of sharing modules with other developers. All the developer
needs is the libraryiip) file and the appropriate header files that show all the exposed
classes, methods, functions, and variables, which the other programmer can access and
use. The easiest way to do this is to provide the same header file that you used to create
the library file, but you can also edit the header so that only the parts that other program-
mers need are included.

Creating Your Own Classes and Modules 383 |

By using library files to share your modules with other programmers, you are arranging
that your part of the application is included in the same executable file as the rest of the
application. Your modules are not included in a separate file, such as a DLL or ActiveX
control. This results in one less file to be distributed with the application. It also means
that if you make any changes to the module, fix any bugs, or enhance any functionality,
then the applications that use your module must be relinked. Using library files has a
slight disadvantage to creating DLLs, where you may be able to just distribute the new
DLL without having to make any changes to the application, but you'll learn all about
that tomorrow.

Using Library Modules

To get a good idea of how to use library modules, it's helpful to create a library module,
use it in another application, and then make some modifications to the library module.
For today’s sample application, you'll create a module that generates a random drawing
on the window space specified. It'll be able to save and restore any of these drawings.
You'll then use this module in an SDI application, where every time a new document is
specified, a new drawing is generated. The initial module will only use eight colors and
will generate only a limited number of line sequences. Later, you'll modify the module
so that it will generate any number of colors and will generate a larger number of line
sequences.

Creating the Library Module

To create a library module project, you need to specify in the New dialog that you want
to create a Win32 Static Library, as shown in Figure 16.1. This tells Visual C++ that the
output from the project compilation will be a library module instead of an executable
application. From there, all you have to do is define the classes and add the code. You
have the options of including support for MFC and using precompiled headers in your
project, as in Figure 16.2, the only step in the Project Wizard.

The library that you will create for today’s sample application will consist of two classes.
The first class will be theLine class that you first created on Day 10, “Creating Single
Document Interface Applications.” The second class will be the class that creates the ran-
dom drawings on the drawing surface. This class will contain an object arrayanf¢he
objects that it will create and populate with each of the drawing efforts. This second class
will also need functionality to save and restore the drawing, as well as to delete the exist-
ing drawing so that a new drawing can be started. It will need to know the dimensions of
the drawing area so that it can generate a drawing that will fit in the drawing area. Once
you create this module, you'll take a look at how you can use this module in an applica-
tion project.

384 Day 16
FIGURE 16.1. New [7]]
e . Files Projects | Workspaces | Other Documents
Specifying a library | ' |
. 29 ATL COM Apphwizard Project name:

module project. kst Fessurce Tyos Wizad Fobibod

] Custom Appwizard

3 Databiase Project Eocation

8 D Studio Addin Wizard D-\MSYS MyProject:Wodbithd . |

§ Extended Stared Prac Wizard

a3 ISA4P| Extension wizard

::‘ Maketile @ Create new workspace

{5 MFC Activer! Contiotwizard c

3] MFC Appwizard (] r

MFL Appiwizard (sxe] - 0
i Uiy Project
] Win32 Application
Win32 Console Application Pt
| 2] w32 DynamiceLink Library SRS
5 w22 Static Librar befiin2
Conce
FIGURE 162 Win32 Static Library - Step 1 of 1
ifvi i Do you want the fallowing in your static fbrary 7
SpeC|fy|ng project sup- 4 2kt o
port options. - _—
W FreCompiled header
C— o]
————— ' MFC support
— i
i
Pt
<Back \ Finish Cancel

Creating a Library Project

To start the library project for today’s example, you need to create a new project, specify-

ing that the project is a Win32 Static Library project. Give the project a suitable name
and click OK to create the project.

For today’s sample project, specify on the one wizard step to include both MFC and pre-

compiled header support. Although the precompiled header support is not necessary, it
will speed up most compiles that you perform while building the module.

Once you create your module project, you'll find yourself working with a project that
has no classes. You've got a blank slate from which you can create whatever type of
module you need.

For your sample project, because you already haveLtle class built, copy it from the
Day 10 project area into the project directory for today’s project. Add both the header

Creating Your Own Classes and Modules 385|

and source code file to today’s project by choosing Project| Add To Project\Files. Once
you add both of these files to the project, you should seeLitheclass appear in the
Class View of your project.

Defining the Classes

Now that you've got a basic library module project ready to go, it's time to begin adding
the meat of the module. Using thegne class is an easy way of reusing some functional-
ity that you created earlier in another setting. However, the real functionality of this mod-
ule will be in its ability to generate random drawings, or squiggles. For this functionality,
you'll need to create a new class.

To start this new class, add a new class to the project by selecting New Class from the
pop-up menu in the Class View tab. The first thing that you'll notice in the New Class
dialog is that you are limited to creating generic classes. Because you are creating a
static library that will be linked into the application, Visual C++ is making some assump-
tions about the type of class that you want to create. Because this is not an MFC project,
even though MFC support is included, you are prevented from creating a new MFC or
form class. If you need to inherit a new class from an MFC class, you have to add it as if
it were a generic class.

Use the New Class dialog to create your new class. Give the class a name that reflects its
functionality, such asModArt, and specify that it's derived from tloebject class as

public. You'll receive the same warning that the base class header file cannot be found,
but because you specified that MFC support should be included, you can ignore that
message.

Once you create your class, you need to add a couple of variables to the class. First, you
need somewhere to hold all the lines that will make up the drawing, so you'll add an
object array. Second, you need to know the area of the drawing surface, so you'll want a
CRect to hold the drawing area specification. You can add both of these variables to your
new class using the types and names in Table 16.1.

TABLE 16.1. CModArt VARIABLES.

Type Name Access
static const COLORREF m_crColors[g] Public
CRect m_rDrawArea Private

CObArray m_oaLines Private

| 386

Day 16

Setting the Drawing Area

Before you can draw anything, you need to know the area that you have to draw within.
You can add a public function to your class that will copy the passerkinto the
membercRrect variable. To add this function to your project, add a new member function
to your new class, specifying the type as void, the declaratisaras(CRect

rDrawArea) , and the access as public. Edit the function as in Listing 16.1.

LisTING 16.1. THE CModArt SetRect FUNCTION.

1: void CModArt:SetRect(CRect rDrawArea)
A

3 [Setthe draningarearecange

4: m_rDrawArea = rDrawArea;

5

Creating a New Drawing

One of the key pieces to this module is the ability to generate random squiggles that
appear on the drawing area. By generating a whole series of these squiggles, your mod-
ule will be able to create an entire drawing. Starting with the single squiggle, you can
design a function that generates one squiggle and then calls this function a number of
times to generate the entire drawing.

This first function, the squiggle generator, needs to determine how many lines will be in
the squiggle. It needs to determine the color and width of the pen to be used when draw-
ing the squiggle. It also needs to determine the starting point for the squiggle. From this
point, it could loop through the appropriate number of lines, generating a new destination
to continue the squiggle from the previous destination point.

To add this functionality to your project, add a new member function to the drawing
class. Specify the function type as void, the definitioneagine , and the access as pri-

vate because this function will only be called by the master loop that is determining how
many of these squiggles will be in the final drawing. Edit the new function with the code
in Listing 16.2.

LisTING 16.2. THE CModArt NewLine FUNCTION.

1: void CModArt:NewLine()
A

Creating Your Own Classes and Modules

387 |

7. CPortplo,
8 CPortpHom;

10: //Nomnalize the rectangle before determining the width and height
11: m_rDrawArea.NomalizeRect();

12 [/getthe areawidthand height

13 intWidth=m_rDrawAreaWidth();

14: intHeight=m_rDrawArea.Height();

16: // Determine the number of parts to this souigdie

17 INumLines=rand() % 100;

18 /Aretereanypatstotissouigge?

19 f@\umLines>0)

{

21: /Deeminethecoor

22 nCuCdor=rand()%8;

23 /Deeminethe penwidth

24 nCuWidh=(and(%8)+1;

25 //Deeminethe saring pontforthe squigge

26. pHomx=(rand() % MWidth) + m rDrawArealef;

27. pRomy=(rand() % Height) + m_rDrawAreaop;

28 //Loop through the number of segments

29 for(Culine=0;ICulLine<NumLines;ICuLinet+)

{

3L I Determine the end point of the segment

32 plox=(fand)%20)-10)+pFHomx;

33 ploy=(fand)%20)-10)+pFomy;,

A4 [CeseanewClineded

35 Cline*pLine=new CLine(pFHom, pTo, nCuWidth,
[m_crColors[nCurColor]);

By

3 {

3B IAddtrerewireothedgedtanay

e m calinesAddpLine);

a}

41: /Ddwenninbamemoryexception?

42 caich(CMemoryException* per)

8 {

4 IDspayamessagefortheuser, gvinghimte

45 [edrens

46: AfxMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
47 |Ddweaesealnedied?

| ide

a {

SORD::

5L cesedie

2 pie=NUL

continues

388 Day 16

LISTING 16.2. CONTINUED

%5 paeDeE)

B}

57 ISethesatngpartibtheendpart
3B pRom=pla

@}

a}

61}

In this function, the first thing that you did was get the area that you had available for
drawing with the following three lines:

m_rDrawArea.NormalizeRect();

int Width = m_rDrawArea.Width();

intHeight=m_rDrawArea Height();

In the first of these lines, you normalized the rectangle. This is necessary to guarantee
that the width and height returned in the next two lines are both positive values. Because
of the coordinate system used in Windows, getting the width by subtracting the left-side
position from the right-side position can result in a negative number. The same can hap-
pen with the height. By normalizing the rectangle, you are guaranteeing that you'll get
positive results for these two values.

Once you determined the drawing area, you determined the number of line segments you
would use in this squiggle:

INumLines =rand() % 100;

Therand function is capable of returning numbers in a wide range. By getting the modu-
lus of 100, you are guaranteeing that the resulting number will be between 0 and 100.
This is a common technique for generating random numbers within a certain range, using
the modulus function with the upper limit of the value range (or the upper limit minus

the lower limit, if the lower limit is not equal to 0, and then adding the lower limit to the
resulting number). You use the same technique to determine the color, width, and starting
position for the squiggle:

nCurColor =rand() %8;

nCurWidth = (rand() % 8) + 1,

pFromx = (rand() % Width) + m_rDrawArealleft,

pFrom.y = (rand() % IHeight) + m_rDrawArea.top;

Notice how when you were determining the starting position, you added the left and top
of the drawing area to the position that you generated. This guarantees that the starting

Creating Your Own Classes and Modules 389 |

position is within the drawing area. Once you enter the loop, generating all the line seg-
ments in the squiggle, you limit the available area for the next destination within 10 of
the current position:

pTox=((rand() % 20) - 10) + pFrom.;

pToy = ((rand() % 20) - 10) + pFromy;

ClLine *pLine = new CLine(pFrom, pTo, n"CurWidth, m_crColors[nCurColor]);

m_oaLines.Add(pLine);

You can easily increase this distance to make the drawings more angular. Once you gen-
erate the next line segment, you create the line object and add it to the object array.

Finally, you set the starting position to the ending position of the line segment you just
generated:

pFrom =pTo;

Now you are ready to go through the loop again and generate the next line segment, until
you have generated all line segments in this squiggle.

Now that you can generate a single squiggle, the rest of the process is easy. First, you
determine how many squiggles will be in the drawing. Next, you loop for the number of
squiggles that need to be generated and caldhiene function once for each squiggle.
To add this functionality to your project, add a new member function to the drawing
class. Specify the type as void, the declarationea®rawing , and the access as public.
Edit the function as in Listing 16.3.

LisTING 16.3. THE CModArt NewDrawing FUNCTION.

1: void CModArt:NewDrawing()
A

3 nNurlines

4 nQuling

5
6. // Determine howmany inesto create

7: INumLines=rand() % 10;

8 [Aeterayinestooeas?

9 i(NumLines>0)

10{

11: /Loopthroughthe numberofines

12 for(Culine=0;ICuline<NumLines;ICuLine+)
B

14 [Qegeterewine

15 Nealis

B}

17}

18}

| 390

Day 16

Displaying the Drawing

To draw the set of squiggles on the drawing area, you can add a function that will loop
through the object array, calling tbeaw function on each line segment in the array. This
function needs to receive the device context as the only argument and must pass it along
to each of the line segments. To add this function to your project, add a new member
function to the drawing class. Specify the function type as void, the function declaration
asDraw(CDC *pDC) , and the access as public. Edit the function as in Listing 16.4.

LisTING 16.4. THE CModArt Draw FUNCTION.

1: void CModArt::Draw(CDC *pDC)

A

3 /Getthenumberdfinesinthecoetaray

4 intiCount=m_oal inesGetSizey);

5Rs

8

7. IAeteranydiedsinthearay?

8 ftan)

A

10: /Loopthroughthe aray, drawing each object
11 forPos=0Pos<IiCaurtPos+)

12:} ((CLine®m _oaLinesfiPos]y>Dran(pDC);
3

14}

Serializing the Drawing

Because you are using the line segment class that you created earlier and have already
made serializable, you do not need to add the serialization macros to the drawing class.
What you do need to add iss&= function that passes the archive object on to the
object array, letting the object array and line segment objects do all the serialization
work. To add this function to your project, add a new member function to the drawing
class. Specify the function type as void, the declarati@iads(CArchive 8ar) , and the
access as public. Edit the function as in Listing 16.5.

LisTING 16.5. THE CModArt Setidize FUNCTION.

1: vod CModArt: Serialize(CArchive &ar)
A

3 /Passthearchivedgectontothearay
4 m oelinesSerilize(@),

5

Creating Your Own Classes and Modules 391 |

Clearing the Drawing

To provide full functionality, you need to be able to delete a drawing from the drawing
class so that a new drawing can be created or an existing drawing can be loaded. This is
a simple matter of looping through the object array and destroying every line segment
object and then resetting the object array. To add this functionality to your project, add a
new member function to the drawing class. Specify the type as void, the declaration as
ClearDraning , and the access as public. Edit the function as in Listing 16.6.

LISTING 16.6. THE CModArt ClearDrawing FUNCTION.

1: vod CModArt:ClearDrawing()

A

3 [Getthenumberofinesnthedoectaray
4 ntiCount=m _oalinesGetSize();
SR

6

7. IAeteranydiedsinthearay?

8 it

E

10: /Loopthroughthe array, delefing each obect
1 forPos=0Pos<iCaurt Post)

12 dekem celinesPos)

13 /Resetteary

14 m oalinesRemoveAl();

5}

16}

Completing the Class

Finally, to wrap up your drawing class, you need to initialize the random number genera-
tor. The random number generator functiai, , generates a statistically random num-

ber sequence based on a series of mathematical calculations. If the number generator
starts with the same number each time, then the sequence of numbers is the same each
time. To get the random number generator to produce a different sequence of numbers
each time your application runs, you need to seed it with a value that is different each
time. The typical way to do this is to feed the current system time int@aitefunction,

which seeds the random number generator with a different time each time that the appli-
cation runs. This seeding of the number generator must be done only once each time the
application is run, so you can add this functionality by editing the drawing class con-
structor with the code in Listing 16.7.

392 Day 16

LisTING 16.7. THE CModArt CONSTRUCTOR.

1: CModArt:CModArt()

A

3. /niiaize the random number generator
4 srand((unsigned)ime(NULL);

5

To complete the class, you need to include all of the necessary header files for the func-
tionality that you've added to this class. The random number generator neatis the
andimeh header files, and the object array needs the header file fariideclass. You

also need to populate the color table for use when generating squiggles. You can add all
of these finishing touches by scrolling to the top of the source code file for the drawing
class and adding lines 5, 6, 9, and 12 through 21 in Listing 16.8.

LisTING 16.8. THE CModArt INCLUDES AND COLOR TABLE.

1: //ModArtcpp: implementation of the CModArt dlass.
21

S M i
4

5: #indude <sdbh>

6: #indude <ime.h>

7

8 #indude “safx "

9 #indude‘Lineh’

10: #include “ModArth”

11

12: const COLORREF CModArt:m_crColors[8] ={
13 RGB(0,0,0) /Back

14 RGB(0, 025), /Ble

15 RGB(0,2%5, 0), /Green

16: RGB(0,255,255), //Cyan

17: RGB(2%5, 0, 0), /Red

18 RGB(255, 0,255), /Magenta

19 RGB(255,2%5, 0), /Yelow

20: RGB(255,255,255) //\White

20

You have now completed your library module. Before you go any further, you need to
compile your project. Once you compile your project, you cannot run anything because
you need to create an application that uses your library module in order to run and test
your code. To get ready for creating this test application, close the entire workspace so
that you will start with a clean workspace for the test application.

Creating Your Own Classes and Modules 393 |

Creating a Test Application

To be able to test your module, you need to create a test application that uses the module.
This plain application can contain just enough functionality to thoroughly test the mod-

ule. All you want to do at this point is test all the functionality in the module; you don't
have to create a full-blown application.

When you create your test application, you need to include the header file for the draw-
ing class in the relevant classes in your application. In a typical SDI or MDI application,
this means including the header file in the document class at a minimum and probably
the view and application class source files also. You also have to add the library file that
your module created in the application project so that it will be linked into your appli-
cation.

Creating the Test App Shell

Creating a test application shell is a simple matter of creating a standard SDI or MDI
application shell. For the purposes of keeping the test application as simple as possible,
it's probably advisable to use an SDI application. However, if you've got some function-
ality in your module that is intended for use in an MDI application, then that application
style might be a better selection as your test application.

For the test application for the sample module you created, create a standard SDI appli-
cation shell using the AppWizard. Give the project a name sutés@sp or some

other suitable name. Specify a file extension on the advanced button on the fourth
AppWizard step. Otherwise, just go ahead and use the default settings for everything
else.

Once you create the application shell, you need to add the library module to the project.
You can do this by selecting Project| Add To Project| Files. Once in the Insert Files dia-
log, specify the file types as library files, as shown in Figure 16.3. Navigate to the debug
directory of the module project to find the library module that you created with the previ-
ous project. This typically requires moving up one directory level, finding the project
directory for the module, and then navigating through it to the debug directory. (If you
are building the release version of the module and application, you want to navigate
down to the release directory of the module project.) You should be able to find the
library file for the module you created, as shown in Figure 16.4. Select this module and
click OK to add it to the project.

394 Day 16

FiGure 16.3. Insert Files into Project HE
Specifying library files. ‘1= 3o ol

File name: | oK

Filesof pe: [Cos Files eoppoowetichithiniiel <] Cancel

Tmage Files [bmp. db- gl jpg. jpe ool =
Ingemtinta: | Executable Files [ske: dilocx]

Erowse Info Files [bsc)

Activel Control Files [ock)

Text Fies t]
Object Files [.abi) Ty J
Comic: Chat Fioom [cor)

Excel Warkbook: (5]
PowerPoint Presentation [ppt] hd

FIGURE 16.4. Insert Files into Project

Adding a library file to <% [0
the project.

Filename, [ModAabod b o]
Files of tpe: [Uibrary Fles (1] | Cancel
Ingertinto: [Testapp =l

Once you add the library file to the project, you also need to add the header files for any
of the classes in the module that will be used into the appropriate application source code
files. For the test application that you are building, this entails adding line 7 in Listing
16.9. You want to add the same line in the include sections of the source code files for
the view and application classes as well.

LisTING 16.9. THE CTestAppDoc INCLUDES.

1: // TestAppDoc.cpp : implementation of the CTestAppDoc class
2/

3

4:#indude “stlaic i’

5:#include ‘TestApp.h”

8

7:#include “..\ModArtMod\ModArth”

8: #include “TestAppDoc.h”

The last thing that you need to do in preparing the application shell is add a variable for
any classes from the library module that need to be included in any of the application

Creating Your Own Classes and Modules 395|

classes. In the case of the test application that you are building, this is a variable in the
document class of the drawing class that you created in the library module project. To
add this variable to your application, add a new member variable to the document class.
Specify the variable type as the drawing class from the library module (in this instance,
CModArt) and specify the name as mabrawing and the access as private.

Creating a New Drawing

The first place where you want to put some of the functionality of your module is when
you are creating a new document. This is the time to be generating a new drawing. As a
result, you want to do two things. First, get the drawing area of the view class, passing it
along to the drawing object. Second, tell the drawing object to generate a new drawing.
This is all fairly straightforward. To add this functionality to your application, edit the
onNewDocument function in the document class, adding the lines 9-23 in Listing 16.10.

LisTING 16.10. THE CTestAppDoc OnNewDocument FUNCTION.

1: BOOL CTestAppDoc::OnNewDocument()

if ({CDocument:OnNewDocument())
ELNFALSE,

/TODO: add reiniialization code here
1/ (SDI documents will reuse this document)

©ONDOAWN

IGetthe posiionoftheview

10: POSITION pos=GetFrstViewPasition();
11: /Ddwegetavald posiion’?

12 if(posENULL)

13{

14 /Cetaponeriotheview

15. CView*pView=GetNextView(pos);
16: RECTMhdRed;

17: IGetthedspayarearedange

18 pView>GetClientRect&WndRect),
19 /Setthedaningarea

20. m_maDrawing.SetRect(WndRect);
2. /Cregteanewdaning

22 m_maDrawing.NewDrawing();

2

| 396

Day 16

Saving and Deleting a Drawing

The other functionality that you want to add to the document class is to save and restore
the drawing and to delete the current drawing. These tasks are the last of the document-
related functionality of your library module.

To add the functionality to save and restore drawings to your application, edit the
sle function in the document class. Delete all the current contents of the function,
replacing it with a call to the drawing objectste function, as in Listing 16.11.

LisTING 16.11. THE CTestAppDoc Seridize FUNCTION.

1: void CTestAppDoc:Seriaize(CArchive& ar)
A

3 [ISesizethedaning

4 m_maDrawing Sevialize(@r);

5

To add the functionality to delete the current drawing so that a new drawing can be gen-
erated or a saved drawing can be loaded, you need to add the event handler for the
DeleteContents ~ function to the document class. In this function, you call the drawing
object’'scleaDraning function. To add this functionality to your application, use the Class
Wizard to add the event handler for th&teContents ~ event to the document class. Edit
this function, adding line 5 in Listing 16.12.

LIsTING 16.12. THE CTestAppDoc DeleteContents FUNCTION.

1: void CTestAppDoc::DeleteContents()

A

3. //'TODO: Add your spedialized code here andior call the base dass
4 [Deletethe draning

5: m_maDrawing.ClearDrawing();

6

7: CDocument:DeleteContents();

8

Viewing a Drawing

You need to add one final set of functionality to your test application before you can test
your library module: the drawing functionality to the application. This functionality

belongs in the view class because it is the object that knows when it needs to redraw
itself. Before you can add this functionality to the view class, you need some way for the
view class to get access to the drawing object. The easiest way to add this capability is to

Creating Your Own Classes and Modules 397 |

add another function to the document class that can be called to get a pointer to the
drawing object. Once the view has this pointer, it can call the drawing object’srawn
function.

To add the capability to get a pointer to the drawing object to your document class, add a
new member function to the document class. Specify the function type as a pointer to the
drawing object, in this casemodArt* , and specify the function declarationGgbrawing

and the access as public. Edit the function, adding the code in Listing 16.13.

LisTING 16.13. THE CTestAppDoc GetDrawing FUNCTION.

1: CModArt* CTestAppDoc:GetDrawing()
A

3 /Retumthe drawing obiect

4 retum &m_maDrawing;

5

Adding the drawing functionality to the view class is a simple matter of editing the
onbDraw function in the view class. In this function, you need to get a pointer to the draw-
ing object and then call ityaw function, as in Listing 16.14.

LisTING 16.14. THE CTestAppView OnDraw FUNCTION.

1: void CTestAppView::OnDraw(CDC* pDC)
2
3: CModTestAppDoc* pDoc = GetDocument();
4: ASSERT VALID(pDoc);
5
6. //'TODO: add draw code for netive data here
7
I Getthe drawing object
CModArt* m_maDrawing = pDoc->GetDrawing)();
10: //Drawthe drawing
11: m_maDrawing->Draw(pDC);
12}

© ®

Once you add all this functionality, you can compile and run your application to test the
functionality of your library module. Each time you select File | New from your applica-
tion menu, a new drawing is created, as in Figure 16.5.

| 398

Day 16

FiGure 16.5. 12 Untitled - TestApp M= E

Creating random E= 5%
squiggle drawings.

File Edt View Help

o’

Fieady NUM

Updating the Library Module

Now that you have a working application, let’s go back to the library module and make
some changes. Whenever you make any changes to the library module code, no matter
how minor, you need to relink all applications that use the module in order to get the
updates into those applications. This is because the library module is linked into the EXE
of the application. It does not remain in a separate file.

To see how this works, reopen the library module project. You will make three changes
to this module. First, you'll increase the number of squiggles that may be included in a
single drawing. Second, you'll increase the number of line segments that may make up a
single squiggle. Third, you'll generate random colors, beyond just the eight colors
included in the color table. Once you make these changes, you'll recompile your library
module. Once you generate a new module, you'll relink your test application so that you
can incorporate these changes into the application.

To make the first change in your module, increasing the number of squiggles that can be
in a drawing, edit thelewDrawing function in the drawing class, increasing the modulus
value in line 7 of the function, as in Listing 16.15. This will increase the number of pos-
sible squiggles in a single drawing from a maximum of 10 to a maximum of 50. There
may still be an occasional drawing that doesn’t have any squiggles, but you can ignore
this possibility for now.

LisTING 16.15. THE MODIFIED CModArt NewDrawing FUNCTION.

1: void CModArt:NewDrawing()
A

3 nNumlines

4 rouli

Creating Your Own Classes and Modules 399 |

5

6. // Determine howmany inesto create
7: NumLines=rand() %50;

8 [Areterayinestooeas?

9 i(NumLines>0)

10{

11: /Loopthroughthe number ofines
12 for(Culine=0;ICuline<NumLines; ICuLinet+)
1B

14 /Qeseterewine

15 Nenle

18}

17}

18}

With the increased number of squiggles that can be included in a drawing, next you want
to increase the number of line segments that may be in a squiggle. To do this, edit the
NewLine function and increase the modulus number on line 20 in Listing 16.16 from 100
to 200. While you're in this function, you can also increase the number of colors that
may be generated for use in each drawing. First, add three integer variable declarations,
one for each of the three additive colors (red, green, and blue, as in lines 9 through 11 in
Listing 16.16). Next, generate random values for each of these integers between the val-
ues of 0 and 255 (lines 26 through 28). Finally, when creatingLilee object, pass

these colors through thressfunction to create the actual color that will be used in the
drawing, as in line 41 of Listing 16.16.

LisTING 16.16. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt:NewLine()

A

3 nNurlines

4 nQuling

5:/intnCuCaor;

6 UNTnCuWidh;

7. CPortplo,

8 CPontpHom;

9 ndRedt

10 ndBle

1T ndGreen

12:

13 //Nomaiize the rectangle before determining the width and height
14: m_rDrawArea.NomalizeRect()
15 /getthe areawicthand height

16: intWidh=m_DrawAreaWidth();

continues

Day 16

LISTING 16.16. CONTINUED

17: intHeight=m_rDrawAreaHeight);

18:

19: // Determine the number of parts to this suiggle
20: INumLines =rand() % 200;

21 [Arethereany patstothissouigge?

22 f(NumLines>0)

2

24 [Deleminethecdor

25/ nCurCdor=rand() %8,

26 cRed=rand()%256;

27 dBue=rand()%255,

28 cGreen=rand()%256;

29: //Determinethe penwicth

30 nCuWidh=(and)%8)+1;

3L /Deeminethesiaring pontiorthe squigge

32 pRomx=(rand() % Midth) +m_DrawArealef;

33 pFomy=(rand() % Height) + m_rDrawAreaitop;

34 //Loopthrough the number of segments

35 for(Culire=0;ICuline<Numlines, ICuLinet++)

& {

37 I/ Determine the end point of the segment

3B plox=(fand)%20)-10)+pFomx

33 ploy=(fand)%20)-10)+pFHomy,

40 /OegeanewClLineded

41 Cline*pLine =new CLine(pFom, pTo, nCuWidth,
[0 RGB(cRed, cGreen, cBlue));

2y

8 {

M IAddterewineiothedgedaray

45 m oelinesAdd(plLine);

4}

47 [/Ddwemnninpamemoryexception?

48 catch (CMemoryExcepiion* perr)

a {

50 IDspayamessagefortheuser, gvnghimte

5@ /feedrens

52: AfxMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);

53 /Ddweaeseainedied?

% e

% {

5B D

5 ceedig

B pie=NUL

2}

60 /Deeetheeospiondjed

6L parDan)

& }

63 /Setthesatngportioteendport

Creating Your Own Classes and Modules 401 |

64 pHom=pIlo
& }
&}
67}

Now that you've made all the necessary changes to the library module, compile it so that
it's ready for use in the test application. If you run your test application from the Start|
Run Taskbar option, as in Figure 16.6, you'll notice that there is no noticeable difference
in how your application behaves. This is because the application hasn't changed. The
application is still using the old version of your library module. To get the test applica-
tion to use the new version of the library module, reopen the test application project in
Visual C++. Build the project, which should not do anything other than relink the pro-
ject, and then run the application. You should see a significant difference in the drawings
that your application is now generating, as shown in Figure 16.7.

FIGURE 16.6. Aun
Run the test applica- 4] e et sz, e gy bt
tion fI’OIT] the Start Oper [DAMSVE MyProject: T ecthppiDebughTesthpp exe |

menu. r

TUER] Cancel | Browse. |

FIGure 16.7. 1 NTestl - TestApp [[o[X]
Fle Edt Yiew Help

The updated test appli- p =
cation.

Feady HUM

Summary

Today you learned about how to approach creating and designing new classes for your
applications. You learned the differences between the different types of classes that are
available to you through the New Class Wizard in Visual C++. You also learned how you
can create a library module with a set of your functionality that you can hand to other

| 402

Day 16

programmers for including in their applications. You learned how this module will be
linked into the actual applications, thus not requiring a separate file to be distributed
along with the applications.

Tomorrow you will learn about a different approach to creating reusable packaged func-
tionality that you can give to other programmers. You will learn how to create DLLs
using Visual C++, what the differences are between creating library modules and DLL,
and how you need to approach each task.

Q&A
Q

A

Isn’t most functionality packaged in DLLs now? Why would | want to create
library modules instead of DLLs?

Yes, the trend toward packaging functionality modules has been to create DLLs
instead of library modules for a number of years now. However, there are still
instances where library modules are preferable. If you are creating a module that
contains proprietary functionality that you do not want to risk exposing to others,
but that is needed for any applications that you or another programmer in your
company is building, then you would probably want all that functionality packaged
in a library module so that it is internal to the application. Using library modules
makes it effectively inaccessible to your competition without significant disassem-
bly and reverse engineering efforts.

Why does the header file need to be included in the application that is using

my library file?

The application needs to know about the objects that are in the library file. In the
sample application, you didn’t need to include the header file farLitee class
because the application didn't directly use or referencetifee class. However,

the application did use the drawing object that was in your library module, so it did
need to know about that object, how it is defined, and what functions are available
for it. If you don’t want the other programmers to know all of the internal structure
of your classes, then you can create another header file to be distributed with your
library module. This header would contain definitions of all of the same classes
that are in the library module but would only provide the public functions and vari-
ables that the other programmers can actually access.

Creating Your Own Classes and Modules 403 |

Workshop

The Workshop provides quiz questions to help you solidify your understanding of the
material covered and exercises to provide you with experience in using what you've
learned. The answers to the quiz questions and exercises are provided in Appendix B,
“Answers.”

Quiz
1. When do you want to create a new MFC class?

2. When you make changes to a library file, what do you have to do to the applica-
tions that use the library file?

3. What are the different types of classes that you can create?

4. When you package some functionality in a library file, what do you need to give to
other programmers who want to use your library module?

5. What are two of the basic principles in object-oriented software design?

Exercise

Separate theline class into a different library module from the drawing class so that
you have two library modules instead of one. Link them into the test application.

WEEK 3

DAY 17

Sharing Your
Functionality with Other
Applications—Creating
DLLs

Yesterday you learned how you could create a set of functionality that might be
useful for multiple applications and how you could package it in a library file
that could be linked into those applications. Today you will learn how to do this
same thing, only with a much more dynamic package.

Often, a family of applications will have some functionality in common. When
you place this shared functionality into DLLs instead of library modules, all
the applications can use the same functionality with only a single copy of the
functionality distributed in the form of DLLs, instead of duplicating the same
functionality in each of the applications. This method saves disk space on any
systems where the applications are installed.

| 406

Day 17

Today, you will learn
- About the different types of DLLs that you can create with Visual C++ and how to
determine which type best suits your needs.

- How to build two of these types of DLLs and the different approaches for the
various DLL types.

- How to use the functionality for both of these types of DLLs in a Visual C++
application.

- How to determine when an application needs to be relinked when you make modi-
fications to a DLL that is used by the application.

Why Create DLLsS?

Dynamic link libraries (DLL) were introduced by Microsoft back in the early days of
Windows. DLLs are similar to library modules in that they both contain sets of function-
ality that have been packaged for use by applications. The difference is when the applica-
tions link to the library. With a library module (LIB), the application is linked to the
functionality in the library during the compile and build process. The functionality con-
tained in the library file becomes part of the application executable file. With a DLL, the
application links to the functionality in the library file when the application is run. The
library file remains a separate file that is referenced and called by the application.

There are several reasons for creating DLLs instead of library module files. First, you
can reduce the size of the application executable files by placing functionality that is
used by multiple applications into DLLs that are shared by all of the applications. You
can update and modify functionality in the DLLs without having to update the applica-
tion executable (assuming that the exported interface for the DLL doesn’t change).
Finally, you can use DLLs with just about any other Windows programming language,
which makes your functionality available to a wider number of programmers, not just
fellow Visual C++ programmers.

Creating and Using DLLs

DLLs are library files with compiled code that can be used by other applications. The
DLLs expose certain functions and classes to these applications by exporting the func-
tion. When a function is exported, it is added to a table that is included in the DLL. This
table lists the location of all exported functions contained in the DLL, and it is used to
locate and call each of these functions. Any functions that are not exported are not added
to this table, and they cannot be seen or called by any outside application or DLL.

Sharing Your Functionality with Other Applications—Creating DLLs 407 |

An application can call the functions in the DLL in two ways. The more involved method
of calling these functions is to look up the location of the desired function in the DLL
and get a pointer to this function. The pointer can then be used to call the function.

The other, much easier way (and the only way that you'll use in any of the examples in
this book) is to link the application with the LIB file that is created with the DLL. This

LIB file is treated by the linker as a standard library file, just like the one that you cre-
ated yesterday. However, this LIB file contains stubs for each of the exported functions

in the DLL. A stub is a pseudo-function that has the same name and argument list as the
real function. In the interior of the function stub is a small amount of code that calls the
real function in the DLL, passing all of the arguments that were passed to the stub. This
allows you to treat the functions in the DLL as if they were part of the application code
and not as a separate file.

’ N“tﬂ The LIB file for a DLL is automatically created for the DLL during the compil-
ing of the DLL. There is nothing extra that you need to do to create it.

’ -I-ip Not only is it easier to create your applications using the LIB files for any

DLLs that you will be using, but also it can be safer when running the appli-
cation. When you use the LIB files, any DLLs that are used by your applica-
tion are loaded into memory the moment the application is started. If any
of the DLLs are missing, the user is automatically informed of the problem
by Windows, and your application does not run. If you don’t use the LIB
files, then you are responsible for loading the DLL into memory and
handling any errors that occur if the DLL cannot be found.

There are two types of DLLs that you can easily create using Visual C++. These two
types are MFC extension DLLs and regular DLLs.

’ Nﬂtﬂ You can create other types of DLLs using Visual C++. All these other types of
DLLs involve a significant amount of ActiveX functionality, so they are
beyond the scope of this book. If you need to build ActiveX in-process
server DLLs, or other types of ActiveX DLLs, | recommend that you find an
advanced book on Visual C++ that provides significant coverage for these
topics.

| 408

Day 17

MFC Extension DLLs

MFC DLLs are the easiest to code and create because you can treat them just like any
other collection of classes. For any classes that you want to export from the DLL, the
only thing that you need to add is thiex_EXT_cLASSmacro in the class declaration, as
follows:

class AFX_EXT_CLASS CMyClass
{

}
This macro exports the class, making it accessible to Visual C++ applications. You need

to include this macro in the header file that is used by the applications that will use the
DLL, where it will import the class from the DLL so that it can be used.

The one drawback to creating MFC extension DLLs is that they cannot be used by any
other programming languages. They can be used with other C++ compilers as long as the
compiler supports MFC (such as with Borland’s and Symantec’s C++ compilers).

Regular DLLs

The other type of DLL is a regular DLL. This type of DLL exports standard functions
from the DLL, not C++ classes. As a result, this type of DLL can require a little more
thought and planning than an MFC extension DLL. Once inside the DLL, you can use
classes all you want, but you must provide straight function calls to the external applica-
tions.

To export a function, declare it as an export function by preceding the function name
with

extem “C” <function type> PASCAL EXPORT <function declaration>

Include all this additional stuff in both the header file function prototype and the actual
source code. Theemc’ portion declares that this is a standard C function call

so that the C++ name mangler does not mangle the function ras®aLtells the

compiler that all function arguments are to be passed$ctALorder, which places the
arguments on the stack in the reverse order from how they are normally placed. Finally,
ExPORTtells the compiler that this function is to be exported from the DLL and can be
called outside the DLL.

The other thing that you need to do to export the functions from your DLL is to add all
the exported function names to the DEF file for the DLL project. This file is used to
build the stub LIB file and the export table in the DLL. It contains the name of the DLL,

Sharing Your Functionality with Other Applications—Creating DLLs 409 |

or library, a brief description of the DLL, and the names of all functions that are to be
exported. This file has to follow a specific format, so you should not modify the default
DEF file that is automatically created by the DLL Wizard other than to add exported
function names. A typical DEF file follows:

LBRARY ‘mydl

DESCRIPTION ‘mydll Windows Dynamic Link Library

EXPORTS
; Explctexportscangohere
MyFuncl
MyFunc2

If you are using MFC classes in your regular DLLs, you need to call the
AFX_MANAGE_STATHacro as the first line of code in all exported functions. This is nec-
essary to make the exported functions threadsafe, which allows your class functions to be
called simultaneously by two or more programs (or threads)AFREMANAGE_STATE

macro takes a single argument, a pointer A6>2 MODULE_STATEtructure, which can

be retrieved by calling thexGetStaticModuleState function. A typical exported function

that uses MFC looks like the following:

extern “C” void PASCAL EXPORT MyFunc(...)

{
AFX_MANAGE_STATE(AfxGetStaticModuleState());

/I normal function body here

)
Designing DLLs

When you are designing your DLLs, you should be aware that any of the functions in
your DLLs can be called simultaneously by multiple applications all running at the same
time. As a result, all the functionality in any DLLs that you create must be threadsafe.

All variables that hold any values beyond each individual function call must be held and
maintained by the application and not the DLL. Any application variables that must be
manipulated by the DLL must be passed in to the DLL as one of the function arguments.
Any global variables that are manipulated within the DLL may be swapped with vari-
ables from other application processes while the function is running, leading to unpre-
dictable results.

| 410 Day 17

Creating and Using an MFC Extension DLL

To see how easy it is to create and use an MFC extension DLL, you'll convert the library
module that you created yesterday into an MFC extension DLL today. After you see how
easy it is, and what types of changes you have to make to use the DLL, you'll then reim-
plement the same functionality as a regular DLL so that you can get an understanding of
the different approaches that are necessary with the two DLL styles.

Creating the MFC Extension DLL

To convert the library module you created yesterday into an MFC extension DLL, you
need to create a new MFC DLL Wizard project, specifying that the project is an MFC
extension DLL. Copy the source code and header files for the line and drawing classes
into the project directory. Load the files for the line and drawing classes into the current
project. Add theaFx_EXT_cLASSmacro to the drawing class. Finally, move the color

table from a global static table to a local variable inside the function that creates the
squiggles.

To create this DLL, start a new project. Give the project a suitable name, such as
ModartDIl , and specify that the project is an MFC AppWizard (DLL) project, as in Figure
17.1. Once in the DLL Wizard, specify that the DLL is an MFC Extension DLL, as in

Figure 17.2.
FIGURE 17.1. How
Selecting the MFC Files Projects | Workspaces | Other Documerts |
DLL Wizard [ATL COM Appwicard Praject game.
. [Cluster Rscourcs Type Wizard ModarDLL
5] Custom Appiwizard
| D atabaze Project Logation:
120 DevStudio Addin Wizard DHEVS HyProectModbD .|
I E stended Stored Proc Wizard
LEY 15 AP Extension wWizard
Jo:IMakefie & Ceate new workspace
BMFC Active Controlwizard c
%MFE Appiizard () O
MFC Appwizard (eve) T
it Utilty Project
| 3] win32 Application
‘:Iw\naz Console A._:pncaum Flatfoms:
[2] Win32 Dynamic-Link Library
%] wind2 Static Library v Win32
Carcel

Once you create the DLL shell, open the file explorer and copy the source code and
header files for the line and drawing clasdesd{ ,rh , ModArtcpp , andModArth)

from the library module project you created yesterday into the project directory that
you just created. Add all four of these files to the project. Both classes should appear in
the Class View of the workspace pane.

Sharing Your Functionality with Other Applications—Creating DLLs 411 |

FiGUre 17.2. MFC AppWizard - Step 1 of 1 HE

Specifying the DLL

type.

\whiat type of DLL would you lie to create?
 Fegular DLL with MFC statically inked

 Fiegular DLL using shared MFEC DLL
& FE Ertension DL [using shared MFC BLLY

\what features would you like in your DLL?

I~ Automation
™ windows Sockets
Would pou fike to generate source file comments?

@ ‘Yes, please
€ Mo, thank you

< Back ‘ | Einish Cancel |

Open the header file containing the definition of the drawing class. Add the
AFX_EXT_CLASSmMacro to the class declaration as shown in Listing 17.1. Remove the
color table variable from the class declaration also.

LISTING 17.1. THE MODIFIED CModArt CLASS DECLARATION.

1: class AFX_EXT_CLASS CModArt : public CObject
2

3p

4: vod NewDrawing();

5 vittelvod SeieizeCAdhve&ar);

6. void DramMCDC*pDC);

7. vod CearDraniny);

8 vod SetRect(CRect IDrawArea);
9 CModAr);

10: vitual~CModA);

11

12 pivete:

13 vodNewLine();

14: CRectm_rDrawArea;

15 CObAraym oalines,

16}

You cannot have public static tables in DLLs, so you cannot declare the color table as a
public, static member of the drawing class, as it was yesterday. As a result, you'll move it
to a local variable in theewLine member function. Edit theewLine function to add this

local variable and to reset the function to behave as it did in its initial incarnation,

as in Listing 17.2.

412 Day 17

LisTING 17.2. THE CModArt NewLine FUNCTION.

1: void CModArt:NewLine()

A

3 ntNurlines

4 nQuling

5 nnQuCdo,

6. UNTnCuWidh;

7. CPartplo,

8 CPontpFom;

9

10: //Nomalize the rectangle before determining the width and height

11: m_rDrawArea.NomalizeRect();

12 /getthe areawicthand height

13: intMWidth=m_rDrawArea Width();

14: intHeight=m_rDrawAreaHeight();

15:

16: COLORREF crColors[g] ={

17 RGB(0,0,0), /B

18 RGB(0,02%) /BLe

19 RGB(0,255, 0), /Green

20 RGB(0,255,255), //Cyan

21 RGB(Z%, 0, 0), /Red

22 RGB(255, 0,255), //Magenta

23 RGB(255,255, 0), /'Yelow

24 RGB(255,255,255) //\White

5}

26:

27: [/ Determine the number of parts to this souiggie

28 INumLines=rand() % 100;

29 [Arethereany patstotissouigge?

30 if(NumLines>0)

3{

/Deteminethe color

nCuCdor=rand() %8
I/ Determine the penwidth
nCuWidth=(and()%68)+1;

/I Deermine the Siarting pointforthe souiggie
pHomx= (rand() % Width) + m_rDrawArealef
pFomy = (rand() % IHeight) + m_rDrawAreatop;
I/ Loop through the number of segments

for(CuLine=0;ICuLine<NumLines; ICuLine+)

I/ Determine the end point of the segment
pTox=((and)%620)- 10)+pFromx
proy=(fand)%620)- 10) +pFromy;
ICresleanewClLineded
Cline*pLine=new CLine(pFHom, pTo, nCuWidth,
0 aColorsnCurCalor);

N SHRHCPSBBUBREBR

Sharing Your Functionality with Other Applications—Creating DLLs 413|

a8 {

49/ Addthe newlinetothe objectamay
50 m celinesAdd(plLine);

S

52 /Ddwemninoamemaryexception?
53 cach(CMemoyExcepton penm)

% {

5 IDisplayamessageforthe user, gvinghimthe
5% /Joedrens

57: AfdMiessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
5 /Ddweaeseanedid?

2 i

a {

6L /Dt

6 dieie

& pie=NUL

6t}

66 /Deeetheexospiondjed

6 paeDer)

67 }

68 /[Setthesatngpontioteendpot

6 pHRom=plo

a}

7}

72}

After making these changes to the drawing class, you are ready to compile your DLL.
Once you compile the DLL, switch over to the file explorer, find the DLL in the debug
subdirectory under the project directory, and copy the DLL to the debug directory in the
test application project directory.

Adapting the Test Application

To adapt the test application to use the DLL, open the test application project that you
created yesterday. You are going to delete the library module that you created yesterday
and add the LIB file that was created with the DLL. You are also going to change the
header file that is included for the drawing class. After making these two changes, your
test application will be ready to use with the DLL.

To delete the library module from the project, open the File View in the workspace pane.
Select the LIB file from the list of project files and press the Delete key. Once you delete
the library file from the project, select Project| Add To Project | Files from the main
menu. Specify the Library Files (.lib) file type, and then navigate to the debug directory
of the DLL project. Select the LIB file that was created with your DLL, in this case,
ModaDlb . Click OK to add the file to the project.

414 Day 17

Once you add the DLL’s LIB file, edit the source-code files for the document, view, and
application classes, changing the include of the drawing class to point to the project
directory of the DLL, as in line 7 in Listing 17.3.

LisTING 17.3. THE CTestAppDoc INCLUDES.

1: // TestAppDoc.cpp : implementation of the CTestAppDoc class
2/

3

4:#indude ‘sidafxh’

5:#include ‘TestApp.h”

6

7:#include “.\ModAtDINViodArth”

8: #include “TestAppDoc.h”

After making this change to all three source-code files, you are ready to compile and run
your test application. You should find your test application running just like it did yester-
day, only generating shorter squiggles and using only the eight colors in the color table.

Changing the DLL

Now that you have the test application running with the DLL, you'll make the same
changes to the DLL that you made to the library module yesterday. You'll increase the
number of squiggles that can be included in a drawing, increase the possible length of
each squiggle, and generate any number of colors for use in the squiggles.

To make these changes, switch back to the DLL project. Increase the number of lines
that may be generated in thewDrawing member function of the drawing class. Increase
the possible length of the squiggles in tl@Line member function, and add the random
colors back in, as in Listing 17.4.

LISTING 17.4. THE MODIFIED CModArt NewLine FUNCTION.

1: void CModArt:NewLine()
A

3 ntNumlines

4 nQulie

5./ intnOurColor,

6. UNTnCuWdth,
7. CPortplo,

8 CPortpHom;

9 ndRedt

10 ndBe

1T ndGreen

12:

Sharing Your Functionality with Other Applications—Creating DLLs

415 |

13 //Nomalize the rectangle before determining the width and height

14: m_rDrawArea.NomalizeRect()

15 /getthe areawicthand height

16: intWidth=m_rDrawAreaWidth();

17: intHeight=m_rDrawArea.Height();

18:

19:// COLORREF crColors[8] ={

20/ RGB(0, 0,0, /Back

21/ RGB(0, 0,255), /Ble

22/ RGB(0,25, 0), /Green

23/ RGB(0,255,255), //Cyan

24 RGB(2%5, 0, 0), /Red

2511 RGB(255, 0,255), //Magenta

26/ RGB(255,255, 0), //'Yelow

2711 RGB(255,255,255) //White

B}

29

30: // Determine the number of parts to this sauiggle

3L INumLines =rand() % 200;

32 [Arethereany partsoths squigge?

33 fNumLines>0)

#{

35 /Deeminethecdor

36/ nCurColor=rand()%8;

37: cRed=rand()% 26,

3B Bue=rand)%25,

30 Green=rand() %255,

40: /Deteminethe penwidth

41 nCuWidh=(and()%8)+1;

42 Deteminethe starfing pontforthe souioge

43 pHomx=(rand() % MWidth) + m_rDrawArealleft

44 pHomy=(rand() % Height) + m_rDrawAreatop;

45. J/Loop through the number of segments

46. for(Culine=0;ICuline<NumLines,Cutine+)

44

48 /I Determine the end point of the segment

49 plox=({and(%20)- 10)+pFomx;

50 ploy=(fand)%620)-10)+pFomy;

51 /CreseanewClLineded

52 CLine*pLine=new CLine(pFom, pTo, n"CutWidth,
[J RGB(cRed, cGreen, cBlue));

% /Addthenewirebtheddedtaray

56 m celinesAdd(plLine);

5}

58 /Ddwemnninboamemaryexception?
5% catch(CMemoyExcepton penm)

@ {

continues

416 Day 17

LISTING 17.4. CONTINUED

6L Dy amessageforthe user, gvighmthe

& [fredrens

63: AfxMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
64 /Ddweceseainedyed?

& ide

@ {

6f Dt

@ cedie

6 pie=NUL

n}

7 /Deeetheexspiondged

72 parDa)

B}

74 [Sethesaingpontiotheendpart
7B pHoOM=pIc

B}

77}

78}

After making these changes, compile the DLL again. Once you compile the DLL, switch
to the file explorer and copy the DLL into the debug directory of the test application
again. Once you copy the DLL, run the test application from the Start|Run Taskbar, as in
Figure 17.3. You should find that the application has been updated, and it is now includ-
ing more squiggles and using many different colors.

FIGURE 17.3. Run
Startllng.the sample THl| SRR
application.

Operc [D:AMSVS \MyProjects T ssthppiDebugTectapp exe ~ |
-

Corcel | Bowse.. |

Creating and Using a Regular DLL

You might think that you broke the rules about using variables that are not owned by the
application in a DLL when you created and used the MFC extension DLL. Well, you
didn’t. The instance of the drawing class was a member of the document class in the test
application. It was created and maintained by the application, not the DLL. Now that you
are turning your attention to implementing the same functionality as a regular DLL, this
will become clearer.

To convert the MFC extension DLL into a regular DLL, you'll have to convert the draw-
ing class into a series of regular function calls. In the course of making this conversion,

Sharing Your Functionality with Other Applications—Creating DLLs 417 |

the object array must become a member variable of the application document class and
must be passed as an argument to every exported function in the DLL.

Creating the Regular DLL

To convert the MFC extension DLL into a regular DLL, you have to start a new project.
Visual C++ has to build a project that tells the compiler what type of file it's creating.

You can create this new project using the same steps you used to create the MFC exten-
sion DLL project, but specify on the DLL Wizard that you are creating a regular DLL.
(You can leave the wizard at the default settings.) Once you create the project, you can
copy the line and drawing class source code and header files into the project directory
and add these files to the project. Once you add these files to the project, you need to
begin the process of converting the drawing class into a series of straight function calls.

Altering the Header File

To start with, you need to radically alter the header file for the drawing class so that it

will work for a regular DLL. You have to eliminate every trace of the actual class from

the header file, leaving only the function calls. All of these functions must be passed in
any objects that they need to work with. (Every function will need to be passed the

object array as one of its arguments.) Next, you need to slightly modify all the function
names so that the compiler does not get mixed up and call a member function of any
class by mistake (such as theie function). Finally, each of the public functions

must be declared as an exportable function. Making these changes to the header file, you
end up replacing the entire class declaration with the function prototypes in Listing 17.5.

LISTING 17.5. THE MODIFIED ModArt HEADER FILE.

1: exten “C” void PASCAL EXPORT ModArtNewDrawing(CRect pRect,
[J CObArray *poaLines);
2: extemn “C” void PASCAL EXPORT ModArtSerialize(CArchive &ar,
[J CObArray *poal.ines);
3: extemn “C” void PASCAL EXPORT ModArtDraw(CDC *pDC, CObArray *poalLines);
4: extemn “C” void PASCAL EXPORT ModArtClearDrawing(CObArray *poaLines);
5: void NewLine(CRect pRect, CObAmay *poalines);

’ N t Notice that the object array is always passed as a pointer to each of these
ote : _ _ _ :

functions. Because these functions are adding and removing objects from

the array, they need to work with the actual array and not a copy of it.

| 418

Day 17

Adapting the Drawing Generation Functions

Moving to the source-code file, you need to make numerous small yet significant
changes to these functions. Starting withNbeDrawing function, you need to pass in
theCRect Object to get the drawing area. You dropped the function for setting the draw-
ing area because you have no local variables in which you can hold this object. As a
result, you are better off passing it to the drawing generation functions. The other change
is where you pass in the object array as another argument to the function. You aren't
doing anything with either of these arguments in this function, just passing them along to
the squiggle generating function. The other alteration in this function is the addition of
the AFX_MANAGE_STATHacro as the first line in the body of the function. After making
these changes, thewbrawing function will look like the one in Listing 17.6.

LisTING 17.6. THE ModArtNewDrawing FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtNewDrawing(CRect pRect,
[J CObArray *poaLines)

2

3: AFX_MANAGE_STATE(AfxGetStaticModuleState());

4 //nomalfuncionbody here

5 nNurlines

6 nQuline

7

8 /lnitaize the random number generator

9 siand(unsigned)time(NULL);

10: // Determine how many lines to create

11: INumLines=rand()%50;

12: [Areteranyinesoceste?

13 f@\umLines>0)

14 {

15 /Loopthroughthe number ofines

16. for(Culine=0;ICuline<NumLines;ICuLine+)

7

18 /Qegeterewine

19 Newline(Redt poalines)

a}

2}

2}

Another change that is required in tievDrawing function is the addition of the random
number generator seeding on line 9. Because there is no class constructor any more, you
cannot seed the random number generator in it. Therefore, the next logical place to add
this is in thenewDrawing function before any random numbers are generated.

Sharing Your Functionality with Other Applications—Creating DLLs 419 |

On theNewLine function, the changes are more extensive. Firsicieet object and the

object array are passed in as arguments. Second, because this is not an exported function,
you do not need to add th&x_MANAGE_STATHacro. Third, all the places where the

CRect member variable is used must be changed to userthethat is passed as an

argument to the function. Finally, when adding objects to the object array, you need to
change this to use the object array pointer that was passed as an argument. Making these
changes leaves you with the code in Listing 17.7.

LISTING 17.7. THE NewLine FUNCTION.

1. void NewLine(CRect pRect, CObArray *poalines)
2

3 nNumlines

4 nQutie

5: /rtnCuCabr;

6 UNTnCuWdh;

7. CPatplg,

13 //Nomalze the rectangle before determining the wicth and
O height

14 pRectNomalizeRect);

15 /gettheareawidhandheight

16 intWidth=pRectWidth(;

17: inHeght=pRectHegH);

18

19: /' COLORREF crCalors[g] ={

20/ RGB(0,0,0), /Beck

21/ RGB(0, 0,256), /BLe

22 | RGB(0,255, 0), /Green

23/ RGB(0,255,255), //Cyan

24 | RGB(2%5, 0, 0), /Red

25 RGB(255, 0,255), //Magenta

26: /| RGB(255,255, 0), /'Yelow

27: | RGB(255,255,255) //\White

2RI}

29

30 //Determine the number of parts to this squiggle

3L INumLines=rand() %200,

32 [Aetereanypatsotissouigge?

B f@\umlines>0)

#{

3B [/Deeminethecdor

continues

| 420 Day 17

LISTING 17.7. CONTINUED

36:/ nCuCoor=rand(%8,

370 dRed=rand()%255,

cBue=rand) %26,
cGreen=rand()%256;

I Determine the penwidth
nCuWidth=(and()%8)+1;

I/ Defermine the siarting pointfor the scuiggle
pFomx=(fand() %6 MWidh) +pRectlef;
pRomy = (rand() %Heigh) + pRectiop;
I'Loop through the number of segments
for(CuLine=0; ICuLine<NumLines; ICuLine+)

I Determine the end point ofthe segment
pTox=(fand)%20)-10)+pFHomx,
pToy=(fand)%620)-10)+pFomy;
ICegieanewClinedgect
CLine*pLine=new CLine(pFHom, pTo, nCuWidth,
[J RGB(cRed, cGreen, cBlue));

BIBHID BEEBEN565K608888

1%
{
IAddterewineibthedaedaray
poelines>Add(pline);
}
/'Ddwe runinioamemoary exoepion?
59: catch (CMemoryException* perr)
& {
6L IDgpayamessagefortheuser,gvnghimte
62 [eedrens
63: AfMessageBox(‘Out of memory”, MB_ICONSTOP | MB_OK);
64 [/Ddweaeseainedyd?
& i
& {
6f D
B dEle
@ plie=NUL
0}
7 IDeetheexospiondgect
72 paDay)
B}
74 [Sethesatgpartioteendport
7S pAom=plg
&}
T}
8}

Adapting the Other Functions

Making the necessary changes to the other functions is less involved than the changes to
the drawing generation functions. With the rest of the functions, you must add a pointer

Sharing Your Functionality with Other Applications—Creating DLLs 421 |

to the object array as a function argument and then alter the uses of the array to use the
pointer instead of the no longer existing member variable. You also need to add the
AFX_MANAGE_STATHacro as the first line in each of the remaining functions. This
leaves you with the functions shown in Listings 17.8, 17.9, and 17.10.

LisTING 17.8. THE ModArtDraw FUNCTION.

1: extern “C” void PASCAL EXPORT ModArtDraw(CDC *pDC, CObAray *poal.ines)
A

3: AFX_MANAGE_STATE(AfxGetStaticModuleState());
4 /nomalfuncionbody here

5. [Getthenumberofinesinthedoectanay

6 ntiCount=poalinesGetSize);

7.1Rs

8

9 /Aeteranydjedsintearay?

10 fCourd

1:{

120 /Loopthroughthe aray, drawing each oblect

13 forPos=CPos<iCautPost)

14 (Clne®poaLinesfiPos)>DrampDC);

5}

16}

LisTING 17.9. THE ModArtSerialize FUNCTION.

1: extem “C" void PASCAL EXPORT ModArtSerialize(CArchive &ar,
[J CObArray *poaLines)

2

3: ARX_MANAGE_STATE(AfxGetStaticModuleState());

4 J/nomnalfunction body here

5. /Passthearchivedbectontothearay

6. poalinesSasizear);

e

LisTING 17.10. THE ModArtClearDrawing ~ FUNCTION.

1: extem “C” void PASCAL EXPORT ModArtClearDrawing(CObArray *poaLines)
A

3 AFX_MANAGE_STATE(AfxGetStaticModuleState());

4: /Nomnal function body here

5 /Getthenumberdfinesinthe dectamay

6 ntiCount=poalinesGelSz=();

7.1Rs

continues

| 422 Day 17

LisTING 17.10. CONTINUED

8

9 [Aretheranyddjedsinthearay?

10 fCarh

:{

122 /Loopthroughthe array, delefing each object
13 forPos=0Pes<iCoutPost)

14 desepoalinediPog

15 [Resttearay

16 poalinesRemoveAk);

17}

18}

Once you make the changes to these functions, the only thing remaining is to remove all
code for the class constructor and destructor, along with the code fR&ke func-
tion.

Building the Module Definition File

Before you compile the DLL, you need to add all the function names to the module defi-
nition file. You can find this file in the list of source-code files in the File View of the
workspace pane. When you open this file, you'll find that it briefly describes the module
that you are building in generic terms. You'll see a place at the bottom of the file where
you can add the exports for the DLL. Edit this file, adding the exportable function
names, as in Listing 17.11.

LisTING 17.11. THE DLL MODULE DEFINITION FILE.

1: ; ModARDI.def : Dedlares the module parameters for the DLL
2

3 LUBRARY ‘“ModAtRDI’

4: DESCRIPTION ‘ModArtRDI Windows Dynarmic Link Library’
5

6: EXPORTS

7. ;Byldeqatscangohee

8. ModArtNewDrawing

9 ModAitSersize

10: ModArtDraw

11: ModArtClearDrawing

You are now ready to compile your regular DLL. Once you compile the DLL, copy it
into the debug directory of the test application.

Sharing Your Functionality with Other Applications—Creating DLLs 423|

Adapting the Test Application

To adapt the test application to use the new DLL that you have just created, you need to
make a number of changes. First, you need to change the member variable of the docu-
ment class from an instance of the drawing class to the object array. Next, you need to
change the include in the document and view source code to include the header from the
new DLL instead of the header from the old DLL. (You can completely remove the
include in the application source-code file.) Drop the DLL LIB file and add the LIB file

for the new DLL to the project. Change all of the drawing class function calls to call
functions in the new DLL instead. Finally, change da®rawing function in the docu-

ment class so that it returns a pointer to the object array, instead of the drawing object.

You can sta