

San Francisco • Paris • Düsseldorf • Soest • London

Roderick W. Smith

Linux+

™

Study Guide

http://www.sybex.com

Associate Publisher: Neil Edde
Acquisitions and Developmental Editor: Elizabeth Hurley
Editors: Rebecca Rider, Susan Berge, Jim Gabbert
Production Editor: Shannon Murphy
Technical Editor: Matthew Miller
Book Designer: Bill Gibson
Graphic Illustrator: Tony Jonick
Electronic Publishing Specialist: Nila Nichols
Proofreaders: Emily Hsuan, Nelson Kim, Laurie O’Connell, Yariv Rabinovitch, Suzanne Stein
Indexer: Ann Rogers
CD Coordinator: Christine Harris
CD Technician: Kevin Ly
Cover Designer: Archer Design
Cover Photograph: Natural Selection

Copyright © 2001 SYBEX Inc., 1151 Marina Village Parkway, Alameda, CA 94501. World rights reserved. No part of this
publication may be stored in a retrieval system, transmitted, or reproduced in any way, including but not limited to photo-
copy, photograph, magnetic, or other record, without the prior agreement and written permission of the publisher.

Library of Congress Card Number: 2001089831

ISBN: 0-7821-2939-0

SYBEX and the SYBEX logo are either registered trademarks or trademarks of SYBEX Inc. in the United States and/or other
countries.

The CD interface was created using Macromedia Director, COPYRIGHT 1994, 1997-1999 Macromedia Inc. For more
information on Macromedia and Macromedia Director, visit http://www.macromedia.com.

Sybex is an independent entity from CompTIA and is not affiliated with CompTIA in any manner. Neither CompTIA nor Sybex
warrants that use of this publication will ensure passing the relevant exam. Linux+ is either a registered trademark or trademark
of CompTIA in the United States and/or other countries.

TRADEMARKS: SYBEX has attempted throughout this book to distinguish proprietary trademarks from descriptive terms
by following the capitalization style used by the manufacturer.

The author and publisher have made their best efforts to prepare this book, and the content is based upon final release soft-
ware whenever possible. Portions of the manuscript may be based upon pre-release versions supplied by software manu-
facturer(s). The author and the publisher make no representation or warranties of any kind with regard to the completeness
or accuracy of the contents herein and accept no liability of any kind including but not limited to performance, merchant-
ability, fitness for any particular purpose, or any losses or damages of any kind caused or alleged to be caused directly or
indirectly from this book.

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.sybex.com

SYBEX Inc.

 1151 Marina Village Parkway, Alameda, CA 94501

To Our Valued Readers:

Sybex is proud to have served as a member of CompTIA's Linux+ Advisory Committee. Just as CompTIA
is committed to establishing measurable standards for certifying individuals who will support Linux
systems in the future, Sybex is committed to providing those individuals with the skills needed to meet
those standards. By working alongside CompTIA, and in conjunction with other esteemed members
of the Linux+ committee, it is our desire to help bridge the knowledge and skills gap that currently con-
fronts the IT industry.

Sybex expects the Linux+ program to be well received, both by companies seeking qualified technical
staff and by the IT training community. Along with the existing line of vendor-neutral certifications
from CompTIA, including A+, Network+, Server+, and i-Net+, the Linux+ certification should prove
to be an invaluable asset in the years ahead.

Our authors and editors have worked hard to ensure that this

Linux+ Study Guide

 is comprehensive,
in-depth, and pedagogically sound. We’re confident that this book will meet and exceed the demanding
standards of the certification marketplace and help you, the Linux+ exam candidate, succeed in your
endeavors.

Good luck in pursuit of your Linux+ certification!

Neil Edde
Associate Publisher—Certification
Sybex, Inc.

SYBEX Inc. 1151 Marina Village Parkway, Alameda, CA 94501
Tel: 510/523-8233 Fax: 510/523-2373 HTTP://www.sybex.com

http://www.sybex.com

Software License Agreement: Terms and Conditions

The media and/or any online materials accompanying this
book that are available now or in the future contain pro-
grams and/or text files (the "Software") to be used in connec-
tion with the book. SYBEX hereby grants to you a license to
use the Software, subject to the terms that follow. Your pur-
chase, acceptance, or use of the Software will constitute your
acceptance of such terms.
The Software compilation is the property of SYBEX unless
otherwise indicated and is protected by copyright to SYBEX
or other copyright owner(s) as indicated in the media files
(the "Owner(s)"). You are hereby granted a single-user
license to use the Software for your personal, noncommercial
use only. You may not reproduce, sell, distribute, publish,
circulate, or commercially exploit the Software, or any por-
tion thereof, without the written consent of SYBEX and the
specific copyright owner(s) of any component software
included on this media.
In the event that the Software or components include specific
license requirements or end-user agreements, statements of
condition, disclaimers, limitations or warranties ("End-User
License"), those End-User Licenses supersede the terms and
conditions herein as to that particular Software component.
Your purchase, acceptance, or use of the Software will con-
stitute your acceptance of such End-User Licenses.
By purchase, use or acceptance of the Software you further
agree to comply with all export laws and regulations of the
United States as such laws and regulations may exist from
time to time.

Software Support

Components of the supplemental Software and any offers
associated with them may be supported by the specific
Owner(s) of that material but they are not supported by
SYBEX. Information regarding any available support may be
obtained from the Owner(s) using the information provided
in the appropriate read.me files or listed elsewhere on the
media.
Should the manufacturer(s) or other Owner(s) cease to offer
support or decline to honor any offer, SYBEX bears no
responsibility. This notice concerning support for the Soft-
ware is provided for your information only. SYBEX is not the
agent or principal of the Owner(s), and SYBEX is in no way
responsible for providing any support for the Software, nor is
it liable or responsible for any support provided, or not pro-
vided, by the Owner(s).

Warranty

SYBEX warrants the enclosed media to be free of physical
defects for a period of ninety (90) days after purchase. The
Software is not available from SYBEX in any other form or
media than that enclosed herein or posted to www.sybex.com.
If you discover a defect in the media during this warranty
period, you may obtain a replacement of identical format at

no charge by sending the defective media, postage prepaid,
with proof of purchase to:

SYBEX Inc.
Customer Service Department
1151 Marina Village Parkway
Alameda, CA 94501
(510) 523-8233
Fax: (510) 523-2373
e-mail: info@sybex.com
WEB: HTTP://WWW.SYBEX.COM

After the 90-day period, you can obtain replacement media
of identical format by sending us the defective disk, proof of
purchase, and a check or money order for $10, payable to
SYBEX.

Disclaimer

SYBEX makes no warranty or representation, either
expressed or implied, with respect to the Software or its con-
tents, quality, performance, merchantability, or fitness for a
particular purpose. In no event will SYBEX, its distributors,
or dealers be liable to you or any other party for direct, indi-
rect, special, incidental, consequential, or other damages
arising out of the use of or inability to use the Software or its
contents even if advised of the possibility of such damage. In
the event that the Software includes an online update feature,
SYBEX further disclaims any obligation to provide this fea-
ture for any specific duration other than the initial posting.
The exclusion of implied warranties is not permitted by some
states. Therefore, the above exclusion may not apply to you.
This warranty provides you with specific legal rights; there
may be other rights that you may have that vary from state to
state. The pricing of the book with the Software by SYBEX
reflects the allocation of risk and limitations on liability con-
tained in this agreement of Terms and Conditions.

Shareware Distribution

This Software may contain various programs that are distrib-
uted as shareware. Copyright laws apply to both shareware
and ordinary commercial software, and the copyright
Owner(s) retains all rights. If you try a shareware program
and continue using it, you are expected to register it. Individ-
ual programs differ on details of trial periods, registration,
and payment. Please observe the requirements stated in
appropriate files.

Copy Protection

The Software in whole or in part may or may not be copy-
protected or encrypted. However, in all cases, reselling or
redistributing these files without authorization is expressly
forbidden except as specifically provided for by the Owner(s)
therein.

http://www.sybex.com

In memory of Douglas Adams, 1952–2001. So long, and thanks for all the

laughter.

http://www.sybex.com

Acknowledgments

A

 book doesn’t just happen. At every point along the way from project
conception to finished product, many people other than the author have
their influence. Elizabeth Hurley, the Acquisitions and Developmental Editor,
helped guide the book’s development, especially for the critical first few
chapters. Shannon Murphy, as Production Editor, coordinated the work of
the many others who contributed their thoughts to the book. Rebecca Rider, the
Editor, provided suggestions and helped keep the prose readable. The team
of technical editors scrutinized the text for technical errors, and to be sure its
coverage was complete. Also, my thanks go to Emily Hsuan, Nelson Kim,
Laurie O’Connell, Yariv Rabinovitch, and Suzanne Stein, the Proofreaders
for this book; Nila Nichols, the Electronic Publishing Specialist; and to the
entire CD team at Sybex for working together to produce the final prod-
uct. I’d also like to thank Neil Salkind at Studio B; as my agent, he helped
connect me with Sybex to write this book.

http://www.sybex.com

Introduction

W

hy should you learn about Linux? It’s a fast-growing operating sys-
tem, and it is inexpensive and flexible. Linux is also a major player in the
small and mid-sized server field, and it’s an increasingly viable platform for
workstation and desktop use, as well. By understanding Linux, you’ll
increase your standing in the job market. Even if you already know Windows
or MacOS and your employer uses these systems exclusively, understanding
Linux will give you an edge when you are looking for a new job or if you are
looking for promotion. For instance, this knowledge will allow you to make
an informed decision about if and when you should deploy Linux.

The Computing Technology Industry Association (CompTIA) has devel-
oped its Linux+ exam as an introductory certification for people who want
to enter careers involving Linux. The exam is meant to certify that an indi-
vidual has the skills necessary to install, operate, and troubleshoot a Linux
system, and is familiar with Linux-specific concepts and basic hardware.

The purpose of this book is to help you pass the Linux+ exam. Because
this exam covers basic Linux installation, use, configuration, administration,
and hardware interactions, those are the topics that are emphasized in this
book. You’ll learn enough to get a Linux system up and running and how to
configure it for many common tasks. Even after you’ve taken and passed the
Linux+ exam, this book should remain a useful reference.

What Is Linux?

Linux is a clone of the Unix OS that has been popular in academia and many
business environments for years. Formerly used exclusively on large main-
frames, Unix and Linux can now run on small computers—which are actu-
ally far more powerful than the mainframes of just a few years ago. Because
of its mainframe heritage, Unix (and hence also Linux) scales well to perform
today’s demanding scientific, engineering, and network server tasks.

Linux consists of a kernel, which is the core control software, and many
libraries and utilities that rely upon the kernel to provide features with which
users interact. The OS is available in many different distributions, which are
bundlings of a specific kernel with specific support programs. These con-
cepts are discussed at greater length in Chapters 1–3.

http://www.sybex.com

xxiv

Introduction

Why Become Linux+ Certified?

There are several good reasons to get your Linux+ certification. The
CompTIA Candidates Information packet lists five major benefits:

Provides proof of professional achievement

Certifications are quickly
becoming status symbols in the computer service industry. Organizations,
including members of the computer service industry, are recognizing the
benefits of certification, such as Linux+ or A+. Organizations are pushing
for their members to become certified. Every day, more people are putting
the CompTIA official certification logo on their business cards.

Increases your marketability

Linux+ certification makes individuals
more marketable to potential employers. Also, the Linux+ certified
employees might receive a higher salary base because employers won’t
have to spend as much money on vendor-specific training.

Provides an opportunity for advancement

Most raises and advance-
ments are based on performance. Linux+ certified employees work faster
and more efficiently. The more productive employees are, the more
money they will make for their company. And, of course, the more money
they make for the company, the more valuable they will be to the com-
pany. So, if employees are Linux+ certified, their chances of getting pro-
moted will be greater.

Fulfills training requirements

Each year, more and more major com-
puter hardware vendors, including (but not limited to) IBM, Hewlett-
Packard, and Compaq, are recognizing CompTIA’s certifications as pre-
requisites in their own respective certification programs. The use of out-
side certifications like Linux+ has the side benefit of reducing training
costs for employers. Because more and more small companies are deploy-
ing the flexible and inexpensive OS we call Linux, the demand for expe-
rienced users is growing. CompTIA anticipates that the Linux+ exam, like
the A+ exam, will find itself integrated into various certification programs
as well.

Raises customer confidence

As the IT community, users, small business
owners, and the like become more familiar with the Linux+ certified pro-
fessional moniker, more of them will realize that the Linux+ professional
is more qualified to work in their Linux environment than is a non-
certified individual.

http://www.sybex.com

Introduction

xxv

How to Become Linux+ Certified

The Linux+ certification is available to anyone who passes the test. You
don’t have to work for a particular company. It’s not a secret society. It is,
however, an elite group.

The exam is administered by Prometric and can be taken at any Prometric
Testing Center. If you pass, you will get a certificate in the mail from
CompTIA saying that you have passed, and you will also receive a lapel pin
and business cards. To find the Prometric training center nearest you, call
(800) 755-EXAM (755-3926).

To register for the exam, call Prometric at (800) 776-MICRO (776-4276)
or register online at

http://www.2test.com

. You’ll be asked for your
name, your Social Security number (an optional number may be assigned if
you don’t wish to disclose your Social Security number), mailing address,
phone number, employer, when and where you want to take the test (i.e.,
which Prometric testing center), and your credit card number (arrangement
for payment must be made at the time of registration).

Who Should Buy This Book

Anybody who wants to pass the Linux+ exam may benefit from this book.
If you’re new to Linux, this book covers the material you will need to learn
the OS from the beginning, and it continues to provide the knowledge you
need up to a proficiency level sufficient to pass the Linux+ exam. You can
pick up this book and learn from it even if you’ve never used Linux before,
although you’ll find it an easier read if you’ve at least casually used Linux for
a few days. If you’re already familiar with Linux, this book can serve as a
review and as a refresher course for information with which you might not
be completely familiar. In either case, reading this book will help you to pass
the Linux+ exam.

This book is written with the assumption that you know at least a little bit
about Linux (what it is, and possibly a few Linux commands). This book
also assumes that you know some basics about computers in general, such as
how to use a keyboard, how to insert a floppy disk into a floppy drive, and
so on. Chances are you have used computers in a substantial way in the
past—perhaps even Linux, as an ordinary user, or maybe you have used
Windows or MacOS. This book does

not

 assume that you have extensive
knowledge of Linux system administration, but if you’ve done some system
administration, you can still use this book to fill in gaps in your knowledge.

http://www.sybex.com

xxvi

Introduction

How This Book Is Organized

This book consists of nine chapters plus supplementary information: a glos-
sary, this Introduction, and the Assessment Test after the Introduction. The
chapters are organized as follows:

�

Chapter 1, “Planning the Implementation,” covers things you should
consider

before

 you install Linux on a computer. This chapter com-
pares Linux to other OSs, it discusses Linux’s hardware requirements
and its disk partition requirements, it describes the various Linux dis-
tributions, and it explores the software licenses found in the Linux
world.

�

Chapter 2, “Installing Linux,” covers the Linux installation process.
Because Linux is available in several variant forms, this chapter
focuses on just one (Linux Mandrake 8.0), but other Linux distribu-
tions must perform the same fundamental tasks, so much of this infor-
mation is directly applicable to other distributions. This chapter also
covers the post-installation configuration of one particularly critical
Linux component: the X Window System (or X for short), which pro-
vides Linux’s GUI environment.

�

Chapter 3, “Software Management,” covers how to install and con-
figure software. Much of this discussion is devoted to the two major
package management systems in Linux, the Red Hat Package Man-
ager (RPM) and Debian packages. This chapter also covers kernel
issues and boot loaders (which are used to boot a Linux kernel).

�

Chapter 4, “Users and Security,” covers how to create and maintain
user accounts; it also covers the security issues surrounding users and
Linux more generally. Because Linux is a clone of Unix, it includes
extensive support for multiple users, and understanding Linux’s model
for user accounts is critical to many aspects of Linux’s operation.

�

Chapter 5, “Networking,” covers how to use Linux on a network.
This chapter includes an overview of what a network is, including the
popular TCP/IP networking tools upon which the Internet is built.
Several popular Linux network client programs are discussed, as is the
subject of how to control access to a Linux computer.

http://www.sybex.com

Introduction

xxvii

�

Chapter 6, “Managing Files and Services,” covers many of the impor-
tant Linux configuration files and some miscellaneous administrative
and user tasks, such as how you should use a GUI environment and
how to write a shell script. Most of these tasks aren’t very glamorous,
but they’re critically important for you to know if you want to keep a
system running properly.

�

Chapter 7, “Managing Partitions and Processes,” covers two things:
filesystems (disk partitions and the data they contain) and processes
(running programs). Specific topics include how to create and manage
filesystems, how to back up and restore a computer, how to run pro-
grams at specific scheduled times, and how to manipulate running
processes.

�

Chapter 8, “Hardware Issues,” covers various hardware topics. These
include configuring printers, using kernel modules (drivers for specific
hardware devices), adding new hardware, using laptop computers,
and diagnosing hardware problems. Some of these issues are the same
as in other OSs, but Linux handles some hardware devices in funda-
mentally different ways than do many other OSs.

�

Chapter 9, “Troubleshooting,” is devoted to the question of what to
do when things go wrong. This chapter includes information on how
to narrow down the problem space to a manageable size, and it
includes advice on how to proceed when you see many common prob-
lem symptoms.

Each chapter begins with a list of the CompTIA Linux+ objectives that are
covered in that chapter. (The book doesn’t cover objectives in the same order
as CompTIA lists them, so don’t be alarmed when you notice gaps in the
sequence.) At the end of each chapter, there are several elements you can use
to help prepare for the exam:

Exam Essentials

This section summarizes important information that
was covered in the chapter. You should be able to perform each of the
tasks or convey the information requested.

Commands in This Chapter

Most chapters include discussion of sev-
eral Linux commands. (Chapter 1 is an exception to this rule.) You should
be familiar with these commands before taking the exam. You might not
need to know every option for every command, but you should know
what the command does and be familiar with its major options. (Chapter 3
begins with a discussion of how to perform basic tasks in a Linux com-
mand shell.)

http://www.sybex.com

xxviii

Introduction

Key Terms

The key terms are italicized throughout the text. They’re
important terms with which you should be familiar before you take the
exam. The Glossary provides definitions for all of the key terms. They’re
also defined in the text in which they’re first discussed extensively.

Review Questions

Each chapter concludes with twenty review ques-
tions. You should answer these questions and check your answer against
the one provided after the questions. If you can’t answer at least 80 per-
cent of these questions correctly, go back and review the chapter, or at
least those sections that seem to be giving you difficulty.

The Review Questions, Assessment Test, and other testing elements included
in this book are

not

 derived from the CompTIA Linux+ exam questions, so
don’t memorize the answers to these questions and assume that doing this
will let you pass the Linux+ exam. You should learn the underlying topic, as
described in the text of the book. This will let you answer the questions pro-
vided with this book

and

 pass the exam. Learning the underlying topic is also
the approach that will serve you best in the workplace—the ultimate goal of a

certification like Linux+.

To get the most out of this book, you should read each chapter from start
to finish, then check your memory and understanding with the chapter-end
elements. Even if you’re already familiar with a topic, you should skim the
chapter; Linux is complex enough that there are often multiple ways to
accomplish a task, so you may learn something even if you’re already com-
petent in an area.

Bonus CD-ROM Contents

This book comes with a CD-ROM that contains both the book’s features
and several additional elements. Items available on the CD-ROM include the
following:

Book contents as a PDF file

The entire book is available as an Adobe
Portable Document Format (PDF; aka Acrobat) file. This allows you to
take the book with you on the road or use a PDF reader’s search function
to find a word or phrase you remember reading but can’t quite find.

http://www.sybex.com

Introduction

xxix

Electronic “flashcards”

The CD-ROM includes 150 questions in
“flashcard” format (a question followed by a single correct answer). You
can use these to review your knowledge of the Linux+ exam objectives.

Sample Tests

All of the questions in this book appear on the CD-
ROM—both the 30-question Assessment Test at the end of this Introduc-
tion and the 180 questions that consist of the nine 20-question Review
Question sections for each chapter. In addition, there are two 65-question
Bonus Exams.

You can use a PDF reader like Adobe Acrobat or any Ghostscript-based viewer
in Linux to read the PDF files on the CD-ROM. The sample tests use a Java
applet that works with Java-enabled Web browsers in Linux, Windows, or
other OSs. Look for a file called

test.htm

 in the test engine directory on the
CD-ROM and double-click it in a file browser, or load it using a file selector in
your Web browser. Chapter 7, “Managing Partitions and Processes,” dis-
cusses mounting disks, including CD-ROMs, if you want to access these files

from Linux.

Conventions Used in This Book

This book uses ces10s1.5pographic styles 0s1order to help you quickly iden-
tify impos1nt information and to avoid confusion over the meaning of
words such as on-screen prompts. In particular:

�

Italicized text

 indicates key terms that are discussed at length for the
first time in a chapter. (Italics are also used for emphasis.)

�

A monospaced font

 is used to indicate the contents of configuration
files, messages displayed at a text-mode Linux shell prompt, file-
names, and Internet URLs.

�

Italicized monospaced text

 indicates a variable—information
that differs from one system or command run to another, such as the
name of a client computer or a process ID number.

http://www.sybex.com

xxx

Introduction

�

Bold monospaced text

 is information that you’re to type into the
computer, usually at a Linux shell prompt. This text can also be ital-
icized to indicate that you should substitute an appropriate value for
your system. (When isolated on their own lines, commands are pre-
ceded by non-bold monospaced

$

 or

#

 command prompts.)

In addition to these text conventions, which can apply to individual words
or entire paragraphs, there are a few conventions that I use to highlight seg-
ments of text:

A Note indicates information that’s useful or interesting, but that’s somewhat
peripheral to the main discussion. A Note might be relevant to a small number

of networks, for instance, or it may refer to an outdated feature.

A Tip provides information that can save you time or frustration and that may
not be entirely obvious. A Tip might describe how to get around a limitation,

or how to use a feature to perform an unusual task.

Warnings describe potential pitfalls or dangers. If you fail to heed a Warning,
you may end up spending a lot of time recovering from a bug, or you may

even end up restoring your entire system from scratch.

Sidebars

A Sidebar is like a Note but is longer. Typically, a Note is one paragraph or
less in length, but Sidebars are longer than this. The information in a Side-
bar is useful, but it doesn’t fit into the main flow of the discussion.

http://www.sybex.com

Introduction

xxxi

The Exam Objectives

Behind every computer industry exam you can be sure to find exam objec-
tives—the broad topics in which exam developers want to ensure your
competency. The official CompTIA objectives for the Linux+ exam are
listed here.

Exam objectives are subject to change at any time without prior notice and at
CompTIA’s sole discretion. Please visit the Linux+ Certification page of CompTIA’s
Web site (

http://www.comptia.com/certification/linuxplus/index.htm

)

for the most current listing of exam objectives.

Domain 1.0 Planning the Implementation

1.1 Identify purpose of Linux machine based on predetermined cus-
tomer requirements (e.g., appliance, desktop system, database, mail
server).

1.2 Identify all system hardware required and validate that it is sup-
ported by Linux (e.g., CPUs, RAM, graphics cards, storage devices,
network interface cards, modem).

1.3 Determine what software and services should be installed (e.g.,
client applications for workstation, server services for desired task),
check requirements and validate that it is supported by Linux.

1.4 Determine how storage space will be allocated to file systems
(e.g., partition schemes).

Real World Scenario

A Real World Scenario is a type of sidebar that describes some task or
example that’s particularly grounded in the real world. This may be a situ-
ation I or somebody I know has encountered, or it may be advice on how to
work around problems that are common in real, working Linux environments.

http://www.sybex.com

xxxii

Introduction

1.5 Compare and contrast how major Linux licensing schemes work
(e.g., GNU/GPL, freeware, shareware, open source, closed source,
artistic license).

1.6 Identify the function of different Linux services (e.g., Apache,
Squid, SAMBA, Sendmail,

ipchains

, BIND).

1.7 Identify strengths and weaknesses of different distributions and
their packaging solutions (e.g., tar ball vs. RPM/DEB).

1.8 Describe the functions, features, and benefits of Linux solutions
as compared with other operating systems (e.g., Linux players, distri-
butions, available software).

1.9 Identify how the Linux kernel version numbering works.

1.10 Identify where to obtain software and resources.

1.11 Determine customer resources for a solution (e.g., staffing,
budget, training).

Domain 2.0 Installation

2.1 Determine appropriate method of installation based on the envi-
ronment (e.g., boot disk, CD-ROM, Network (HTTP, FTP, NFS, SMB)).

2.2 Describe the different types of Linux installation interaction and
determine which to use for a given situation (e.g., GUI, text, network).

2.3 Select appropriate parameters for Linux installation (e.g., lan-
guage, time zones, keyboard, mouse).

2.4 Select packages based on the machine’s “role” (e.g., Workstation,
Server, Custom).

2.5 Select appropriate options for partitions based on pre-installation
choices (e.g., FDISK, third party partitioning software).

2.6 Partition according to your pre-installation plan using fdisk (e.g.,

/boot

,

/

,

/usr

,

/var/home

,

SWAP

).

2.7 Configure file systems (e.g., (ext2) or (ext3) or REISER).

2.8 Select appropriate networking configuration and protocols (e.g.,
modems, Ethernet, Token-Ring).

http://www.sybex.com

Introduction

xxxiii

2.9 Select appropriate security settings (e.g., Shadow password, root
password, umask value, password limitations and password rules).

2.10 Create users and passwords during installation.

2.11 Install and configure XFree86 server.

2.12 Select Video card support (e.g., chipset, memory, support
resolution(s)).

2.13 Select appropriate monitor manufacturer and settings (e.g.,
custom, vertical, horizontal, refresh).

2.14 Select the appropriate window managers or desktop environ-
ment (e.g., KDE, GNOME).

2.15 Explain when and why the kernel will need to be recompiled.

2.16 Install boot loader (e.g., LILO, MBR vs. first sector of boot
partition).

2.17 Install and uninstall applications after installing the operating
system (e.g., RPM,

tar

,

gzip

).

2.18 Read the Logfiles created during installation to verify the success
of the installation.

2.19 Validate that an installed application is performing correctly in
both a test and production environment.

Domain 3.0 Configuration

3.1 Reconfigure the Xwindow System with automated utilities (e.g.,
Xconfigurator, XF86Setup).

3.2 Configure the client’s workstation for remote access (e.g.,
ppp, ISDN).

3.3 Set environment variables (e.g.,

PATH

,

DISPLAY

,

TERM

).

3.4 Configure basic network services and settings (e.g.,

netconfig

,

linuxconf

; settings for TCP/IP, DNS, DHCP).

3.5 Configure basic server services (e.g., X, SMB, NIS, NFS).

3.6 Configure basic Internet services (e.g., HTTP, POP, SMTP,
SNMP, FTP).

http://www.sybex.com

xxxiv

Introduction

3.7 Identify when swap space needs to be increased.

3.8 Add and configure printers.

3.9 Install and configure add-in hardware (e.g., monitors, modems,
network interfaces, scanners).

3.10 Reconfigure boot loader (e.g., LILO).

3.11 Identify the purpose and characteristics of configuration files
(e.g., BASH,

inittab

,

fstab

,

/etc/*

).

3.12 Edit basic configuration files (e.g., BASH files,

inittab

,

fstab

).

3.13 Load, remove, and edit list modules (e.g.,

insmod

,

rmmod

,

Ismod

,

modprobe

).

3.14 Document the installation of the operating system, including
configuration.

3.15 Configure access rights (e.g., rlogin, NIS, FTP, TFTP, SSH,
Telnet).

Domain 4.0 Administration

4.1 Create and delete users.

4.2 Modify existing users (e.g., password, groups, personal
information).

4.3 Create, modify, and delete groups.

4.4 Identify and change file permissions, modes, and types by using
chmod, chown, and chgrp.

4.5 Manage and navigate the Linux hierarchy (e.g., /etc, /usr,
/bin, /var).

4.6 Manage and navigate the standard Linux file system (e.g., mv,
mkdir, ls, rm).

4.7 Perform administrative tasks while logged in as root, or by using
the su command (e.g., understand commands that are dangerous to the
system).

4.8 Mount and manage filesystems and devices (e.g., /mnt, /dev, du,
df, mount, umount).

http://www.sybex.com

Introduction xxxv

4.9 Describe and use the features of the multi-user environment (e.g.,
virtual terminals, multiple logins).

4.10 Use common shell commands and expressions.

4.11 Use network commands to connect to and manage remote sys-
tems (e.g., telnet, ftp, ssh, netstat, transfer files, redirect
Xwindow).

4.12 Create, extract, and edit file and tape archives using tar.

4.13 Manage runlevels using init and shutdown.

4.14 Stop, start, and restart services (daemons) as needed (e.g.,
init files).

4.15 Manage print spools and queues.

4.16 Create, edit, and save files using vi.

4.17 Manage and navigate the Graphical User Interface (e.g., menus,
xterm).

4.18 Program basic shell scripts using common shell commands (e.g.,
grep, find, cut, if).

Domain 5.0 System Maintenance

5.1 Create and manage local storage devices and file systems (e.g.,
fsck, fdisk, mkfs).

5.2 Verify user and root cron jobs and understand the function
of cron.

5.3 Identify core dumps and remove or forward as appropriate.

5.4 Run and interpret ifconfig.

5.5 Download and install patches and updates (e.g., packages, tgz).

5.6 Differentiate core services from non-critical services (e.g., ps, PID,
PPID, init, timer).

5.7 Identify, execute, and kill processes (ps, kill, killall).

5.8 Monitor system log files regularly for errors, logins, and unusual
activity.

http://www.sybex.com

xxxvi Introduction

5.9 Document work performed on a system.

5.10 Perform and verify backups and restores.

5.11 Perform and verify security best practices (e.g., passwords, phys-
ical environments).

5.12 Assess security risks (e.g., location, sensitive data, file system
permissions, remove/disable unused accounts, audit system
services/programs).

5.13 Set daemon and process permissions (e.g., SUID – SGID –
Owner/groups).

Domain 6.0 Troubleshooting

6.1 Identify and locate the problem by determining whether the prob-
lem is hardware, operating system, application software, configura-
tion, or the user.

6.2 Describe troubleshooting best practices (i.e., methodology).

6.3 Examine and edit configuration files based on symptoms of a
problem using system utilities.

6.4 Examine, start, and stop processes based on the signs and symp-
toms of a problem.

6.5 Use system status tools to examine system resources and statuses
(e.g., fsck, setserial).

6.6 Use systems boot disk(s) and root disk on workstation and server
to diagnose and rescue file system.

6.7 Inspect and determine cause of errors from system log files.

6.8 Use disk utilities to solve file system problems (e.g., mount,
umount).

6.9 Resolve problems based on user feedback (e.g., rights, unable
to login to the system, unable to print, unable to receive or
transmit mail).

6.10 Recognize common errors (e.g., package dependencies, library
errors, version conflicts).

6.11 Take appropriate action on boot errors (e.g., LILO, bootstrap).

http://www.sybex.com

Introduction xxxvii

6.12 Identify backup and restore errors.

6.13 Identify application failure on server (e.g., Web page, telnet,
ftp, pop3, snmp).

6.14 Identify and use troubleshooting commands (e.g., locate,
find, grep, |, <, >, >>, cat, tail).

6.15 Locate troubleshooting resources and update as allowable (e.g.,
Web, man pages, howtos, infopages, LUGs).

6.16 Use network utilities to identify network connectivity problems
(e.g., ping, route, traceroute, netstat, lsof).

Domain 7.0 Identify, Install, and Maintain System

Hardware

7.1 Identify basic terms, concepts, and functions of system compo-
nents, including how each component should work during normal
operation and during the boot process.

7.2 Assure that system hardware is configured correctly prior to
installation (e.g., IRQs, BIOS, DMA, SCSI settings, cabling) by iden-
tifying proper procedures for installing and configuring ATA devices.

7.3 Assure that system hardware is configured correctly prior to
installation (e.g., IRQs, BIOS, DMA, SCSI settings, cabling) by iden-
tifying proper procedures for installing and configuring SCSI and
IEEE 1394 devices.

7.4 Assure that system hardware is configured correctly prior to
installation (e.g., IRQs, BIOS, DMA, SCSI settings, cabling) by iden-
tifying proper procedures for installing and configuring peripheral
devices.

7.5 Assure that system hardware is configured correctly prior to
installation (e.g., IRQs, BIOS, DMA, SCSI settings, cabling) by iden-
tifying available IRQs, DMAs, and I/O addresses and procedures for
device installation and configuration.

http://www.sybex.com

xxxviii Introduction

7.6 Remove and replace hardware and accessories (e.g., cables and
components) based on symptoms of a problem by identifying basic
procedures for adding and removing field replaceable components.

7.7 Remove and replace hardware and accessories (e.g., cables and
components) based on symptoms of a problem by identifying common
symptoms and problems associated with each component and how to
troubleshoot and isolate problems.

7.8 Identify basic networking concepts, including how a network
works.

7.9 Identify proper procedures for diagnosing and troubleshooting
ATA devices.

7.10 Identify proper procedures for diagnosing and troubleshooting
SCSI devices.

7.11 Identify proper procedures for diagnosing and troubleshooting
peripheral devices.

7.12 Identify proper procedures for diagnosing and troubleshooting
core system hardware.

7.13 Identify and maintain mobile system hardware (e.g.,
PCMCIA, APM).

http://www.sybex.com

Assessment Test

1. Which of the following tools is it most important to have available on
an emergency recovery disk?

A. fdformat

B. WordPerfect

C. mkfs

D. traceroute

2. The output of free shows that a system with 256MB of RAM is using
191MB of RAM and 12MB of an available 350MB of swap space.
These values don’t fluctuate much over time. Which of the following
is true?

A. The computer would experience substantial speedup by doubling
its RAM.

B. The swap space may be safely eliminated.

C. The administrator should use the swapon command to activate
more use of the existing swap space.

D. Available swap space and RAM are adequate for the system’s cur-
rent uses.

3. Which of the following tasks can /etc/modules.conf entries
perform? (Choose all that apply.)

A. They can specify hardware parameters, such as IRQs, to be used by
a kernel module.

B. They can indicate a command to be performed whenever the
kernel loads a module.

C. They can indicate the conditions under which the kernel should
recompile a module.

D. They can specify the module to be loaded for a particular type of
hardware.

http://www.sybex.com

xl Assessment Test

4. Which of the following are power management protocols? (Choose all
that apply.)

A. ACPI

B. PPP

C. SMTP

D. APM

5. What does the -t parameter to telinit control?

A. The time between a polite shutdown of unneeded servers
(via SIGTERM) and a forceful shutdown (via SIGKILL)

B. The time between issuing the telinit command and the time the
runlevel change takes place

C. The runlevel that’s to be entered upon completion of the command

D. The message sent to users before the runlevel change is enacted

6. Which of the following programs might you want to remove on a sys-
tem that’s to function solely as a firewall? (Choose all that apply.)

A. init

B. The Telnet client

C. The Linux kernel

D. The Apache server

7. Which of the following is it wise to do when deleting an account with
userdel?

A. Ensure that the user’s password isn’t duplicated in /etc/passwd
or /etc/shadow.

B. Search the computer for stray files owned by the former user.

C. Change permissions on system files to prevent the user from
accessing them remotely.

D. Delete the user’s files with a utility that overwrites former file con-
tents with random data.

http://www.sybex.com

Assessment Test xli

8. Which of the following is true of Debian-based distributions?

A. They all use kernels optimized for Intel Pentium CPUs.

B. They are all derived from Debian GNU/Linux but diverge in vari-
ous ways from the original.

C. They cannot use software shipped in RPM format.

D. They are extremely rare because of the popularity of RPM- and
tarball-based distributions.

9. An ls -l command reveals that the loud file has a permission string
of crw-rw---- and ownership by the user root and group audio.
Which of the following is a true statement about this file?

A. Only root and the account that created it may read or write
the file.

B. The file is a directory, as indicated by the leading c.

C. Anybody in the audio group may read from and write to the file.

D. The command chmod 660 loud will make it accessible to more
users.

10. Which of the following is commonly found in /etc/inetd.conf
entries for servers but not in the equivalent entries in /etc/
xinetd.conf or a file in /etc/xinetd.d?

A. A call to tcpd

B. A specification of the protocol, such as tcp

C. A specification of the user, such as nobody

D. Arguments to be passed to the target server

11. Why might a script include a variable assignment like CC="/usr/
bin/gcc"?

http://www.sybex.com

xlii Assessment Test

A. To ensure that the script uses gcc rather than some other C
compiler.

B. Because some programs can’t be called from scripts except when
referred to by variables.

C. The variable assignment allows the script to run the program even
if it lacks execute permission.

D. The variable can be easily changed or assigned different values,
increasing the utility of the script.

12. Which of the following symptoms is more common in kernel bugs
than in application problems?

A. Programs consume an inordinate amount of CPU time.

B. An error message containing the word oops appears in your log
files.

C. A program refuses to start and complains of a missing library file.

D. The problem occurs for some users but not for others.

13. Which of the following are potential problems when using a partition
resizing utility like resize2fs or PartitionMagic? (Choose all that
apply.)

A. A power failure or crash during the resize operation could result in
substantial data loss.

B. Linux may not recognize a resized partition because resizers often
change the partition ID code.

C. No resizing programs exist for the most common Linux filesystem,
ext2fs.

D. If the resizer moves the Linux kernel, you’ll need to reinstall LILO.

14. In which of the following circumstances is it most appropriate to run
XFree86 3.3.6 over a 4.0.x version of the server?

http://www.sybex.com

Assessment Test xliii

A. Never; XFree86 4.0.x does everything 3.3.6 does, and better.

B. When you need support for multiple simultaneous monitors to dis-
play an oversized desktop.

C. When 3.3.6 includes a separate accelerated server for your card.

D. When 4.0.x provides unaccelerated support for your chipset but
3.3.6 provides acceleration.

15. You want to set up a firewall on a Linux computer. Which of the fol-
lowing tools might you use to accomplish this task?

A. Apache

B. iptables

C. wall

D. TCP Wrappers

16. What is the purpose of the setserial command?

A. It configures a series of actions to be performed automatically by
typing one command.

B. It configures Universal Serial Bus (USB) port parameters.

C. It disables multitasking, forcing Linux to perform only one com-
mand at a time.

D. It queries or configures the status of an RS-232 serial port.

17. Which of the following is the purpose of the rc.local or boot.local
startup script?

A. It sets the system’s time zone and language defaults.

B. It holds startup commands created for its specific computer.

C. It displays startup messages to aid in debugging.

D. It verifies that all other startup scripts are operating correctly.

18. Which of the following is a protocol that can help automate configu-
ration of SCSI devices?

http://www.sybex.com

xliv Assessment Test

A. SCAM

B. SMB

C. ASPI

D. ATAPI

19. Which of the following is true of emergency restore procedures?

A. You should test your emergency recovery tools, no matter what
they are, to be sure they work and you know how to use them,
before an emergency arises.

B. Emergency disks provided with distributions are guaranteed to be
able to restore a system, provided they can boot a system initially.

C. The only way to recover a Linux system to a fresh hard disk is to
do a partial installation and then recover the backup system using
the partial system’s tools.

D. You can’t completely restore a system from a CD-R backup; you
must have a tape backup to create a bootable Linux system.

20. Which of the following is not one of the responsibilities of lpd?

A. Maintaining the printer queues

B. Accepting print jobs from remote systems

C. Informing applications of a printer’s capabilities

D. Sending data to printers

21. Which of the following commands displays the contents of a tarball,
including file sizes and time stamps?

A. tar xzf theprogram-1.2.3.tgz

B. tar tzf theprogram-1.2.3.tgz

C. tar tvzf theprogram-1.2.3.tgz

D. tar x theprogram-1.2.3.tgz

22. Which of the following does a switch allow that a hub does not
permit?

http://www.sybex.com

Assessment Test xlv

A. 100Mbps operation

B. Linking more than five computers

C. Full-duplex operation

D. Use with 10-Base5 cabling

23. A Linux system administrator is using Nedit (process name nedit) to
edit a configuration file on a system that hosts several users, but the
editor has hung. Because of this, the administrator types killall
nedit. Why might this action be a mistake?

A. To work properly, you must specify the signal type with the
-SIGNAL parameter.

B. It’s necessary to locate the PID with ps and pass that to killall.

C. The command will kill all Nedit processes, even those owned by
other users.

D. Without the -n parameter, killall interprets its first parameter
as a username, not a process name.

24. How can you specify the medium used for installation?

A. You can type the codes c for CD-ROM or n for network at the
lilo: prompt when you first boot the installer.

B. You can use individualized boot floppies for each medium, or you
can choose the medium during the installation process, depending
upon the distribution.

C. Each distribution supports just one installation medium, so the
choice is implicit in your choice of distribution.

D. The installer auto-detects the installation medium, so there’s no
need to explicitly provide this information to the installer.

25. What types of devices may be attached via the USB port? (Choose all
that apply.)

A. Keyboards

B. Modems

C. RAM

D. Printers

http://www.sybex.com

xlvi Assessment Test

26. A user whose desktop environment is KDE reports an inability to log
in to the computer in graphics mode. Other users (even those who also
use KDE) have no such problem. Which of the following is most likely
to help resolve this situation?

A. Reinstalling KDE

B. Reconfiguring the XF86Config file’s Modeline statements

C. Deleting the user’s .icewm directory, which controls KDE’s win-
dow manager

D. Deleting the user’s .kde directory, in which KDE’s preferences are
stored

27. How would you direct the output of the uptime command to a file
called uptime-stats.txt?

A. echo uptime uptime-stats.txt

B. uptime > uptime-stats.txt

C. uptime | uptime-stats.txt

D. uptime < uptime-stats.txt

28. How do you create a system cron job?

A. You copy a script into a directory specified in /etc/crontab, such
as /etc/cron.d/Hourly or /etc/cron.daily.

B. You type crontab -u system -e to edit the crontab for the
system user.

C. You type crontab -u system cron-file to turn cron-file into
the system cron file.

D. You can’t; system cron jobs are fixed by the distribution and can-
not be altered.

29. Which of the following best describes the relative advantages of Linux
and Windows NT/2000?

http://www.sybex.com

Assessment Test xlvii

A. Linux is best used on networks; Windows NT/2000 is best used in
stand-alone installations.

B. Linux better supports Unix applications and servers; Windows
NT/2000 better supports legacy DOS applications.

C. Linux is best configured through its GUI tools; Windows NT/2000
is easily configured through text-based tools.

D. Linux supports the most popular office productivity applications;
Windows NT/2000 supports the most popular Internet servers.

30. Why might you want to use both a firewall and server options to
restrict access based on the IP address of a client computer?

A. Without both types of options, access will not be restricted.

B. The redundancy provides protection in case one access control
mechanism is buggy or misconfigured.

C. Server-based controls are good for protections based on Internet IP
addresses, while firewalls are better for protections based on LAN
IP addresses.

D. Server-based controls are ineffective and should never be used.

http://www.sybex.com

xlviii Assessment Test

Answers to Assessment Test

1. C. mkfs is a tool for creating a new filesystem, which is something
you’re likely to need to do in an emergency recovery situation.
fdformat does a low-level format on a floppy disk, WordPerfect is a
word processor, and traceroute helps diagnose network connectivity
problems. You’re unlikely to need to use any of these tools from an
emergency disk. See Chapter 9 for more information.

2. D. Swap space is being used lightly, and so it isn’t degrading system
performance. The available swap space is large enough that an unex-
pected spike in memory usage probably won’t overwhelm it. The swap
space should not be eliminated in case such a spike arrives, though.
Adding RAM might improve performance somewhat, but most likely,
such an action won’t improve it substantially. The swapon command
won’t improve performance, but it could be used to add more swap
space if memory demands increased. See Chapter 8 for more information.

3. A, B, D. /etc/modules.conf includes parameters to specify all of
the indicated information, but the Linux kernel never automatically
recompiles a kernel module; that’s a task for you as an administrator.
See Chapter 6 for more information.

4. A, D. The Advanced Configuration Power Interface (ACPI) and
Advanced Power Management (APM) are power management proto-
cols. The Point-to-Point Protocol (PPP) forms TCP/IP network links
over serial or telephone lines, and the Simple Mail Transfer Protocol
(SMTP) handles e-mail exchanges. See Chapter 8 for more information.

5. A. When shutting down certain servers, telinit first tries asking
them to shut themselves down by sending a SIGTERM signal. The server
can then close open files and perform other necessary shutdown
housekeeping. If the servers don’t respond to this signal, telinit
becomes more forceful, and passes a SIGKILL signal, which is more
likely to work but doesn’t give the server a chance to shut itself down
in an orderly fashion. See Chapter 6 for more information.

http://www.sybex.com

Answers to Assessment Test xlix

6. B, D. You’re unlikely to need to use a Telnet client on a firewall, but
an intruder who breaks into the firewall could use it to access your
internal systems. A firewall shouldn’t run any servers that aren’t abso-
lutely required, and an Apache server is almost certainly not required.
init is the master process on a Linux system, and cannot be removed
without damaging the system. Likewise, the Linux kernel controls
everything else; without it, the computer isn’t a Linux computer at all.
See Chapter 4 for more information.

7. B. Tracking down and removing or changing the permissions of a
former user’s files can prevent confusion or possibly even spurious
accusations of wrongdoing in the future. Unless the user was involved
in system cracking, there’s no reason to think that the user’s password
will be duplicated in the password database. No system file’s owner-
ship or permissions should need changing when deleting a user.
Although overwriting deleted files with random data may be useful in
some high-security environments or with unusually sensitive data, it’s
not a necessary practice on most systems. See Chapter 4 for more
information.

8. B. In 2001, all major Debian-based distributions use not just the
Debian package system but many Debian component packages as a
starting base. Debian is available for non-x86 CPUs, so Pentium opti-
mization is not universal (although Corel Linux does use a Pentium-
optimized kernel). RPM is available on Debian and its derivatives, and
it can be used, although it’s generally not recommended. The Debian
package format is the second most popular in the Linux world, behind
RPM but ahead of tarballs—at least as a basis for distributions. See
Chapter 3 for more information.

9. C. The second set of permission bits (rw-) indicates that the file’s
group (audio) may read from and write to the file. This permission
string ensures that, if sound has more than one member, multiple
users may access the file. The leading c indicates that the file is a char-
acter device file, not a directory. chmod 660 loud will not change the
file’s permissions; 660 is equivalent to rw-rw----. See Chapter 4 for
more information.

http://www.sybex.com

l Assessment Test

10. A. tcpd is the TCP Wrappers program. This program provides some
security features that are largely provided directly by xinetd, so most
systems that use xinetd don’t call tcpd from xinetd. The other
options appear in both types of files, although arguments for the
server aren’t required for either super server. See Chapter 6 for more
information.

11. D. You can easily edit that line to change the program run by the $CC
variable, or you can assign different values to the variable within a
conditional in support of different system configurations. Specifying
the program directly will as easily ensure that it’s run. Any program
that can be called from a variable can be called directly. Variable
assignment doesn’t allow the script to call programs for which the user
lacks execute permission. See Chapter 6 for more information.

12. B. Kernel bugs often manifest themselves in the form of kernel
oopses, in which an error message including the word oops appears on
the console and in log files. Although a program might conceivably
trigger a kernel oops, the bug is fundamentally in the kernel. (Kernel
oopses also often indicate hardware problems.) See Chapter 9 for
more information.

13. A, D. The biggest problem with resizers is the potential for data loss
in the event of a crash or power failure during the resize operation.
They also can render a system unbootable because of a moved kernel.
This latter problem can be overcome by reinstalling LILO. Linux
doesn’t use partition ID codes except during installation, and resizing
programs don’t touch these codes. PartitionMagic and resize2fs are
two programs commonly used to resize ext2 filesystems. See Chapter 7
for more information.

14. D. XFree86 4.0.x includes a new driver architecture, so some of
3.3.6’s accelerated drivers haven’t been ported to the new system as of
version 4.0.3. In such cases, using the old server can provide a snap-
pier display. It’s 4.0.x that provides support for multiple monitors.
The presence of a separate accelerated driver in 3.3.6 does not neces-
sarily mean that the 4.0.x support is slower. See Chapter 2 for more
information.

http://www.sybex.com

Answers to Assessment Test li

15. B. iptables is the tool for configuring the 2.4.x Linux kernel’s fire-
wall features. (ipfwadm and ipchains perform these tasks for the
2.0.x and 2.2.x kernels, respectively.) Apache is a Web server and
wall sends messages to all currently logged-on users. TCP Wrappers
controls access to specific servers but it isn’t a firewall per se. See
Chapter 1 for more information.

16. D. setserial returns information on the RS-232 serial port’s hard-
ware and current operating status, such as the port speed. See Chapter 9
for more information.

17. B. These scripts hold startup commands individualized for their host
(“local”) computer, as opposed to provided with the distribution. In
principle, these scripts could be used for any of the other listed pur-
poses, but this isn’t their usual function. See Chapter 6 for more
information.

18. A. The SCSI Configured Automatically (SCAM) protocol, if sup-
ported by the host adapter and SCSI devices connected to it, auto-
configures those devices. The Server Message Block (SMB) is a protocol
used in Windows file sharing and implemented by Samba in Linux.
The Advanced SCSI Programming Interface (ASPI) is a method com-
mon in DOS and Windows for programs to interface with SCSI
devices. The Advanced Technology Attachment Packet Interface
(ATAPI) is a protocol used by many EIDE devices. See Chapter 1 for
more information.

19. A. Testing your emergency tools can save you time when the pressure
is on during a restore. In extreme cases, testing tools and finding prob-
lems with them may allow you to correct problems that might cause
hours of effort in an emergency. Distributions’ emergency disks may
or may not contain the exact tools you need to restore a system.
They’re unlikely to contain commercial backup tools. Recovering by
doing a slim Linux installation and then using that to recover a
backed-up system is one approach to the problem of doing a complete
restore, but it’s not the only solution. Assuming you’ve made a com-
plete backup to CD-R, it’s possible to completely restore a system
from CD-R. See Chapter 7 for more information.

http://www.sybex.com

lii Assessment Test

20. C. lpd is a multifunction tool that accepts print jobs from local and
remote systems, maintains print queues, and sends data to printers
(both local and remote). It does not, however, feed back information
on a printer to applications. See Chapter 8 for more information.

21. C. Option A extracts files from the archive without displaying their
names. Option B lists the files in the archive; but without the --
verbose (v) option, it doesn’t list file sizes or time stamps. Option D
will cause tar to attempt to extract the named file from its standard
tape device. See Chapter 3 for more information.

22. C. Switches allow full-duplex operation and reduce the chance of
collisions on a network relative to hubs. Both devices come in
100Mbps models and models supporting both fewer than and greater
than 5 devices. Neither type of device normally supports 10-Base5
cabling; they’re both intended for use with twisted-pair network
cables. See Chapter 5 for more information.

23. C. In Linux, killall kills all processes of the specified name. When
the superuser issues the command, it will kill processes owned by nor-
mal users, as well as root’s processes of the specified name. It can take
a signal name or number as a parameter, but if that’s omitted, it
defaults to a TERM signal. The advantage of killall over kill is that
you don’t need to look up a PID to use killall. There is no -n param-
eter for killall. See Chapter 7 for more information.

24. B. Some distributions use particular boot floppies (or other boot
media) for specific installation media. Others allow you to select the
installation medium from a list early in the installation process. None
require you to enter this information at the lilo: prompt. Most dis-
tributions support multiple installation media. The installer cannot
auto-detect your installation medium, except insofar as an installer
can be written to support just one, with different boot floppies for dif-
ferent media. See Chapter 2 for more information.

25. A, B, D. The USB port has been used for connecting just about every

http://www.sybex.com

Answers to Assessment Test liii

26. D. A login problem isolated to one user is almost certainly related to
something in the user’s configuration files. One possible source of the
problem is the file or directory controlling the window manager or
desktop environment. IceWM isn’t the default window manager for
KDE, so .icewm isn’t the appropriate directory to delete; .kde is. See
Chapter 2 for more information.

27. B. The output redirection operator is >, so option B sends the output
of uptime to uptime-stats.txt. The echo command displays infor-
mation on the screen, so option A simply causes uptime uptime-
stats.txt to appear. Option C uses a pipe. If uptime-stats.txt
were a program, it would process the output of uptime, but the result
of this command will probably be a file not found or permission
denied error. Option D uses an input redirection operator, so uptime
receives the contents of uptime-stats.txt as its input. See Chapter 9
for more information.

28. A. System cron jobs are controlled through /etc/crontab, which
normally specifies several directories whose contents are run at vary-
ing intervals, so copying a script to one of these directories turns it into
a system cron job. The crontab program is used to create user cron
jobs. Both options B and C might work, if the computer has a user
called system, which isn’t a standard account name. Cron jobs cre-
ated in this way would work with the system user’s privileges, but
they wouldn’t be system cron jobs in the sense discussed in Chapter 7.
See Chapter 7 for more information.

29. B. Most Unix applications can be recompiled on Linux to function,
and Windows includes support for DOS programs. Linux and Win-
dows NT/2000 are both well suited to use on networks. Linux, not
Windows, is the OS that’s best suited to configuration via text-based
tools. Windows, not Linux, supports the most popular office produc-
tivity applications, such as Microsoft Office. See Chapter 1 for more
information.

30. B. A firewall is normally a first line of defense, either on the network
as a whole or on an individual computer. If the firewall doesn’t block
access (because of a bug, misconfiguration, or other problem), subse-
quent controls may do the job. Server options are one such subsequent
control. See Chapter 5 for more information.

http://www.sybex.com

Chapter

1

Planning the
Implementation

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

�

1.1 Identify purpose of Linux machine based on predetermined

customer requirements (e.g., appliance, desktop system,

database, mail server).

�

1.2 Identify all system hardware required and validate that it is

supported by Linux (e.g., CPUs, RAM, graphics cards, storage

devices, network interface cards, modem).

�

1.3 Determine what software and services should be installed

(e.g., client applications for workstation, server services for

desired task), check requirements and validate that it is

supported by Linux.

�

1.4 Determine how storage space will be allocated to file

systems (e.g., partition schemes).

�

1.5 Compare and contrast how major Linux licensing schemes

work (e.g., GNU/GPL, freeware, shareware, open source, closed

source, artistic license).

�

1.6 Identify the function of different Linux services (e.g.,

Apache, Squid, SAMBA, Sendmail,

ipchains

, BIND).

�

1.8 Describe the functions, features, and benefits of a Linux

solution as compared with other operating systems (e.g., Linux

players, distributions, available software).

�

1.10 Identify where to obtain software and resources.

�

1.11 Determine customer resources for a solution (e.g., staffing,

budget, training).

http://www.sybex.com

�

7.1 Identify basic terms, concepts, and functions of

system components, including how each component

should work during normal operation and during the

boot process.

�

7.2 Assure that system hardware is configured correctly

prior to installation (e.g., IRQs, BIOS, DMA, SCSI settings,

cabling) by identifying proper procedures for installing

and configuring ATA devices.

�

7.3 Assure that system hardware is configured correctly

prior to installation (e.g., IRQs, BIOS, DMA, SCSI settings,

cabling) by identifying proper procedures for installing

and configuring SCSI and IEEE 1394 devices.

�

7.4 Assure that system hardware is configured correctly

prior to installation (e.g., IRQs, BIOS, DMA, SCSI settings,

cabling) by identifying proper procedures for installing

and configuring peripheral devices.

�

7.5 Assure that system hardware is configured correctly

prior to installation (e.g., IRQs, BIOS, DMA, SCSI, cabling)

settings by identifying available IRQs, DMAs, and I/O

addresses and procedures for device installation and

configuration.

http://www.sybex.com

M

ost computers are not designed or sold with Linux in
mind. This means that Linux doesn’t always run properly on them, or it may
not take full advantage of the computer’s hardware. Therefore, if you need
to buy or build a new computer, it’s important to understand what Linux
needs with respect to hardware so that you can buy a computer with appro-
priate specifications.

Just as you should understand Linux’s hardware requirements, you need
to know something about the Linux software world. When you are deter-
mining what operating system (OS) to install on a computer, one of the most
critical questions you should ask yourself is whether the software you need
is available on the OS in question. Locating Linux software and understand-
ing its licensing terms are also important aspects of software requirements
for Linux.

Understanding these fundamental hardware and software features will
help you in every subsequent aspect of Linux configuration and use because
they lay the groundwork for additional Linux layers. Many of your installa-
tion choices (discussed in Chapter 2, “Installing Linux”) depend upon your
hardware, for instance, and many details of system configuration and
administration (discussed throughout the rest of the book) rely upon your
choice of Linux vendor.

Evaluating Computer Requirements

I

f you’re building or buying a new computer, one of the first steps you
must take is to lay out the system’s general hardware requirements—the

http://www.sybex.com

4

Chapter 1 �

Planning the Implementation

amount of RAM, the approximate

central processing unit (CPU)

 speed,
the amount of disk space, and so on. These characteristics are determined in
large part by the role or roles the computer will play. For instance, a work-
station for a graphics designer will require a large monitor and good video
card, but an Internet server needs neither. Once you’ve decided the general
outline of the hardware requirements, you can evaluate your resource limi-
tations (such as your budget) and arrive at more specific hardware selections—
specific brands and models for the individual components, or for a pre-built
computer.

Workstations

A

workstation

 is a computer that is used primarily or exclusively from that
computer’s own

console

 (the keyboard and monitor attached directly to the
computer). Workstations are sometimes also referred to as

desktop comput-
ers

, although some people apply the latter term to somewhat lower-
performance computers without network connections, reserving the term
“workstation” for systems with network connections.

Because they’re used by individuals, workstations typically require fairly
good input/output devices—a large display (typically 17-inch or larger), a
high-quality keyboard, and a good 3-button mouse. (Linux, unlike Win-
dows, uses all three buttons, so a 2-button mouse is suboptimal.) Worksta-
tions also frequently include audio hardware (a sound card, speakers, and
sometimes a microphone) and high-capacity removable media drives (Zip or
LS-120 drives, perhaps CD-R or CD-RW burners, and often a DVD-ROM
drive).

CPU speed, memory, and hard disk requirements vary from one applica-
tion to another. A low-end workstation that’s to be used for simple tasks
such as word processing can get by with less of each of these values than is
available on new computers today. A high-end workstation that will be used
for video rendering, heavy-duty scientific simulations, or the like may need
the fastest CPU, the most RAM, and the biggest hard disk available. Like-
wise, low-end workstations are likely to have less cutting-edge network
hardware than are high-end workstations, and the differing hard disk
requirements dictate less in the way of backup hardware for the low-end
workstation.

http://www.sybex.com

Evaluating Computer Requirements

5

Servers

The word

server

 can mean one of two things: a program that responds to net-
work requests from other computers, or the computer on which the server
program runs. When designing a computer, the latter is the appropriate def-
inition. Servers usually have little or no need for user-oriented features like
large monitors or sound cards. Most servers make heavy use of their hard
disks, however, so large and high-performance disks are desirable in servers.
For the same reason,

Small Computer System Interface (SCSI

) disks are pre-
ferred to

Enhanced Integrated Device Electronics (EIDE)

 disks—SCSI disks
tend to perform better, particularly when multiple disks are present on a
single computer. (This issue is discussed more later in the chapter, in the sec-
tion entitled “Hard Disk Space.”)

Small servers, such as those handling a few users in a small office, don’t
need much in the way of CPU speed or RAM, but larger servers need more
of these quantities, especially RAM. Linux automatically buffers disk
accesses, meaning that Linux keeps recent disk accesses in memory, and
reads more than it requested from disk. These practices mean that when sub-
sequent requests come in, Linux can deliver them from memory, which is
faster than going back to the disk to obtain the data. Thus, a server with lots
of RAM can often outperform an otherwise similar server with only a mod-
est amount of RAM.

It’s important to realize that server needs fall along a continuum; a very
low-demand Web site might not require a very powerful computer, but a
very popular Web site might need an extraordinarily powerful system. There
are also many other types of servers available, including Usenet news servers,
database servers, time servers, and more. (News and database servers are
particularly likely to require very large hard disks.)

Dedicated Appliances

Some Linux systems function as dedicated appliances—as routers, print
servers for just one or two printers, the OS in small robots, and so on. In
some cases, as when the computer functions as a small router, Linux can
enable recycling of old hardware that’s otherwise unusable. Dedicated appli-
cations like these often require little in the way of specialized hardware.
Other times, the application demands very specialized hardware, such as
custom motherboards or touch-panel input devices. Overall, it’s difficult to
make sweeping generalizations concerning the needs of dedicated appliances.

http://www.sybex.com

6

Chapter 1 �

Planning the Implementation

Special Needs

Sometimes, the intended use of the computer requires specialized hardware
of one variety or another. Common examples include the following:

Video input

If the computer must digitize video signals, such as those
from a television broadcast or a videotape, you will need a video input
board. The Linux kernel includes drivers for several such products, and a
variety of programs are available to handle such inputs. The Video4Linux
project (

http://roadrunner.swansea.linux.org.uk/v4l.shtml

)
supports these efforts.

Scientific data acquisition

Many scientific experiments require real-
time data acquisition. This requires special timing capabilities, drivers for
data acquisition hardware, and software. The Linux Lab Project (

http://
www.llp.fu-berlin.de

) is a good starting point from which to locate
appropriate information for such applications.

USB devices

The

Universal Serial Bus (USB)

 is a multipurpose external
hardware interface. It’s seeing increased use as an interface method for
keyboards, mice, modems, scanners, digital cameras, printers, removable-
media drives, and other devices. Linux added USB support in the 2.2.18
and 2.4.

x

 kernels. This support is good for some devices but weak or non-
existent for others. Check

http://www.linux-usb.org

 to learn about
support for specific devices. You’ll also have to be sure to use a distribu-
tion with USB support, or at least upgrade the kernel to include this
support.

Determining Available Resources

B

efore you decide on specific hardware to be used for a new system,
you should consider the resources available to you. These include any exist-
ing hardware that you can reuse, or with which a new system must integrate;
the budget under which you must work; and the expertise available to you,
both as it exists now and as it might exist after it has been obtained by train-
ing personnel to use new hardware and software.

http://www.sybex.com

Determining Available Resources

7

Utilizing Existing Hardware

One resource you may have available is that of existing hardware. One of the
reasons for Linux’s popularity is that it can be stripped of graphical user
interface (GUI) configuration tools and other resource hogs and still accom-
plish a great deal. This makes Linux an excellent OS with which to stretch
the life of old hardware. Before you purchase a new system, you should also
consider how it will integrate with your current infrastructure, such as your
current network, existing printers, and so on.

Reusing Old Hardware

If you have much in the way of old hardware, you may be able to use it with
Linux, particularly in specialized ways. For instance, an early Pentium, or
even a 486 system, can make a good dedicated firewall for a small- or
medium-sized office. Such an application requires little CPU power, almost
no disk space (some products for this purpose fit on a single floppy disk), and
little RAM. Such a system can also be turned into a print server for two or
three printers (this may require adding parallel port or USB cards); or, with
the addition of more disk space and possibly RAM, it can be used as a light-
duty file server. With a big enough monitor, such a system can function as a
terminal (even a graphical X terminal) to other Linux or Unix computers.

Another approach for reusing old hardware is to scavenge parts for inclu-
sion in an otherwise new system. Components like monitors, speakers, mice,
keyboards, removable-media drives, hard disks, and many add-in cards can
be moved from an old, decommissioned system to an otherwise new one,
thus saving the cost of the new components. Of course, this is best done with
components that are in good condition. Also, some components improve
substantially with time, so old components may not be useful in modern sys-
tems. A 1995 hard disk isn’t likely to be large enough to be worth salvaging,
for instance. Some technologies, such as those for RAM and CPUs, change
so much that old components can’t be used in new hardware after more than
a year or two.

Integrating With Existing Infrastructure

When planning a new system, you must be aware of the environment in
which it will be placed. This environment includes many components. Some-
times there’s little you can do to make Linux compatible with this infrastructure;

http://www.sybex.com

8

Chapter 1 �

Planning the Implementation

at other times, you can buy appropriate hardware or install software to make
the system compatible. Here are a few examples:

Network connections

In many offices, networking is critically impor-
tant, so a Linux system must be able to work on the local network. If your
office uses a Token Ring network, for instance, you’ll need to track down
and install Token Ring cards for which Linux drivers exist rather than
using the more common Ethernet cards.

Printers

If the computer must link directly to a printer, the two devices
need compatible interfaces. Most

x

86 PCs sold today include one parallel,
one or two serial, and two USB ports. You may need to add extra ports
or buy a USB hub if you need to connect more printers than this. (Printer
driver configuration is another important issue, which is discussed in
Chapter 8, “Hardware Issues.”)

Modems

Linux works with most external RS-232 serial modems. Exter-
nal USB modems work if they follow the Communication Device Class
Abstract Control Model (CDC-ACM) protocol. Internal models may or
may not work, depending upon the model. Broadband (cable and DSL)
modems work if they use Ethernet interfaces, but internal and USB devices
both require explicit driver support, so check on that detail.

Scanners

Check on

http://panda.mostang.com/sane

 for informa-
tion on Linux’s support for scanners. As a general rule, SCSI-interfaced
models work well, while USB and parallel-port scanners may or may not
work, depending upon the model in question.

Removable-media devices

Linux works well with most removable-
media devices. Whether your office uses Zip, LS-120, magneto-optical,
Jaz, CD-RW, or other media, Linux can use them. The main caveat relates
to the interface. SCSI and EIDE devices work well, as do many parallel-
port and USB devices—but a few of the latter two types will cause prob-
lems. Also, some Windows CD-RW software creates discs that Linux
can’t read.

As a general rule, if you expect Linux to interface directly with a device,
you should check on compatibility. You can usually find some way to get
Linux working with your infrastructure, but you may need to buy extra
hardware or use unusual drivers.

http://www.sybex.com

Determining Available Resources

9

Balancing Budgetary Limitations

Whether you’re working in an organization or buying a computer for your-
self, it’s a good idea to set a budget for a new computer before you buy. If you
fail to do this, it’s easy to fall into a pattern of feature inflation, in which you
decide to spend “just” $20 more on one upgrade, and “just” $30 more on
another. Before long, you’ve added $500, $1000, or more to the cost of the
computer. When setting your budget, remember that you may need to make
some unexpected purchases after the fact. For instance, you may find that
you need an adapter to connect an external SCSI device to your computer’s
external SCSI port.

There’s a good chance you’ll find that your ideal computer costs more
than you’ve budgeted for it. If this happens, you have two choices: revise
your budget or settle for a lesser computer. (You can, of course, do a little of
both.) If you choose to trim, here are some suggestions:

�

Today’s hard disks are measured in the tens of gigabytes in capacity,
which is more than enough for most workstations and even many
servers. You may be able to make do with a smaller hard disk than
you’d planned. If necessary, you can add another hard disk in the
future. Also, look for the hard disk capacity sweet spot—the point that
carries the lowest price per gigabyte of storage. If you’d planned to
buy at just above the sweet spot, reducing disk size by a little can
reduce the cost by a lot.

�

It’s easy to list floppy, DVD-ROM, CD-RW, Zip, and Jaz drives as
being required, but are they? You might be able to omit the DVD-
ROM drive and use a CD-RW to both read and write CDs. An LS-120
drive can read ordinary floppy disks.

�

Large monitors are very nice, but they may be overkill, particularly for
low-end workstations and servers. I do

not

, however, recommend that
you cut costs by purchasing an unknown low-cost monitor, particu-
larly for a workstation. A monitor with a blurry screen, or one that
flickers a lot, can cause eyestrain and headaches. Similarly, cheap key-
boards can be a false economy on heavily used workstations if they
contribute to carpal-tunnel syndrome.

http://www.sybex.com

10

Chapter 1 �

Planning the Implementation

�

CPU speed increases rapidly in the computer industry, and in 2001, CPUs
are faster than required for many applications. If you truly need a fast
CPU, by all means get one, but for many workstations, a mid-range CPU
will do well. You may also want to look for the CPU price sweet spot.
This often occurs just below the top of the line, so even if you need a
speedy CPU, getting the model that’s one or two notches below the
top-speed model may make sense.

�

Many of today’s top video cards are targeted at game players, who
want high-speed, 3-dimensional effects. 3D effects are computation-
ally expensive, and they also require a lot of RAM. For traditional
office applications, a card with minimal or no 3D effects and 8MB of
RAM is perfectly adequate. Some high-end graphics applications may
need more, though.

One additional consideration, particularly if you’re buying multiple
Linux computers, is that you may be able to invest additional resources in a
single computer rather than distribute the resources among a group of sys-
tems. For instance, a single computer with a large hard disk can function as
a file server for dozens of computers with anemic hard disks. You can even
give users accounts on a central system and have them run programs on that
computer, using their own systems as little more than terminals. In fact, this
approach can be a great way to reuse old hardware—even a 486 can function
as an adequate terminal (even for X-based GUI programs).

Considering Available Expertise

Ideally, once Linux is installed and running, the details of your hardware
selections will be unimportant to the computer’s ultimate users. The average
user doesn’t really care if you use an ATI or Matrox video card, and they
won’t need to manually reconfigure these components. Of course, the end
user may care that you’ve selected a 17-inch rather than a 19-inch monitor
to save money.

Local expertise becomes important in a few hardware devices, however.
If you’re installing a new network, you may need to arrange for training so
that users can use the necessary network applications. At anything but the
smallest sites, it’s also important to have somebody on hand to troubleshoot
network problems as they arise. Removable disks occasionally require expla-
nations, particularly warnings concerning proper care of the media. In
Linux, CD-R and CD-RW drives don’t operate like other removable-media

http://www.sybex.com

Deciding What Hardware to Use

11

devices, so users must be told how to use appropriate Linux software. End
users may also require training on tape backup devices.

End-user training and expertise are at least as important for Linux soft-
ware as for hardware. Users who are used to Microsoft Windows or MacOS
can probably adapt to Linux without too much difficulty, but they’ll find this
task much easier if they’re given a complete desktop environment, such as
the K Desktop Environment (KDE) or the GNU Network Object Model
Environment (GNOME). Both come with most Linux distributions, and are
described briefly in Chapter 2. If you’re migrating a large number of users
from another OS to Linux, you may want to organize some introductory
Linux orientation sessions in which you demonstrate Linux and highlight
some of the differences between Linux and the old OS.

Deciding What Hardware to Use

O

nce you’ve decided on the approximate specifications for a com-
puter and you’ve set a budget, you can begin deciding on exact specifica-
tions. If you possess the necessary knowledge, I recommend indicating
manufacturer and model numbers for every component, along with one or
two backups for each. (RAM, however, is close to being a commodity; few
people shop for RAM by brand, although the

type

 of RAM is important.)
You can then take this list to a store and compare it to the components
included in particular systems, or you can deliver your list to a custom-build
shop to obtain a quote. If you don’t have enough in-depth knowledge of spe-
cific components, you can omit the make and model numbers for some com-
ponents, such as the hard disk, CD-ROM drive, monitor, and motherboard.
You should definitely research Linux compatibility with video cards, net-
work cards, SCSI host adapters (if you decide to use SCSI components), and
sound cards (if the computer is to be so equipped). These components can
cause problems for Linux, so unless you buy from a shop that’s experienced
in building Linux systems, a little research now can save you a lot of aggra-
vation later when you try to get a component working in Linux.

http://www.sybex.com

12

Chapter 1 �

Planning the Implementation

A Rundown of PC Hardware

Computers are built from several components that must interact with each
other in highly controlled ways. If a single component misbehaves or if the
interactions go awry, the computer as a whole will malfunction in subtle or
obvious ways. Major components in computers include the following:

Motherboard The motherboard (also sometimes called the mainboard)
holds the CPU, RAM, and plug-in cards. It contains circuitry that “glues”
all these components together. The motherboard determines what type of
memory and CPU the computer can hold. It also includes the BIOS, which
controls the boot process, and it usually has built-in support for hard
disks, floppy disks, serial ports, and other common hardware.

CPU The CPU is the computer’s brain—it performs most of the compu-
tations that result in a system’s ability to crunch numbers in a spreadsheet,
lay out text in a word processor, transform PostScript to printer-specific
formats for a print queue, and so on. To be sure, some computations are
performed by other components, such as some video computations by a
video card, but the CPU does the bulk of the computational work.

Memory Computers hold various types of memory; the most common
general classes of these are random access memory (RAM) and read-only
memory (ROM). There are several varieties of each of these. Memory
holds data, which can include Linux software and the data upon which
that software operates. Memory varies in access speed and capacity.

Disk storage Disk storage, like memory, is used to retain data. Disk
storage is slower than memory, but usually higher in capacity. Typically,
Linux itself resides on disk storage, and when the system boots, parts
of Linux are loaded into RAM. In addition to the common hard disks,
there are lower-capacity removable disks, CD-ROMs, and so on. Disks
are controlled through EIDE or SCSI circuitry on the motherboard or sep-
arate cards. As a general rule, Linux doesn’t need specific drivers for
disks, but Linux does need drivers for the controller.

Video hardware Video hardware includes the video card and the mon-
itor. The video card may or may not literally be a separate card; some-
times it’s built into the motherboard. Collectively, video hardware
provides the primary means for a computer to communicate with its user,
but Linux has the ability to do so through other computers’ video hard-
ware. Linux’s video support is provided in two ways: through standard
text-mode features in the kernel that work with just about any video card;
and through drivers in XFree86, Linux’s GUI package, that work with
most cards, but not absolutely all of them.

http://www.sybex.com

Deciding What Hardware to Use 13

Input devices The keyboard and mouse allow you to give commands to
the computer. These devices are well standardized, although there are a
few variants of each type. Linux requires no unusual drivers for most
common keyboards and mice (including trackballs and similar mouse
alternatives), but if you use USB devices, you may need to use a recent
kernel—2.2.18 or 2.4.0 or later.

Network devices In most business settings, network hardware consists
of an Ethernet card or a card for a similar type of computer network. Such
networks link several computers together over a few tens or hundreds of
feet, and they can interface to larger networks. Even many homes now use
such a network. It’s also possible to link computers via modems, which
use telephone lines to create a low-speed network over potentially thou-
sands of miles. These devices are usually quiescent until late in the boot
process, when Linux may launch programs to begin network interactions.
There are ways to boot a computer via network connections, though.

Audio hardware Many workstations include audio hardware, which
lets the system create sounds and digitize sounds using microphones or
other audio input devices. These aren’t critical to basic system function-
ing, though; Linux will boot quite well without a sound card.

To understand how these components interact, consider Figure 1.1,
which shows a simplified diagram of the relationship between various sys-
tem components. Components are tied together with lines that correspond to
traces on a circuit board, chips on a circuit board, and physical cables. These
are known as busses, and they carry data between components. Some
busses are contained within the motherboard, but others are not. Compo-
nents on a single bus can often communicate directly with one another, but
components on different busses require some form of mediation, such as
from the CPU. (Although not shown in Figure 1.1, there are lines of com-
munication between the memory and PCI busses that don’t directly involve
the CPU.) A lot of what a computer does is coordinate the transfer of data
between components on different busses. For instance, to run a program,
data must be transferred from a hard disk to memory, and from there to the
CPU. The CPU then operates on data in memory, and may transfer some of
it to the video card. Busses may vary in speed (generally measured in mega-
hertz, MHz) and width (generally measured in bits). Faster and wider busses
are better than slower and narrower ones.

http://www.sybex.com

14 Chapter 1 � Planning the Implementation

F I G U R E 1 . 1 A computer is a collection of individual components that connect together in
various ways.

Figure 1.1 is very simplified. For instance, the link between the CPU and RAM
passes through the motherboard’s chipset and various types of cache, as
described briefly in the upcoming section, “RAM.”

The next few sections examine several critical system components in more
detail.

CPU

Linux was originally developed for Intel’s popular 80x86 (or x86 for short)
line of CPUs. In particular, a 386 was the original development platform.
(Earlier CPUs in the line lack features required by Linux.) Linux also works
on subsequent CPUs, including the 486, Pentium, Pentium MMX, Pentium
Pro, Pentium II, Pentium III, Pentium 4, and Celeron.

In addition to working on Intel-brand CPUs, x86 versions of Linux also
work on competitors’ x86-compatible chips. Today, the most important of
these are the AMD K6 series, Athlon, and Duron. VIA also sells a line of
CPUs originally developed by Cyrix and IDT, but in 2001, these lag substan-
tially behind the offerings from Intel and AMD in speed. A few other com-
panies have sold x86-compatible CPUs in the past, but these companies have
failed or been consumed by others. (IBM and some other firms sell Cyrix or
AMD designs under their own names, sometimes as part of a package to

Motherboard
PCI bus

SCSI bus

Memory bus

Video card
RAM

CPU SCSI card

Hard disk

http://www.sybex.com

Deciding What Hardware to Use 15

upgrade an existing motherboard beyond its originally-designed maximum
CPU speed.)

As a general rule, Linux has no problems with CPUs from any of the x86
CPU manufacturers. When a new CPU is introduced, Linux distributions
occasionally have problems booting and installing on it, but such problems
are usually fixed quickly.

In addition to x86 CPUs, Linux runs on many other CPUs, including the
Apple/IBM/Motorola PowerPC (PPC), Compaq’s (formerly DEC’s) Alpha,
and the SPARC CPU in Sun workstations. Linux is most mature on x86
hardware, and that hardware tends to be less expensive than hardware for
other architectures, so it’s generally best to buy x86 hardware for Linux.

The best CPUs of some non-x86 lines sometimes perform slightly better than
the best x86 CPUs, particularly in floating-point math, so you might favor
alternative architectures for these reasons. You might also want to dual-boot
between Linux and an OS that’s available for some other architecture, such as
MacOS.

To date, x86 systems use 32-bit internal registers, although Pentium sys-
tems and above have 64-bit links to memory. Some non-x86 systems use 64-
bit internal registers, and both Intel and AMD are developing 64-bit variants
of the x86 architecture. The Intel variant is known as IA-64 and has been
implemented in Intel’s Itanium CPU. IA-64 works best with code that has
been specially designed for the IA-64 architecture. The Linux kernel works
on IA-64, and some IA-64 Linux distributions are available. AMD is devel-
oping a different 64-bit version of the x86 architecture, known as x86-64.
The code name for AMD’s 64-bit CPU is Hammer, and the company hopes
to release this CPU by the end of 2001.

When comparing CPU performance, most people look at the chips’ speeds
in megahertz (MHz) or gigahertz (GHz; 1GHz is 1,000MHz). This measure
is useful when comparing CPUs of the same type; for instance, a 750MHz
Athlon is slower than a 900MHz Athlon. Comparing across CPU models is
trickier, though, because one model may be able to do more in a single CPU
cycle than another can. What’s worse, this comparison may differ according
to the nature of the computation. For instance, in general, x86 CPUs have a
reputation for poor floating-point math performance, although they’ve been
improving on this measure in recent years. Thus, an Intel CPU might be the
equal of an Alpha in most tasks, but the Alpha might have a substantial

http://www.sybex.com

16 Chapter 1 � Planning the Implementation

advantage in applications that require floating-point math, such as ray trac-
ing and certain scientific applications. When comparing different CPUs (for
instance, Pentium 4 to Athlon), you should look at a measure such as MIPS
(millions of instructions per second) or a benchmark test that’s relevant to
your intended application. (The Linux kernel uses a measure called Bogo-
MIPS as a calibration loop when it boots, but this is not a valid measure of
CPU performance; it’s used only to calibrate some internal timing loops.)
The best measure is how quickly the software you use runs on both CPUs.

CPUs plug into specific motherboards, which are the main (and some-
times the only) major circuit board in a computer. The motherboard con-
tains a chipset, which implements major functions such as an EIDE controller,
an interface between the CPU and memory, an interface to the keyboard, and
so on. Linux works with most motherboards, although on occasion, Linux
doesn’t support all of a motherboard’s features. For instance, a motherboard
may include an integrated video or audio chipset for which Linux drivers are
immature or non-existent. The key consideration in choosing a motherboard
is that it is compatible with the CPU you buy—both its model and its speed.
If you buy a preassembled system, this won’t be a concern.

RAM

RAM comes in several forms, the most common of which in 2001 is the dual
inline memory module (DIMM). Older motherboards and some other com-
ponents use the single inline memory module (SIMM) format, which comes
in both 30-pin and 72-pin varieties. Figure 1.2 shows a DIMM and a 72-pin
SIMM. A few motherboards use RDRAM inline memory modules (RIMMs),
which physically resemble DIMMs, but use a special type of RAM known as
RAMbus dynamic RAM (RDRAM).

Motherboards host sockets for particular types of memory—30-pin
SIMM sockets in many 486 and older motherboards, 72-pin SIMM sockets
in some 486- and Pentium-class motherboards, DIMM sockets in some
Pentium-class and later motherboards, and RIMM sockets in some Pentium
II and later motherboards. Depending upon the module and CPU type, you
may need to add modules singly, in pairs, or in groups of four. Pentium and
later systems take 72-pin SIMMs in pairs and DIMMs or RIMMs singly.

http://www.sybex.com

Deciding What Hardware to Use 17

F I G U R E 1 . 2 Currently, DIMMs (top) are used in many computers; SIMMs (bottom) are
used in older computers and some peripherals.

In addition to differences in physical interfaces, RAM varies in its elec-
tronic characteristics. RAM today is largely derived from dynamic RAM
(DRAM), which has spawned many improved variants, such as fast page
mode (FPM) DRAM, extended data out (EDO) DRAM, synchronous
DRAM (SDRAM), double data rate (DDR) SDRAM, and RDRAM. Most
motherboards accept just one or two types of RAM, and with the exception
of RDRAM and RIMMs, the physical format of the memory does not clearly
indicate the RAM’s electronic type. In 2001, most motherboards accept
some combination of SDRAM, DDR SDRAM, or RDRAM, and possibly
one or two lesser varieties. DDR SDRAM and RDRAM are the speed cham-
pions today. Each has its adherents. DDR SDRAM uses fairly conventional
improvements to regular DRAM, delivering fast memory access by using a
wide (64-bit) and moderately fast (66–133 MHz) bus. RDRAM uses a more
unusual design in which the RIMM uses a narrow (16-bit) but unusually fast
(800 MHz) bus externally and a separate bus within the RIMM that uses a
more conventional configuration.

RAM also varies in how well it copes with errors. Computer memory is
composed of individual bits, which are binary (base 2) numbers—each digit
is either 1 or 0. A byte is composed of eight bits. If a single bit changes its
value, say because of a cosmic ray hitting the memory, the data becomes cor-
rupt. This can cause subtle or extreme errors in computations or it can result
in other data being corrupted. Some memory modules incorporate a ninth
bit in each byte as an error-detection bit. This bit is encoded to indicate

http://www.sybex.com

18 Chapter 1 � Planning the Implementation

whether an even or odd number of bits in the other eight bits in the byte are
set. If an error occurs, the motherboard’s memory controller can detect this
fact. Unfortunately, the usual result is a system crash, the idea being that it’s
better to crash the computer than to propagate bad data.

A more sophisticated approach is error correction. Like the error detec-
tion process described above, error correction also requires one extra bit per
byte (or, more precisely, eight extra bits for every 64 bits in a Pentium-class
or above system). In this case, though, a motherboard that supports error
correction can correct 98 percent of the errors that occur, resulting in no dis-
ruption to the computer’s operation. This is clearly a desirable characteristic,
particularly in mission-critical systems such as important servers.

All of these characteristics apply to main memory, which, as you might
imagine, is the main type of memory in a computer. Motherboards or CPUs
also support another type of memory, though—cache memory. A computer
has much less cache memory than main memory (typically under 1MB), but
the cache memory is much faster. The system stores frequently used memory
in the cache, which results in a substantial performance increase. Typically,
two caches exist. The first, known as the L1 cache, resides in the main part
of the CPU and is a few kilobytes in size. On Pentium-class and earlier sys-
tems, the second cache, known as L2, is on the motherboard and can some-
times be upgraded. On Pentium Pro, Athlon, and later systems, the L2 cache
is on the CPU package, but it’s not part of the same chip as the CPU. A few
motherboards that take CPUs with an on-board L2 cache also provide a
cache on the motherboard. In this configuration, the motherboard’s cache is
known as the L3 cache.

Linux itself is unconcerned with these details. To Linux, memory is mem-
ory, and the OS doesn’t particularly care about what physical or electronic
form the memory takes or whether it supports any form of error detection or
correction. All these details are handled by the motherboard, which is why
it’s so important that your memory match the motherboard’s requirements.

When upgrading a computer’s memory, try to buy from a retailer that has a
memory cross-reference tool. Such a tool may be a Web-based form or a
printed book. You look up or enter your motherboard or computer model and
find a specific model of memory that’s compatible with your computer. If such
a tool is unavailable, check your motherboard’s manual for detailed specifi-
cations concerning the types of memory it accepts, and use those specifica-
tions when shopping.

http://www.sybex.com

Deciding What Hardware to Use 19

Hard Disk Space

The great divide in hard disks is between EIDE and SCSI devices. Both of
these busses come in a variety of speeds, ranging from less than 10MBps to
160MBps, with higher speeds on the way. In order to achieve a given speed,
both the hard disk and its interface must support the same speed. For
instance, using an old 10MBps Fast SCSI drive with an 80MBps Ultra2 Wide
SCSI host adapter will yield only 10MBps speeds, not 80MBps speeds.

It’s important to distinguish between the speed of the interface and the
speed of the device. Manufacturers typically emphasize the speed of the
interface, but the mechanical device usually can’t support these speeds. A
hard disk might have an 80MBps Ultra2 Wide SCSI interface but be capable
of only 35MBps sustained transfer rates. Manufacturers express the device’s
true maximum speed as an internal transfer rate, as opposed to the external
transfer rate (of the interface). To further confuse matters, many manufac-
turers give the internal transfer rate in megabits per second (Mbps), but the
external rate in megabytes per second (MBps). If you fail to do the appro-
priate conversion (dividing or multiplying by 8), you’ll erroneously believe
that the interface is the bottleneck in data transfers to and from the device.
Disks can transfer data at their external transfer rate only when they’ve pre-
viously stored data from the disk in their internal caches. For this reason,
external speeds substantially higher than internal speeds can produce modest
speed benefits, and disks with large caches are preferable to those with small
caches.

As a general rule, SCSI devices are preferred in computers in which disk
performance is important. There are several reasons for this:

� Depending upon the variety of SCSI, each SCSI host adapter can sup-
port 7–15 devices on one hardware interrupt. (There are only 15 inter-
rupts available in the x86 architecture, and many are reserved for
critical hardware like the keyboard.) EIDE, by contrast, supports just
two devices per cable (and hence per interrupt), although most moth-
erboards include support for two chains (using two interrupts), for a
total of four devices.

� SCSI devices multitask better than do EIDE devices. Given sufficient
capacity on the SCSI host adapter, multiple SCSI devices can be
engaged in data transfers at full speed. EIDE, by contrast, dedicates its
full capacity to one device per chain, even if that device can’t use the
EIDE controller’s full capacity.

http://www.sybex.com

20 Chapter 1 � Planning the Implementation

� Hard disk manufacturers tend to release their fastest and highest-
capacity drives in SCSI format. EIDE drives tend to be slower and
smaller.

These advantages are substantial, but for many situations, they’re over-
whelmed by one advantage of EIDE: It’s less expensive. As just mentioned,
modern x86 motherboards ship with support for two EIDE chains, so there’s
no need to buy an EIDE controller. EIDE hard disks are also typically less
expensive than SCSI devices of the same capacity, although the EIDE drives
are often slower.

On the whole, SCSI is worthwhile when disk performance is important or
when you need to support a large number of storage devices (including CD-
ROM, DVD-ROM, removable disk, and tape drives). For most low-end and
even mid-range workstations, though, EIDE’s lower cost makes it appealing,
and EIDE performance is adequate for many such systems.

Fortunately, Linux’s support for both EIDE and SCSI adapters is excel-
lent. Most EIDE controllers can be run in an old-style (and slow) mode using
generic drivers, but faster speeds often require explicit driver support. There-
fore, you may want to check on Linux’s EIDE drivers for your motherboard
or EIDE controller. There is no generic SCSI host adapter support, so you
must have support for your specific SCSI host adapter.

Once you configure Linux to work with an EIDE controller or a SCSI host
adapter, you don’t need to worry about support for specific models of disk.
(If you recompile your kernel, you need to explicitly include support for hard
disks or any other devices attached to your adapter, but this support is
present by default in all major Linux distributions.) You can purchase hard
disks and other storage devices on the basis of capacity, speed, and the rep-
utation for quality of a manufacturer or model.

Hard disks consist of spinning platters with read/write heads reading or
writing data from those platters as the platters move under the heads. You’ll
usually see ads that list the rotational velocity of platters, such as 7,200 rev-
olutions per minute (rpm); and the latency or seek time, such as 9 millisec-
onds (ms). A faster rotational velocity translates into data passing under the
heads faster. The latency is the time it takes to move a head to a new position
from the center of the disk, so a lower latency is better than a higher one.
Unfortunately, these two figures aren’t the only important ones in determin-
ing the speed of a hard disk. The data density—how much data can be
packed into a given amount of space—interacts with the rotational velocity
to determine disk speed. A 7,200rpm disk might actually be faster than a

http://www.sybex.com

Deciding What Hardware to Use 21

10,000rpm disk, if the former has a substantially higher data density. For
this reason, you should look for the actual transfer rates, expressed in MBps
or Mbps.

The data transfer rate varies between inner and outer tracks—outer tracks
contain more data than inner tracks do, so outer tracks produce higher trans-
fer rates.

Network Hardware

Ethernet is the most common type of network in 2001. There are several dif-
ferent varieties of Ethernet, including 10Base-2 and 10Base-5 (which use thin
and thick coaxial cabling, respectively); 10Base-T, 100Base-T, and 1000Base-T
(which use twisted-pair cabling similar to telephone wires); and 1000Base-SX
(which uses fiber-optic cabling). In any of these cases, the first number (10,
100, or 1000) represents the maximum speed of the network, in Mbps. Of
these classes of Ethernet, 100Base-T is currently the most popular choice for
new installations.

Most 100Base-T network cards also support 10Base-T speeds. This fact
can help you migrate a network from 10Base-T to 100Base-T; you can install
dual-speed cards in new systems and eventually replace older 10Base-T hard-
ware with dual-speed hardware to upgrade the entire network. Similarly,
many 1000Base-T cards also support 100Base-T and even 10Base-T speeds.

Linux’s support for Ethernet cards is, on the whole, excellent. Linux driv-
ers are written for particular chipsets, rather than specific models of network
card. Therefore, the driver names often bear no resemblance to the name of
the card you’ve bought, and you may use the same driver for boards pur-
chased from different manufacturers. Fortunately, most distributions do a
good job of auto-detecting the appropriate chipset during installation, so
you probably won’t have to deal with this issue if the card is installed
when you install Linux. Chapter 8 covers adding new hardware, should you
need to add a network card after the fact.

If you’re faced with the choice, purchase a Peripheral Component Inter-
connect (PCI) card rather than an Industry Standard Architecture (ISA)
card. PCI cards tend to be easier to configure, and they support higher trans-
fer rates. The ISA bus tops out at a theoretical maximum speed of 64Mbps—
less than that of 100Base-T Ethernet. A 32-bit PCI card has a theoretical
maximum speed of 1056Mbps, which is barely enough for gigabit Ethernet.

http://www.sybex.com

22 Chapter 1 � Planning the Implementation

In practice, PCI can’t handle this full speed because the needs of other devices
and deviations from theoretical maximum performance will degrade perfor-
mance. (A rare 64-bit PCI variant is better able to sustain full gigabit Ether-
net speeds.)

Linux supports networking standards other than Ethernet, but these
devices are less well supported overall. Linux includes support for some
Token Ring, Fiber Distributed Data Interface (FDDI), LocalTalk, Fibre
Channel, and wireless products, among others. If your existing network uses
one of these technologies, you should carefully research Linux’s support for
specific network cards before buying one.

Networking hardware outside of the computer doesn’t require Linux-
specific drivers. Network cables, hubs, switches, routers, and so on are all OS-
independent. They also generally work well with each other no matter what
their brands, although brand-to-brand incompatibilities occasionally crop up.

One partial exception to the rule of needing no specific Linux support is in the
case of network-capable printers. If you buy a printer with a network interface,
you must still have appropriate Linux printer drivers to use the printer, as
described in Chapter 8. Fortunately, network-capable printers usually under-
stand PostScript, which is ideal from a Linux point of view.

Video Hardware

Linux works in text mode with just about any video card available for x86
systems. This means you can log in, type commands, use text-based utilities,
and so on. Such operation is probably adequate for a system intended to
function as a server, so selection of a video card for a server need not occupy
too much of your time. Workstations, though, usually operate in GUI mode,
which means they run XFree86 or a commercial X Window System (X for
short) server.

Unlike most other drivers, the drivers necessary to operate a video card in
the bitmapped graphics modes used by X do not reside in the kernel; they’re
part of the X server. Therefore, you should research the compatibility of a
video card with XFree86 (http://www.xfree86.org) or the commercial X
servers, Accelerated-X (http://www.xig.com) and Metro-X (http://
www.metrolink.com). Because XFree86 ships with all major Linux distri-
butions, it’s best to use a board it supports. As a general rule of thumb, it’s

http://www.sybex.com

Deciding What Hardware to Use 23

best to avoid the most recent video cards because drivers for XFree86 tend
to lag a few months behind the release of the hardware. A few manufacturers
do provide XFree86 servers for their products, though, and the commercial X
servers sometimes introduce drivers more rapidly than does the XFree86 team.

The Linux kernel is beginning to acquire a number of video drivers, known as
frame buffer drivers. XFree86 includes a driver to interface to these kernel-
level drivers. This approach is particularly common outside of the x86 world.

One important question when deciding on a video card is how much
memory it should contain. The video card uses on-board memory to store a
copy of the image displayed on the screen. Because of this, the video card
must have enough memory to hold this image. The formula for determining
this value is

R = x × y × b ÷ 8,388,608

In this equation, R is the RAM in megabytes, x and y are the width and
height of the screen, respectively, and b is the color depth in bits (typically 8,
16, 24, or 32). For instance, to support a 1024 × 768 display at 16-bit color
depth requires 1.5MB of RAM.

Most video cards available in 2001 have at least 8MB of RAM, which is
more than enough to handle a 1600 × 1200 display with a 32-bit color
depth—a very high resolution and color depth. Cards with more memory
than this typically use it in conjunction with 3D effects processors, which are
useful in games and certain types of 3D rendering packages. 3D acceleration
is still rare in Linux, and few Linux programs take advantage of these effects.
If you need them, you should research 3D support carefully before settling
on a product to buy.

Miscellaneous Hardware

Some hardware is so well standardized that there’s no reason to give it much
thought for Linux compatibility. The following are included in this category:

Cases Computer cases are hunks of plastic and metal shaped to hold
other components. Usually, they also include power supplies, fans, and a
few wires. Cases do vary in quality—check for rough edges, a good fit,
and easy access. There’s nothing OS-specific about them, though.

http://www.sybex.com

24 Chapter 1 � Planning the Implementation

Floppy drives Standard floppy drives are very standardized. There are a
few variant technologies, though, like LS-120 drives, which typically
interface via the EIDE port. These may need to be treated like hard disks
in the /etc/fstab configuration file (described in Chapter 6, “Managing
Files and Services”).

CD-ROM drives Today, most CD-ROM drives use either the EIDE
(aka AT Attachment Packet Interface, or ATAPI) or the SCSI interface,
and the devices are very well standardized. The main exceptions are USB-
interfaced drives. Even DVD-ROM drives are well standardized. Record-
able and rewriteable CDs (CD-R and CD-RW drives) are also becoming
well standardized.

Tape drives Most tape drives use a standard EIDE/ATAPI or SCSI inter-
face. These drives almost always respond to a standardized set of com-
mands, and so they don’t require a special configuration in Linux. There
are a few older floppy-interfaced drives that work with the Linux ftape
drivers, which are part of the kernel. Some old parallel-interfaced drives
can cause problems, and newer USB-interfaced drives are as yet rare and
not well tested.

Keyboards Standard PC keyboards are well supported by Linux and
require no special configuration. Some keyboards include special keys
that may not be recognized by Linux, though, like volume-control keys or
keys to launch specific applications. There are also USB keyboards avail-
able. These are supported in 2.4.x kernels, but they aren’t as well tested.

Mice Most mice today use USB or PS/2 interfaces, but some older mice
used RS-232 serial or various exotic interfaces. All are well supported,
although USB support prior to the 2.4.x kernels was poor. Note that the
tracking technology (conventional wheeled mouse, optical mouse, track-
ball, touchpad, and so on) is unimportant; it’s only the interface protocols
and the type of hardware interface that are important. Mice using USB or
PS/2 hardware use the PS/2 protocol or a variant of it that supports
wheels.

Serial and parallel ports If you need to add extra serial or parallel ports,
you can do so with plug-in cards. These cards are fairly well standardized,
so they’ll seldom pose serious problems with Linux itself, although they
can sometimes conflict with other hardware.

http://www.sybex.com

Deciding What Hardware to Use 25

Monitors Monitors don’t require drivers, although you may need to
know certain features of a monitor to configure it in XFree86. Specifi-
cally, you may need to know the monitor’s maximum horizontal and ver-
tical refresh rates (expressed in kHz and Hz, respectively). With XFree86 4.0
and later, the X server can sometimes obtain this information from the
monitor. (Chapter 2 covers X configuration in detail.)

Some other types of hardware require special consideration. These devices
may require unusual drivers or configuration in Linux. Examples include the
following:

USB devices Linux needs drivers for each USB device; a single USB
driver isn’t sufficient to handle all USB devices. The 2.2.18 and 2.4.x ker-
nels add support for many—but by no means all—USB devices. Check
http://www.linux-usb.org for information on what’s currently
supported.

Internal modems In years gone by, internal modems seldom caused
problems in Linux, because they were essentially composed of ordinary
modem hardware linked to an ordinary serial port, all on one card.
Today, though, internal modems are more likely to be software
modems—devices that rely upon the CPU to do some of the modem’s tra-
ditional chores. Such devices require special drivers, which sometimes
don’t exist for Linux. Check http://www.linmodems.org for informa-
tion on what’s supported and what’s not.

Sound cards Linux supports most sound cards. The standard kernel
includes drivers for many cards. Commercial variants of these drivers
(often called the Open Sound System, or OSS) are available from http://
www.4front-tech.com. An entirely separate project, the Advanced
Linux Sound Architecture (ALSA; http://www.alsa-project.org)
aims to replace the standard kernel drivers, and supports a different (but
overlapping) set of cards. You can also check to see if the sound card ven-
dor provides drivers, which may be unique or work along with the kernel
or ALSA core.

Video acquisition boards Video acquisition hardware includes cameras
(which typically interface via the parallel, USB, or RS-232 serial ports)
and internal cards that accept television input signals. The Video4Linux
project (http://www.exploits.org/v4l) is devoted to developing tools
for such devices, and the standard kernel includes many of the requisite
drivers—but be sure to check for supported hardware if this is important.

http://www.sybex.com

26 Chapter 1 � Planning the Implementation

Aside from trivial components like cables, you should be cautious about
adding hardware to a Linux computer without checking its compatibility
with Linux. It’s easy to forget that computer hardware often requires drivers,
and if nobody has written appropriate drivers for Linux, that hardware sim-
ply will not work. These drivers can also vary in quality, which is part of why
one device may work well while another works poorly.

Unreliable drivers can be a major cause of system instability. Most drivers
have privileged access to the computer’s hardware as well as to kernel data
structures. As a result, a bug in a driver is unusually likely to crash the system
or cause other major problems.

Checking Hardware Configuration before
Installation

One of the reasons to buy a preassembled computer is so that you
won’t have to worry about all the pesky little details of hardware configura-
tion. Unfortunately, life doesn’t always work out that way. Pre-built com-
puters often come with one or more components configured suboptimally,
so even if you buy such a system, it’s wise to review the hardware configu-
ration before you install Linux. Some settings, if incorrect, can cause prob-
lems during Linux installation, or soon thereafter.

Because most hardware is inside the computer’s case, you must open that
case to check the hardware’s status. This poses two dangers. First, you might
suffer an electrical shock if the computer is plugged into a wall outlet. Some
power supplies have power switches independent of the computer’s main
switch; turning these off can reduce this risk. Second, static charges built up
in your own body (say, from shuffling across a carpet in dry weather) can
damage computer components. You can reduce this risk by grounding your-
self frequently—for instance, by wearing a wrist strap designed for that pur-
pose or by frequently touching a water faucet, radiator, or the computer’s
power supply if it’s plugged into the wall.

http://www.sybex.com

Checking Hardware Configuration before Installation 27

Checking Cabling

Several types of devices use cables, typically to link a device to the mother-
board or to a controller card of some type. These cables can be entirely inter-
nal or external, depending upon the device type. Particular types of cable
have specific requirements, which are discussed below.

Power Cables

The most obvious power cable to most users is the one that stretches from a
wall outlet, power strip, or uninterrupted power supply (UPS) to the com-
puter. This cable is much like power cables on many other devices, and it
should be fully inserted into the computer and its power source.

A second class of power cables resides inside the computer case. These
cables stretch from the power supply (a rectangular metal box inside the
computer to which the external power cable attaches) to the motherboard
and various disk devices (hard disk, floppy disk, CD-ROM drive, and so on).
There are several different types of internal power connectors. Most power
supplies have about half a dozen connectors of various forms, each of which
connects to just certain types of devices—the motherboard, hard disk devices, or
floppy devices. You should check that power connectors are all inserted
firmly in their respective devices because they sometimes work loose during
shipping.

So-called AT-style motherboards (used on many Pentium and earlier comput-
ers) used two motherboard power connectors, rather than the integrated con-
nector used in later ATX systems. These AT connectors must be inserted side-
by-side, with the black wires next to each other. These connectors can be
inserted in each other’s sockets, which will destroy the motherboard!

Internal Data Cables

The second major form of internal cabling is data cables. These carry data
between components—typically between a disk or tape device and a mother-
board or controller. The most common form of data cable is a ribbon cable,
so called because the cable resembles a ribbon. Ribbon cables differ in their
widths and in the exact forms of their connectors. Some also have unique
characteristics, such as a twisted portion on floppy cables.

http://www.sybex.com

28 Chapter 1 � Planning the Implementation

You should check that all cable connectors are inserted firmly and cor-
rectly. Most cables include notches or asymmetrical connectors so that they
cannot be inserted backwards, but some cheap cables lack these safeguards.
If some of your cables are so crippled, pay careful attention to the cable’s ori-
entation. Most cables include a colored stripe on one edge, which indicates
the location of the first signal line. The matched connector on the device or
board should indicate the location of pin #1, probably in tiny type by the
connector. Be sure to plug the cable in so that the stripe is next to pin #1.

Some types of ribbon cable can have more connectors than devices. For
instance, it’s possible to use a SCSI cable with four connectors when you
have just two SCSI drives, leaving one connector unused (two connectors
attach to the SCSI drives and one to the host adapter). For most types of
cable, you should ensure that the end connectors are both used. Normally,
one of these attaches to the motherboard or controller card, and the other
end attaches to one of the devices.

Particularly on older systems, ribbon cables sometimes link internal to
external connectors. For instance, a motherboard might have an internal
connector for its parallel port, so a ribbon cable ties this to an external
parallel-port connector. Such cables are rare on modern motherboards,
which integrate the connector into the motherboard in a standard location
so that it’s directly accessible from outside the case. You might still find such
cables on a few designs, for instance if they are being used to link a USB port
to a front-panel USB connector.

Ribbon cables aren’t the only type of internal data cable. CD-ROM drives
frequently sport 3-wire cables to tie the CD-ROM drive’s audio output to a
sound card. There are also 2–4-wire connectors that link the motherboard to
front-panel computer components, such as the power button, the reset but-
ton, and the hard disk activity LEDs.

LED cables must be connected in the correct orientation, but the cables aren’t
keyed, so you’ve got a 50/50 chance of getting it wrong unless you pay careful
attention to the positive and negative markings on the cables and mother-
board. This detail isn’t important for the power or reset switches on modern
computers.

http://www.sybex.com

Checking Hardware Configuration before Installation 29

External Cables

External cables connect the computer to its keyboard, mouse, and monitor.
Printers, scanners, network connections, and so on also use cables. (A few
wireless devices exist, but even these often use short cables to link from a
standard port to a radio or infrared transmitter.)

In all cases, for a device to function properly it’s important that the asso-
ciated cable be inserted firmly into its matching socket. Some cable types,
such as Ethernet cables, snap into place and cannot be removed unless you
push a small lever or similar locking mechanism. Others, such as parallel,
RS-232 serial, and some varieties of external SCSI connectors, have thumb-
screws that can be tightened to ensure a snug connection (some of these
require an actual screwdriver to tighten and loosen). Others, such as USB
and keyboard connectors, have no locking or tightening mechanism, so you
must be sure these connectors are fully and firmly inserted.

Some cable types should not be routinely connected or disconnected when
the computer is in operation. These include SCSI, RS-232 serial, and parallel
connectors. When attaching or detaching such a cable, a short can damage
the device or the computer. Other connectors, such as those for USB and
Ethernet, are designed for hot swapping—attachment and detachment when
the computer is in operation..

Because you’ll be plugging external devices in yourself, you should be sure
you do this job correctly. It’s easy to mistakenly connect a device to the
wrong port. This is particularly true for RS-232 serial devices since many
computers have two such ports; for speakers, microphones, and audio inputs
on sound cards; and for PS/2-style mice and keyboards. USB ports are inter-
changeable on most computers; it doesn’t matter which one you use.

Some connectors are electrically compatible but come in different sizes or
shapes. This is particularly true of RS-232 serial connectors (which come in
9- and 25-pin varieties), keyboard connectors (which come in large AT-style
and small PS/2-style connectors), and external SCSI connectors (which come
in several varieties). Adapters for these are available, but be cautious with
them—the adapters can add enough weight to the connector so that it’s
likely to fall out. This is particularly true of one-piece keyboard adapters and
some types of SCSI adapters.

http://www.sybex.com

30 Chapter 1 � Planning the Implementation

Checking IRQs, DMA, and I/O Settings

Most plug-in boards use various hardware resources that are in limited
supply in the x86 architecture. Of particular interest are the board’s inter-
rupt request (IRQ), its direct memory access (DMA) channel, and its input/
output (I/O) port. The x86 architecture supports just 15 interrupts (0–15,
with IRQs 2 and 9 being the same). There are also just a handful of DMA
channels. I/O ports are in less short supply, but still occasionally produce
conflicts. Boards use an interrupt to tell the CPU that something important
is happening that requires the CPU’s attention. DMA channels and I/O ports
are used to transfer data from the board to the computer’s memory or CPU.

With ISA, it’s important that two devices don’t attempt to use the same
IRQ, DMA channel, or I/O port. Doing so can result in one board being
unavailable, and in extreme cases, it can crash the computer. PCI boards may
be able to share an IRQ with another PCI board, but even this sometimes
causes the hardware to work slowly or behave strangely.

The motherboard uses several IRQs for its own devices. For instance, EIDE
drives normally use IRQs 14 and 15, and the keyboard takes IRQ 1.

If you have any old ISA boards, you can check their IRQs by examining
jumper settings on the boards themselves. Consult the board’s documenta-
tion for details. Newer ISA boards use software configuration, as described
in Chapter 8. PCI boards are auto-configured by the computer’s BIOS or by
the Linux kernel. In both of these latter cases, it’s impossible to tell what
hardware resources a board will use without booting the computer. Unfor-
tunately, if the resources cause a conflict, the computer may not boot com-
pletely. If you suspect this may be happening, consult Chapter 8 for
hardware troubleshooting information.

Checking EIDE Devices

Most x86 computers use EIDE for hard disks, CD-ROMs, and often other
types of disk and tape devices. There are several variants on EIDE available,
ranging in speed from 8MBps to 100MBps, with faster speeds in the works.
In 2001, 33MBps is considered low-end, 66MBps is common, and 100MBps
is the interface of choice. These different interface types are referred to by
various names, which usually include the speed, such as “UltraDMA 33” or

http://www.sybex.com

Checking Hardware Configuration before Installation 31

“ATA/66.” The more capable interfaces can communicate with less-capable
devices, and vice-versa, so you can mix and match if you need to—but each
chain runs at just one speed, so you can seriously degrade a fast disk’s per-
formance by attaching it to the same cable as a slow CD-ROM or the like.

Each EIDE chain can support the controller and up to two devices. Tra-
ditionally, you must configure each device to be either the master or the
slave. In Linux, the master device takes on a lower device letter in its /dev/
hdx device filename, where x is the device letter. Configuring master/slave
status is done through a switch or jumper on the device itself; consult your
documentation for details. Some modern devices and controllers support an
auto-configuration protocol.

If you need more than two devices, or if you want to separate fast and
slow devices, you must use multiple EIDE chains, each of which corresponds
to one physical EIDE cable. Most motherboards support two chains (hence
four devices total), and you can add more by adding plug-in EIDE controller
cards. You can use similar cards to upgrade to faster forms of EIDE.

Normally, one EIDE device will be the master on the first (or primary)
chain. A second device might be the slave on the same chain or the master on
a second chain. The former configuration preserves IRQs, which may be
desirable if you have lots of other devices, but the second is likely to produce
better performance.

Checking SCSI Devices

SCSI is an unusually capable and complex interface bus. For this reason, SCSI
busses can sometimes be difficult to configure correctly, particularly when
they’re loaded down with many devices. There are several factors you should
consider when planning or checking a SCSI bus:

SCSI Variant There are many versions of SCSI available, ranging from
the original 5MBps SCSI-1 to the 160MBps Ultra3 Wide SCSI. Most of
these versions are compatible with one another, but adding a less-capable
device to an otherwise more-capable SCSI chain can degrade perfor-
mance. Also, the more different two devices are, the less likely they are to
get along on one chain. Adding a SCSI-1 device to an Ultra3 SCSI chain,
for instance, is likely to cause problems.

http://www.sybex.com

32 Chapter 1 � Planning the Implementation

SCSI IDs SCSI devices are differentiated by their ID numbers. Older
SCSI variants (those that use a bus that’s 8 bits wide) use ID numbers that
range from 0 to 7, while Wide variants (which use 16-bit busses) have IDs
that range from 0 to 15. The SCSI host adapter itself consumes one num-
ber, so this is the source of the 7- or 15-device limit on SCSI chains. SCSI
IDs are generally set with jumpers on internal devices, or via some sort of
switches or dial on external devices. Check your documentation for
details. If two devices share an ID, it’s likely that one will mask the other,
or they’ll both malfunction quite seriously. New devices can often use the
SCSI Configured Automatically (SCAM) protocol, which allows devices
to acquire IDs automatically.

Termination A SCSI bus can be thought of as a one-dimensional chain
of devices. The devices on both ends of the chain must be terminated,
which keeps signals from bouncing back from the end of the chain. There
are several different types of termination associated with different SCSI
variants, ranging from passive to active to low-voltage differential (LVD).
Most SCSI devices include termination that can be activated by setting a
jumper, or even automatically. Sometimes you need to add a separate
SCSI terminator. Be sure this detail is set correctly because incorrect ter-
mination can lead to bizarre errors, which can crash a Linux system.

Cable quality SCSI—and particularly high-speed SCSI variants—is
quite susceptible to problems caused by low-quality cables. Particularly if
your SCSI chain has many devices, it can be worthwhile to purchase high-
quality cables. These are, unfortunately, likely to be expensive—often $50
or more.

Cable length Maximum SCSI cable lengths range from 1.5 to 12 meters
(m), depending upon the SCSI version. SCSI cable length limits apply to
the entire SCSI chain. If you’ve got two external SCSI devices, for
instance, you sum the lengths of the external cables, along with any inter-
nal cables, to determine your SCSI chain’s cable length.

Chapter 8 includes information on troubleshooting a SCSI chain.

Checking BIOS Settings

The Basic Input/Output System (BIOS) is the lowest-level software compo-
nent in a computer. The CPU runs BIOS code as part of its startup procedure.
As a result, the BIOS configures many fundamental aspects of the computer

http://www.sybex.com

Checking Hardware Configuration before Installation 33

before Linux has a chance to boot. The BIOS also provides tools that the
computer uses to load the Linux kernel into memory.

Although the x86 BIOS provides some standard features, it’s not entirely
standardized. In particular, modern BIOSes provide a setup tool, often
referred to as the Complementary Metal Oxide Semiconductor (CMOS)
setup utility, that you can use to set various low-level options. The options
available in a computer’s CMOS setup utility differ from one computer to
another, both because of differences in hardware and because of different
BIOS designs.

Most computers display a prompt at boot time that tells you how to get
into the CMOS setup utility. This is usually done by hitting a key, such as
Delete or F2, at a critical point during the boot process. Once you’ve done
this, you’ll see a BIOS setup screen, such as the one shown in Figure 1.3. This
screen allows you to select and set various options, typically by moving
through menus by pressing the arrow keys on the keyboard.

SCSI host adapters often include their own BIOSes and setup utilities, which
are separate from the motherboard BIOS. The SCSI setup utilities usually
have setup options you can adjust by pressing a key sequence at a particular
point in the boot process. Watch your boot displays or consult your SCSI
adapter’s documentation for details.

F I G U R E 1 . 3 CMOS setup utilities use menu-driven displays to let you adjust a computer’s
built-in hardware.

http://www.sybex.com

34 Chapter 1 � Planning the Implementation

Most systems come with reasonable default BIOS settings, but you may
want to check, and possibly adjust, a few. These include the following:

Disk settings There are two common hard disk settings you may need to
adjust. The first specifies the size of the disk. An auto-detection feature
normally works well for this. The second setting determines how the BIOS
interprets the disk’s cylinder/head/sector (CHS) addresses. On most
BIOSes, a linear block addressing (LBA) mode is the best choice. If you
use SCSI hard disks, the main motherboard BIOS won’t detect them. This
is normal; the SCSI BIOS provides the necessary support.

On-board ports Modern motherboards include RS-232 serial, parallel,
USB, EIDE, and frequently other types of ports. You can enable or disable
these or change their settings (for instance, you can change the IRQs used
by the devices). Disabling unused ports can free up resources for other
devices.

PCI settings Some BIOSes allow you to specify how the system treats PCI
devices. Most commonly, you can choose from two or more rules for how
the BIOS assigns IRQs to PCI devices. Sometimes, one rule results in IRQ
conflicts and another doesn’t, so such a setting is worth investigating if
you have problems booting and suspect IRQ conflicts.

Passwords In a high-security environment, you may want to set a BIOS
password. This prevents the system from booting unless the correct pass-
word is entered. It can slow down intruders who have physical access to
the computer and boot with their own boot disk, but if intruders have
physical access to the computer, they can bypass this feature in various
ways. Setting a BIOS password also prevents automatic reboots in the
event of a power failure. Nonetheless, slowing down an intruder may be
worthwhile in some environments.

Memory settings BIOSes can be configured to copy parts of themselves,
or of BIOSes stored on other devices, to RAM. This practice, which is
known as shadowing, speeds up access to the BIOS, and it is useful in
DOS, which relies on the BIOS for input/output. Linux doesn’t use the
BIOS as much, so it’s generally best to disable all shadowing in Linux,
which can result in slightly more memory available in Linux. Some
BIOSes also allow you to control one or more memory holes—regions of
the CPU’s memory map that are unusable. These sometimes cause Linux
to misdetect the amount of RAM installed in the computer, so you may
want to experiment with different memory hole settings.

http://www.sybex.com

Planning Disk Partitioning 35

Boot Devices Modern BIOSes support booting from a wide variety of
disk and disk-like devices, including floppy disks, EIDE disks, SCSI disks,
CD-ROM drives, and high-capacity removable disks like Zip or LS-120
disks. You can usually set the system to boot from some subset of these
devices in any order you like. The BIOS tries each medium in turn, and if
it’s not present or isn’t bootable, it tries the next one. For highest security,
set the system to boot from your EIDE or SCSI hard disk first; for conve-
nient booting of installation or emergency media, set it to boot from a
CD-ROM, floppy, or other removable media drive first.

In practice, you may need to experiment with a particular computer’s
CMOS settings to determine which work best. It’s generally not a good idea
to try random changes on a working system, though; experiment with these
settings only if you’re having trouble. Making changes without cause can
produce an unbootable system, although if you remember what you
changed, you can usually recover your system to a working state.

Most CMOS setup utilities include an option to restore the settings to the fac-
tory default values. These may not always produce optimal results, but they’ll
usually work

 Planning Disk Partitioning

Hard disks can be broken into logical chunks known as partitions. In
Windows, partitions correspond to drive letters (C:, D:, and so on). In
Linux, partitions are mounted at particular points in the Linux directory
tree, so they’re accessible as subdirectories. Before actually installing Linux,
it’s a good idea to give some thought to how you’ll partition your hard disk.
A poor initial partitioning scheme can become awkward because you’ll run
out of space in one partition when another has lots of available space or because
the partition layout ties your hands in terms of achieving particular goals.

Understanding the PC Partitioning System

The original x86 partitioning scheme allowed for only four partitions. As
hard disks increased in size and the need for more partitions became appar-
ent, the original scheme was extended in a way that retained compatibility

http://www.sybex.com

36 Chapter 1 � Planning the Implementation

with the old scheme. The new scheme uses three partition types: primary par-
titions, which are the same as the original partition types; extended parti-
tions, which are a special type of primary partition that serves as a place-
holder for the next type; and logical partitions, which reside within an
extended partition.

For any one disk, you’re limited to four primary partitions, or three pri-
mary partitions and one extended partition. Many OSs, such as DOS, Win-
dows, and FreeBSD, must boot from primary partitions, and because of this,
most hard disks include at least one primary partition. Linux, however, is
not so limited, so you could boot Linux from a disk that contains no primary
partitions, although in practice few people do this.

The x86 partitioning scheme isn’t the only one around. Linux includes support for many alternatives, but x86-based Linux systems generally use the PC par-

titioning scheme. Linux systems running on other architectures tend to use

the partitioning systems native to those architectures. From an administrative

point of view, these systems are almost always simpler than the PC system

because there aren’t any distinctions between primary, extended, and logical

partitions.

A disk’s primary partition layout is stored in a data structure known as

the partition table, which exists on the first sector of the hard disk. This sec-

tor is known as the master boot record (MBR)

 because it also contains some

of the first code to be run by the computer after the BIOS initializes. The

locations of the logical partitions are stored within the extended partition,

outside of the MBR. Although they are not a part of the MBR, these data are

sometimes considered to be part of the partition table because they do define

partition locations.

Linux Partition Requirements

To Linux, there’s very little difference between the partition types. Linux

numbers partitions on a disk, and the primary and extended partitions get

the numbers from 1 to 4 (such as /dev/hda1 or /dev/sdc3), while logical

partitions get numbers from 5 up. This is true even if there are fewer than

four primary and extended partitions, so partitions might be numbered 1, 2,

4, 5, and 6 (omitting partition 3). Primary partition numbers are like fixed

slots, so when a disk uses just 1–3 of these slots, any of the four numbers may

http://www.sybex.com

Planning Disk Partitioning 37

go unused. Logical partitions, by contrast, are always numbered sequen-
tially, without any missing numbers, so a system with precisely three logical
partitions must number them 5, 6, and 7.

Some administrators use a primary Linux boot partition because a con-
ventional x86 MBR can boot only from a primary partition. Therefore, it’s
possible to put the Linux Loader (LILO; the program Linux uses to boot) in
the Linux boot partition to boot the computer. Alternatively, LILO can
reside directly in the MBR, which is more direct but leaves LILO more vul-
nerable to being wiped out should some other utility rewrite the MBR.
(Chapter 3, “Software Management,” discusses the boot process and LILO
in more detail.)

As a bare minimum, Linux needs a single partition to install and boot.
This partition is referred to as the root partition, or as /. This partition is so
called because it lies at the “root” of the directory “tree”—all files on the sys-
tem are identified relative to the base of this partition. The root partition also
stores directories, such as /etc and /usr, in which other files reside. Some
of these directories can serve as mount points—directories to which Linux
attaches other partitions. For instance, you might mount a partition on /home.

One important directory in Linux is /root, which serves as the system admin-
istrator’s home directory—the system administrator’s default program set-
tings and so on go here. The /root directory is not to be confused with the
root directory (/).

Common Optional Partitions

In addition to the root partition, many system administrators like creating
additional partitions. Several of the advantages that come from splitting an
installation into multiple partitions rather than leaving it as one monolithic
root partition follow:

Multiple disks When you have two or more hard disks, you must create
separate partitions—at least one for each disk. For instance, one disk
might host the root directory and the second might hold /home. Also,
removable disks (floppies, CD-ROMs, and so on) must be mounted as if
they were separate partitions.

http://www.sybex.com

38 Chapter 1 � Planning the Implementation

Better security options By breaking important directories into separate
partitions, you can apply different security options to different partitions.
For instance, you might make /usr read-only, which reduces the chance
of accidental or intentional corruption of important binary files.

Data overrun protection Some errors or attacks can cause files to grow
to huge sizes, which can potentially crash the system or cause serious
problems. Splitting key directories into separate partitions guarantees
that a runaway process in such a directory won’t cause problems for pro-
cesses that rely on the ability to create files in other directories. This makes
it easier to recover from such difficulties. On the down side, splitting par-
titions up makes it more likely that a file will legitimately grow to a size
that fills the partition.

Disk error protection Disk partitions sometimes develop data errors,
which are data structures that are corrupt, or a disk that has developed a
physically bad sector. If your system consists of multiple partitions, such
problems will more likely be isolated to one partition, which can make
data recovery easier or more complete.

Backup If your backup medium is substantially smaller than your hard
disk, breaking up your disk into chunks that fit on a single tape can sim-
plify your backup procedures.

Ideal filesystems A filesystem is a set of low-level data structures that
regulate how the computer allocates space on the disk for individual files,
as well as what types of data are associated with files, such as file creation
times and filenames. Sometimes, one filesystem works well for some pur-
poses but not for others. You might therefore want to break the directory
tree into separate partitions so that you can use multiple filesystems.

So, what directories are commonly split off into separate partitions?
Table 1.1 summarizes some popular choices. Note that typical sizes for
many of these partitions vary greatly depending upon how the system is
used. Therefore, it’s impossible to make recommendations on partition size
that will be universally acceptable. For more information, consult “Under-
standing the Linux Filesystem Hierarchy” in Chapter 7 (“Managing Parti-
tions and Processes”).

http://www.sybex.com

Planning Disk Partitioning 39

T A B L E 1 . 1 Common Partitions and Their Uses

Partition

(mount point) Typical size Use

Swap (not
mounted)

1.5–2 times
system
RAM size

Serves as an adjunct to system
RAM; is slow, but allows the system
to run more or larger programs. Dis-
cussed in more detail in Chapter 8.

/home 200MB–100GB Holds users’ data files. Isolating it on
a separate partition preserves user
data during a system upgrade. Size
depends on number of users and
their data storage needs.

/boot 5–20MB Holds critical boot files. Creating as
a separate partition allows for cir-
cumventing limitations of certain
BIOSes and boot loaders on hard
disks over 8GB.

/usr 500MB–4GB Holds most Linux program and data
files; this is frequently the largest
partition.

/usr/local 100MB–2GB Holds Linux program and data files
that are unique to this installation,
particularly those that you compile
yourself.

/opt 100MB–2GB Holds Linux program and data
files that are associated with third-
party packages, especially
commercial ones.

/var 100MB–100GB Holds miscellaneous files associated
with the day-to-day functioning of a
computer. These files are often
transient in nature. Most often split
off as a separate partition when the
system functions as a server that
uses the /var directory for server-
related files like mail queues.

http://www.sybex.com

40 Chapter 1 � Planning the Implementation

Some directories should never be placed on separate partitions. These
directories are /etc, /bin, /sbin, /lib, and /dev. These directories host
critical system configuration files or files without which a Linux system can-
not function. For instance, /etc contains /etc/fstab, the file that specifies
what partitions correspond to what directories; and /bin contains the mount
utility that’s used to mount partitions on directories.

The 2.4.xxx

http://www.sybex.com

Planning Disk Partitioning 41

Linux Filesystem Options

Linux supports many filesystems. The most popular in 2001 for Linux par-
titions is the second extended filesystem (ext2 or ext2fs), which is the default
filesystem for most distributions. Ext2fs supports all the features required by
Linux (or by Unix-style OSs in general), and is well tested and robust.

Ext2fs has one major problem, though: If the computer is shut down
improperly (because of a power outage, system crash, or the like), it can take
several minutes for Linux to verify an ext2fs partition’s integrity when the
computer reboots. This delay is an annoyance at best, and it is a serious
problem on mission-critical systems such as major servers. The solution is
implemented in what’s known as a journaling filesystem. Such a filesystem
keeps a record of changes it’s about to make in a special journal log file.
Therefore, after an unexpected crash, the system can examine the log file to
determine what areas of the disk might need to be checked. This design
makes for very fast checks after a crash or power failure—a few seconds at
most, typically.

Four journaling filesystems are being developed for Linux in 2001. The
most usable of these in mid-2001 is ReiserFS (http://www.namesys.com),
which was added as a standard component to the 2.4.1 kernel. The other
journaling filesystems are ext3fs (ftp://ftp.uk.linux.org/pub/linux/
sct/fs/jfs), which is an extension of ext2fs; XFS (http://linux-xfs
.sgi.com/projects/xfs), which was originally designed for Silicon
Graphics’ IRIX OS; and Journaled Filesystem (JFS) (http://oss.software
.ibm.com/developerworks/opensource/jfs), which IBM developed for

For this reason, I generally recommend that new Linux administrators try
simple partition layouts first. The root (/) partition is required, and swap is
a very good idea. Beyond this, /boot can be very helpful on hard disks of
more than 8GB with older distributions or BIOSes. An appropriate size for
/home is often relatively easy for new administrators to guess, so splitting it
off generally makes sense. Beyond this, I recommend that new administra-
tors proceed with caution.

As you gain more experience with Linux, you may want to break off other
directories into their own partitions on subsequent installations, or when
upgrading disk hardware. You can use the du command to learn how much
space is used by files within any given directory.

http://www.sybex.com

42 Chapter 1 � Planning the Implementation

its AIX and OS/2. Of these four, XFS and JFS are the most advanced, but
ReiserFS is the most stable and is usable in mid-2001.

The Linux swap partition doesn’t use a filesystem per se. Linux does need to
write some basic data structures to this partition in order to use it as swap
space (as described in Chapter 8), but this isn’t technically a filesystem
because no files are stored within it.

Linux also supports many non-Linux filesystems, including the File Allo-
cation Table (FAT) filesystem used by DOS and Windows; the New Tech-
nology Filesystem (NTFS) used by Windows NT and 2000; the High-
Performance Filesystem (HPFS) used by OS/2; the Unix Filesystem (UFS; also
known as the Fast Filesystem, or FFS) used by various versions of Unix; the
Hierarchical Filesystem (HFS) used by MacOS; and the ISO-9660 and Joliet
filesystems used on CD-ROM. Most of these filesystems are useful mainly in
dual-boot configurations—say, to share files between Linux and Windows.
Some—particularly FAT, ISO-9660, and Joliet—are useful for exchanging
files between computers on removable media. As a general rule, these file-
systems can’t hold critical Linux files because they lack necessary filesystem
features. There are exceptions, though—Linux sports extensions to cram
necessary information into FAT and HPFS partitions, UFS was designed for
storing Unix filesystem features in the first place, and the Rock Ridge exten-
sions add the necessary support to ISO-9660.

It’s often best to use ext2fs for Linux partitions, although ReiserFS is a
good choice if you have large partitions and want to avoid lengthy filesystem
checks on system startup. ReiserFS isn’t as well tested as ext2fs, though; so
as of kernel 2.4.2, ext2fs is still safer. XFS, JFS, and ext3fs may become via-
ble options for production systems by the end of 2001 or 2002. XFS and JFS
have the advantage of supporting larger file sizes than the 4GB maximum
allowed by ext2fs and ReiserFS. All Linux distributions support ext2fs out of
the box, and most released in 2001 support ReiserFS, as well. Others may
require modifying the kernel, so you must initially install Linux to a sup-
ported filesystem and then convert or add the other filesystem types. Use
non-Linux filesystems for data exchange with non-Linux systems.

http://www.sybex.com

Planning Disk Partitioning 43

Partitioning Tools

In order to create partitions, you use a partitioning tool. There are dozens of
such tools available, but only a few make reasonable choices when installing
a Linux system:

DOS’s FDISK Microsoft’s DOS and Windows ship with a simple parti-
tioning tool known as FDISK (for fixed disk). This program is inflexible
and uses a crude text-based user interface, but it’s readily available and
can create partitions that Linux can use. (You’ll probably have to modify
the partition type codes using Linux tools in order to use DOS-created
partitions, though.)

Linux’s fdisk Linux includes a partitioning tool that’s named after the
DOS program, but the Linux tool’s name is entirely lowercase, whereas
the DOS tool’s name is usually written in uppercase. Linux’s fdisk is
much more flexible than is DOS’s FDISK, but it also uses a text-based user
interface. If you have an existing Linux emergency disk, you can use it to
create partitions for Linux before installing the OS.

Linux install-time tools Most Linux installation utilities include parti-
tioning tools. Sometimes the installers simply call fdisk, but other times
they provide GUI tools that are much easier to use . If you’re installing a
Linux-only system, using the installer’s tools is probably the best course
of action.

PowerQuest’s PartitionMagic PowerQuest (http://www.powerquest
.com) makes an unusually flexible partitioning program, known as Partition-
Magic. This commercial program provides a GUI interface and can create
partitions that are prepared with FAT, NTFS, HPFS, or ext2 filesystems.
This makes it an excellent tool for configuring a disk for a multi-OS com-
puter. PartitionMagic can also resize a partition without damaging its
contents. The main program is Windows-based, but the package comes
with a DOS version that can run from a floppy, so it’s possible to use it on
a system without Windows.

FIPS The First Nondestructive Interactive Partition Splitting (FIPS) pro-
gram comes with many Linux distributions. It’s a fairly specialized parti-
tioning tool that splits a single primary FAT partition into two partitions.
It’s designed to make room for Linux on computers that already have
Windows installed—you run FIPS, delete the second (empty) partition
that FIPS creates, and create Linux partitions in that empty space.

http://www.sybex.com

44 Chapter 1 � Planning the Implementation

In theory, partitions created by any tool may be used in any OS, provided
the tool uses the standard x86 partition table. In practice, though, OSs some-
times object to unusual features of partitions created by certain partitioning
tools. Therefore, it’s usually best to take one of two approaches to disk
partitioning:

� Use a cross-platform partitioning tool like PartitionMagic. Such tools
tend to create partitions that are inoffensive to all major OSs.

� Use each OS’s partitioning tool to create that OS’s partitions.

Chapter 2 includes a discussion of partitioning during installation of a
Linux Mandrake system. Although other distributions’ partitioning tools
differ somewhat, the basic principles remain the same across distributions.
Before you invest too much effort in partitioning, though, you need to study
Linux software issues, not the least of which is whether Linux is the proper
tool to use.

Linux and Non-Linux Solutions

Why use Linux? This may seem like an odd question to ask in a book
on Linux, but it’s an important one, and one that you should ask yourself
whenever you begin configuring a new Linux computer. If you find that
another OS is better suited to a particular task, you can save yourself time
and effort in the long run by using that other OS. When Linux is really the
best choice, asking yourself why you should use it will give you a ready
answer should somebody else ask you the question. By weighing Linux
against other OSs, you will also increase your confidence that you’re doing
the right thing by choosing Linux. This activity may also lead you to think
about the computer’s purpose in a way that helps you decide precisely how
to configure it.

Another important aspect to consider is which flavor of Linux to use.
Many companies and organizations package Linux. Each of the resulting
distributions has its own mix of features. In the end, you can configure any
distribution to do what any of the others does, but some distributions are
better suited to particular tasks right out of the box. Therefore, it’s helpful
to know something about the range of what’s available before you begin
configuring a new Linux system.

http://www.sybex.com

Linux and Non-Linux Solutions 45

Linux vs. Proprietary OSs

Linux competes, to a greater or lesser extent, with many OSs. One of the
great divides is between Linux and proprietary OSs—operating systems that
use a source code base that’s closed to public scrutiny. In particular, Linux
competes against Microsoft Windows in many peoples’ minds. In many
respects, though, Linux is more properly pitted against commercial versions
of Unix.

Most proprietary OSs are at a cost disadvantage when compared to
Linux. Price tags on commercial OSs range from around $50 up to thou-
sands of dollars. Most Linux distributions can be downloaded for free from
the Internet, obtained on CD-ROM for less than $10 if you don’t need offi-
cial support or a printed manual or for $100 or less with these extras. Some
extra-deluxe Linux packages cost more than this, often because they come
bundled with some costly commercial packages or extended support
options.

Linux vs. Microsoft OSs

Microsoft makes two OS product lines: Windows 9x/Me and Win-
dows NT/2000. Each OS is targeted at a particular market, although they
overlap to some extent. Linux competes against both, although more directly
against the NT/2000 line.

The Windows 9x/Me line is targeted at home and relatively low-powered
business desktop systems. This OS is derived from the old MS-DOS and Win-
dows 3.1 products, and this legacy continues to influence Windows 9x/Me, in
terms of filesystem support, multitasking power (the ability to run multiple
programs at once), and so on. One of the drawbacks of Windows 9x/Me is
that it’s saddled with the need for backward compatibility with its outmoded
predecessors. This fact limits the stability of Windows 9x/Me and its suit-
ability for advanced network server functions. Many desktop users, however,
aren’t particularly bothered by these limits, and they are drawn to the easy-
to-use Windows user interface. Although Linux is far more stable than Win-
dows 9x/Me, Linux is playing catch-up in the user interface department.
Therefore, if a computer will be used as a personal productivity workstation,
Windows Me deserves consideration. This is particularly true if the individ-
ual who’ll be using the machine is already familiar with Windows and
doesn’t want to learn something else.

http://www.sybex.com

46 Chapter 1 � Planning the Implementation

Microsoft markets Windows NT/2000 as the competition to Unix and
Linux. This OS branch uses a newer kernel with better support for features
that are important today, such as filesystem security and multitasking. This
makes Windows NT/2000 much more suited to function as a network server
than Windows 9x/Me. One of the key differences between Windows NT/2000
and Linux is that the former is much more tightly tied to its graphical user
interface (GUI). This fact makes Windows NT/2000 easier for new admin-
istrators to pick up, but at the same time, it reduces the OS’s flexibility. With
Linux, on the other hand, you can customize configuration files in ways a
GUI doesn’t allow, and you can do other things that are difficult or impos-
sible to do using Windows NT/2000. The fact that Linux can be configured
through text-based tools also means that it’s easy to administer remotely,
using nothing more than common remote login tools such as Secure Shell
(SSH), which allows you to run text-based Linux programs from another
computer.

Although Microsoft no longer markets it, OS/2 is another OS in the same
family as DOS and Windows. This OS is still sold by IBM, but it’s been slid-
ing in market share since the mid-1990s. In many respects, OS/2 is similar to
Windows NT—it uses its own updated kernel that abandons much of the
DOS baggage still carried by Windows 9x/Me. OS/2 lacks compatibility with
today’s popular Windows software, however. OS/2 may still be worth con-
sidering in environments where it’s still heavily used, such as many banks,
but its declining market share argues against its adoption in new environ-
ments without some compelling cause.

One of the most compelling arguments in favor of any Microsoft or
Microsoft-related OS is the application base for desktop use. In particular,
the Microsoft Office application group is extraordinarily popular, and it is
not available for Linux (or OS/2, for that matter). Although some Linux pro-
grams can import and export Office files, these operations are necessarily
imperfect. Likewise, emulators like WINE, VMware, and Win4Lin allow
you to run Windows software under Linux, but if the primary reason to use
a computer is to use Windows software, there’s seldom an advantage to
running that software in an emulator under Linux, as opposed to running it
directly.

Likewise, the principal advantage for Linux in a Linux-vs.-Windows com-
parison is its software base. Linux supports a wide range of open source (and
therefore generally low-cost) applications. Because Linux is modeled after
Unix, administrators with Unix experience should have no trouble handling

http://www.sybex.com

Linux and Non-Linux Solutions 47

a Linux system—and a person who learns Linux can pick up other flavors of
Unix quite quickly.

Linux vs. Unix

Originally, Linux was developed as a clone of Unix. Linus Torvalds set out
to write an open source kernel around which existing open source Unix
replacement parts could converge; the result was the Linux distribution as
we know it today. Because of this history, modern Linux systems bear a very
strong resemblance to modern Unix systems, and in fact, the two can often
be used similarly.

In many cases, the main difference between Linux and a commercial Unix
is cost. As noted earlier in this section, Linux is a very low-cost OS, but com-
mercial Unixes cost much more. (The most common x86 Unixes are now
available at low cost for personal use, but most commercial users must still
pay hundreds of dollars for a license.) Most Linux software is available in
open source form, and it can be compiled on commercial Unix machines—
indeed, most Linux software is developed as Unix software generically, with
Linux as just one of many Unix-like platforms on which it works. Many
commercial Unix programs have been ported to (that is, recompiled on)
Linux.

Where commercial Unixes hold an edge is in very high-performance com-
puting. OSs such as Silicon Graphics’ (SGI’s) IRIX and Sun’s Solaris run on
very fast non-x86 hardware and support advanced features that Linux sup-
ports poorly, if at all. For instance, IRIX’s XFS is still considered beta quality
on Linux. Also, the hardware used by high-end systems is often superior to
that used on the x86 PCs on which Linux usually runs. Linux has been
ported to many non-x86 platforms, including many of those on which its
Unix “big brothers” run, but these ports often lag behind the x86 version in
terms of overall polish and general usability.

As Linux improves, the gap between Linux and commercial versions of
Unix is likely to shrink. Even today, Linux is an excellent platform for work-
stations and small to mid-size servers. Because of its similarity to more
advanced systems, it’s possible to deploy Linux today and move to a higher-
end commercial Unix system in the future, with minimal changes to config-
uration and administrators’ training. This is certainly an advantage of the
Linux/Unix family as a whole over Windows.

http://www.sybex.com

48 Chapter 1 � Planning the Implementation

Linux vs. Other Open Source OSs

Linux is not the only open source OS in existence. Most competing open
source OSs are, like Linux, clones of Unix. In fact, the main competing
family—FreeBSD, NetBSD, and OpenBSD—is derived directly from main-
stream Unix.

BSD stands for Berkeley Standard Distribution. BSD grew as a component-by-
component open source replacement for AT&T’s original Unix. During and
after this process, the development forked several times, producing several
variant products, including the three major open source BSDs. Today, the
term BSD refers either to an entire OS that shares the Berkeley heritage or to
specific OS components that are so derived, such as the BSD printing system
discussed in Chapter 8.

In most situations, one of the open source BSDs will function as well as
Linux. These OSs have more-or-less the same base of applications, and
they’re administered in largely the same ways. The main differences between
Linux and its BSD cousins come down to three factors:

Kernel licenses The Linux kernel is released under the General Public
License (GPL), which tends to encourage greater public participation in
the development of the kernel than does the BSD license used for the
BSDs. The culture that’s emerged around each OS has furthered this dis-
tinction. The end result is that the Linux kernel has developed more
quickly than the BSD kernels, and it has more support for more hardware,
more filesystems, and so on.

Commercial software availability Commercial software developers
seem to be more willing to port software to Linux than to the open source
BSDs. The BSDs include ways to run Linux programs, and most software
for both systems is open source and available on both, so this factor isn’t
critical for most people, but it is, nonetheless, a plus in the Linux column.

Support network The Linux support network, as embodied in the Linux
newsgroups, Web sites, and support from commercial Linux vendors, is
generally more active than is the support network for the BSDs. This helps
new Linux users get started with Linux, and it helps even experienced
administrators resolve problems. Some support forums, though, are

http://www.sybex.com

Linux and Non-Linux Solutions 49

OS-neutral, such as mailing lists and newsgroups devoted to programs
that run on both platforms.

These three factors produce a positive feedback cycle—more users creates
a better volunteer support network, more potential kernel developers, and
more incentive for commercial software vendors to port their products to
Linux. Each of these factors in turn creates an environment that will attract
even more users.

In the end, you’re probably best off using whichever Unix-like open
source OS is most familiar to you. For new users, the broader support net-
work for Linux can be a major point in its favor. If you can access personal
support for a BSD more easily, though, or if a BSD supports hardware that
you need that’s not supported in Linux, then a BSD may be a better choice
for you. In either case, moving from Linux to a BSD or vice-versa is fairly
straightforward, so the time you spend learning one system is not wasted
should you decide to change.

A Rundown of Linux Distributions

Within the Linux world, there exist several distributions. A distribution is a
compilation of a Linux kernel, startup scripts, configuration files, and criti-
cal support software. Distributions also include some type of installation
routine so that you can get a working Linux system. Any two distributions
may use different versions of any or all of these components, which will pro-
duce distinctly different feels. Critical components, though, such as the ker-
nel and certain support software, come from the same line in all distributions.
For instance, one distribution might use the 2.4.2 Linux kernel and another
might ship with 2.4.3, but they’re both Linux kernels.

One important distinguishing characteristic of Linux distributions is which
packaging methods they use. Red Hat Package Manager (RPM), Debian pack-
ages, and tarballs are the three most common package formats. The details of
using these three package formats are covered in Chapter 3.

Depending upon your definition of “major,” there are anywhere from
two or three to a dozen or more major Linux distributions. In addition, there
are less popular and specialized distributions. Many Linux distributions are

http://www.sybex.com

50 Chapter 1 � Planning the Implementation

derived from either Debian or Red Hat. Some common Linux distributions
include the following:

Caldera eDesktop and eServer These distributions, from Caldera
(http://www.caldera.com), are targeted at workstation and server use,
respectively. Both spring from the earlier OpenLinux product. These dis-
tributions are RPM-based and include moderately sophisticated GUI con-
figuration tools. Although Caldera is RPM-based, its distributions aren’t
directly derived from Red Hat Linux. Caldera’s distributions are available
only for x86 CPUs.

Corel Linux Corel (http://linux.corel.com) based its distribution
on Debian GNU/Linux, but it added a very user-friendly installation rou-
tine and GUI configuration tools. In doing so, though, Corel made its dis-
tribution less easily configured through traditional Linux command-line
methods. This distribution is targeted at new Linux users who want to
use the OS as a desktop OS to replace Windows. Corel is an x86-only
distribution.

Debian GNU/Linux This distribution, headquartered at http://
www.debian.org, is built by a non-profit organization, rather than by a
for-profit company, as are most other distributions. Debian eschews
many of the GUI configuration tools used by most other distributions,
and instead it aims to be a very stable and flexible distribution. For these
reasons, it’s well liked by open source hard-liners and those who like tink-
ering with the underlying text-based configuration files. Debian is avail-
able on a very wide array of CPUs, including x86, PowerPC, Alpha,
SPARC, and 680x0.

Linux Mandrake This distribution is a French-based offshoot of Red
Hat Linux. Originally developed as a Red Hat with integrated K Desktop
Environment (KDE), Mandrake has since developed more of its own per-
sonality, which includes a good GUI installer and some unusual choices in
standard server software, such as Postfix rather than the more popular
sendmail for a mail server. Its English Web page is http://www
.linux-mandrake.com/en. Mandrake is available for x86, IA-64,
SPARC, Alpha, and PowerPC CPUs.

LinuxPPC This distribution is a Red Hat derivative for PowerPC (PPC)
processors—the CPUs at the heart of modern Macintoshes. LinuxPPC is
very similar to Red Hat, but the GUI installation routines are unique,
designed for the Macintosh market. The LinuxPPC Web site is http://
www.linuxppc.com.

http://www.sybex.com

Linux and Non-Linux Solutions 51

Red Hat Linux Red Hat (http://www.redhat.com) is one of the older
major distributions today, and one of the most influential. Red Hat devel-
oped the RPM format that’s used by many other distributions, including
some that aren’t otherwise based on Red Hat. The distribution includes
GUI installation and configuration tools that are unusually complete.
Red Hat is or has been available on x86, IA-64, SPARC, and Alpha CPUs,
although Red Hat has ceased SPARC development with version 6.2.

Slackware Linux Slackware is the oldest of the surviving Linux distri-
butions. Like Debian, Slackware favors manual text-based configuration
over GUI configuration tools, so it’s often recommended for those who
want the “Unix experience” without GUI “crutches.” Slackware is the
only major distribution to rely upon tarballs for package management.
You can read more at http://www.slackware.com. This distribution is
available for x86, Alpha, and SPARC CPUs.

Storm Linux This distribution, from Stormix (http://www.stormix
.com), is another Debian variant. Like Corel Linux, Storm Linux adds
GUI installation and configuration tools to Debian’s core, but Storm
Linux is less tightly tied to these tools. Storm Linux is available only on
x86 CPUs.

SuSE Linux The German company SuSE (http://www.suse.com) pro-
duces a distribution that’s particularly popular in Europe. SuSE uses
RPMs, but it’s not otherwise based on Red Hat. Some SuSE packages use
a DVD-ROM for software distribution, which is very helpful if your sys-
tem has a DVD-ROM drive—SuSE ships with an unusually large number
of packages, so juggling the half-dozen CD-ROMs can be awkward, com-
pared to using a single higher-capacity DVD-ROM. This distribution
includes GUI installation and configuration tools. Versions of SuSE for
x86, IA-64, PPC, and Alpha are all available.

TurboLinux This distribution (http://www.turbolinux.com) is a
Red Hat derivative. As of early 2001, the TurboLinux installation rou-
tines are somewhat simple, but effective. This distribution includes unusu-
ally strong support for Asian languages, and is targeted at the server
market. TurboLinux is available for x86, IA-64, and Alpha CPUs.

Yellow Dog Linux Like LinuxPPC, this is another PPC distribution
based on Red Hat. Yellow Dog (at http://www.yellowdoglinux.com)
uses its own unique installer, but once set up, it and LinuxPPC are quite
similar to one another—and to Red Hat.

http://www.sybex.com

52 Chapter 1 � Planning the Implementation

When deciding on a Linux distribution, some of these will fall out of the
running for very basic reasons. For instance, there’s no point in considering
Yellow Dog for an x86 system, or Corel for an Alpha CPU. The RPM and
Debian package management systems are, on the whole, quite similar in
overall features and capabilities, so if you’re not already familiar with either,
there’s little reason to favor one over the other. (Chapter 3 covers both sys-
tems in more detail.) Any of these distributions can be configured to do any-
thing that any other can do, with the exception of running on an
unsupported CPU.

As a practical matter, you do need to decide between distributions. As a
general rule, Caldera eDesktop, Corel, and Mandrake are probably the best
suited as delivered to function as workstations, particularly for new Linux
users. SuSE ships with an unusually wide array of software (particularly the
Professional package, which ships with a DVD-ROM and half a dozen
CD-ROMs). Red Hat is unusually popular, so finding support for it on
newsgroups and the like is particularly easy. Caldera eServer and Turbo-
Linux are specifically marketed for the server market, but others can fill that
role just as easily. Some distributions come in variants that include addi-
tional software, such as secure servers, third-party partition managers, and
so on.

If you have a fast Internet connection, a CD-R drive, and you want to
experiment with several Linux distributions, check out the Linux ISO Web
site, http://www.linuxiso.org. This site includes links to CD-R image
files for most Linux distributions. You can also obtain distributions on no-
frills CD-ROMs (with no manual and no support) for less than $10 from the
likes of Linux Mall (http://www.linuxmall.com), Linux System Labs
(http://www.lsl.com), or CheapBytes (http://www.cheapbytes.com).
Official boxed sets typically cost $20 to $100, or occasionally more for the
most feature-packed versions. The boxed sets typically include printed man-
uals, support, and occasionally, a commercial software product or two.

Determining Software Needs

When you plan a Linux installation, it’s important that you know
what software you’ll need on the system. For each program class, you’ll need
to decide what particular package you want to run. For instance, if you want to
configure a word processing workstation, you’ll need to decide if you want
to use Corel’s WordPerfect, Sun’s StarOffice, Applix’s ApplixWare, the open
source LyX, or something else. Some of these packages come with certain

http://www.sybex.com

Determining Software Needs 53

distributions; others must be obtained independently. In the case of down-
loadable software, if it doesn’t come with the distribution you use, you may
want to download it before installing Linux. Depending upon your available
hardware, you can usually put a package on floppy disk, a high-capacity
removable disk (like a Zip or LS-120 disk), or a CD-R to have it ready for
installation once you’ve installed the main distribution. Doing this from
Windows works just fine, if this is your first Linux installation.

Common Workstation Programs

Workstations don’t usually need much in the way of server software. Work-
stations may include such software to provide local services, though—for
instance, Linux workstations usually include mail servers to handle mail for
the administrator that is generated by automatic scripts and the like. The
most important workstation programs are designed to help an individual get
work done.

The X Window System

The X Window System (or X for short) is Linux’s GUI environment. It’s usu-
ally implemented through the XFree86 package. Although Linux can be used
without this GUI, most workstation users expect a GUI environment, and an
increasing number of workstation programs require X in order to function.

X itself is a fairly spare environment, so it’s frequently supplemented by
additional tools, such as window managers (which provide borders and con-
trols around windows) and desktop environments (which include a window
manager and an assortment of utility programs to help make for a comfort-
able working environment). In particular, the K Desktop Environment
(KDE; http://www.kde.org) and the GNU Network Object Model Envi-
ronment (GNOME; http://www.gnome.org) are two popular desktop
environments for Linux. Most Linux distributions in 2001 ship with both,
but some install one or the other by default. Red Hat, for instance, favors
GNOME, whereas Mandrake favors KDE.

Office Tools

Office tools are the workhorses of computer use in offices; they are primarily
made up of word processors, spreadsheets, and databases, but they may also
contain various other applications, such as personal contact managers, cal-
endar programs, and so on. Corel’s WordPerfect Office and Sun’s (http://
www.sun.com) StarOffice are both available in both Linux and Windows,
and so they can be good choices in a mixed Linux/Windows environment.

http://www.sybex.com

54 Chapter 1 � Planning the Implementation

Applix’s (http://www.applix.com) ApplixWare is another competing
office suite. All three are commercial products, although Sun has released
StarOffice as a free download and a stripped-down version of the old version 8
of the WordPerfect word processor is also available for free. All three of
these products also include import/export filters for Microsoft Office docu-
ments, but as noted earlier, this approach is imperfect at best. (StarOffice is
generally considered to have the best of these filters.)

In the open source arena, various packages are available, mostly as sin-
gleton programs rather than integrated office suites. For instance, LyX
(http://www.lyx.org) and AbiWord (http://www.abisource.com) are
two popular “what you see is what you get” (WYSIWYG) Linux word pro-
cessors. There are also markup languages like TeX and LaTeX (http://
www.latex-project.org) that, in conjunction with editors like Emacs, can
do much the same job. Gnumeric (http://www.gnome.org/projects/
gnumeric) is a popular Linux spreadsheet. Both the GNOME (http://
www.gnome.org) and KDE (http://www.kde.org) projects are building
open source office suites, largely by working on integrating existing products.

Network Clients

Users run network client programs to access network resources. Examples
include Web browsers like Netscape (http://www.netscape.com) and
Opera (http://www.opera.com), mail readers like Mutt (http://www
.mutt.org) and KMail (part of KDE, http://www.kde.org), and FTP
clients like gFTP (http://gftp.seul.org). All major Linux distributions
ship with a wide variety of network clients, but if you need a specific pro-
gram, you should check whether it’s included in your distribution. If it’s not,
track it down and install it. Most Linux network clients are open source, but
there are a few that aren’t. Opera stands out in this respect.

For more information on network clients, please refer to Chapter 5,
“Networking”.

Audio/Visual Programs

Audio/Visual programs cover quite a wide range of products. Examples
include graphics viewers and editors like XV (http://www.trilon.com/
xv) and The GIMP (http://www.gimp.org); ray tracing programs like
POV-Ray (http://www.povray.org); multimedia players like XAnim
(http://xanim.va.pubnix.com); audio/video editors like Broadcast

http://www.sybex.com

Determining Software Needs 55

(http://heroines.sourceforge.net/bcast2000.php3) and Linux
Video Studio (http://ronald.bitfreak.net); and games like Civiliza-
tion: Call to Power and Alpha Centauri (both from Loki, http://www
.lokigames.com). Some audio/visual programs are serious tools for work
and are on par with office utilities for some users. Somebody whose work
involves graphics design, for instance, may need tools like The GIMP or
POV-Ray. Other audio/visual programs fall more in the realm of entertain-
ment, like games.

Linux’s support for audio/visual programs has traditionally been weak.
This has changed substantially since the mid-1990s, however, with the devel-
opment of powerful programs like The GIMP and increasingly sophisticated
multimedia players and editors. Even Linux games have come a long way,
thanks largely to companies like Loki that specialize in porting other com-
panies’ games to Linux.

Personal Productivity Tools

Personal productivity tools are programs that individuals use to better their
own lives. Examples include personal finance programs like GnuCash
(http://www.gnucash.org) and slimmer versions of office programs (word
processors for writing letters, for instance). As with audio/visual programs,
personal productivity applications have traditionally been lacking in Linux,
but that situation is improving. GnuCash, in particular, fills a niche that
many users find important for personal use of Linux.

Personal productivity tools need not be restricted to the home, however.
For instance, although big word processors like StarOffice and WordPerfect
are very useful in some situations, many office users don’t need anything
nearly so powerful. Slimmer tools like Maxwell (http://www.eeyore-mule
.demon.co.uk) suit some users’ needs just fine. By foregoing the resource
requirements of a larger package, using such programs can help save money
by allowing employees to use less powerful computers than might otherwise
be required.

Scientific Programs

Unix systems have long been used in scientific research, and Linux has inher-
ited a wealth of specialized and general scientific tools. These include data
plotting programs such as the GNU plotutils package (http://www
.gnu.org/software/plotutils/plotutils.html) and SciGraphica
(http://scigraphica.sourceforge.net), data processing programs like

http://www.sybex.com

56 Chapter 1 � Planning the Implementation

Stata (http://www.stata.com), and many very specialized programs writ-
ten for specific studies or purposes. Linux’s software development tools
(described shortly, in “Compilers”) let you or your users write scientific pro-
grams, or compile those written by others.

Common Server Programs

A server program is one that provides some sort of service, usually to other
systems via a network connection. Typically, a server runs in the back-
ground, unnoticed by the computer’s users. In fact, many computers that run
server programs don’t have ordinary login users; instead, the system’s users
are located at other systems, and they use the computer only for its servers.
A Web server computer, for instance, may not have any local users aside
from those who maintain the computer and its Web pages.

The term server is sometimes applied to an entire computer, as in “the Web
server needs a bigger hard disk.” Context is usually sufficient to distinguish
this use from the use of the term in reference to a specific software product.

Web Servers

One very popular use of Linux is as a platform for running a Web server.
This software uses the Hypertext Transfer Protocol (HTTP) to deliver files
to users who request them with a Web client program, more commonly
known as a Web browser. The most popular Web server for Linux by far is
Apache (http://www.apache.org), which is an open source program
included with Linux. There are other Linux Web servers available, however,
including Roxen (http://www.roxen.com/products/webserver) and
thttpd (http://www.acme.com/software/thttpd). Roxen is a high-
powered commercial Web server, whereas thttpd is a minimalist open
source program suitable for small Web sites or those that don’t need
advanced features.

Some Linux distributions install Web servers even on workstations
because the distributions use the Web servers to deliver help files to the local
users. Such a configuration chews up resources, though, and can at least
potentially be a security problem.

http://www.sybex.com

Determining Software Needs 57

Mail Servers

Mail servers handle e-mail delivery. All major Linux distributions ship with
a mail server, such as sendmail (http://www.sendmail.org), Exim
(http://www.exim.org), or Postfix (http://www.postfix.org). These
servers all handle the Simple Mail Transfer Protocol (SMTP), which is used
to deliver mail between mail servers on the Internet at large, and can also be
used as part of a local network’s e-mail system. All major Linux distributions
also ship with Post Office Protocol (POP) and Internet Message Access Pro-
tocol (IMAP) servers. These are used to deliver mail to end-user mail reader
programs, which typically reside off of the mail server. Most Linux SMTP,
POP, and IMAP servers are open source, although there are commercial
servers available as well.

Disabling the SMTP server on a system that doesn’t function as a mail
server may seem like a good idea, but many Linux systems rely upon this
functionality to deliver important system status reports to the system admin-
istrator. Because of this, it’s generally best to ensure that the mail server is
configured in a secure way, which it normally is by default, and leave it running.

Remote Login Servers

A remote login server allows a user to log into the computer from a remote
location. The most ubiquitous remote login protocol is Telnet, which is han-
dled by a server called telnetd or in.telnetd in Linux. This server is open
source and comes with all Linux distributions, although it’s not always
active by default.

Unfortunately, Telnet is an insecure protocol. Data passing between the
Telnet client and server can be intercepted at points in-between the two,
leading to compromised data. For this reason, it’s best to disable the Telnet
server on any Linux system and instead use a more secure protocol. Secure
Telnet variants are available, but an alternative protocol, known as the
Secure Shell (SSH), is more popular. SSH encrypts all data passing between
two systems, making intercepted data useless. The most popular SSH implemen-
tation for Linux is the open source OpenSSH (http://www.openssh.com).

Telnet and SSH are basically text-based tools. SSH can be configured to
tunnel X sessions through its connections, however. When so configured,
you can run X programs remotely. You can do the same by setting various
parameters from a Telnet login, as described in the section entitled “Using X
Programs Remotely,” in Chapter 5. More direct GUI remote login tools (the
X Display Manager [XDM], GNOME Display Manager [GDM], and K

http://www.sybex.com

58 Chapter 1 � Planning the Implementation

Display Manager [KDM]) are also available and come with all major distri-
butions. Finally, the VNC package (http://www.uk.research.att.com/
vnc) allows direct remote X logins, as well. With the exception of VNC,
these tools all come with all major Linux distributions.

File Access Servers

A file access server lets users read, write, and otherwise manipulate files and
directories from a remote location. The traditional remote access protocol is
the File Transfer Protocol (FTP), which is still in common use. Many local
networks use file sharing protocols, which allow programs on one computer
to treat files on another system as if those files were local. Sun’s Network
Filesystem (NFS) is used for file sharing between Linux or Unix systems; the
Server Message Block (SMB), also known as the Common Internet File-
system (CIFS), is used to share files with DOS, Windows, and OS/2 systems;
Novell’s NetWare is another PC file sharing protocol; and Apple’s Apple-
Share is the protocol used for Macintosh file sharing. Linux supports all of
these protocols—NFS with standard kernel tools and various NFS servers;
SMB/CIFS with the Samba package; NetWare with the mars_nwe and
lwared packages; and AppleShare through Netatalk (http://www.umich
.edu/~rsug/netatalk).

Most of these file sharing servers have printer sharing features, as well, so
you can provide network access to printers connected to Linux. NFS is an
exception to this rule, but NFS’s lack of printer sharing is offset by the fact
that Linux’s standard printing tools include this feature themselves.

Because of its excellent support for so many different file sharing proto-
cols, Linux makes an outstanding file and printer sharing platform in a cross-
platform office. In an office that supports Windows, MacOS, OS/2, and
Unix or Linux desktop systems, for instance, a single Linux computer can
provide file and printer sharing services for all of these OSs, allowing users
to move freely from one client platform to another or to collaborate with
users of other platforms.

Miscellaneous Servers

The preceding list covers many of the most popular server types, but it’s far
from complete. Many servers fall into less-used categories or simply defy cat-
egorization. Examples include proxy servers, such as Squid (http://www
.squid-cache.org), which improve network performance or security by
buffering Internet access attempts; Dynamic Host Configuration Protocol

http://www.sybex.com

Determining Software Needs 59

(DHCP) servers, which keep track of network configurations and help auto-
mate the configuration of DHCP client systems; Domain Name System
(DNS) servers, such as BIND (aka named), which convert between numeric
IP addresses and hostnames; and remote configuration tools like Red Hat’s
linuxconf, which allow you to change a system’s configuration from
another computer. Most Linux distributions ship with a wide range of such
servers, some of which are active by default and some of which aren’t.

Although not a server per se, the ipchains and iptables tools are
extremely useful when configuring a system as a firewall, or in protecting an
individual workstation with firewall-like rules. These programs can block
access to your system based on IP addresses or network ports (numbers asso-
ciated with specific servers or runs of client programs). ipchains fills this
role with the 2.2.x kernel series, while iptables works with the newer 2.4.x
kernels.

Useful Software on Any System

Whether a computer is to be used as a workstation or a server, certain classes
of programs are extremely useful. These programs help users handle com-
mon user tasks and help administrators administer a system. Libraries are
particularly important because they’re the foundation upon which most
other programs are built.

Text Editors

A text editor, as you might imagine, is a program used to edit text. Most sys-
tem administrators need to be familiar with Vi, which is a small and ubiqui-
tous Unix and Linux text editor. (Chapter 7 includes an overview of Vi
operation.) If you need to do emergency maintenance, there’s a good chance
your emergency tools will include Vi as the text editor, or a close relative
such as Vi Improved (VIM). jed and pico are a couple of other small text
editors. These tools are designed to be similar to the popular Emacs pro-
gram, which is an extremely large and flexible text editor.

Vi, jed, pico, and Emacs are all text-based programs, although some of
them have at least some X extensions. In particular, XEmacs (http://
www.xemacs.org) is an X-enhanced version of Emacs. Other text editors,
such as Nedit (http://www.nedit.org), gEdit (part of GNOME), and
KEdit (part of KDE), are designed from the ground up as GUI text editors.
Although you may prefer to use one of these in day-to-day operation, you
will occasionally need to use a text-based editor, so you should become
familiar with at least one of them, as well.

http://www.sybex.com

60 Chapter 1 � Planning the Implementation

Programming Tools

A compiler is a tool for converting a program’s source code (its human-readable
form, written by a programmer) into binary form (the machine-readable form,
which users run). All major Linux distributions ship with a wide array of
compilers, the most important of these being the GNU C Compiler (GCC).
The Linux kernel is written mostly in C, as are many Linux programs. Some
installations require other programming languages. If your users will be
doing programming, ask them what tools they’ll need. Most programming
languages are available with major Linux distributions, and the rest can be
found in open source and, occasionally, commercial forms.

Some programming languages aren’t compiled; they’re interpreted. In an
interpreted language, the computer translates from human-readable form to
machine code on the fly. This reduces execution speed, but it can speed
development since there’s no need to explicitly compile the software. Many
interpreted languages are known as scripting languages, because they’re used
to create simple programs known as scripts. Java, Python, and Perl are pop-
ular interpreted languages.

Many developers like to work with an integrated development environ-
ment (IDE). IDEs provide GUI front-ends to editors, compilers, linkers,
debugging utilities, and other programming tools. Some software compa-
nies make money selling IDEs for Linux development, such as Metro-
werks CodeWarrior (http://www.metrowerks.com/desktop/linux).
Other IDEs are open source projects, such as Code Crusader (http://
www.newplanetsoftware.com/jcc), and KDevelop (http://www
.kdevelop.org).

It’s generally unwise to leave programming tools on a server system. If the
system is ever compromised by crackers (those who break into computer sys-
tems), the programming tools can be turned against you to compile the
cracker’s own utilities. Nonetheless, compilers are useful in administering
servers. Typically, you’ll compile software on a system that’s configured
much like the server, and then you’ll transfer the compiled software to the
server system.

Libraries

A library isn’t a program per se; rather, it’s a collection of software routines
that may be used by programs. Placing commonly used code in libraries
saves both disk space and RAM. All Linux systems rely upon a library
known as the C library (libc) because it provides routines that are necessary

http://www.sybex.com

Determining Software Needs 61

for any C program to run in Linux. (The version of libc shipped with major
distributions in 2001 is known as glibc.) Any but the most trivial Linux sys-
tem will use a number of additional libraries, as well. You must ensure that
you install the appropriate libraries. If you fail to do so, your package system
will probably tell you about the problem, expressed as a failed dependency
(dependencies are described in more detail in Chapter 3).

Validating Software Requirements

Computer software is highly interdependent. Programs rely upon others,
which in turn rely on still others. This cycle ultimately leads to the Linux ker-
nel—the “heart” of a Linux system. Even the kernel relies on other soft-
ware—namely, the Basic Input/Output System (BIOS), which the kernel
needs to start up, as described in Chapter 3. This web of dependencies and
requirements sometimes poses a problem because you may need to install a
dozen new programs in order to install a single package you want to use.

If a program comes with your Linux distribution, that program will most
likely work well with that distribution. In some cases, you may need to
install additional packages. Most distributions use package management
systems that support dependency checking, as described in Chapter 3, so
you’ll be told what files or packages you’re missing when you try to install
a new program.

For programs that don’t ship with a distribution—and even for those that
do—you can usually find a list of requirements on the program’s Web site or
in its documentation. This requirement list may include several components:

Supported OSs Most Linux software works on many Unix-like OSs. It’s
usually best to check that a package explicitly supports Linux. This is par-
ticularly true of binary-only packages, such as those that are common in
the commercial world. A binary package for IRIX won’t do you any good
in Linux, for instance. Unix programs that come with source code can
often be compiled without trouble on Linux, but the larger the program,
the more likely you’ll run into a snag if the author doesn’t explicitly sup-
port Linux.

Supported distributions Some packages’ documentation refers to spe-
cific Linux distributions. As a general rule, what works on one distribu-
tion can be made to work on another. Sometimes the conversion process
is trivial, but sometimes you’ll need to wade through a tangled mess of
unfulfilled dependencies to get a program working on a distribution its
author doesn’t explicitly support.

http://www.sybex.com

62 Chapter 1 � Planning the Implementation

CPU requirements Software that comes in source code form can usually
be compiled on any type of CPU. Binary-only programs, though, usually
work only on one CPU family, such as x86 or PowerPC. This problem
afflicts many commercial packages. Even some programs that come with
source code don’t compile properly on all CPUs, although this problem
is rare.

Library requirements The vast majority of programs rely upon specific
libraries, such as libc and GTK+. Check the requirements list and try to
determine if the libraries are installed in your system. If your distribution
uses the RPM or Debian package system, you can usually check for a
library of the specified name. Chapter 3 discusses software management,
including RPM and Debian package utilities.

Development tools and libraries If you intend to compile a program
yourself, pay attention to any development tools or libraries the package
uses. For instance, if a program is written in C++, you’ll need a C++ com-
piler. Also, many libraries have matching development libraries. These
include additional files needed to compile programs that use the libraries,
but that aren’t needed merely to run such programs once compiled.

If your system seems to meet all the requirements specified by the pro-
gram’s author, try installing the package according to the provided instruc-
tions. If you have trouble, read any error messages you get when you try to
install or run the program; these often contain clues. You may also want to
check Chapter 3, “Software Management,” for information on Linux pack-
ages, and Chapter 9, “Troubleshooting” (particularly the section entitled
“Package Dependencies and Conflicts”), for package installation trouble-
shooting tips.

Understanding Software Licenses

Most computer software is copyrighted. This gives the copyright
owner the legal right to restrict distribution of the software, and even to limit
how it may be used. In the Linux world, open source licenses dominate the
landscape. These give users unusually broad rights. Commercial software for
Linux is also available, though, and some products fall somewhere in-
between the two.

http://www.sybex.com

Understanding Software Licenses 63

One of the problems with Linux software licensing is that the culture sur-
rounding open source is often perceived as hostile towards commercial soft-
ware and even commercial users of software. Although this perception is
often overblown, it’s important that you be aware of it and how you may
and may not use software with varying licenses in Linux. Understanding the
issues can help you to arrive at a decision regarding the correct software
licenses for your environment, and it may help you overcome any miscon-
ceptions you may encounter among your co-workers.

Open Source Software Licenses

Open source software and its culture have evolved substantially over time.
One early influence was the Free Software Foundation (FSF) and its GNU’s
Not Unix (GNU) project, which developed many critically important com-
ponents that are now used in Linux, such as GCC. The FSF developed the
General Public License (GPL), which Linus Torvalds used for the Linux ker-
nel. The FSF is a leader in what’s known as the free software movement,
which advocates software freedom—the ability of users to distribute and
modify program source code.

By the mid-1990s, the free software community began to see the need for
some changes. For one thing, some felt that the term “free software” was
inappropriate because it tended to deter development by for-profit compa-
nies. In fact, the primary meaning of free in free software refers to the free-
dom to do what one likes with the code; it does not mean that it is a zero-cost
distribution policy. In 1997, a collection of movers in the free software com-
munity (notably lacking Richard Stallman, the founder of the FSF) created a
formal definition of what they termed open source software. This definition
includes nine components, summarized here:

1. Free redistribution—The user must have the right to redistribute the
software without paying royalties.

2. Source availability—The program must have source code, either as
part of the main package or readily available via the Internet.

3. Derived works—The license must allow the user to modify the source
code and distribute these modifications under the same terms as the
original.

4. Source code integrity—An open source license may restrict distribu-
tion of modified code, but only if patch files (files used to modify, or

http://www.sybex.com

64 Chapter 1 � Planning the Implementation

“patch,” original source code) are permitted. This condition is essen-
tially a weakening of point #3 in order to let the software’s original author
control a primary package, but still allow third-party modifications.

5. No discrimination against persons or groups—The license may not
discriminate against any person or group.

6. No discrimination against fields of endeavor—The license may not
restrict rights based on fields of endeavor (such as business use or
genetic research).

7. License distribution—The license terms must apply automatically,
without requiring signing a form or the like.

8. License must not be specific to a product—The license terms may not
be contingent upon the program being part of another product.

9. No-contamination—The license must not “contaminate” other soft-
ware by placing restrictions on other software distributed with the
product.

Today, the Linux community as a whole has embraced the open source
definition, although some influential individuals and groups still prefer to
use other terms. In particular, the FSF continues to use the term “free soft-
ware” for software distributed under the GPL and some other licenses. The
FSF’s GPL includes language stipulating that any changed version of a pro-
gram must be distributed under the GPL. Such a requirement is certainly
allowed by the open source definition, but it’s not required by this definition.
In fact, some open source licenses allow a person to modify the source code
and distribute it under another license. (Note that the open source require-
ment #3 allows, but does not require, modifications to be distributed under
the original license.)

Open source software, and particularly software distributed under the GPL, is
frequently referred to as falling under copyleft. This play on the word “copy-
right” suggests a use of copyright laws to achieve goals that are in many ways
the opposite of copyright—to ensure the free availability of software, rather
than to limit the right to copy.

http://www.sybex.com

Understanding Software Licenses 65

Every open source license has its own unique characteristics. These are
mostly of interest to developers who might want to contribute to a software
project, but on occasion they may be important to a system administrator.
The major open source licenses include the following:

GNU GPL and LGPL The GNU GPL is the license used by the Linux
kernel. As noted above, it contains language that requires modifications
to be made available under the GNU GPL. This ensures that there will
never be a proprietary version of the Linux kernel, which may be a good
or bad thing, depending upon your point of view. A variant on this license
is the Lesser GPL (LGPL), formerly known as the Library GPL. This is
intended to be applied to libraries. The LGPL explicitly allows software
that uses LGPLed code to do so even if the software does not follow the
LGPL or GPL. This loophole is very important for libraries; a library
licensed with the GPL would require all programs that use the library to
also use the GPL.

BSD The BSD license is used by the open source BSD OSs, and by var-
ious software components developed for them. Unlike the GPL, the BSD
license allows modifications to be distributed under other licenses. The
latest versions of this license are very similar to the MIT license.

MIT The Massachusetts Institute of Technology (MIT) was the original
moving force behind the X Window System, and the MIT license (some-
times called the X11 license) continues to be used for XFree86—the
implementation of X included with all major Linux distributions. The
MIT license is unusually short.

Artistic The Artistic license was originally developed for the Perl pro-
gramming language, but it has been used with other programs. It’s filled
with requirements and loopholes for those requirements. Most software
that uses the Artistic license is shipped with the stipulation that this license
is optional; the user may elect to follow the terms of some other license
(usually the GPL) instead.

The Qt Public license Trolltech (http://www.trolltech.com) devel-
oped a cross-platform GUI library, Qt, that was used as the core of KDE,
among other programs. Qt was originally licensed in a manner that did
not qualify it as open source, although it was freely available in Linux.
Trolltech has since modified its license so that it does qualify as open
source, although some free software purists dislike it because it retains
more rights for the owner than do most open source licenses.

http://www.sybex.com

66 Chapter 1 � Planning the Implementation

NPL and MPL The Netscape Public License (NPL) and Mozilla Public
License (MPL) were developed by Netscape when they brought their
Netscape Web browser into the open source field. Like the Qt Public
license, the NPL reserves some rights for the copyright holder, but the
MPL is more open.

There are additional licenses that meet the open source requirements. You
can find a complete list, and additional discussion of just what an open
source license is, on the Open Source Initiative Web site, http://
www.opensource.org.

The details of the various open source licenses are probably not terribly
important to most system administrators. You may use and redistribute any
open source program as you like. If you modify a program, though, you
should be aware of redistribution requirements, particularly if you want to
merge two or more programs or distribute a program under a modified
license. You should also be aware that some Linux distributions (particularly
those that ship in official boxes) may include software that doesn’t qualify as
open source. Some of this is commercial software, and some of it falls into
some variant category.

Open source software is not the same as public domain software, although
the two are similar in some ways. “Miscellaneous Software Licenses”
touches upon public domain software later in this chapter.

Commercial Software Licenses

Commercial software isn’t as common in Linux as it is in Windows or com-
mercial Unix systems, but it still exists. Commercial programs for Linux are
frequently large productivity applications, such as WordPerfect Office; or
major servers, such as Roxen. You’re less likely to find small utilities sold
under commercial licenses.

Although the Linux kernel is distributed under the GPL, there are a few com-
mercial kernel module packages. In particular, the Open Sound System (OSS;
http://www.4front-tech.com) package is a commercial set of sound drivers
for Linux. OSS can distribute commercial kernel modifications because
they’re separate modules that aren’t compiled into the kernel proper.

http://www.sybex.com

Understanding Software Licenses 67

Commercial software is not as clearly defined as open source software.
Some people consider anything that’s not open source to be commercial, but
it’s not as simple as that, as illustrated shortly, in the section “Miscellaneous
Software Licenses.” As a general rule, though, commercial software has sev-
eral characteristics not shared with open source software:

Closed source The source code to commercial software tends to be
unavailable, or is available only with serious restrictions, such as the
recipient signing a non-disclosure agreement (NDA), which prevents its
redistribution.

Distribution limitations Often, the user cannot legally redistribute com-
mercial software. This limitation sometimes doesn’t apply, though. For
instance, many commercial software packages today may be downloaded
from the Internet and redistributed, but they don’t work fully unless you
enter a license key. (In this case, you wouldn’t be allowed to distribute
your license key.)

Payment You must usually pay to use commercial software. To be sure,
you may also pay to obtain open source software, but you can usually find
open source software for little or no cost, particularly if you don’t count
media or Internet charges. The developer of a commercial product usually
expects a monetary return, though. Sometimes a stripped-down version of
commercial software is given away.

If all these restrictions apply, you can be pretty secure in applying the term
“commercial software” to a package. If some of these conditions don’t
apply, it may be a gray area, but commercial packages often relax one or
even all of these restrictions. For instance, Corel makes a stripped-down ver-
sion of its WordPerfect 8 available for download from the Internet for free,
but most people still consider it to be commercial software.

When you use commercial software in Linux, you should be sure that you
comply with any license restrictions. These may include a limit on the num-
ber of total or simultaneous users of the software, an expiration date for a
license, or other factors. If you use much commercial software, tracking
these limitations can be a headache.

Some people use the term “closed source” instead of “commercial soft-
ware.” This usage has the merit of being more precise—it focuses on the
unavailability of source code, de-emphasizing the redistribution rights and
payment issues. Something that’s not open source is not necessarily closed
source, though, as described in a moment.

http://www.sybex.com

68 Chapter 1 � Planning the Implementation

Miscellaneous Software Licenses

Some software falls in a limbo-land somewhere between open source and
fully commercial software. There are also licenses (or a lack thereof) that
simply aren’t either open source or commercial. A few specific examples
include the following:

Public domain The term public domain refers to a work for which the
author has eliminated the copyright, or for which the copyright has
lapsed. Public domain software is distributed with no licensing or copy-
right restrictions. As such, it’s neither open source nor commercial,
although somebody who makes modifications could copyright those
changes in either way.

http://www.sybex.com

Understanding Software Licenses 69

The distinctions between these licenses can become quite blurry. In all
cases, though, what’s important is not so much whether you call the software
open source, commercial, or something else; it’s what the license does and
does not allow you to do. If you’re in doubt, contact the author of the
software.

One final term that deserves consideration is freeware. This word gener-
ally applies to any software that’s distributed free of charge, whether it’s
open source or not. This is not the same as free software, the term favored
by the FSF for GPLed and some other forms of open source software. The
free version of WordPerfect 8 and StarOffice are two examples of freeware
that are not open source.

Using Licensed Software in Linux

Some people believe that Linux’s open source nature means that the OS may
only run other open source software. This isn’t true. Many commercial
applications are available for Linux. Most libraries use the LGPL or other
open source licenses that allow developers to write software that uses the
library without becoming encumbered by the open source license them-
selves. If this weren’t the case, programs like WordPerfect and Roxen would
not be available in Linux.

As with any environment, though, you should check the licensing terms of
the software you intend to run. Software licenses occasionally include pecu-
liar terms, and in principle, a program could include a requirement that the
software not be run from Linux, or something else that would prevent you
from legally running the software. I’ve seen licenses that restrict the use of
the software geographically or in certain professions, for instance (such prac-
tices spurred the open source requirements #5 and #6).

Linux Distributions’ Licenses

One final concern when discussing software licenses is the license for Linux
as a whole. When you download a CD-ROM image file or buy a Linux pack-
age, the software you obtain uses many different licenses—the GPL, the BSD
license, the MIT license, and so on. Most of these licenses are open source,
but some aren’t. Many distributions ship with a few shareware or not-quite-
open-source packages, such as the shareware XV. Retail packages some-
times include outright commercial software. For this reason, you shouldn’t

http://www.sybex.com

70 Chapter 1 � Planning the Implementation

copy a retail Linux package’s CD-ROM. (An image file downloaded from
the Internet is probably safe to copy, but check any accompanying file called
COPYING or COPYRIGHT to be sure.)

Linux distributions include installation programs, configuration pro-
grams, and the like. These tools are usually all that a distribution packager
can lay claim to, in terms of copyright. Most distribution maintainers have
made their installation and configuration routines available under the GPL
or some other open source license, but this isn’t always the case. For
instance, SuSE’s GUI configuration tools, YaST and YaST2, are not open
source. Such details can turn what might seem like an open source OS into
something that’s not quite fully open source. Debian maintains a policy of
using only open source software in its main package set, although it lets
freely redistributable but non-open source programs into its “non-free”
package set.

Because a complete Linux distribution is composed of components using
many different licenses, it’s not very useful to speak of a single copyright or
license applying to the entire OS. Instead, you should think of a Linux dis-
tribution as being a collection of different products that comes with a unify-
ing installation utility. The vast majority of all the programs use one open
source license or another, though.

Locating Linux Software

Modern Linux distributions are fairly complete entities as delivered.
Most fill 1 to 6 650MB CD-ROMs—and most of this content is stored in a
compressed form, so the result is a system that can easily fill 1–8GB when
completely installed and uncompressed. In practice, though, a Linux instal-
lation can be much sparer than this; you’re unlikely to install every package
that comes with your distribution, after all. Some of this space is also con-
sumed by source code, which you probably don’t need.

On the other hand, it’s entirely possible that your installed Linux system
will be missing a few programs that you want. This is particularly likely if
you use one of the smaller distributions or want to run some commercial
software products. When this happens, it’s necessary that you know where
to go to find what you want.

http://www.sybex.com

Locating Linux Software 71

Locating Open Source Software

There are several ways you can obtain open source software:

The Linux CD-ROM Linux installation media, as just noted, typically
include a wide array of software. If you know the name of the package
you want, you can search for it on the CD-ROM. For instance, to find the
Nedit editor on a CD-ROM mounted at /mnt/cdrom, you might type
find /mnt/cdrom -name "nedit*". Such searches work best when the
filename is something obvious, given the package name.

File archive collections Companies that distribute inexpensive Linux
CD-ROMs also often distribute CD-ROMs that contain the archives of
popular open source FTP sites. These can be a good way to obtain extra
software if you don’t have a fast Internet connection.

File archive sites Many Web and FTP sites host collections of open
source software. Notable examples include http://sourceforge.net,
http://www.ibiblio.org/pub/Linux, and ftp://sunsite.unc.edu.

Package maintainer’s site Most open source projects have homepages,
often named after the application itself (usually in the .org domain). If
you can’t find such a site by using the program’s name, try doing a Web
search.

If you don’t know the name of a package but do know the type of soft-
ware you want to find (such as a Pascal compiler or alternatives to the
Apache Web server), you can try searching at http://sourceforge.net or
http://www.linux.org. Both sites include categorized lists of open source
or Linux programs. The GNU Project Web site, http://www.gnu.org,
includes a listing of the FSF’s software and some related packages. A Web
search and a search on Google Groups (http://groups.google.com) are
also well worth trying.

Locating Commercial Software

Commercial software for Linux can be obtained in ways that often parallel
those for obtaining open source software. Specifically, consider the following:

Linux packages Retail Linux packages frequently include demos of
commercial products. Many ship with one or two fully functional com-
mercial programs, as well.

http://www.sybex.com

72 Chapter 1 � Planning the Implementation

Linux retailers You can obtain many commercial Linux programs
from Linux retailers, such as Linux Mall (http://www.linuxmall.com),
Linux System Labs (http://www.lsl.com), and CheapBytes (http://
www.cheapbytes.com). In addition to these Web-based retailers, Linux
software is increasingly finding its way onto computer, office supply, and
even department store shelves.

Software publishers The software publishers themselves often sell their
packages directly. In fact, some offer downloadable versions; you can
download the software and then buy a license key from the publisher’s
Web site.

If you don’t know the name of the software you want, searching on Linux
Web sites or doing a Web search, as with open source software, will often
turn up useful information. Linux magazines, such as Linux Journal and
Linux Magazine, often carry reviews of commercial software products.
These publications frequently have monthly themes in which some topic is
covered in depth, often including multiple or head-to-head product reviews.

Summary

Before installing Linux, you should take some time to plan the imple-
mentation. Although Linux works with a wide variety of hardware, you
should consider this detail carefully, both to get a system with the features
you need within your budget and to be sure that you don’t have any compo-
nents that are unsupported in Linux. Checking the hardware before you
install Linux can also save you a great deal of aggravation, should some com-
ponent be installed incorrectly or conflict with another device.

Planning your software configuration is also important. This begins with
planning disk partitions to suit the needs of the system. There are several dif-
ferent Linux distributions available, and you may even want to consider
non-Linux OSs for some purposes. Occasionally, selecting software is
dependent upon software licenses. Most Linux packages use an open source
license, but some programs use commercial and other types of licenses.
Depending upon the role of the computer, you’ll need to install different sets
of software when it comes time to install Linux, as described in the next
chapter.

http://www.sybex.com

Exam Essentials 73

Exam Essentials

Describe the difference between a workstation and a server. Individu-
als use workstations for productivity tasks; servers exchange data with
other computers over a network.

Suggest ways to stretch a limited budget when buying or building a Linux
computer. Upgrade an existing computer rather than buy a new one;
incorporate existing components into an otherwise new computer; prior-
itize the system’s hardware needs, and eliminate or use inexpensive hard-
ware for low-priority functions.

Describe how CPU speed, available RAM, and hard disk characteristics
influence performance. Faster CPUs result in faster computations, and
thus faster speed in computationally intensive tasks, while plentiful RAM
gives the computer room to perform computations on large data sets.
Hard disks vary in capacity and speed, which affect your ability to store
lots of data and your ability to rapidly access it.

Describe Linux’s partitioning needs. Linux requires a single root parti-
tion, and may require a separate swap partition. Additional partitions,
corresponding to directories such as /boot, /home, and /var, are desir-
able on some systems, but aren’t usually required.

Summarize the concept of a Linux distribution. A distribution is a col-
lection of software developed by diverse individuals and groups, bound
by an installation routine. Linux distributions can differ in many details,
but they all share the same heritage and the ability to run the same programs.

Determine how a computer will be used. Workstations serve as pro-
ductivity tools for individuals, whereas servers respond to data transfer
requests from many clients. Which role a computer will fill determines the
types of programs you’ll install on it.

Describe the most important characteristics of open source software
licenses. Open source licenses ensure the availability of source code and
your ability to change and redistribute that source code and the resulting
binary programs.

Describe the most important characteristics of commercial software
licenses. Commercial licenses usually don’t allow users to distribute the
software or see the source code. Commercial software copyright holders
usually expect payment for their software.

http://www.sybex.com

74 Chapter 1 � Planning the Implementation

Commands in This Chapter

In other chapters, you will find a list of commands that were used in the
chapter here. You should make sure you are familiar with these commands
and how to use them.

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

Basic Input/Output System (BIOS) desktop computer

Berkeley Standard Distribution (BSD) desktop environment

binary direct memory access (DMA)

bit distribution

bus dual inline memory module
(DIMM)

byte dynamic RAM (DRAM)

C library (libc) Enhanced Integrated Device
Electronics (EIDE)

cache memory Ethernet

central processing unit (CPU) extended partition

chipset external transfer rate

Common Internet Filesystem (CIFS) failed dependency

compiler file sharing protocol

Complementary Metal Oxide
Semiconductor (CMOS) setup utility

filesystem

console freeware

copyleft General Public License (GPL)

crippleware glibc

demoware hot swapping

http://www.sybex.com

Key Terms 75

Hypertext Transfer Protocol (HTTP) public domain

Industry Standard Architecture (ISA) RAMbus dynamic RAM
(RDRAM)

input/output (I/O) RDRAM inline memory
module (RIMM)

internal transfer rate ribbon cable

interrupt request (IRQ) root partition

journaling filesystem scripting language

library second extended filesystem
(ext2 or ext2fs)

logical partition Secure Shell (SSH)

main memory server

master Server Message Block (SMB)

master boot record (MBR) server program

modem shareware

motherboard single inline memory module
(SIMM)

mount point slave

open source Small Computer System
Interface (SCSI)

partition software modem

partition table text editor

Peripheral Component
Interconnect (PCI)

Universal Serial Bus (USB)

primary partition window manager

proprietary workstation

http://www.sybex.com

76 Chapter 1 � Planning the Implementation

Review Questions

1. Which of the following are typical workstation tasks? (Choose all that
apply.)

A. Word processing

B. Routing between networks

C. Running a Web site

D. Running scientific simulations

2. A computer is to be used to capture 640 × 480 images of a room every
10 minutes and then store them for a day on hard disk. Which of the
following components might you research before building such a
computer?

A. A 21-inch monitor for viewing the images

B. A high-end SCSI disk to store the images quickly

C. A 3D graphics card to render the image of the room

D. USB support for a USB-interfaced camera

3. You’re designing a computer as a workstation to be used primarily for
word processing. Which of the following cost-saving measures is least
appropriate for this system?

A. Buying a keyboard that costs $10 rather than one that costs $50

B. Buying a 40GB hard disk rather than an 80GB model

C. Buying a CD-ROM drive rather than a DVD-ROM drive

D. Buying a 750MHz system rather than a 900MHz one

4. Linux runs on many different types of CPUs. Which of the following
measures is most useful when comparing the speed of CPUs from
different families?

A. The BogoMIPS measures reported by the kernel

B. The CPU speeds in MHz

C. The number of transistors in the CPUs

D. How quickly each CPU runs your programs

http://www.sybex.com

Review Questions 77

5. Which of the following is not an advantage of SCSI hard disks over
EIDE hard disks?

A. SCSI supports more devices per IRQ.

B. SCSI hard disks are less expensive than their EIDE counterparts.

C. SCSI allows multiple simultaneous transfers on a single chain.

D. The highest-performance drives come in SCSI format.

6. As a general rule, which of the following is most important in order for
a video card to be used in a Linux business workstation?

A. The card should be supported by the commercial Accelerated-X
and Metro-X servers.

B. The card should have much more than 8MB of RAM for best
speed.

C. The card should be supported by XFree86.

D. The card should be the most recent design to assure continued use-
fulness in the future.

7. When installing an EIDE hard disk, what feature might you have to set
by changing a jumper setting on the disk?

A. The drive’s bus speed (33, 66, or 100 MBps)

B. The drive’s termination (on or off)

C. The drive’s master or slave status

D. The drive’s ID number (0–7 or 0–15)

8. Why might you want to check the motherboard BIOS settings on a
computer before installing Linux?

A. The BIOS lets you configure the partition to be booted by default.

B. You can use the BIOS to disable built-in hardware you plan not to
use in Linux.

C. The motherboard BIOS lets you set the IDs of SCSI devices.

D. You can set the screen resolution using the motherboard BIOS.

http://www.sybex.com

78 Chapter 1 � Planning the Implementation

9. You want to attach an old 10MBps SCSI-2 scanner to a computer, but
the only SCSI host adapter you have available is a 20MBps UltraSCSI
device. The system has no other SCSI devices. Which of the following
is true?

A. You can attach the scanner to the UltraSCSI host adapter; the two
are compatible, although you may need an adapter cable.

B. You must set an appropriate jumper on the UltraSCSI host adapter
before it will communicate with the SCSI-2 scanner.

C. You must buy a new SCSI-2 host adapter; SCSI devices aren’t com-
patible across versions, so the UltraSCSI adapter won’t work.

D. You can attach the scanner to the UltraSCSI host adapter, but per-
formance will be very poor because of the incompatible protocols.

10. A new Linux administrator plans to create a system with separate
/home, /usr/local, and /etc partitions. Which of the following best
describes this configuration?

A. The system won’t boot because /etc contains configuration files
necessary to mount non-root partitions.

B. The system will boot, but /usr/local won’t be available because
mounted partitions must be mounted directly off of their parent
partition, not in a subdirectory.

C. The system will boot only if the /home partition is on a separate
physical disk from the /usr/local partition.

D. The system will boot and operate correctly, provided each parti-
tion is large enough for its intended use.

11. Which of the following best summarizes the differences between
DOS’s FDISK and Linux’s fdisk?

A. Linux’s fdisk is a simple clone of DOS’s FDISK, but written to
work from Linux rather than from DOS or Windows.

B. The two are completely independent programs that accomplish
similar goals, although Linux’s fdisk is more flexible.

C. DOS’s FDISK uses GUI controls, whereas Linux’s fdisk uses a
command-line interface, but they have similar functionality.

D. Despite their similar names, they’re completely different tools—
DOS’s FDISK handles disk partitioning, whereas Linux’s fdisk
formats floppy disks.

http://www.sybex.com

Review Questions 79

12. Which of the following characteristics differ between Linux and com-
mercial Unix systems? (Choose all that apply.)

A. Ability to run open source software

B. Cost

C. History of kernel source code base

D. Underlying principles of OS design

13. In what ways do Linux distributions differ from one another? (Choose
all that apply.)

A. Package management systems

B. Kernel development history

C. Installation routines

D. Ability to run popular Unix servers

14. Which of the following packages are most likely to be needed on a
computer that functions as an office file server?

A. Samba and Netatalk

B. Apache and StarOffice

C. Gnumeric and Postfix

D. XV and BIND

15. What type of software is it most important to remove from a publicly
accessible server?

A. Unnecessary kernel modules

B. Unused firewall software

C. Uncompiled source code

D. Software development tools

16. Which of the following is not required in order for software to be cer-
tified as open source?

http://www.sybex.com

80 Chapter 1 � Planning the Implementation

A. The license must not discriminate against people or groups of people.

B. The license must not require that the software be distributed as
part of a specific product.

C. The license must not require that changes be distributed under the
same license.

D. The program must come with source code, or the author must
make it readily available on the Internet.

17. Which of the following is true of commercial software licenses in
Linux? (Choose all that apply.)

A. They must conform to the terms of the LGPL.

B. They may restrict distribution, require payments, or have other
terms common to commercial licenses in commercial OSs.

C. They are uncommon compared to open source licenses.

D. They necessarily prevent distribution of the commercial package
with a Linux distribution.

18. How do you set IRQs on PCI boards?

A. You don’t; PCI boards don’t use IRQs.

B. You don’t; they’re set automatically by the BIOS or kernel.

C. By adjusting jumpers on the board.

D. By editing the /etc/isapnp.conf file and running isapnp.

19. How can you expect your Linux distribution to arrive?

A. With enough software that some systems don’t need additional
packages.

B. It will invariably require additional software package installation.

C. Generally, it will consist of at least 50 percent commercial
software.

D. It cannot be obtained from the same sources that make commercial
software available.

http://www.sybex.com

Review Questions 81

20. Possible sources of both commercial and open source Linux software
include which of the following? (Choose all that apply.)

A. The program author’s Web site

B. Linux retail boxes

C. Internet retailers

D. Brick-and-mortar retailers

http://www.sybex.com

82 Chapter 1 � Planning the Implementation

Answers to Review Questions

1. A, D. Workstations are used by individuals to perform productivity
tasks, such as word processing, drafting, scientific simulations, and so
on. Routing is a task that’s performed by a router—typically a
dedicated-appliance task. Web sites are run on servers.

2. D. Many digital cameras use USB interfaces, so Linux’s support for
USB, and for specific USB cameras, may be important for this appli-
cation. (Some cameras use parallel-port or specialized PCI card inter-
faces, as well.) A 21-inch monitor is overkill for displaying 640× 480
images, and a 3D graphics card isn’t required, either. Likewise, a 10-
minute pause between captures is slow enough that a high-end hard
disk (SCSI or EIDE) isn’t necessary for speed reasons, although a large
hard disk may be required if the images are to be retained for any
length of time.

3. A. As a word processing workstation, this system’s keyboard quality
is important. A 40GB hard disk and a 750MHz CPU are almost cer-
tainly more than adequate for this application, as is a CD-ROM drive.

4. D. The ultimate measure of a CPU’s speed is how quickly it runs your
programs, so the best measure of CPU performance is the CPU’s per-
formance when running those programs. The BogoMIPS measure is
almost meaningless; it’s used to calibrate some internal kernel timing
loops. CPU speed in MHz is also meaningless across CPU families,
although it is useful within a family. Likewise, the number of transis-
tors in a CPU is unimportant per se, although more sophisticated
CPUs are often faster.

5. B. SCSI hard disks usually cost more than EIDE drives of the same
size, although the SCSI disks often perform better.

http://www.sybex.com

Answers to Review Questions 83

6. C. XFree86 comes with all full Linux distributions, so having
XFree86 support is important to getting Linux working in GUI mode.
Support in Accelerated-X and Metro-X can work around a lack of
support in XFree86 or provide a few features not present in XFree86,
but in most cases, XFree86 support is more important. More than
8MB RAM is important if you want to use a card’s 3D features, but
few Linux programs use these in 2001. The most recent designs are
often incompatible with XFree86 because drivers have yet to be written.

7. C. EIDE drives can be configured for one of two positions on an
EIDE chain, master or slave. (Modern drives often support auto-
configuration through a “cable select” or similar option, and some-
times a single-drive configuration, but these are just different ways of
setting the same feature.) Termination and ID number are character-
istics of SCSI devices, not EIDE devices. The drive’s bus speed adjusts
automatically depending upon the maximum of the drive and the
EIDE controller.

8. B. Motherboards with built-in RS-232 serial, parallel, EIDE, and
other devices generally allow you to disable these devices from the
BIOS setup utility. The BIOS does not control the boot partition,
although it does control the boot device (floppy, CD-ROM, hard disk,
and so on). SCSI host adapters have their own BIOSes, with setup util-
ities that are separate from those of the motherboard BIOS. (They’re
usually accessed separately even when the SCSI adapter is built into
the motherboard.) You set the screen resolution using X configuration
tools, not the BIOS.

9. A. SCSI devices are compatible from one version of the SCSI proto-
cols to another, with a few exceptions such as differential SCSI
devices. There are several types of SCSI connectors, so a simple
adapter may be required. No jumper settings should be needed to make
the UltraSCSI adapter communicate with the SCSI-2 scanner. Perfor-
mance will be at SCSI-2 levels, just as if you were using a SCSI-2 host
adapter.

http://www.sybex.com

84 Chapter 1 � Planning the Implementation

10. A. The /etc/fstab file contains the mapping of partitions to mount
points, so /etc must be an ordinary directory on the root partition,
not on a separate partition. Options B and C describe restrictions that
don’t exist. Option D would be correct if /etc were not a separate
partition.

11. B. Although they have similar names and purposes, Linux’s fdisk is
not modeled after DOS’s FDISK. DOS’s FDISK does not have GUI con-
trols. Linux’s fdisk does not format floppy disks.

12. B, C. Linux generally costs less than commercial Unix systems, and
its source code (particularly the kernel) is not derived from the same
base as that of commercial Unixes. Both Linux and commercial Unix
systems can run most of the same open source software, though. As a
clone of Unix, Linux uses the same underlying OS design principles.

13. A, C. Different Linux distributions use different package manage-
ment systems and installation routines. Although they may ship with
slightly different kernel versions, they use fundamentally the same ker-
nel. Likewise, they may ship with different server collections, but can
run the same set of servers.

14. A. Samba is a file server for SMB/CIFS (Windows networking), while
Netatalk is a file server for AppleShare (MacOS networking). Apache
is a Web server, and StarOffice is a workstation package. Gnumeric is
a spreadsheet, and Postfix is a mail server. XV is a graphics package,
and BIND is a name server. Any of these last six might be found on a
file server computer, but none fills the file serving or any other neces-
sary role, and so each is superfluous on a system that’s strictly a file
server.

15. D. System crackers can use compilers and other development tools to
compile their own damaging software on your computer. Unnecessary
kernel modules don’t pose a threat. You may want to begin using
unused firewall software, but removing it is unlikely to be necessary or
helpful. Uncompiled source code may consume disk space, but it isn’t
a threat unless a compiler is available and the source code is for net-
work penetration tools.

http://www.sybex.com

Answers to Review Questions 85

16. C. The open source definition specifies that users be able to distribute
changes, but it doesn’t require that the license allow distribution under
the terms of another license. Options A, B, and D all paraphrase actual
open source license term requirements.

17. B, C. Linux’s licensing terms don’t restrict the rights of commercial
software vendors to apply their own licensing terms. Most Linux soft-
ware is open source in nature. The LGPL allows commercial software
to link to LGPLed software, but the LGPL does not impose its terms
on commercial packages. Commercial packages can be and sometimes
are distributed with Linux packages.

18. B. PCI was designed so that the BIOS or OS could set IRQs for these
devices automatically, so it’s not normally necessary to explicitly
adjust these features. In the event of a conflict, you can sometimes
change the algorithm the BIOS uses to assign IRQs, though.

19. A. Linux distributions come on 1–6 CD-ROMs, which include wide
assortments of open source and occasionally commercial software—
filling all the needs of some systems. Sometimes—but not invariably—
additional software is required. All Linux distributions sold today
include far less than 50 percent commercial software. Many retailers
sell both Linux distributions and commercial Linux software. Some
companies (such as Corel) even produce both.

20. A, B, C, D. Open source software may be distributed in any way
that’s technologically possible. Distribution of commercial software is
dependent upon license terms, but as a whole, commercial software
developers have embraced a wide array of distribution methods,
including all the options listed here.

http://www.sybex.com

Chapter

2
Installing Linux

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 2.1 Determine appropriate method of installation based on the

environment (e.g., boot disk, CD-ROM, Network (HTTP, FTP,

NFS, SMB)).

� 2.2 Describe the different types of Linux installation interaction

and determine which to use for a given situation (e.g., GUI, text,

network).

� 2.3 Select appropriate parameters for Linux installation (e.g.,

language, time zones, keyboard, mouse).

� 2.4 Select packages based on the machine’s “role” (e.g.,

Workstation, Server, Custom).

� 2.5 Select appropriate options for partitions based on

preinstallation choices (e.g., FDISK, third party partitioning
software).

� 2.6 Partition according to your preinstallation plan using fdisk

(e.g., /boot, /, /usr, /var/home, SWAP).

� 2.7 Configure file systems (e.g., (ext2) or (ext3) or REISER).

� 2.8 Select appropriate networking configuration and protocols

(e.g., modems, Ethernet, Token-Ring).

� 2.9 Select appropriate security settings (e.g., Shadow

password, root password, umask value, password limitations

and password rules).

� 2.10 Create users and passwords during installation.

� 2.11 Install and configure XFree86 server.

� 2.12 Select Video card support (e.g., chipset, memory, support

resolution(s)).

http://www.sybex.com

� 2.13 Select appropriate monitor manufacturer and

settings (e.g., custom, vertical, horizontal, refresh).

� 2.14 Select the appropriate window managers or desktop

environment (e.g., KDE, GNOME).

� 2.18 Read the Logfiles created during installation to

verify the success of the installation.

� 3.1 Reconfigure the Xwindow System with automated

utilities (e.g., Xconfigurator, XF86Setup).

http://www.sybex.com

Planning a Linux installation, as described in Chapter 1, “Plan-
ning the Implementation,” is an important first step toward getting a Linux
system up and running. Once you’ve done this, you can proceed to actually
installing Linux, as described here. Many of the details of Linux installation
differ from one distribution to another, and covering them all would take an
entire book. Therefore, this chapter presents just one distribution’s installa-
tion procedures: Linux Mandrake 8.0. Other distributions are similar, but
differ in many details, such as the order in which you perform certain
actions.

One of the trickiest aspects of Linux installation is getting the X Window
System, or X for short, up and running. Many installers can do this correctly
from the start, but sometimes you may need to modify your X configuration
after the fact. Most distributions include one or more X configuration tools
to help in the matter, or you can modify the X configuration file manually.
Even if X itself is working, various extra tools are required to make X a prac-
tical working environment, and you may want to select alternative tools to
the ones provided as your distribution’s defaults.

Selecting an Installation Method

After you’ve decided on a distribution, the first choice you must make
when installing Linux is what installation method you intend to use. There
are two classes of options: the installation media and the method of interac-
tion during installation. In both cases, some distributions offer more or dif-
ferent options than do others, so in truth, your preferences in these matters

http://www.sybex.com

90 Chapter 2 � Installing Linux

may influence your distribution choice. For instance, Debian GNU/Linux
doesn’t support GUI installations, so if you strongly desire this feature, you
can’t use Debian.

Media Options

Linux can be booted and installed from any of several different media—
floppy disks, CD-ROMs, network connections, and so on. For both booting
and installing files, different media offer different advantages and disadvantages.

Boot Method

Linux installer programs run within Linux itself. This means that in order to
install Linux, you must be able to boot a small Linux system, which is pro-
vided by the distribution maintainer. This system is useful only for installing
Linux and sometimes for doing emergency maintenance. It typically fits on
one or two floppy disks, or can boot from a bootable CD-ROM.

As described in Chapter 1, modern BIOSes include options for the selec-
tion of a boot medium. Typical choices include the floppy disk, CD-ROM
drive, EIDE hard disk, SCSI hard disk, and high-capacity removable-media
drive (like a Zip or LS-120 disk). In addition, some network cards include
BIOSes that allow a computer to boot from files stored on a server. In theory,
any of these media can be used to boot a Linux installer. Additionally, some
distributions provide a DOS or Windows program that can launch the instal-
lation from a working DOS or Windows system.

Although many boot methods are possible, the three most common are as
follows:

Floppy Many boxed distributions come with one or more boot floppies.
If you configure your BIOS to boot from floppy disks before any other
working boot medium, you can insert the boot floppy and turn on the
computer to start the installation process. Even if you download Linux or
obtain it on a cut-rate CD-ROM without a boot floppy, you can create a
boot floppy yourself from a file on the CD-ROM (often called boot.img
or something similar), using a DOS program such as RAWRITE. Look for
these files and instructions on how to use them on the installation CD-
ROM. The floppy boot method may be necessary if you plan to install
from a network server.

http://www.sybex.com

Selecting an Installation Method 91

CD-ROM Modern Linux distributions almost always come on CD-
ROMs or DVD-ROMs that are themselves bootable. On a computer
that’s configured to boot from CD-ROM before other bootable media,
you can insert the CD-ROM in the drive, turn on the computer, and the
boot program automatically starts up. If you download and burn a Linux
CD-R image file, you don’t need to take any special steps to make this CD-R
bootable. Some older BIOSes don’t support CD-ROM boots, in which
case you should make boot floppies, as just described.

Existing OS bootstrap Some distributions come with a DOS, Windows,
or MacOS program that shuts down that OS and boots up the Linux
installer. These programs sometimes run automatically when you insert
the Linux CD-ROM in the drive. Using them can be a good way to get
started if you plan to install a dual-boot system, or if you plan to replace
your current OS with Linux.

Ultimately, the boot method is unimportant, because the same installation
programs run no matter what method you choose. Pick the boot method
that’s most convenient for your hardware and the form of installation
medium you’ve chosen.

Installation Media

The installation medium is the physical form of the source of the Linux files.
Linux is very flexible in its installation media. The most common choices
include those listed here:

CD-ROM or DVD-ROM If you buy Linux in a store or from an online
retailer, chances are you’ll get a CD-ROM. In fact, many distributions
come on multiple CD-ROMs. Some companies, like SuSE, have started
shipping a DVD-ROM with some of their packages. (DVD-ROMs can
store much more data than can CD-ROMs, so a single DVD-ROM is
equivalent to multiple CD-ROMs.) CD-ROM installations tend to be
quick. Most distribution maintainers offer CD-ROM image files that you can
burn to CD-Rs yourself. To find CD-R image files, check http://www
.linuxiso.org, http://delaware.linux.tucows.com/distribution
.html, or ftp://sunsite.unc.edu/pub/linux/distributions or go to
your chosen distribution’s Web or FTP site.

Network If you have a fast network connection and don’t want to be
bothered with installation CD-ROMs, you can install many distributions
via network connections. Download a boot floppy image, create a floppy
disk from it, and boot the installer. Tell it you want to install via the net-
work and point it to a public archive site for the distribution. This

http://www.sybex.com

92 Chapter 2 � Installing Linux

approach can also be useful if you’ve got a CD-ROM and a network but
your target system doesn’t have a CD-ROM drive. You can insert your
CD-ROM into one computer on your network, configure that system to
share the disc, and use network installation tools to read the files from
that disc over the network. The drawback to network installations is that
they tend to be slower than installs from CD-ROMs. They require more
information from the user, and so they can be more difficult for a new
user to get working. They can also fail midway if a network connection
goes down or a server stops responding. Network installations may use
any of several protocols to transfer files, including FTP, HTTP (Web),
SMB (Windows file sharing), and NFS (Unix/Linux file sharing). Precisely
which protocols are supported varies from one distribution to another.

Hard disk It’s possible to put the Linux files on a DOS or Windows par-
tition and install Linux in another partition using those files. This
approach used to be somewhat common among hobbyists who would
download the files, but who didn’t have a CD-R burner. It’s less common
today but still occasionally useful. You might use it if your CD-ROM
drive doesn’t seem to work in Linux, for instance; you could copy the files
from the CD-ROM to the hard disk and then install from there. Because
Linux treats high-capacity removable-media drives as if they were hard
disks, you could also store installation files on something like a Jaz or Orb
drive, which might be convenient for installing Linux on multiple systems
in some environments.

Floppy disks Early Linux distributions came as floppy disk sets. With
today’s major distributions commonly exceeding 1GB compressed,
floppy disks aren’t a very appealing distribution medium. A few special-
ized distributions, however, are still quite small. The Linux Router Project
(http://www.linuxrouter.org), for instance, produces a single-floppy
Linux distribution intended to turn an old computer into a network
router.

Monolithic files It’s possible to distribute an entire Linux system as a
single file. One example along these lines is an image file of a demo Linux
CD-ROM, which can boot directly from the CD-ROM drive and run
Linux without installing it on the computer. Another example is the
ZipSlack distribution, which is a stripped-down version of Slackware
(http://www.slackware.com). This distribution uses extensions to the
DOS or Windows File Allocation Table (FAT) filesystem so that you can
store the distribution on an ordinary FAT partition or high-capacity
removable-media drive, like a Zip or LS-120 drive. Once this is done, you
can boot ZipSlack using a floppy disk.

http://www.sybex.com

Selecting an Installation Method 93

Not all distributions support all of these installation options. All main-
stream distributions support installation from CD-ROM, and most support
at least one form of network installation. Beyond this, you should check the
documentation for the distribution.

Even if a system lacks a CD-ROM drive, you can temporarily install a drive
from another computer in order to install Linux. This is usually not the most
efficient course of action if the system has a network connection, but it can be
handy for installing Linux in an isolated system.

How to Obtain Linux

There are several common methods of Linux distribution:

� In official packages from the distribution maintainer, which are typically
shipped with multiple CD-ROMs, printed manuals, and some amount of
customer support

� Packaged with third-party books that describe the distribution

� From cut-rate CD-ROM duplicators, who sell distributions for as little as $2

� Downloaded from the Internet, typically as CD-R image files for burning
to CD-R discs or via network installations

As a general rule, you get less in the way of useful extras and support as you
move down this list. Therefore, purchasing a commercial distribution is
often the best choice for new Linux administrators. Also, by purchasing a
commercial distribution you support companies that often help improve
Linux—for instance, Red Hat contributes to kernel development, and SuSE
contributes to audio and video driver development. The low cost of cut-rate
CD-ROMs or (if you have fast Internet connections) downloading the distri-
bution yourself can be appealing if you are on a budget. Ultimately, you’ll
have to settle on your own comfort level regarding support and your bud-
get. Personally, I have used—and I continue to use—distributions obtained
through all four of these methods.

http://www.sybex.com

94 Chapter 2 � Installing Linux

Methods of Interaction during Installation

Most methods of Linux installation require you to make decisions during the
process. You may need to tell the system how to partition your hard disk,
what your network settings are, and so on. To handle such interactions, dis-
tribution maintainers have developed three methods of data entry: GUI-
based, text-based, and scripted. The first two are most suitable for custom-
ized individual installations, while scripts are best used when you are con-
figuring large numbers of nearly identical systems.

GUI Installations

As a general rule, Linux distributions are shifting towards GUI installer pro-
grams. These tools run the XFree86 GUI environment in a basic 640 × 480
(VGA) mode that works on most modern video cards. (Some installers can
run at 800 × 600 or higher.) The system can then use familiar mouse-based
point-and-click operations to obtain input from the user. Because the display
is a bitmapped graphics image, it’s also possible to display graphical repre-
sentations of information such as partition sizes. These displays can be very
useful because people often find it easier to interpret graphs than the num-
bers that are more often used by text-based utilities.

GUI installations are most popular on CD-based installations. XFree86
and its related libraries are fairly large, so implementing an X-based instal-
lation over a network or floppy-based connection is tedious at best. Also,
GUI installers don’t work on all systems because some have unusual video
hardware that’s incompatible with the GUI installer. This problem is partic-
ularly acute with laptop computers, whose LCD screens sometimes don’t
work with the video modes used by GUI installers. If you’re faced with such
a situation, you may need to use a text-based installer.

Text-Based Installations

A few distributions (most notably Debian and Slackware) don’t provide GUI
tools, so you must use a text-based installer if you want to install one of these
distributions. In principle, a text-based installation works just like a GUI
one. Specifically, you must enter the same types of information—Linux par-
tition information, TCP/IP network configuration options, package selec-
tions, and so on. Text-based tools require you to select options using your
keyboard, though, and they can’t display graphics that are nearly as sophis-
ticated as can a GUI installer. Some text-based programs can produce crude

http://www.sybex.com

Selecting an Installation Method 95

progress bars and the like, though, and some use text-based menus in which
you tab through options to select the one you want. A few even let you use
the mouse to select options from textual menus.

Most Linux distributions offer a text-based installation option. Typically,
an early screen gives you the choice of running a GUI or text-based install,
or you can type a special command to switch into a text-based mode if the
default is a GUI installer. Consult your distribution’s documentation if you
don’t see an obvious way to start a text-based installer.

Scripted Installations

With an automatic scripted installation, you typically create a configuration
file that includes the information you’d normally enter with the keyboard or
mouse—partition sizes, networking options, packages to install, and so on.
Early in the installation process, you tell the system to read the configuration
file from a floppy disk or from the network. The system then proceeds with
the installation without further intervention from you.

To create the configuration file, you must normally install Linux manu-
ally on one system. The installer gives you the option of saving the configu-
ration file. When you install Linux on the next system, you use this file to
create a system that’s configured identically to the first.

Scripted installations work best when you need to install Linux on many
identical or nearly identical computers. If the systems vary in important
details like hard disk size or intended function (workstation, server, and so
on), a scripted install won’t give you the opportunity to change those details
on the various systems, so you’ll end up spending more time correcting mat-
ters after the installation than you’ll save by using the scripting features. You
can also save your configuration options so that you can quickly reinstall a
distribution on a single computer, should the need arise.

If you have many nearly identical systems to install, invest time in getting the
installation just right when you create a set of installation parameters. For
instance, you might want to use the custom package selection option
(described shortly) to fine-tune what packages are installed. You’ll invest time
in the initial installation, but you’ll save time reconfiguring all the systems
after they’re installed.

http://www.sybex.com

96 Chapter 2 � Installing Linux

Not all distributions include scripted installation options. Consult your
distribution’s documentation for details.

Starting the Installation

This chapter presents a sample installation of Mandrake 8.0 from a
CD-ROM. This example shows how to set up a system using the Mandrake
GUI installer. As noted earlier, the details of configuring other Linux systems
will differ, but the general principles will be the same as those presented here.

If you’re installing Linux on a system and you plan to dual-boot between Linux
and some other OS, you should first run disk-partitioning software, such as
FIPS or PartitionMagic, to create empty space on the hard disk for Linux. Most
Linux distributions do not have the means to dynamically resize partitions
during installation, so if the disk has no unpartitioned space or blank parti-
tions, you’ll find that you’re unable to install Linux without deleting partitions
that are in use.

To begin the installation, insert the CD-ROM in the drive and power on
the computer. If it’s set to boot from the CD-ROM drive, you’ll hear it spin
up and see a prompt that reads boot:. Press the Enter key at this prompt to
start up the GUI installer.

After pressing the Enter key, you’ll see a large number of messages scroll
past on the screen. These are the kernel startup messages, and they reflect
various kernel drivers starting up, checking for hardware, and reporting on
their status. After these have finished, the screen will clear and you’ll see the
first of the option configuration screens, which lets you set your default
language.

The order in which the installer collects information varies from one distribu-
tion to another. Therefore, you may find that your distribution asks for infor-
mation in an order other than that presented here. More-or-less the same
information must be entered for all distributions, though.

http://www.sybex.com

Selecting Basic Installation Parameters 97

Selecting Basic Installation Parameters

The first stage of most Linux installations collects basic information
on the system so that the installer can interact with you and locate the files
to be installed. Many of these settings carry over into the installed system, as
well, so be careful to enter correct information. You can change these set-
tings after installing the OS, but it’s simpler to get them right initially.

Language

The first question Mandrake’s installer asks is what language it should use
(see Figure 2.1). Mandrake’s installer presents a summary of installation
steps on the left, and the stars next to each option change color as you move
through the list. The rest of the screen shows an option setting, with a help
message below that. If you ever want to go back to a prior configuration
step, click the star next to that step in the list on the left side of the screen.

F I G U R E 2 . 1 Installation configuration screens typically present options in small groups.

In this example, I chose United States English (the default) as the language
and clicked OK.

http://www.sybex.com

98 Chapter 2 � Installing Linux

License Terms

A few distributions, including Mandrake, present a software license at some
point during installation. Chapter 1 discusses software licenses, including
licenses for Linux distributions as a whole. You should read the license terms
to be sure there are no surprises, such as proprietary software included with
the distribution that might limit what you can do with it.

Installation Class and Hardware Detection

After you accept the license terms, the system enters into the phase of
the installation in which you prepare the computer to receive Linux. This
involves choosing the general class of installation and detecting some of the
hardware.

Installation Class

Linux Mandrake offers two major installation types: Install and Update.
Each of these options has its own button, and for each, you can opt to do
either a Recommended or an Expert installation. The latter gives you much
greater control over what the system does during installation, but it assumes
you know more about how Linux operates. As a general rule, the Expert
installation offers more and better choices. For this reason, the rest of this
chapter emphasizes the results of choosing this option, but you might want
to choose Recommended for a streamlined installation if you’re new to
Linux.

Some distributions use terms like Workstation, Server, and Custom installa-
tions. The number and names of such options vary from one distribution to
another.

Disk Detection

Mandrake attempts to auto-detect your hard disks. In some cases, it may
miss SCSI devices, so if it doesn’t detect a SCSI adapter, it asks if you have
one. If you do, select Yes and click OK; otherwise select No and click OK.

http://www.sybex.com

Installation Class and Hardware Detection 99

Mandrake does a good job of auto-detecting EIDE disks, so you shouldn’t
be asked about your EIDE drives.

Mouse and Keyboard

Once the system has detected your hard disk, it asks for information on your
mouse, as shown in Figure 2.2. The configuration groups mice into sections
according to their hardware interfaces (PS/2, USB, and so on). Within each
group, there are several options that relate to the protocols and mouse fea-
tures, such as the number of buttons and whether or not the mouse has a
wheel.

F I G U R E 2 . 2 The installer shows the type of mouse it has auto-detected as the default.

Mandrake auto-detects the mouse, so it’s probably set correctly to begin
with. If you change the mouse selection, the installer gives you a chance to
test it by showing a simple mouse outline with three buttons. Move the
mouse around and click the buttons. You should see the mouse pointer move
and the on-screen “buttons” should light up when you click the real mouse
buttons. If this doesn’t work, use the Tab key to highlight the Cancel button.
This returns you to the mouse selection screen (Figure 2.2), where you can
choose a different mouse. If you click OK, Mandrake will move on to key-
board configuration.

Linux supports many different keyboards, but Mandrake presents only
two options by default: US Keyboard and US Keyboard (International). The
first option works fine with most keyboards sold in the United States. If
yours isn’t one of these, click More to see an expanded list of keyboards for
many nationalities. When you’ve selected your keyboard, click OK.

http://www.sybex.com

100 Chapter 2 � Installing Linux

Configuring Disks

To install Linux, you must normally partition disks and create file-
systems on those partitions. All Linux distributions include some way to
accomplish both tasks before installing packages.

Disk Partitioning

Linux Mandrake uses a GUI disk-partitioning tool, shown in Figure 2.3.
This tool presents a graphical representation of the partitions on the disk,
and it allows you to adjust these partitions in various ways. If you want to
completely destroy any existing partitions, click Clear All. You can click
Auto Allocate or Wizard to have the system determine partition sizes auto-
matically. These can be good options if you’re unsure of how to proceed, but
if you want more say in the matter, you can create partitions manually.

F I G U R E 2 . 3 Linux Mandrake’s GUI partitioning tool lets you point at free space or
partitions and click options to create or modify partitions.

To create partitions for use by Linux, follow these steps:

1. Click in an area of free space (white in the partition listing). The Cre-
ate option will become available in the Choose Action area of the
screen.

http://www.sybex.com

Configuring Disks 101

2. Click Create. This produces a small dialog box, shown in Figure 2.4,
in which you enter partition information.

F I G U R E 2 . 4 You specify critical partition information in a single dialog box.

3. The Start Sector field defaults to the first available sector. You can
increase this value if you want to create partitions out of order, but
leave it alone if you create partitions from first to last in that order.

4. Type the size of the partition in megabytes in the Size in MB field.
Alternatively, you can move the slider below this field to change it.

5. Select the type of filesystem in the Filesystem Type field. There are sev-
eral options for Linux partitions: Linux Native (ext2fs), Linux Swap,
ReiserFS, Linux RAID, and Linux Logical Volume Management
(LVM). Linux Native is the safest choice, although ReiserFS might be
desirable if you need a journaling filesystem, and the RAID and LVM
options are useful if you understand what these options are and need
their features. There are also options for various non-Linux partition
types, such as DOS FAT-16 and BeOS. Linux won’t actually create
most of these non-Linux filesystem types, but the installer will mark
the partition types appropriately if you choose one.

6. In the Mount Point field, select a mount point, as discussed in Chapter 1.
You must create a root (/) filesystem, although it need not be the first
one you define. You can skip this step for swap partitions; they don’t
have mount points.

7. In the Preference field, select either Primary or Extended. (Mandrake
doesn’t explicitly mention logical partitions; use the Extended choice
for logical partitions, and Mandrake will create logical partitions
inside an extended partition.)

http://www.sybex.com

102 Chapter 2 � Installing Linux

8. Click OK to create the partition. You should see it appear in the par-
tition list.

9. If you need to define additional partitions, repeat steps 1–8.

You can also edit existing partitions by clicking them and then clicking an
option in the Choose Action area of the screen. Each action corresponds to
one partition characteristic, like the mount point or filesystem type. Doing
this is most helpful if you want to add Windows partitions or partitions for
existing /home directories or the like to your system.

Some Linux distributions use fdisk, Linux’s text-mode partitioning tool, for
creating partitions. Some give the option of using fdisk or a GUI tool. Chapter 7,
“Managing Partitions and Processes,” describes the use of fdisk.

Most Linux distributions let you add partitions you’ve previously defined
to your installation. This lets you create partitions for Linux in third-party
utilities like PartitionMagic or reuse partitions you’d used in previous instal-
lations. A few, though, will only install to partitions they create, which
means you must delete existing partitions and re-create them with the distri-
bution’s installation tools.

Creating Filesystems

When you’re done defining partitions and setting their mount points, click
Done to go on to the next screen. This produces the partition formatting
screen. Formatting a partition, also known as creating a filesystem, is the
process in which low-level data structures associated with a given filesystem
(such as ext2fs or ReiserFS) are written to a partition. As such, creating a file-
system is an inherently destructive and dangerous process. If the partitions in
question really should be formatted, there’s nothing wrong with doing so,
but if you select the wrong partition, you can wipe out a lot of data very
quickly.

The Linux installation utilities offer a choice to create or not create file-
systems for each of the partitions you defined earlier. If you’re doing a fresh
install of Linux on a Linux-only system, you’ll almost certainly want to per-
form this format step, so be sure these options are selected. (You can omit
this step if you created Linux filesystems using some other utility, such as
PartitionMagic.) If you’re upgrading a system or are installing Linux along-
side another OS, you should be more cautious. Double- and triple-check that
you format only the partitions you need to format before proceeding.

http://www.sybex.com

Choosing Packages for Installation 103

Hard disk sectors occasionally fail. Such failed sectors are known as bad
blocks, and Mandrake, like many other Linux distributions, gives you an
option to check for them during the format process. You’ll need to click the
Advanced button to find this option, though. If you select this option, Linux
will verify that every sector can hold data as it does the format. If any are
found to be bad, the system will map them out of the list of available sectors,
so as not to endanger your data. Performing a bad block check takes time,
though—usually several minutes, and potentially over an hour on a large
disk. Nonetheless, it’s generally a good idea to perform a bad block check
because it can save your data in the future.

Bad blocks are usually mapped out by the hard disk itself. If a modern drive
develops bad blocks that are detectable by Linux, chances are the disk won’t
last long. You’d do well to replace it.

Choosing Packages for Installation

After setting up the system’s partitions, the Mandrake installer pro-
ceeds to a screen in which you enter package groups you want to install (see

Low- and High-Level Formatting

The term “formatting” has dual meanings. It can refer to a low-level format,
in which the physical sectors of a disk are redefined; or to a high-level for-
mat, in which the filesystem is re-created. Hard disks come from the factory
with a suitable low-level format, and it’s almost never necessary to redo

http://www.sybex.com

104 Chapter 2 � Installing Linux

Figure 2.5). Each option available on this screen represents a group of pack-
ages—several programs that together provide some set of functionality.

F I G U R E 2 . 5 Each package group consists of multiple packages that provide related tools.

There are quite a few package groups available. As shown in Figure 2.5,
most include explanation bubbles that appear when you move the mouse
over the group. Select whichever of these package groups sounds useful, but
be aware that the more you select, the more disk space they’ll consume.
Package groups tend to provide a broad range of functionality, so choosing
just a few, particularly from large groups like KDE Workstation or GNOME
Workstation, can consume hundreds of megabytes of disk space, if not more.
Some distributions (but not Mandrake) provide an estimate of the required
disk space somewhere on this screen. Mandrake does provide such an esti-
mate after you move on, though.

If you think you might want some features from some of the groups
you’ve selected, but not all of them, click Advanced and check the Individual
Package Selection option. If you click this option and then click OK, Man-
drake displays a screen in which you can select and deselect individual pack-
ages, as shown in Figure 2.6. You can browse through package categories
using the list on the left of the screen. Selected packages appear with checks
to the right of their names, and unselected packages have squares there. Click
the name of the package to see a description of it, then click the box or check
mark to select or deselect it, respectively. Some packages include dependen-
cies that require installing additional packages. If you choose to install one
of these with the dependency unmet, the system will inform you that it must
install more packages.

http://www.sybex.com

Install-Time User Configuration 105

F I G U R E 2 . 6 The package selection screen lets you fine-tune your default package
installation selections.

When you’re done selecting packages, click Install to proceed with system
installation. The installer displays a progress dialog box, showing the
progress of installing both individual packages and the system as a whole.
Depending upon your hardware, your installation medium, and the size of
your installation, this process may take anywhere from a few minutes to a
few hours.

Install-Time User Configuration

Most Linux distributions give you the opportunity of configuring at
least one or two accounts during system installation, and often more. Man-
drake is no exception to this rule. After you’ve installed the software for the
system, you’ll be able to configure the root password and create user
accounts.

root Password Options

Every Linux system has a user with special privileges. This user is known as
the superuser or the system administrator, and the associated account name
is root. Because this account is so critical, you must have some way to log

http://www.sybex.com

106 Chapter 2 � Installing Linux

into the account after you install Linux. Most distributions provide this
functionality by allowing you to specify the root password during system
installation. In Figure 2.7, you do this by typing the password twice, once in
the Password field and a second time in the Password (Again) field. (Linux
asks for a repeat password entry to protect against typos.) You won’t see
your password echoed to the screen; instead, you’ll see a string of asterisks,
as shown in Figure 2.7.

F I G U R E 2 . 7 When you type a password during installation, you see asterisks echo to the
screen as a security feature.

Most distributions, Mandrake included, enforce rules concerning pass-
word length and content. In Mandrake, the root password must be at least
four characters long. Although not enforced during installation, Mandrake
will object if you try to create a password after installation that’s based on
a word in its dictionary, such as common English words. Some distributions
insist on passwords that have at least one or two nonalphabetic characters,
such as numbers or punctuation marks. It’s also a good idea to mix upper-
and lowercase characters, although most distributions don’t check for this.
These measures are all designed to make passwords difficult to guess or
deduce, even if a would-be intruder has a copy of Linux’s password file,
which stores the passwords in an encrypted form. Chapter 4, “Users and
Security,” covers password security in more detail.

At least one distribution, Corel Linux, does not set the root password at instal-
lation time. Instead, Corel Linux leaves the root account set with no password
until the first root login. This approach leaves the computer vulnerable to
intrusion until the root password is set. It’s imperative that you do this imme-
diately after installing the system, particularly if the computer is connected to
a network. Clicking No Password in Mandrake also creates a root account
with no password, which is an invitation to disaster.

http://www.sybex.com

Install-Time User Configuration 107

If your network uses Network Information Services (NIS) to centralize
password storage, check the Yellow Pages option. (NIS was formerly known
as Yellow Pages, and Mandrake still uses that name during installation.)

User Account Creation

In addition to setting the root password, Mandrake’s installer lets you con-
figure one or more user accounts. You can do this after you click OK in the
root password screen. Figure 2.8 illustrates this capability. To create an
account during system installation, follow these steps:

1. Type the user’s full name in the Real Name field.

F I G U R E 2 . 8 Type information and click Accept User to add a user; click Done when you’ve
defined all your users.

2. Type a username in the User Name field.

3. Type the password twice, once in the Password field and again in the
Password (Again) field. As with the root password, you’ll see aster-
isks rather than the actual password on the screen.

4. Click Accept User.

5. The Enter a User screen reappears, with an added note that it has
already added the user you specified. You can repeat steps 1–4 for any
additional users.

http://www.sybex.com

108 Chapter 2 � Installing Linux

As with the root account, Corel Linux doesn’t set the password of any user
accounts you create during system installation. Instead, the system sets the
password the first time somebody logs into the account. This design leaves
the system vulnerable to intrusion until somebody logs into any of the user
accounts that were created during system installation, so be sure to take care
of this matter soon after installing the OS.

Pros and Cons of Defining Accounts during System

Installation

As a general rule, it’s helpful to create at least one user account during system
installation. Even on a computer that’s to be used by just one person, user
accounts provide helpful security—when you are logged in as an ordinary
user, you cannot do serious damage to a standard Linux installation. There-
fore, creating a user account for the system’s primary user during installation
simplifies your post-installation work.

On the down side, account creation during system installation offers
fewer options than are available after system installation. Chapter 4 covers
account administration in more detail, so you should consult it for the details
of what you can accomplish after installing a system. A few examples of
things you can do after installing Linux but not typically before include set-
ting up nonstandard home directory locations, adjusting account expiration
policies, and defining group policies.

Miscellaneous Settings

After creating user accounts, Mandrake presents a series of miscella-
neous configuration options. These options relate to network, time zone,
and default account configuration.

Install-Time Network Configuration

Mandrake lets you configure your network settings during installation. You
can enable or disable networking by checking the Internet/Network Access

http://www.sybex.com

Miscellaneous Settings 109

button. The next option lets you enable or disable auto-detection. Assuming
you select this option, Mandrake presents a list of several possible connec-
tion methods, such as Normal Modem Connection and LAN Connection.
This section describes the latter option.

Mandrake informs you of the type of network card it detects. This detec-
tion is usually correct, so if you’re unsure, click No when the installer asks
if you have another card. You’ll then be asked to enter critical IP address
information, as shown in Figure 2.9. Enter your IP address and netmask in
the appropriate fields. You’ll have to obtain your address and other neces-
sary information from your network administrator. If your network uses the
Dynamic Host Configuration Protocol (DHCP), check the Automatic IP
option and do not enter an IP address or netmask. When this option is set,
your computer will obtain the necessary addresses and other information
from your local network DHCP server. Not all networks include DHCP
servers, though, so this option doesn’t always work.

F I G U R E 2 . 9 Linux lets you configure your network during system installation, even if you
install from a CD-ROM drive.

After entering your IP address and netmask, Mandrake asks for addi-
tional information, as shown in Figure 2.10. The DNS Server and Gateway
fields are particularly important. Again, you must obtain this information
from your network administrator. You won’t see this query if you selected
the Automatic IP option, though.

F I G U R E 2 . 1 0 The DNS server translates hostnames to IP addresses, and the gateway relays
data between your network and the Internet.

http://www.sybex.com

110 Chapter 2 � Installing Linux

Mandrake allows you to configure your system to use network proxy
servers. These are servers that relay requests to the outside world, protecting
a local network’s systems in the process. If your network includes proxy
servers, you can enter their addresses. If not, leave these fields blank.

Mandrake Summary Configuration

After you have finished configuring networking, Mandrake presents a screen
called Summary. Here, you can revisit your mouse configuration, set the sys-
tem’s time zone, or configure a printer.

Time Zone Configuration

To configure the time zone, click the time zone (which defaults to Europe/
London) in the Summary screen. This produces an expandable list of cities,
as shown in Figure 2.11. Locate a city in your time zone, click it, and click OK.

F I G U R E 2 . 1 1 Time zone selection is important for maintaining appropriate time codes on
files.

The list of cities used for setting the time zone is quite limited. For instance,
New York is present, but few other major cities in the same time zone are
there—so if you live in Boston, Philadelphia, Cincinnati, or elsewhere in the
Eastern time zone of the United States, you’d indicate that fact by selecting
New York.

http://www.sybex.com

Miscellaneous Settings 111

Unix systems have traditionally stored their times in memory and in their
hardware clocks in Coordinated Universal Time (UTC) format (aka Green-
wich Mean Time)—the time in Greenwich, England, unadjusted for daylight
savings. Unix systems traditionally do conversions to local time based on the
time zone. Linux follows this tradition, but its task is complicated by the fact
that x86 PCs have traditionally stored their times in hardware as local time
and, when necessary, converted to UTC. Thus, the time stored in the com-
puter’s hardware clock (which Linux consults at boot time) is in local time.
If Linux is to be the only OS on the computer, you can reduce the chance of
problems with the time being skewed during daylight savings time conver-
sions by responding Yes to the question, Is Your Clock Set to GMT. This
obviates the need to change the hardware clock when daylight savings time
rolls around. If the computer dual-boots between Linux and Windows, you
should select No to this question.

Of course, no matter whether you store your time as UTC or local time,
you or your software can convert to other formats, such as a 12-hour clock,
or the peculiar Internet Time that breaks the day into 1000 “beats” rather
than 24 hours. The PC BIOS requires a 24-hour time format, though.

Printer Configuration

If you want to configure a printer during installation, you may do so. Alter-
natively, you may put this task off until later. If you decide to configure a
printer, click the No Printer item in the Summary screen. Mandrake will first
ask if you want to use the Common Unix Printing System (CUPS) or the lpr
printing system. CUPS is a more advanced system, but few applications in
2001 use its features, so in practice, both it and lpr work about equally well
in most cases. The installer may then load some additional packages from
CD-ROM. The installer will ask for several types of information, such as the
following:

Connection type Options include a local printer, a remote Unix or
Linux printer, or a remote Windows printer.

Connection details For local printers, you’ll have to enter information
on the port to which the printer is connected, such as the first printer port
or the second RS-232 serial port. For remote printers, you’ll need to spec-
ify the name of the remote server, the queue name, and possibly a user-
name and password.

http://www.sybex.com

112 Chapter 2 � Installing Linux

Printer type You must select the type of printer from a list. Mandrake
provides a list of specific printer models, but some distributions provide
shorter lists of printer types. (Most printers on the market today actually
emulate just one of a dozen or two popular printer languages.)

You can test the printer configuration to see that it’s working correctly. If
it doesn’t work, it’s probably best to leave it until the system is fully installed
rather than slow down your installation trying to fix it. After testing the
printer configuration, Mandrake gives you the option to add more printer
queue definitions or leave it at the one you’ve created.

Service Configuration

Linux systems invariably run several services. Many of these are network
servers, like Web servers and mail servers. Others provide local services, like
cron, which runs programs at scheduled times. Mandrake, like many distri-
butions, gives you the chance to specify which services you want the system
to start when you boot (Figure 2.12). Many of the services on this list have
descriptions that pop up when you pause the mouse over the option. Select
the services you want to run and click OK. If you’re uncertain about these
options, leave the defaults.

F I G U R E 2 . 1 2 Choose which services you would like to have start automatically.

Boot Options

After you configure services, the Mandrake installer gives you the opportu-
nity to create a boot disk. This floppy disk, if you create it, should boot the

http://www.sybex.com

Miscellaneous Settings 113

computer even if something goes wrong with the hard disk boot process.
Problems do sometimes arise with hard disk booting, particularly in dual-
boot environments, so it’s a good idea to create this boot floppy.

In most cases, you’ll be able to boot Linux directly from your hard disk
most of the time. To do this, Linux uses one of two programs: the Linux
Loader (LILO) or the GRand Unified Bootloader (GRUB). Most Linux dis-
tributions use LILO, and a few (including Mandrake) offer GRUB as an
option. Figure 2.13 shows Mandrake’s boot loader install-time options.

F I G U R E 2 . 1 3 You must provide a few key pieces of information about how you intend to
boot the computer.

Figure 2.13 shows additional options available by clicking the Advanced
button. You may or may not need to adjust these features. The complete set
of options lets you adjust several factors:

� You can pick a boot loader (LILO or GRUB) from the Bootloader to
Use option list. Mandrake lets you select between a graphical or text-
based menu if you pick LILO. Both work, but the graphical menu is
more visually appealing.

� The Boot Device is where LILO stores its boot-time code. On most
systems, this will be /dev/hda (for EIDE hard disks) or /dev/sda (for
SCSI hard drives). If you’re configuring a dual-boot system and want
to use something other than LILO or GRUB as the primary boot
loader, you should put LILO or GRUB on the Linux boot partition
(/dev/hda1, /dev/sda5, or some other numbered device—review
your partition layout if necessary).

� LILO pauses for a period before booting a default OS. The Delay
Before Booting Default Image entry sets this delay.

http://www.sybex.com

114 Chapter 2 � Installing Linux

� Systems with hard drives larger than 8GB may need to have the LBA
option set, as is the default. If you’ve got an old BIOS, though, this option
should be disabled.

� The Compact option can speed up boot time slightly, especially when
booting from floppy disks.

� A Linux boot loader can be programmed to configure the video card
to run in any of several resolutions. The Normal setting for the Video
Mode option leaves the default resolution set, but you can set the sys-
tem to boot in various graphical or text modes.

� The /tmp directory holds temporary files. You can tell the system to
clean this out when it boots by checking this option, or you can tell it
to leave /tmp files intact on reboot.

� Linux can usually detect the amount of installed RAM correctly, but
on some BIOSes this detection fails. The result is that Linux thinks the
system has just 64MB (or sometimes just 16MB), when in fact it’s got
much more. If the amount of RAM shown in parentheses (48MB in
Figure 2.13) is inaccurate, enter the correct value in the Precise RAM
Size if Needed field.

When you click OK, the system presents a summary of the boot loader
options. In Mandrake, this includes two Linux options (called linux and
failsafe) and a floppy option (which redirects the boot process to the
floppy disk). There may also be an option for DOS or Windows if your sys-
tem dual-boots. Double-click Add to add more entries, or Done if you’re
finished.

Initial X Configuration

Linux uses the X Window System (or X for short) as its GUI environ-
ment. Prior to installing the system, Mandrake gives you the opportunity to
configure X by using a series of X configuration screens. You’re likely to be
asked to enter the following information in these screens:

Video card model Your video card’s model is important for determin-
ing the X drivers that Linux will use. Mandrake tries to auto-detect this
value, so you may be able to use whatever the default is. If not, you should
try to locate your video card from the list. Sometimes you’ll need to select
the video card’s chipset (such as GeForce or S3 Trio), rather than the
video card itself, so it helps to know what chipset the video card uses.

http://www.sybex.com

Initial X Configuration 115

XFree86 version Mandrake 8.0 gives you the choice of using XFree86
version 3.3.6 or 4.0.2. The former is compatible with slightly more hard-
ware, but the latter has additional features. Chances are that either will
work, so pick one, and if you have problems, you can change it later (as
described later in this chapter). Mandrake will install a package or two
after you make this selection.

Your monitor model Different monitors have different maximum reso-
lutions and refresh rates. If you’re lucky, you’ll be able to specify your
monitor’s exact model from a list. If not, you may be able to tell the sys-
tem to use the Data Display Channel (DDC), which obtains information
directly from the monitor, but this option works only on monitors and
video cards built after the mid-1990s. If all else fails, you can enter your
monitor’s maximum horizontal and vertical refresh rates manually. These
values should be documented in your monitor’s manual.

Most distributions, including Mandrake, provide you with a way to test
your X specifications. Typically, the system tries to launch an X server using
the information you’ve entered. The computer displays a message asking if
you can read the display. If you can, click Yes and the system will retain the
settings you entered. If not, the system will return to the previous display
after a brief period (usually 10 seconds or so), and you can try again.

On rare occasions, an attempt to test a video configuration can fail so badly
that you must abort the installation. If Mandrake crashes at this point, it will
probably boot, but it’s conceivable the system will be damaged from the
crash. Some distributions arrange installation tasks such that the system
won’t boot after a badly failed X video test. Therefore, these tests present the
risk that you may need to go through the entire installation again. If you think
you might have problems, it can make sense to configure the system to start
in text mode and test and fine-tune X after installing the OS.

Some distributions provide you with the choice of having Linux start up
in X mode or in text mode. X startups are often desirable for workstations,
but most servers don’t need to have X running at all times; in fact, doing so
consumes RAM that might be better applied to the computer’s server tasks.
You can change this configuration detail after installing the system, as
described in Chapter 6, “Managing Files and Services.”

http://www.sybex.com

116 Chapter 2 � Installing Linux

Checking Post-Installation Log Files

After you finish with X configuration, the Mandrake installer informs
you that you may reboot the computer. If you’re performing a template
installation for subsequent scripted installs, though, you should click the
Advanced button. This allows you to generate an automatic install floppy or
save your package selections for a semi-automated installation. Once you’ve
done that, or if you don’t plan to create a scripted install floppy, click OK to
reboot the computer.

Once the system has installed and rebooted, you should be greeted by a
graphical or text-based login screen, depending upon the X options you
selected. Try logging into the computer both as root and as any users you
defined during the installation process. If you have problems, you may need
to reconfigure accounts or passwords or perhaps change account-specific
configuration files.

Most Linux distributions leave a log of installation options somewhere on
the system, such as /tmp/install.log. It’s generally a good idea to check
this log after a system installation. You can do this by typing less /tmp/
install.log at a command prompt. Most of the entries are routine—just
the name of an installed package. Some, though, report configuration prob-
lems or errors, or even outright failures to install a package.

One common installation problem occurs when inadequate space is allocated
for installation of all packages. If you can log onto the computer, type df to see
a report of used and available disk space. If the Available column reads 0, or
even if the Use% column shows a value above about 90% for any Linux parti-
tion, you may have allocated inadequate space for that partition. Immediately
after installation, the easiest solution is often to go back and redo the instal-
lation with a better mix of partition sizes. Alternatively, you can use a package
management tool to remove packages you don’t need, as described in Chap-
ter 3, “Software Management”; or you can use resize2fs or PartitionMagic to
resize your partitions to more reasonable values.

http://www.sybex.com

Additional Possible Configuration Options 117

Additional Possible Configuration Options

The preceding discussion outlines installation of a Linux Mandrake
system on typical x86 hardware. There are, however, a few installation
options that may be available on specific hardware or with other distributions:

Installation medium In the past, many distributions allowed you to
select the installation medium (CD-ROM drive, network, hard disk, and
so on) from a screen early in the installation process. The increasing size
of the Linux kernel, however, has forced many distributions to provide
separate boot disks for different installation media. If you boot from a
CD-ROM drive, you’ll install from CD-ROM. If you want to install from
some other medium, you’ll need to boot using an appropriate boot disk.
Mandrake, for instance, provides a network.img file that, when written
to floppy disk with the DOS RAWRITE program or Linux’s dd, lets you
install from the network.

Modem configuration Some distributions let you configure dial-up
Point-to-Point Protocol (PPP) networking instead of or in addition to the
networking configuration described earlier. Such configuration lets you
specify a modem device (typically /dev/ttyS0 or /dev/ttyS1 for exter-
nal RS-232 serial modems), a telephone number for your ISP, and a user-
name and password.

Umask value As described in Chapter 4, the umask value determines the
default permissions set on files created by users. This value is an octal
(base 8) number that, when converted to binary, represents the bits that
are not set in a permission string. Common umask values include 002,
022, and 027. Consult Chapter 4 for more details.

Password options Some distributions give options for how to handle
passwords. Specifically, two password encoding methods (MD5 and
DES) have been used, and some distributions give the option of using
either. Others use MD5 automatically. MD5 is more recent and more
secure than DES. Also, some distributions give the option of whether or
not to use shadow passwords. Traditionally, Unix and Linux systems
have stored passwords and other account information in an encrypted
form in a file called /etc/passwd. Various tools need access to this file for
non-password information, so it needs to be readable to all users. Shadow

http://www.sybex.com

118 Chapter 2 � Installing Linux

passwords allow the passwords to be separated into a file that’s not readable
by most users; this improves security.

Video Card RAM Although most distributions can auto-detect the
amount of RAM you have installed in your video card, you might need
this information in a few cases. It’s usually printed early during the system
boot process, but you may need a quick eye to notice it.

Post-Installation X Configuration

Once you’ve installed Linux, you may need to perform additional
configurations to get it working at even a minimally acceptable level. The
item that’s most likely to cause problems is X configuration. You may find
that you’ve installed Linux, but that X doesn’t work correctly. You might
also want to modify your X configuration to work in a way that’s more to
your liking, such as running in a different resolution. You’ll also need to
change your X configuration if you replace your video card with an incom-
patible model. For all of these cases, Linux provides X configuration tools,
or you can manually edit the X configuration file. The first task you may
need to undertake is selecting an X server.

Selecting an X Server

X is a network-enabled GUI system. It consists of an X server, which displays
information on its local monitor and sends back user input from a keyboard
and mouse; and an X client, which is a program that relies upon the X server
for user interaction. Although these two programs frequently run on the
same computer, they don’t need to. Chapter 5, “Networking,” includes
additional information on using X over a network. The rest of this chapter
assumes you’ll be running X programs on the same system that runs the
server, but you don’t install X differently if you’ll be running X programs
remotely.

The X server includes the driver for your video card, as well as support for
your mouse and keyboard. Therefore, it’s important that you know some-
thing about your video card when you install and configure your X server.

Determining Your Video Card Chipset

In order to properly configure X for your system, you must know what video
card chipset your system uses. Unfortunately, this information isn’t always

http://www.sybex.com

Post-Installation X Configuration 119

obvious from the video card’s box or manual because many manufacturers
use other companies’ chipsets, and they don’t always make the chipset man-
ufacturer obvious. There are several ways to approach this problem, includ-
ing the following:

Auto-detection Linux can often auto-detect the chipset, either during
system installation, as described earlier; or by running an X configuration
tool after installation.

Video card documentation Although some manufacturers attempt to
hide the true identity of their products’ chipsets, many do not. Because of
this, it’s quite worthwhile to check the product’s documentation. This
documentation might not use the word “chipset,” though; it could use a
phrase such as “powered by” or “based on.”

Windows driver report If the computer dual-boots to Windows, or if
you’ve just bought a Windows system and intend to convert it to Linux,
you can use the System tool in Windows to find out what driver (and thus,
perhaps, what chipset) is installed. Double-click the System icon in the
Windows Control Panel, then click the Device Manager tab. Click the
plus sign next to the Display Adapters item. This will produce a list of the
video cards installed in the computer. (Normally, there’ll be just one.)
Double-click the entry for more information; this produces the Properties
dialog box for the video card, as shown in Figure 2.14. The driver and
manufacturer name may be that of the video card or of the chipset.

F I G U R E 2 . 1 4 The Windows Properties dialog box for the video card may provide
information on the video chipset manufacturer.

http://www.sybex.com

120 Chapter 2 � Installing Linux

Visual inspection You can examine your video card for signs of the
chipset manufacturer. Most video cards are dominated by just one large
chip. This chip probably has markings identifying the manufacturer and
model number, as shown in Figure 2.15. Normally, the first line or two of
text contain the relevant information; the remaining lines specify the revi-
sion number, place of manufacture, and so on.

F I G U R E 2 . 1 5 Markings on chips can help identify the chipset for XFree86.

Some high-performance video card chipsets generate a great deal of heat,
and for reliability, that heat must be dissipated by means of a heat sink—a
finned metallic device that draws heat away from the chip so that it can be
radiated into the surrounding air. Some boards also place a fan atop the heat
sink. Do not attempt to remove a heat sink that’s glued to a chip; doing so can
damage the chip. Some manufacturers cover their chips with paper labels.
These can be safely removed.

If you examine Figures 2.14 and 2.15, you’ll see that they identify the
chipset in the same way—as that of an ATI Rage Pro Turbo AGP. You won’t
always find consistency, however; sometimes a chipset may go by more than
one name, or one identification method or another may reveal the board
manufacturer’s name rather than the chipset name. These situations need not

http://www.sybex.com

Post-Installation X Configuration 121

be too troublesome, though; they just mean that you’ll have to look for a
driver under more than one name.

One point to keep in mind when identifying the video card chipset is that
some manufacturers produce both video cards and the chipsets that go on
them (ATI and Matrox both fall into this category). Other companies pro-
duce just one or the other; for instance, Trident produces chipsets, and ELSA
produces video cards. Thus, if you find that the name you uncover matches
your card manufacturer’s name, that’s not necessarily a sign that you’ve
failed to turn up the correct chipset manufacturer.

X Server Options for Linux

All major Linux distributions ship with a free X server known as XFree86.
You can learn more about XFree86 at http://www.xfree86.org. One par-
ticularly important subpage on this site is http://www.xfree86.org/
current/Status.html. This page hosts information about XFree86 com-
patibility with various chipsets, so it’s a good place to go once you’ve dis-
covered what chipset your board uses. You may find notes here on how to
work around problems such as using an older or newer version of XFree86
than was shipped with your distribution.

Most Linux distributions shipped in 2001 use a 4.0.x version of XFree86.
This version of the X server includes quite a few changes from the earlier
3.3.x version, but as of XFree86 4.0.3, there are still a few video chipsets that
aren’t supported in the new release. If you happen to have one of these, you’ll
have to use an older XFree86 3.3.x server, although you can continue to use
the XFree86 4.0.x support programs and libraries.

Some video card and chipset manufacturers have made XFree86-compatible
drivers available for their products. Thus, it’s worth checking the Web sites
maintained by your board and chipset manufacturers to see if there are driv-
ers available. This is definitely true if the main XFree86 release doesn’t
include appropriate drivers, and it may be true even if there are drivers—a
few standard XFree86 drivers are not accelerated, meaning that they don’t
support some of the video card’s features for improving the speed of drawing
or moving images. If the video card manufacturer has accelerated drivers but
the main XFree86 distribution ships with unaccelerated drivers, you’ll see a
substantial improvement in video performance by installing the accelerated
drivers.

http://www.sybex.com

122 Chapter 2 � Installing Linux

XFree86 occasionally doesn’t support a device at all. You have three
choices in this case:

Use the frame buffer device. The Linux kernel has some video drivers of
its own. These can be accessed via the frame buffer XFree86 driver. For
this to work, your kernel must include frame buffer support for your
video chipset. This support has been greatly expanded in the 2.4.x kernel
series.

Use a commercial X server. Two companies, Xi Graphics (http://
www.xig.com) and Metro Link (http://www.metrolink.com), produce
commercial X servers for Linux, known as Accelerated-X and Metro-X,
respectively. These servers occasionally work on hardware that’s not sup-
ported by XFree86, or produce better speed.

XFree86 3.3.6 or 4.0.x?

In mid-2001, the transition to XFree86 4.0.x is still incomplete. Part of the
reason for this is that, although most video card chipsets supported by 3.3.6
are also supported by 4.0.x, this isn’t universally true. Some cards that are
nominally supported by 4.0.x aren’t supported as well as they were under
3.3.6 because the drivers don’t implement all the features handled by the 3.3.6
drivers. There are also a few programs that don’t work correctly under
XFree86 4.0.x, although these are rare. On the other hand, XFree86 4.0.x
supports some features not found in 3.3.6, such as multiscreen displays
(creating an extra-large desktop displayed across two or more monitors).

Which should you use, then? The answer depends on your video card.
Check the XFree86 Web site for information on support under both versions
of the X server and make a preliminary judgment. If you run into problems
with one, you might want to try the other. It’s possible to install both
XFree86 3.3.6 and 4.0.x servers and switch quickly between them by chang-
ing a symbolic link, as described in “Choosing the Server or Driver,” later in
this chapter. XFree86 4.0.x support is likely to improve as 2001 and 2002
wear on and the version number rises past 4.0.3, so be sure to check back
periodically to see what improvements make their way into the 4.0.x series.

http://www.sybex.com

Post-Installation X Configuration 123

Replace the hardware. If you have a recalcitrant video card, the final
option is to replace it. You may be able to swap with a Windows system
that uses a different card, or you may need to buy a new one. Unfortu-
nately, this isn’t always an option; you can’t replace the video card on a
notebook computer, for instance.

Installing an X Server

Actually installing an X server is usually not very difficult; it’s a matter of
using your distribution’s package management tools to install the soft-
ware—much as you would any other software (described in Chapter 3). In
most cases, this will be done during system installation, as described earlier
in this chapter. You’ll only have to manually install a server if you failed to
install XFree86 during system installation or if you need to install a new
server.

X normally comes in several packages. Only one package contains the X
server proper; others provide support libraries, fonts, utilities, and so on.

In XFree86 4.0.x, one server package supports all video chipsets. The
name of this package varies from one distribution to another, but it’s likely
to be called XFree86-server, xserver-xfree86, or something similar.
You might install it using a command similar to the following in a distribu-
tion that uses RPMs:

rpm -Uvh XFree86-server-4.0.2-11.i386.rpm

If your distribution uses Debian packages, something akin to the follow-
ing will do the trick:

dpkg -i xserver-xfree86_4.0.2-7_i386.deb

The result is the installation of a program called XFree86, which is usu-
ally stored in /usr/X11R6/bin. This program is a generic X server. It relies
on separate driver modules, which are installed along with the main package
in most cases. These driver modules probably reside in /usr/X11R6/lib/
modules/drivers.

If you’re using an XFree86 4.0.x driver provided by a video card manu-
facturer, follow the manufacturer’s directions for installing the driver.
Chances are you’ll be required to copy a driver file to the XFree86 4.0 drivers
directory, although the driver may come as an RPM or Debian package that
will do this automatically.

http://www.sybex.com

124 Chapter 2 � Installing Linux

If your card isn’t supported by XFree86 4.0, but it is supported by
XFree86 3.3.6, you’ll need to install an old XFree86 3.3.6 X server. These
come in files that typically include the name of the chipset, such as XFree86-
S3-3.3.6-19.i386.rpm. This file provides an X server for various chipsets
made by S3, some of which aren’t supported in XFree86 4.0.3. If you had
one of these chipsets, you could install the 3.3.6 server file, which would
install an X server called XF86_S3. Running this server program rather than
the 4.0.x XFree86 executable would let you use your video card. (The
upcoming section “Choosing the Server or Driver” specifies how to have the
system launch a particular X server program.)

Configuring X

XFree86 is configured through the XF86Config file, which is usually located
in /etc or /etc/X11. For XFree86 4.0.x, this file is sometimes called
XF86Config-4. Using two filenames allows you to easily maintain separate
configurations for XFree86 3.3.6 and 4.0.x. Keeping separate configurations
can be useful if you’re making the transition from the older X server to the
new one. The commercial X servers have their own configuration files, but
these files’ formats differ from that described here for XFree86. Consult the
package’s documentation for configuration details.

When you configure X, you provide information on the input devices (the
keyboard and mouse), the video card, and the monitor. Particularly impor-
tant is information on the monitor’s maximum horizontal and vertical
refresh rates; if this information is wrong or missing, you might not get a dis-
play. This information can be obtained from the monitor’s manual.

Methods of Configuring X

There are two methods available for configuring XFree86: by using config-
uration tools and by configuring manually. Configuration tools are pro-
grams that prompt you for information or obtain it directly from the
hardware and then write the XF86Config file, which is a standard plain-text
file like other Linux configuration files. Because this file is relatively com-
plex, it’s usually wise to begin with an automatic configuration, even if it’s
a flawed one. Manual configuration involves opening XF86Config in a text
editor and changing its settings using your own know-how. You can use this
method to tweak a working configuration for better performance or to cor-
rect one that’s not working at all. Either way, you may need to configure X,
test it, reconfigure X, test it, and so on for several iterations until you find a
configuration that works correctly.

http://www.sybex.com

Post-Installation X Configuration 125

The X Configure-and-Test Cycle

If your X configuration isn’t working correctly, you need to be able to mod-
ify that configuration and then test it. Many Linux distributions configure
the system to start X automatically, however. Starting X automatically can
make it difficult to test the X configuration; to a new Linux administrator,
the only obvious way to test a new configuration is to reboot the computer.

A better solution is to kick the system into a mode in which X is not
started automatically. On most distributions, this goal can be achieved by
typing telinit 3. (In SuSE Linux, use telinit 2 instead.) This action sets
the computer to use runlevel 3 (or 2 for SuSE), in which X normally doesn’t
run. Chapter 6 covers the runlevel in more detail, but for now, know that set-
ting the system to a runlevel of 3 or 2 normally shuts down the X session that
launched automatically at system startup.

Once the X session is shut down, you can log in using a text-mode login
prompt and tweak your X settings manually, or you can use text-based X
configuration programs, as described shortly. You can then type startx to
start the X server again. If the results are as you desire, quit from X and type
telinit 5 (telinit 3 in SuSE) to restore the system to its normal X login
screen. If after typing startx you don’t get the results you want, you can try
modifying the system some more.

If X is working minimally but you want to modify it using X-based con-
figuration tools, you can do so after typing startx to get a normal X session
running. Alternatively, you can reconfigure the system before taking it out of
the X-enabled runlevel.

Another approach to restarting X is to leave the system in its X-enabled
runlevel and then kill the X server. The Ctrl+Alt+Backspace keystroke does
this on many systems, or you can do it manually with the kill command,
after finding the appropriate process ID with the ps command, as shown
below:

ps ax | grep X

1375 ? S 6:32 /etc/X11/X -auth /etc/X11/xdm/authdir/

kill 1375

This approach works better on systems that don’t map the running of X
to specific runlevels, such as Debian and its derivatives.

http://www.sybex.com

126 Chapter 2 � Installing Linux

Configuration Tools for XFree86 3.3.x

There are many configuration tools available for XFree86 3.3.x. Most dis-
tributions ship with at least one of these, often more:

xf86config This is the crudest of the XFree86 3.3.x configuration pro-
grams. It runs entirely in text mode, and it asks a series of questions
regarding your hardware and configuration preferences. Because of its
simple user interface, it can be used to create an initial X configuration.
xf86config includes no provision for correcting errors, though, so if you
mistype an entry, you must stop it and start again from scratch.

Xconfigurator This program runs in text mode when launched from a
text-based login. In some distributions, it runs in GUI mode when
launched from X. In either case, it uses men’om a

http://www.sybex.com

Post-Installation X Configuration 127

F I G U R E 2 . 1 6 XF86Setup lets you jump around the configuration options to set details in any
order you like.

Configuration Tools for XFree86 4.0.x

At its first release, configuration utilities for XFree86 4.0.x were scarce;
however, matters have improved since then. There are now at least three util-
ities to help in XFree86 4.0 configuration, although not all distributions ship
with all of them:

XFree86 The XFree86 server itself includes the capacity to query the
hardware and produce an XF86Config file. To do so, type XFree86
-configure when no X server is running. The result should be a file
called /root/XF86Config.new. This file might not produce optimal
results, but it is at least a starting point for manual modifications.

Xconfigurator Recent versions of Xconfigurator can produce and
modify the XFree86 4.0.x XF86Config file format, as well as the 3.3.x
format of the file.

xf86cfg This is a utility that works only on XFree86 4.0.x. This pro-
gram is another that works only once X is already running. Its user inter-
face (shown in Figure 2.17), like that of XF86Setup, lets you jump around
to configure different elements in whatever order you like. In xf86cfg,
you right-click an icon and select the resultant Configure option to con-
figure an element, or you can select other options (Remove, Disable, and
so on) to perform other actions.

http://www.sybex.com

128 Chapter 2 � Installing Linux

F I G U R E 2 . 1 7 xf86cfg lets you configure XFree86 4.0.x using point-and-click operations.

Some of these utilities try to edit the XF86Config file, but others may be
smart enough to look for XF86Config-4 if that’s where your distribution
places the XFree86 4.0.x configuration file. If the utility finds the wrong file,
it will probably crash, so you may need to temporarily juggle files to get the
system to work.

Manually Editing the XF86Config File

Although some options have changed between XFree86 3.3.6 and 4.0.x, the
basics of the XF86Config file remain unchanged. This file consists of a num-
ber of labeled sections, each of which begins with the keyword Section fol-
lowed by the section name in quotes and ends with the keyword
EndSection. Between these two lines lie lines that define features relevant to
the configuration of that feature. There may also be comments, which are
lines that begin with pound signs (#). For instance, here’s a section that
defines where the computer can find certain critical files:

Section "Files"

 RgbPath "/usr/X11R6/lib/X11/rgb"

 # Multiple FontPath entries are allowed

 FontPath "/usr/X11R6/lib/X11/fonts/75dpi"

 FontPath "/usr/X11R6/lib/X11/fonts/Type1"

EndSection

http://www.sybex.com

Post-Installation X Configuration 129

The pages that follow tell you what sections and critical options within
these sections exist to modify XFree86’s operation. You should then be able
to edit the XF86Config file directly or use a configuration utility to do the
job. (The configuration utilities tend to use terminology that’s similar to that
used in the configuration file, so figuring out what to change with a utility
isn’t difficult if you know for what option you’re looking.)

If you have a working configuration, be sure to back up XF86Config before
modifying it. If you mistakenly delete or modify some critical line, you can
easily end up with a system that won’t start X at all, and without a backup or
a perfect memory of what you changed, it can be difficult to restore even a
partially functioning system.

Setting Miscellaneous Options

Some sections of the XF86Config file relate to miscellaneous options or
those that require just a handful of lines to set properly. (The big video sec-
tions often boast dozens of lines of configuration options.) Nonetheless, get-
ting these settings right is important to a functioning XFree86 system.

This section emphasizes the configuration of XFree86 4.0.x. Some 4.0.x con-
figuration lines begin with the keyword Option and enclose the option name
in quote marks. When configuring XFree86 3.3.x, you should omit the Option
keyword and the quote marks around the option name.

Configuring Paths

The Files section hosts information on the locations of important files. The
entries you’re most likely to change relate to the locations of X’s fonts. These
are handled through the FontPath option line. Examples of the use of this
line include the following:

FontPath "/usr/X11R6/lib/X11/fonts/Type1"

FontPath "unix/:-1"

FontPath "tcp/fontserver.example.com:7101"
The first of these lines indicates a directory in which fonts may be found.

The second refers to a font server that runs locally, and is not accessible to

http://www.sybex.com

130 Chapter 2 � Installing Linux

other systems. The final line points to a font server that runs on another com-
puter (fontserver.example.com) on port 7101. A font server is a program
that delivers fonts to local or remote computers. Some Linux distributions
use font servers for local font handling, and networks sometimes use them to
reduce the effort of administering fonts. You don’t need to use a font server
if you don’t want to, but if your distribution uses a local font server by
default, you should leave its reference intact in XF86Config. A single
XF86Config file can have multiple FontPath lines; X searches for fonts
in each of the specified locations in order.

Configuring the Keyboard

The Keyboard section defines the operation of the keyboard in XFree86. In
most cases, there’s little need to modify most XF86Config keyboard settings.
One that you might want to change, however, is the AutoRepeat line. When
you press and hold a key, the system begins repeating it, as if you were
repeatedly pressing the key. This line controls the rate at which keys repeat
when running X. This line takes the form:

Option "AutoRepeat" delay rate
The delay is the time in milliseconds (ms), thousandths of a second,

before the system begins repeating a key, and rate is the interval between
repeats once they begin. For instance, if delay is 500 and rate is 200, the
system waits 500ms after the key is first depressed, and thereafter produces
another character every 200ms (five per second) until you release the key.

http://www.sybex.com

Post-Installation X Configuration 131

Configuring the Mouse

The InputDevice section defines the mouse. This section is typically quite
short, as shown here:

Section "InputDevice"

 Identifier "Mouse1"

 Driver "mouse"

 Option "Protocol" "PS/2"

 Option "Device" "/dev/psaux"

 Option "Emulate3Buttons"

 Option "Emulate3Timeout" "50"

EndSection

In XFree86 3.3.x, this section is called Pointer, and it lacks the Identifier and
Driver options.

Chances are you won’t need to modify the Identifier or Driver
options. The Protocol is the software protocol used by mice. It’s most often
PS/2, but it may be something else (such as Microsoft or Logitech), par-
ticularly for older serial mice. The Device option points to the Linux device
file with which the mouse is associated. This is sometimes /dev/mouse,
which is a symbolic link to the real device file, such as /dev/psaux (for PS/
2 mice), /dev/usb/usbmouse (for USB mice), or /dev/ttyS0 or /dev/
ttyS1 (for serial mice). (Chapter 7 covers the /dev directory and its contents
in more detail.) Emulate3Buttons

http://www.sybex.com

132 Chapter 2 � Installing Linux

Setting Monitor Options

Some of the trickiest aspects of X configuration relate to the monitor
options. You set these in the Monitor section, which has a tendency to be
quite large, particularly in XFree86 3.3.6. A shortened Monitor section
looks like this:

Section "Monitor"

 Identifier "Iiyama"

 ModelName "VisionMaster Pro 450"

 HorizSync 27.0-115.0

 VertRefresh 50.0-160.0

 # My custom 1360x1024 mode

 Modeline "1360x1024" 197.8 \

 1360 1370 1480 1752 \

 1024 1031 1046 1072 -HSync -VSync

EndSection

The Identifier option is a free-form string that contains information
that’s used to identify a monitor in a later section. This later section links
together various components of the configuration. The Identifier can be
just about anything you like. Likewise, the ModelName option also can be
anything you like; it’s used mainly for your own edification when reviewing
the configuration file.

As you continue down the section, you’ll see the HorizSync and
VertRefresh lines, which are extremely critical; they define the range of
horizontal and vertical refresh rates that the monitor can accept, in kilohertz
(kHz) and hertz (Hz), respectively. Together, these values determine the
maximum resolution and refresh rate of the monitor. Despite the name, the
HorizSync item alone doesn’t determine the maximum horizontal refresh
rate. Rather, this value, the VertRefresh value, and the resolution deter-
mine the monitor’s maximum refresh rate. XFree86 selects the maximum
refresh rate that the monitor will support, given the resolution you specify in
other sections. Some X configuration utilities show a list of monitor models
or resolution and refresh rate combinations (such as “800 × 600 at 72 Hz”)
to obtain this information. This approach is often simpler to handle, but it’s
less precise than entering the exact horizontal and vertical sync values.

http://www.sybex.com

Post-Installation X Configuration 133

Don’t set random horizontal and vertical refresh rates; particularly on older
hardware, setting these values too high can actually damage a monitor. (Most
modern monitors ignore signals presented at too high a refresh rate.)

To settle on a resolution, X looks through a series of mode lines, which
are specified via the Modeline option. Computing mode lines is tricky, so I
don’t recommend you try it unless you’re skilled with such matters. The
mode lines define combinations of horizontal and vertical timing that can
produce a given resolution and refresh rate. For instance, a particular mode
line might define a 1024 × 768 display at a 90Hz refresh rate, and another
might represent 1024 × 768 at 72Hz.

Some mode lines represent video modes that are outside the horizontal or
vertical sync ranges of a monitor. X can compute these cases and discard the
video modes that a monitor can’t support. If asked to produce a given reso-
lution, then X searches all the mode lines that accomplish the job, discards
those that the monitor can’t handle, and uses the remaining mode line that
creates the highest refresh rate at that resolution. (If no mode line supports
the requested resolution, X drops down to another specified resolution, as
described shortly, and tries again.)

As a result of this arrangement, you’ll see a large number of Modeline
entries in the XF86Config file for XFree86 3.3.x. Most end up going unused
because they’re for resolutions you don’t use or because your monitor can’t
support them. You can delete these unused mode lines, but it’s usually not
worth the bother.

XFree86 4.0.x supports a feature known as Data Display Channel (DDC).
This is a protocol that allows monitors to communicate their maximum hor-
izontal and vertical refresh rates and appropriate mode lines to the computer.
The XFree86 -configure command uses this information to generate mode
lines, and on every start, the system can obtain horizontal and vertical
refresh rates. The end result is that an XFree86 4.0.x system can have a sub-
stantially shorter Monitor section than is typical with XFree86 3.3.x.

Setting Video Card Options

Your monitor is usually the most important factor in determining your max-
imum refresh rate at any given resolution, but X sends data to the monitor
only indirectly, through the video card. Because of this, it’s important that

http://www.sybex.com

134 Chapter 2 � Installing Linux

you be able to configure this component correctly. An incorrect configura-
tion of the video card is likely to result in an inability to start X.

Choosing the Server or Driver

One of the most fundamental aspects of video card configuration is specify-
ing the correct server or driver. The server is most often selected via a sym-
bolic link—typically /usr/X11R6/bin/X or /etc/X11/X. This link points to
the actual X server, such as /usr/X11R6/bin/XFree86 for XFree86 4.0.x,
or a server whose name takes the form XF86_Driver for XFree86 3.3.x.

A symbolic link is a special type of file that contains no data itself but that
points to a file that contains the real data. These links are similar to shortcuts
in Windows, and can be created with the ln command. Type man ln at a Linux
command prompt to learn more.

Sometimes, Linux configures itself to use a server such as XF86_VGA16,
which runs the system in a lowest-common-denominator 640 × 480 display
mode. The solution to this problem is to change the server link. Sometimes
you must do this manually, but sometimes installing a new server package
runs a post-installation script that will do the job automatically.

In XFree86 4.0.x, the XFree86 server program uses driver modules that
are stored in separate files. The server can’t determine what module is
required automatically, however. Instead, you must give it that information
in the XF86Config file. In particular, the driver module is set by a line in the
Device section, which resembles the following:

Driver "ati"

This line sets the name of the driver. The drivers reside in the /usr/
X11R6/lib/modules/drivers/ directory. Most of the drivers’ filenames
end in _drv.o, and if you remove this portion, you’re left with the driver
name. For instance, ati_drv.o corresponds to the ati driver.

The xf86cfg utility provides a large list of chipsets and specific video card
models, so you can select the chipset or board from this list to have the utility
configure this detail.

http://www.sybex.com

Post-Installation X Configuration 135

Setting Card-Specific Options

The Device section of the XF86Config file sets various options related to
specific X servers. A typical Device section resembles the following:

Section "Device"

 Identifier "ATI Mach64"

 VendorName "ATI"

 BoardName "Xpert 98"

 Driver "ati"

 VideoRam 8192

EndSection

The Identifier line provides a name that’s used in the subsequent
Screen section to identify this particular Device section. (XF86Config files
frequently host multiple Device sections—for instance, one for a bare-bones
VGA driver and one for an accelerated driver.) The VendorName and
BoardName lines provide information that’s useful mainly to people reading
the file.

The Driver line, as described earlier, is used by XFree86 4.0.x to locate
the driver to be used. An XFree86 3.3.x XF86Config file won’t contain this line.

The VideoRam line is unnecessary with many servers and drivers because
the driver can detect the amount of RAM installed in the card. With some
devices, however, you may need to specify the amount of RAM installed in
the card, in kilobytes. For instance, the preceding example indicates a card
with 8MB of RAM installed.

Many drivers and servers support additional server-specific options.
These may enable support for features such as hardware cursors (special
hardware that allows the card to handle mouse pointers more easily) or
caches (using spare memory to speed up various operations). Consult the
XF86Config man page or other server-specific documentation for details.

Setting Screen Options

The Screen section ties together the other sections. A short example is:

Section "Screen"

 Identifier "screen1"

 Device "ATI Mach64"

 Monitor "Iiyama"

 DefaultColorDepth 16

 Subsection "Display"

http://www.sybex.com

136 Chapter 2 � Installing Linux

 Depth 8

 Modes "1280x1024" "1024x768" "640x400"

 EndSubsection

 Subsection "Display"

 Depth 16

 Modes "1024x768" "800x600" "640x480"

 Virtual 1280 1024

 ViewPort 0 0

 EndSubsection

EndSection

There are several key points in this section that should be emphasized:

� The Identifier specifies an overall configuration in XFree86 4.0.x.
In this version of XFree86, a configuration file can hold multiple
Screen sections, as described shortly. In XFree86 3.3.x, there’s no
Identifier line; instead, there’s a Driver line, which identifies the X
server (such as svga, vga16, or accel; this last one stands in for all the
specialized accelerated servers, such as XF86_S3). When the 3.3.x
server reads the XF86Config file, it locates the appropriate Screen
section based on the Driver line.

� The Device and Monitor lines point to specific Device and Monitor
sections, respectively.

� The DefaultColorDepth line specifies the number of bits per pixel to
be used by default. For instance, the preceding example sets this value
to 16, so a 16-bit color depth is used, resulting in 216, or 65,536, pos-
sible colors.

� Each Subsection defines a particular display type. These have asso-
ciated color depths (specified by the Depth line) and a series of reso-
lutions (specified by the Modes line). The system tries each resolution
specified by the Modes line in turn, until it finds one that works. There
are also various optional parameters, such as Virtual (which defines
a virtual screen that can be larger than the one that’s actually dis-
played) and ViewPort (a point within that virtual display at which the
initial display is started).

In XFree86 4.0.x, one final section is required: the ServerLayout section.
This section consists of lines that identify the default Screen section and link

http://www.sybex.com

Configuring Window Managers 137

it to mouse and keyboard definitions. (In 3.3.x, only one mouse and key-
board may be defined; but 4.0.x is more flexible in this respect.) For instance,
a typical configuration will include a ServerLayout section resembling the
following:

Section "ServerLayout"

 Identifier "layout1"

 Screen "screen1"

 InputDevice "Mouse1" "CorePointer"

 InputDevice "Keyboard1" "CoreKeyboard"

EndSection

Normally, an XF86Config file for 4.0.x will have just one ServerLayout
section, but by passing the -layout parameter to XFree86, you can tell the
server to use a different ServerLayout section, if one is present. You might
use this to start X using a different mouse, for instance—say, a USB mouse
on a notebook rather than the built-in PS/2 touch pad.

Configuring Window Managers

As noted earlier in this chapter, a working X configuration consists of
many separate components. These components are selected by various people:
the programmer who wrote the software being run, the system administrator,
and even the user. You must understand how these components fit together
in order to effectively administer and use a Linux computer.

The X server lies at the foundation of the X hierarchy. It provides drivers
for the video hardware, mouse, and other peripherals, as well as basic low-
level graphics features including the ability to draw lines, circles, text, and so
on. It can also display windows, although a “raw” X window would barely
be recognizable as such to a user because it would lack the borders and drag
bars that are so integral to windows. This is where a second component
comes into play: the window manager.

Understanding the Role of the Window Manager

The window manager provides a means for users to control individual win-
dows. This tool surrounds an X window with a border, which is both deco-
rative and functional. The border may allow users to resize the window, and

http://www.sybex.com

138 Chapter 2 � Installing Linux

it typically includes a portion at the top or to the side that allows users to
drag the window around (the drag bar). Window managers also control
which window has focus—that is, which window accepts input from the
keyboard or mouse. There are several different focus models available, such
as focus-follows-mouse (you need only move a mouse over a window to give
it focus), click-to-focus (click in a window to give it focus), and so on. Most
window managers support at least two of these, although the most common
today is click-to-focus, which is also used by Microsoft’s Windows and
Apple’s MacOS. Likewise, window managers control when a window is
moved to the front of an overlapping stack of windows. This may occur
when a window is given focus, or it might require some other action.

In addition to handling individual windows, the window manager con-
trols the screen as a whole. Most window managers provide some form of
menu through which users can run programs and control aspects of the win-
dow manager’s operation. This menu might be a pop-up menu that appears
when the user right-clicks the desktop (any part of the screen that’s not cov-
ered by a window or other object); or it could be accessible through an icon
that’s permanently visible, typically in the lower-left corner of the screen.
Either way, users can customize this feature by editing configuration files in
their home directories—to add programs to a program launch menu, for
instance.

Many Linux window managers include a pager function. This feature
allows you to maintain several workspaces and switch between them by
clicking a button or selecting an option from a menu. You might have one
workspace in which you run a word processor, another in which your Web
browser runs, and a third with programming tools. A pager can be a great
way to reduce clutter while still running many programs.

Many window manager features, such as pagers and program-launch tools,
are also provided by other programs, such as desktop environments
(described shortly).

Window managers differ from one another in how elaborately they sup-
port various roles. Some window managers are bare bones and provide only
very simple controls. Others provide elaborate menus, pagers, and so on. As

http://www.sybex.com

Configuring Window Managers 139

a result, window managers can differ substantially in overall appearance and
functionality. Figures 2.18 and 2.19 illustrate how different two window
managers can be. Figure 2.18 shows IceWM using its Helix theme (this is the
window manager used for most screen shots in this book), while Figure 2.19
shows the WMX window manager. IceWM sports a “task bar” at the bot-
tom of the screen that includes buttons for launching programs and switch-
ing to windows even if they’re completely obscured. WMX features an
unusual side-mounted drag bar and very minimalistic window controls.
Note that the contents of the windows (including the menus in the Opera
Web browser window) are identical, except for the fact that the clock shows
a different time in the two screen shots. The window manager does not man-
age the contents of windows—that detail is left to the program and its widget
set, as described shortly.

F I G U R E 2 . 1 8 IceWM is in many ways a typical window manager that provides popular
window controls.

http://www.sybex.com

140 Chapter 2 � Installing Linux

F I G U R E 2 . 1 9 WMX provides few controls and uses unusual side-mounted drag bars.

Common Window Managers for Linux

Linux supports a wide array of window managers. An excellent site for
learning about the available choices is the Window Managers for X Web
page (http://www.plig.org/xwinman). Some of the more popular choices
today include the following:

KWM The K Window Manager (KWM) is part of the K Desktop Envi-
ronment (KDE), described shortly. Because of KDE’s popularity, KWM is
a very common window manager in Linux, although it’s seldom used
except as part of KDE. The KDE Web site, http://www.kde.org,
includes information on KWM.

Sawfish Sawfish (formerly known as Sawmill) is the default window
manager in the GNU Network Object Model Environment (GNOME)
versions 1.2 and later, but it’s available and is often used separately. You
can learn more at http://sawmill.sourceforge.net.

Enlightenment This is a window manager that’s designed with maxi-
mum graphical configuration in mind—it’s possible to make Enlighten-
ment look like just about anything. It was the default window manager in
GNOME 1.0 and 1.1. The Enlightenment Web site is http://www
.enlightenment.org.

http://www.sybex.com

Configuring Window Managers 141

IceWM This window manager aims to be fairly small but provide the
most commonly desired features, such as a pager and some customizabil-
ity of appearance. Although not the default, it integrates well with
GNOME. You can read more at http://icewm.sourceforge.net.

Window Maker Window Maker takes its inspiration from the old
NeXT computer’s interface, although it doesn’t provide anything
remotely resembling NeXT compatibility to a Linux system. Like IceWM,
it aims to be small but functional, and integrates well with GNOME. It
can also work as a KDE window manager. The official Window Maker
Web page is http://www.windowmaker.org.

This list is far from comprehensive. Some window managers, such as the
venerable FVWM and TWM, were popular once but are no longer the
default on most systems. Others, such as WMX, have never been popular but
may offer something desirable to at least some users.

Which window manager is best? That’s like asking which fruit is best.
Although you can certainly apply objective measures to window manager
evaluation, in the end it’s subjective matters that are important. For instance,
do you find the configuration file format intuitive? Do you like the window
manager’s focus policies? Does it integrate with your desktop environment
(if you use one)? As a user, your best bet is to try several window managers
until you find one you like. As a system administrator, you should probably
provide several options to your users, although doing so can increase your
workload—if a user comes to you with a window manager problem, you’ll
need to know how to solve that problem, which could be unique to just one
window manager.

Running a Window Manager

The first step in running a window manager is installing it. If you installed
X on your system, you almost certainly also installed at least one window
manager, whether you knew it or not. In fact, if the computer boots into X
mode and you can log in and see window borders, or if you can boot in
text mode and type startx and see windows with borders, then a window
manager is automatically running. This is normal on most systems; default
X login scripts include calls to a standard window manager.

Assuming you want to explore window manager options or provide more
choices to your users, though, you should check to see what’s currently

http://www.sybex.com

142 Chapter 2 � Installing Linux

installed, or try installing or updating window managers. The Window Man-
agers for X Web site, mentioned earlier, is a good source of leads to new win-
dow managers. Most window manager Web sites include binary files you
can install using rpm, dpkg, or tar, as described in Chapter 3.

Window managers are run by users, or at least by users’ startup scripts.
Therefore, as a system administrator, you don’t normally need to modify any
settings to make window managers available. You can, however, change the
default window manager. How you do this varies from one system to
another. Files that might set this include /etc/X11/Xconfig, /etc/X11/
xinit/xinitrc, /etc/X11/xdm/Xsession, and /etc/sysconfig/desktop.

When a system uses the K Desktop Manager (KDM) or GNOME Desktop
Manager (GDM) program as a GUI login program, as is common for sys-
tems that start directly into X, the KDM or GDM program provides a way
for users to select the default login environment. For instance, Figure 2.20
shows a KDM login dialog box. Users can select a desktop environment or
window manager from the Session Type menu.

F I G U R E 2 . 2 0 The GDM and KDM programs both provide users with a way to select the
login environment.

If the login screen doesn’t give the window manager options you want,
you can usually modify a user’s login files to get the job done. Common X
login scripts include .xsession and .Xlogin for GUI logins, and .xinitrc
when starting X from a text-mode login. You may need to modify different
files depending upon the login option chosen. These scripts include a series
of commands to be run when logging in. As scripts, they must normally be
executable, as described in “File Permissions” in Chapter 4. They can be
modified to launch the desired window manager as the last item run. For

http://www.sybex.com

Understanding Widget Sets 143

instance, the following script launches an xterm window and the WMX win-
dow manager:

xterm &

wmx

It’s important to note that most commands before the window manager
command must be followed by an ampersand (&). This tells Linux to launch
the program and move on to the next command before the first one finishes.
The window manager command should normally not include an ampersand,
though. This way, Linux logs the user out when the user quits from the win-
dow manager. (All window managers include some sort of quit command.
Today, many of these appear on a menu as “log out.”)

Understanding Widget Sets

Figures 2.18 and 2.19 illustrate the effects of two window managers
on the appearance of Linux programs. Another important determinant of
how a program appears on screen and behaves is the widget set it uses. This
is a set of programming tools that builds upon what’s provided by X. Widget
sets provide programmers with easy ways to display menus, dialog boxes,
and the like—in short, most controls inside a window. As such, they greatly
influence the overall feel of programs written for X.

Most OSs provide the functionality that’s part of a Linux widget set in the
OS itself, but in Linux these features are separate. Therefore, two different
Linux programs can use different widget sets, and as a consequence, they will
have very different appearances and behaviors. One might have menu bars
that use a large font and require you to hold the mouse button to select menu
items, whereas another might use small fonts and require you to click, but
not hold, the mouse button to select items. Differences such as these can be
confusing to Linux newcomers.

Fortunately, Linux programmers are increasingly shifting to just two wid-
get sets: Qt (http://www.trolltech.com) and GTK+ (http://www.gtk
.org). Although these widget sets differ from each other, they’re more sim-
ilar than are some other X widget sets, so as programmers increasingly use
these two, the overall consistency of Linux programs improves. Other wid-
get sets that enjoy some degree of popularity include Motif (http://www
.opengroup.org/motif), which has long been popular among commercial

http://www.sybex.com

144 Chapter 2 � Installing Linux

Unix and Linux programs; LessTif (http://www.lesstif.org), a fully
open source clone of Motif; and Athena, which is part of the standard col-
lection of programs associated with X.

As a system administrator or user, you have no control over the widget set
a program uses, unless you want to rewrite the program to use a different
widget set. The program’s author decides on a widget set, and changing it
can be a tedious proposition. As a system administrator, though, you may
need to install the widget set itself. Many widget sets ship as libraries, which
are files that provide code in support of other programs. Several programs
can use a single library, thus saving disk space and memory. If a program
uses a given widget set and is dynamically linked to that widget set, that
means you must have the library installed on your computer. Programs can
also be statically linked to a library, meaning that the relevant library calls
are included as part of the program’s main file. This latter approach is most
common with Motif programs.

GNOME uses GTK+, and KDE is built on Qt. As a result, people often refer to
programs as “GNOME programs” or “KDE programs,” when in fact the pro-
grams merely use GTK+ or Qt. It’s usually possible to use a Qt program within
GNOME, or a GTK+ program in KDE; you just need the appropriate libraries
installed. A few programs, however, rely upon other elements of the desktop
environment. These may or may not work in another environment. If they do,
they’ll require that additional parts of the competing environment be installed.

Configuring Desktop Environments

A window manager is a useful tool, but by no means does it create a
complete GUI experience. Users of computers running MacOS, Windows,
OS/2, or most other GUI environments are accustomed to having a variety
of tools at hand. These include a file manager (for copying files, launching
programs, and so on), small utility programs (a text editor, calculator, and
the like), system configuration tools (to set keyboard repeat rate, default
fonts, and so on), and assorted other miscellaneous tools. Although pro-
grams like these are available in Linux, they don’t always work together
well. For instance, default fonts set in one program might not be used in
another.

http://www.sybex.com

http://www.sybex.com

146 Chapter 2 � Installing Linux

number of applications require substantial subsets of one or the other envi-
ronment installed, even if the application isn’t officially part of either KDE
or GNOME.

Running a Desktop Environment

From both the system administrator’s and the user’s point of view, running
a desktop environment is done in much the same way as one runs a window
manager. KDM and GDM login programs may be configured to start desk-
top environments. If a user has a customized login script, you can include the
startkde or startgnome commands in it to start KDE or GNOME, in place
of a call to a simple window manager, as described earlier.

Both KDE and GNOME include the ability to run associated programs
from menus located in the lower-left corner of the screen. The KDE menu
resembles a K, and the GNOME menu looks like a G-shaped footprint. Not
all the programs listed on these menus are associated with their respective
desktop environments, but many of them are. Browse through the options to
learn what they are. Some options allow you to configure features of the
desktop environment itself. In particular, the GNOME Control Center and
the KDE Control Center both let you obtain information on your system’s
hardware and adjust your environment (features like your keyboard repeat
rate, screen saver, and so on).

Although desktop environments aim to provide a friendly interface for
new Linux users, they rely upon textual configuration files similar to those
used by other Linux programs. KDE’s settings are stored in the .kde subdi-
rectory of the user’s home directory, and GNOME uses .gnome for this pur-
pose. In principle, you can change your desktop environment’s operation by
editing these files directly. In most cases, though, it’s easier to use the GUI
configuration tools provided for this purpose. If an environment behaves
strangely or won’t start, deleting the entire set of configuration files might
help—but this action will result in the loss of any customizations the user
may have created. You might try renaming the backup directory; that way
you can restore individual configuration files, if you know of specific files
that might otherwise be tedious to recover.

http://www.sybex.com

Summary 147

Mixing and Matching Desktop Environment Components

Although KDE, GNOME, CDE, and XFce are all designed to be integrated
environments, it’s possible to mix and match components from all these sys-
tems. For instance, you might want to use KDE’s audio CD player but
GNOME’s mixer (to control the volume of CDs you play). This is certainly
possible. The main drawback is that you’re likely to lose some functionality
because the programs may not interact with each other as well as they might.
For instance, a personal scheduler program and e-mail utility might share a
contact database if designed to do so; but if you mix and match components,
chances are you’ll lose the ability to share this file.

In fact, it’s possible to build your own environment from bits and pieces
of others, as well as from unaffiliated programs. This approach can actually
save memory because you’re not likely to expend RAM on tools and features
you never use. On the other hand, mixing and matching components in this
way will sacrifice functionality, as just described.

Whether it’s done with individual components or to generate an entirely
unique desktop environment, mixing and matching components is some-
thing that you need not be concerned with as a system administrator. It’s
individual users who will do this.

Summary

The Linux installation process involves implementing many of the
decisions you made when planning the installation (Chapter 1). You must
run the Linux installer, choose the broad outlines of how you want to install
(text, GUI, etc.), set assorted options, choose packages, and set the installer
running. If all goes well, when the installer has done its job, you can reboot
the computer into Linux.

After doing a basic Linux installation, the main task that may remain is to
configure X. Although the installation usually tries to do this, it doesn’t
always succeed, or it may create a suboptimal configuration. You can use
utilities or edit the XF86Config file by hand to optimize your X configuration.

In addition to doing basic X configuration, you may want to change the
default choices for window managers and desktop environments. These
tools sit atop X in the GUI hierarchy, and they provide user interface and
control elements that X doesn’t provide. These elements can be configured

http://www.sybex.com

148 Chapter 2 � Installing Linux

on a user-by-user basis, so a single Linux system can accommodate users
with different personal preferences.

Exam Essentials

Describe when it’s most appropriate to use CD-ROM and network
installations. CD-ROM installations are most convenient when install-
ing to systems with poor network connectivity or when you have a CD-
ROM and want to install quickly. Network installations are convenient
when you are installing several systems simultaneously or when you don’t
have a Linux CD-ROM or a CD-ROM drive on the target system.

Ascertain what type of interaction is most appropriate during installation.
GUI- and text-based installations are good for when you are installing a
single system or when you are preparing a template for scripted installa-
tions with some distributions. Automatic scripted installations are conve-
nient when you are installing nearly identical systems on multiple
computers.

Explain why you might create user accounts at installation. Creating
one or more user accounts when installing Linux allows you to immedi-
ately use the computer after installation, thus making it useable more
quickly. Install-time user creation tools, however, don’t usually offer the
range of options available in normal user management tools.

Describe the reasons for choosing packages in groups or individually.
You can pick packages in groups, which saves you considerable time dur-
ing installation but will likely leave you to add and remove packages later.
Alternatively, you can pick individual packages at install time, which
lengthens the time required to configure the installation, but saves you
time in subsequent configuration.

Determine what video chipset your system uses. Many manufacturers
document the video card chipset in their manuals or on the product boxes.
You can also check the Microsoft Windows System control panel or visu-
ally inspect the board, if the manufacturer did not make the information
readily available.

http://www.sybex.com

Exam Essentials 149

Summarize how X determines the monitor’s refresh rate. X uses the
monitor’s maximum horizontal and vertical refresh rates and a series of
fixed mode lines, which define particular timings for various video reso-
lutions. X picks the mode line that produces the highest refresh rate
allowed by the monitor at the specified resolution.

Describe the role of the window manager in X. The window manager
provides decorative and functional borders around windows. It also con-
trols the screen as a whole, providing some means of launching useful pro-
grams from menus.

Summarize the relationship between window managers and desktop
environments. A window manager is one component of a desktop envi-
ronment. Desktop environments also include file managers, configuration
tools, and various small utilities.

Commands in This Chapter

Command Description

xf86config Text-based XFree86 3.3.x configuration program

Xconfigurator Text- or GUI-based XFree86 3.3.x and 4.0.x
configuration program

XF86Setup GUI-based XFree86 3.3.x configuration program

XFree86 XFree86 4.0.x server that can automatically produce its
own configuration file

xf86cfg GUI-based XFree86 4.0.x configuration program

http://www.sybex.com

150 Chapter 2 � Installing Linux

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

bad block K Desktop Environment (KDE)

Coordinated Universal Time
(UTC)

mode line

creating a filesystem pager

Data Display Channel (DDC) proxy server

drag bar statically linked

dynamically linked widget set

focus X

font server X client

formatting X server

frame buffer X Window System

GNU Network Object Model
Environment (GNOME)

XFree86

Greenwich Mean Time

http://www.sybex.com

Review Questions 151

Review Questions

1. Which of the following best describes a typical Linux distribution’s
method of installation?

A. The installation program is a small Linux system that boots from
floppy, CD-ROM, or hard disk to install a larger system on the
hard disk.

B. The installation program is a set of DOS scripts that copies files to
the hard disk, followed by a conversion program that turns the tar-
get partition into a Linux partition.

C. The installation program boots only from a network boot server to
allow installation from CD-ROM or network connections.

D. The installation program runs under the Minix OS, which is small
enough to fit on a floppy disk but can copy data to a Linux partition.

2. Which of the following is an advantage of a GUI installation over a
text-based installation?

A. GUI installers support more hardware than do their text-based
counterparts.

B. GUI installers can provide graphical representations of partition
sizes, package browsers, and so on.

C. GUI installers can work even on video cards that support only
VGA graphics.

D. GUI installers better test the system’s hardware during the
installation.

3. When specifying a pointer type during installation, what information
must you provide? (Choose all that apply.)

A. Whether it’s a mouse or trackball

B. Whether it uses an optical or a mechanical mechanism

C. The type of interface it uses (PS/2, serial, or USB)

D. The number of buttons the pointer has

http://www.sybex.com

152 Chapter 2 � Installing Linux

4. Which of the following tools may you use when creating partitions for
Linux? (Choose all that apply.)

A. Linux’s fdisk from an emergency disk, run prior to the system
installation

B. PowerQuest’s PartitionMagic, or similar third-party utilities

C. Disk Druid or another distribution-specific install-time utility

D. The DOS FORMAT utility, run prior to the system installation

5. What mount point should you associate with swap partitions?

A. /

B. /swap

C. /boot

D. None

6. What does a bad block check do?

A.

http://www.sybex.com

Review Questions 153

8. If your installation allows for the entry of dialup PPP account infor-
mation, what type of information are you likely to be required to
enter? (Choose all that apply.)

A. One or more dialup telephone numbers

B. The name of the ISP you use

C. An account name and password

D. Your IP address as assigned by the ISP

9. Why might you delay creating most user accounts until after installing
the system?

A. User accounts created during system installation are inherently
insecure.

B. Accounts created during installation are good for only one login
before they’re deleted.

C. There are more options available for account creation using regu-
lar utilities than install-time utilities.

D. You can use MD5 password storage only on accounts created after
system installation.

10. What is a disadvantage of selecting packages by groups during
installation?

A. To later uninstall a package, you must uninstall the entire group.

B. The packages included in package groups are often incomplete.

C. Installing package groups often installs packages you don’t want
or need.

D. Package groups cannot easily be upgraded at a later date.

11. What types of information are typically revealed by installation log
files? (Choose all that apply.)

A. The name of the computer’s manufacturer

B. The names of packages installed

C. Comments you enter regarding specific packages

D. Errors related to the installation of specific packages

http://www.sybex.com

154 Chapter 2 � Installing Linux

12. Which of the following is the most useful information in locating an X
driver for a video card?

A. The interrupt used by the video card under Microsoft Windows

B. Markings on the video card’s main chip

C. Whether the card uses the ISA, VLB, PCI, or AGP bus

D. The name of the video card’s manufacturer

13. Which of the following is true of XFree86 installation?

A. You must rebuild XFree86 from source if you don’t install it with
the rest of the system.

B. Most distributions can install XFree86 along with the rest of the
system software.

C. If you change your video card, you must reinstall all of XFree86.

D. XFree86 3.3.6 and 4.0.x installations cannot coexist on one
computer.

14. When you configure an X server, you need to make changes to con-
figuration files and then start or restart the X server. Which of the fol-
lowing can help streamline this process?

A. Shut down X by switching to a runlevel in which X doesn’t run
automatically, then reconfigure it and use startx to test X startup.

B. Shut down X by booting into single-user mode, then reconfigure it
and use telinit to start X running again.

C. Reconfigure X, then unplug the computer to avoid the lengthy
shutdown process before restarting the system, and X along with it.

D. Use the startx utility to check the X configuration file for errors
before restarting the X server.

15. Which of the following summarizes the organization of the
XF86Config file?

http://www.sybex.com

Review Questions 155

A. The file contains multiple sections, one for each screen. Each sec-
tion includes subsections for individual components (keyboard,
video card, and so on).

B. Configuration options are entered in any order desired. Options
relating to specific components (keyboard, video card, and so on)
may be interspersed.

C. The file begins with a summary of individual screens. Configura-
tion options are preceded by a code word indicating the screen to
which they apply.

D. The file is broken into sections, one or more for each component
(keyboard, video card, and so on). At the end of the file, there are
one or more sections that define how to combine the main sections.

16. What is an advantage of a font server?

A. It provides faster font displays than is otherwise possible.

B. It can simplify font maintenance on a network with many X servers.

C. It’s the only means of providing TrueType font support for
XFree86 4.0.x.

D. It allows the computer to turn a bitmapped display into an ASCII
text file.

17. A monitor’s manual lists its range of acceptable synchronization val-
ues as 27–96kHz horizontal and 50–160Hz vertical. What implica-
tions does this have for the resolutions and refresh rates of which the
monitor is capable?

A. The monitor can run at up to 160Hz vertical refresh rate in all
resolutions.

B. The monitor can handle up to 160Hz vertical refresh rates depend-
ing upon the color depth.

C. The monitor can handle up to 160Hz vertical refresh rates depend-
ing upon the resolution.

D. The monitor can handle vertical resolutions of up to 600 lines
(96,000 ÷ 160), but no more.

http://www.sybex.com

156 Chapter 2 � Installing Linux

18. In what section of XF86Config do you specify the resolution that you
want to run?

A. In the Screen section, subsection Display, using the Modes option

B. In the Monitor section, using the Modeline option

C. In the Device section, using the Modeline option

D. In the DefaultResolution section, using the Define option

19. Which major Linux desktop environment is a commercial package?

A. KDE

B. GNOME

C. CDE

D. XFce

20. Which of the following should be true when running programs from
one desktop environment in another?

A. You must install necessary support libraries (such as GTK+ librar-
ies for GNOME programs) on the computer.

B. You must configure the two environments with the same defaults
for keyboard repeat rate, mouse tracking speed, and so on.

C. You must configure the target program in its parent environment;
thereafter, it can be run from other environments without problems.

D. You must launch the program from the parent environment’s file
manager.

http://www.sybex.com

Answers to Review Questions 157

Answers to Review Questions

1. A. Most Linux distributions use installation programs written in
Linux, not in DOS or Minix. The system usually boots from floppy or
CD-ROM, although other boot media (such as hard disk or even net-
work) are possible.

2. B. A bitmapped display, as used by a GUI installer, can be used to
show graphical representations of the system’s state that can’t be done
in a text-mode display. Text-based installers actually have an edge in
hardware support because they can run on video cards that aren’t sup-
ported by X.

3. C, D. The interface and number of buttons are important to mouse
configuration. The form (mouse, trackball, touch pad, etc.) and
underlying technology (optical, mechanical, etc.) are unimportant to
Linux, and so they do not need to be specified.

4. A, B, C. You can usually define partitions using just about any tool
that can create them, although with some tools (such as DOS’s
FDISK), you may need to change the partition type code using Linux
tools. The DOS FORMAT utility is used to create a FAT filesystem, not
define a partition.

5. D. Swap partitions aren’t mounted in the way filesystems are, so they
have no associated mount points.

6. B. As a hard disk ages, its magnetic properties degrade, resulting in
sectors becoming unreliable. A bad block check looks for this condi-
tion to improve the reliability of data storage by avoiding afflicted sec-
tors. When a disk begins to accumulate bad blocks, though, chances
are other blocks will soon go bad, so the disk is better off being
replaced.

7. A. If the root password isn’t set, anybody who has physical access to
the computer or who can log into a regular account can do anything
they like to the computer’s configuration. The root password is not
required to mount the root filesystem, nor is it required to configure
regular user accounts or passwords.

http://www.sybex.com

158 Chapter 2 � Installing Linux

8. A, C. PPP dialup configuration requires the telephone number the
computer will call, an account name, and a password. PPP does not
require the ISP’s name. Although PPP does permit static IP address
assignment, this information is usually provided automatically by
the ISP.

9. C. Regular account creation tools provide numerous options to cus-
tomize and fine-tune the accounts they create. Most of these options
are missing from the install-time account creation tools.

10. C. Package groups are groups of packages that fill some role on the
system. You may need only some of the individual packages, so install-
ing the entire group can waste disk space that might be better devoted
to other purposes.

11. B, D. The installation log file typically summarizes the packages
installed, including their names and any errors that were encountered
when the packages were installed. Linux doesn’t know or care about
the name of the computer’s manufacturer, and you don’t enter com-
ments on specific packages.

12. B. Markings on the video card’s main chip typically include a name
or number for the chipset; this is what you need in order to locate an
X driver for the card. The video card’s manufacturer name might or
might not be useful information. If it proves to be useful, you’d also
need a model number. The interrupt used by the video card in Win-
dows is irrelevant. The card’s bus can narrow the range of possibili-
ties, but it isn’t extremely helpful.

13. B. Linux installation routines normally include the ability to install
and configure XFree86. If you fail to do this, you can usually install a
pre-built binary version of the software; you don’t need to rebuild
from source code. The main XFree86 4.0.x package includes all driv-
ers, so there’s no need to reinstall it if you change a video card. Even
3.3.6 is broken into several packages, and some drivers work on mul-
tiple cards. 3.3.6 and 4.0.x servers can both exist on one computer,
although normally only one runs at a time.

http://www.sybex.com

Answers to Review Questions 159

14. A. On most Linux systems, some runlevels don’t run X by default, so
using one of them along with the startx program (which starts X
running) can be an effective way to quickly test changes to an X con-
figuration. The telinit program changes runlevels, which is a
lengthy process compared to using startx. Unplugging the computer
to avoid the shutdown process is self-defeating since you’ll have to suf-
fer through a long startup (unless you use a new journaling filesystem),
and it can also result in data loss. The startx utility doesn’t check the
veracity of an X configuration file; it starts X running from a text-
mode login.

15. D. The XF86Config file design allows you to define variants or multiple
components and easily combine or recombine them as necessary.

16. B. By maintaining fonts on one font server and pointing other X serv-
ers to that font server, you can reduce the administrative cost of main-
taining the fonts on all the systems. Font servers do not produce faster
font displays than X’s local font handling; if anything, the opposite is
true. XFree86 4.0 added native TrueType font support, but
XFree86 3.3.6 and earlier didn’t include it by default. Converting a
bitmapped display into ASCII text is a function of optical character
recognition (OCR) software, not a font server.

17. C. The vertical refresh rate range includes a maximum value, but that
value may be reduced when the resolution and vertical refresh rate
would demand a higher horizontal refresh rate than the monitor can
handle. In practice, it’s usually the horizontal limit that’s most impor-
tant, at least when running at typical resolutions. The color depth is
irrelevant to this computation.

18. A. The Modeline option in the Monitor section defines one possible
resolution, but there are usually several Modeline entries defining
many resolutions. The Modeline option doesn’t exist in the Device
section, however, nor is that section where the resolution is set. There
is no DefaultResolution section.

19. C. KDE, GNOME, and XFce are all covered under open source
licenses. CDE is a commercial package that’s common on commercial
Unix systems, and which is also available for Linux.

http://www.sybex.com

160 Chapter 2 � Installing Linux

20. A. Programs usually rely upon separate library files to provide nec-
essary functions. KDE and GNOME are built upon different libraries
(Qt and GTK+, respectively), so when running a program from one
environment in another, you must ensure that the correct libraries are
installed.

http://www.sybex.com

Chapter

3
Software Management

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 1.7 Identify strengths and weaknesses of different distributions

and their packaging solutions (e.g., tar ball vs. RPM/DEB).

� 1.9 Identify how the Linux kernel version numbering works.

� 2.15 Explain when and why the kernel will need to be

recompiled.

� 2.16 Install boot loader (e.g., LILO, MBR vs. first sector of boot

partition).

� 2.17 Install and uninstall applications after installing the

operating system (e.g., RPM, tar, gzip).

� 2.19 Validate that an installed application is performing

correctly in both a test and a production environment.

� 3.10 Reconfigure boot loader (e.g., LILO).

� 4.10 Use common shell commands and expressions.

� 4.12 Create, extract and edit file and tape archives using tar.

� 5.5 Download and install patches and updates (e.g.,

packages, tgz).

http://www.sybex.com

Managing installed software involves a wide variety of
tasks, many of which are specific to particular types of software or even spe-
cific packages. Other chapters cover some specific examples, such as X Win-
dow System configuration (covered in Chapter 2, “Installing Linux”) or
network client and server configuration (Chapter 5, “Networking”). This
chapter covers the mechanics of package installation in general, using any of
three common packaging schemes. Because of the importance of shell com-
mands in package management and other day-to-day Linux administration,
this chapter begins with a look at the use of shells.

One particular program deserves special attention in package installation,
and that’s the Linux kernel. Although it’s sometimes possible to upgrade the
kernel just as you would any other program, it’s often beneficial to do it by
recompiling the kernel from scratch. Even when you don’t do this, you may
need to modify the way the kernel is loaded, through a boot loader program.
This chapter covers these issues as well.

Basic Command Shell Use

A shell is a program that allows you to interact with the computer by
launching programs, manipulating files, and issuing commands. If you’ve
read Chapter 2, this may sound a lot like the definition presented there of a
desktop environment or file manager, and in some sense, these programs are
graphical shells. The term shell is most often applied to text-based programs,
though, and that’s what’s described in this section—text-based programs
used to control a Linux system. Even if you prefer to use a GUI environment,

http://www.sybex.com

Basic Command Shell Use 163

it’s important that you understand basic shell use because the shell provides
the user interface that’s most consistent across distributions and other envi-
ronments. You can also use text-based shells through text-mode network
connections. Once you’ve started a shell, you can view and manipulate files
and launch programs.

Starting a Shell

Linux supports many different shells, although precisely which ones might
be installed varies from one distribution to another. The vast majority of
Linux systems include bash, which is usually the default shell for new users.
Another common shell is known as tcsh, and many others, such as zsh, csh,
and ash, are also available. Most shells are similar in broad strokes, but
some details differ.

There are many different ways to start a shell, most of which are at least
partially automatic. The most common methods include the following:

Logging in at the text-mode console If you log into the computer using
a text-mode console, you’ll be greeted by your default shell, as it is set in
your user account information (see Chapter 4, “Users and Security”).

Logging in remotely Logging in remotely via Telnet, the Secure Shell
(SSH; despite the name, SSH is not a shell in the sense discussed here, but
it will start one automatically), or some other remote text-mode login tool
will start a shell.

Starting an xterm An xterm is a GUI program in which text-based pro-
grams can run. By default, xterms usually start your default shell unless
told to do otherwise. The section “Launching an Xterm” in Chapter 6,
“Managing Files and Services,” discusses xterms in more detail.

Explicitly launching a shell You can start one shell from within
another. This can be helpful if you find you need features of one shell but
are running another. Type the new shell’s name to start it.

When you start a shell, you’ll see a command prompt. This is one or more
characters that indicate the shell is waiting for input. Although not universal,
command prompts often include your username, the computer’s hostname,
or the directory in which the shell is operating. For instance, a command
prompt might resemble the following:

[rodsmith@nessus /mnt]$

http://www.sybex.com

164 Chapter 3 � Software Management

Although not a universal convention (it can be set in a user’s shell config-
uration files), the final character is often a dollar sign ($) for ordinary users
or a pound sign (#) for root. This serves as a visual indication of superuser
status; you should be cautious when entering commands in a root shell,
because it’s easy to damage the system from such a shell. (Chapter 4 dis-
cusses root and its capabilities in more detail.)

This book includes command examples on separate lines. When the com-
mand is one that an ordinary user might issue, it’s preceded by a $ prompt;
when only root should be issuing the command, it’s preceded by a # prompt.
Because the username, computer name, and directory are usually unimpor-
tant, this information is omitted from the prompts printed in this book. The
prompts are also omitted from command examples within a paragraph of text.

Viewing Files and Directories

When using a shell, it’s often necessary to see the files in a given directory.
This task is accomplished with the ls command, which displays the contents
of either the current directory or the directory you name after the command.
(If you list a file, it shows only that filename.) It’s used like this:

$ ls /var

arpwatch db local logcheck opt spool www

cache ftp lock mail preserve tmp yp

catman lib log nis run win4lin

By default, ls creates a listing that’s sorted by filename. On some distri-
butions, ls displays color-coded names so that you can easily identify direc-
tories and other important file types. The command accepts many parameters
that can modify its default behavior. One of the most common of these is
-l, which creates a long listing, like this:

$ ls -l t*

-rwxr-xr-x 1 rodsmith users 111 Apr 13 13:48 test

-rw-r--r-- 1 rodsmith users 176322 Dec 16 09:34 thttpd-
�2.20b-1.i686.rpm

-rw-r--r-- 1 rodsmith users 1838045 Apr 24 18:52
�tomsrtbt-1.7.269.tar.gz

-rw-r--r-- 1 rodsmith users 3265021 Apr 22 23:46
�tripwire-2.3.0-2mdk.i586.rpm

http://www.sybex.com

Basic Command Shell Use 165

This output includes the permission strings, ownership, file sizes, and file
creation dates in addition to the filenames. This example also illustrates the
use of the * wildcard, which matches any string—thus, t* matches any file
that begins with t.

Chapter 7, “Managing Partitions and Processes,” discusses the use of ls in
more detail.

To change to another directory, you should use the cd command. Type cd
followed by the name of the directory to which you want to change, thus:

$ cd /tmp

You can specify the target directory name either in absolute form (starting
with a / character), in which case the directory path is interpreted as being
relative to the root directory; or in relative form (without the leading /), in
which case it’s relative to the current directory. (These rules also apply to
specifying other filenames and directory names.)

If you want to view the contents of a file, you can do so in many different
ways. You can load it into a text editor, for instance. Another possibility is
to use either more or less. Both of these commands display a text file a page
at a time, but less is the more sophisticated program.

Manipulating Files

If you need to move or rename a file, you should use the mv command. This
command associates a new name (possibly in a different directory) with a
file. To use it, issue the command followed by the current filename followed
by a new filename or directory. (If you specify an existing directory without
a filename, mv uses the current filename but moves the file to the specified
directory.) For instance, take a look at the following:

$ mv /tmp/somefile.txt tempfile.txt

This command moves somefile.txt from the /tmp directory to the cur-
rent directory and simultaneously renames it to tempfile.txt.

If you need to delete a file, you can do so with the rm command, which
removes the file. List one or more files you want deleted after the com-
mand, thus:

$ rm tempfile.txt anotherfile.*

http://www.sybex.com

166 Chapter 3 � Software Management

Unlike the trash can icons that are common in GUI environments, rm doesn’t
allow you to undo a deletion. Therefore, you should be very careful when
using this command, particularly as root.

Chapter 7 includes expanded discussion of both the mv and rm commands.

Launching Programs

You can launch a program from a shell by typing its name. In fact, many
shell “commands,” including ls and mv, are actually programs that the shell
runs. Most of these standard commands reside in the /bin directory, but
shells search all directories specified by the PATH environment variable (dis-
cussed in more detail in Chapter 6) for commands to run. If you type the
name of a program that resides in any directory on the path, the shell runs
that program. You can also pass parameters to a program—optional infor-
mation that the program can use in a program-specific way. For instance, the
names of the files to be manipulated are parameters to commands like mv and
rm. Many programs accept parameters that are preceded by one or two
dashes and a code, as in -r or -t time. Most parameters are case-sensitive;
in fact, many programs use upper- and lowercase versions of a parameter in
different ways.

Most text-based programs take over the display (the text-mode login, Tel-
net session, xterm, or what have you). Many show little or no information
before returning control to the shell, so you don’t really notice this fact.
Some programs, such as text-mode editors, truly control the display; they
may clear all the information that has previously appeared and fill the display
with their own information. Other programs may not clear the screen
entirely, or even display their own information, but they may take a long
time to operate. In some cases, you may want to retain control of your shell
while the program does its thing in the background. To do this, follow the
command with an ampersand (&). When you do this, the program you
launch will still be attached to the display from which it was launched, but
it shares that display with the shell. This works well for noninteractive pro-
grams but very poorly for interactive tools. For instance, suppose you have
a program called supercrunch that performs some lengthy computation but
requires no interaction from the user. You could launch it like this:

$ supercrunch &

http://www.sybex.com

Basic Command Shell Use 167

If supercrunch produces text-based output, it will appear on the screen,
but you’ll still be able to use the shell for other purposes. If you’ve already
launched a program and want to move it into the background, press Ctrl+Z.
This suspends the currently running program and returns you to the shell. At
this point, the program you’ve suspended will not be doing any work. This
may be fine for a text editor you wanted to momentarily suspend or the like,
but if the program was performing computations that must continue, you
must take additional steps to see that this happens. You can type fg to return
to the suspended program, or bg to start it running again in the background.
The latter is much like appending an ampersand to the command name when
you launched it.

If you try to launch an X-based program, you must be running the shell
in an xterm, or possibly in some other way that allows X programs to run,
such as from another computer with its own X server and all appropriate
environment variables set to permit remote X program operation, as dis-
cussed in Chapter 5. If you try to launch an X program from a text-only
login, you’ll receive an error message along the lines of Can't open
display.

Although X-based programs don’t normally produce text output, they do take
over the terminal from which they were launched. If you want to continue to
use an xterm after launching an X-based program, follow its name with an
ampersand (&), as just described.

Shell Shortcuts

Linux shells permit some important operational shortcuts. One of the most
useful of these is the use of the Tab key for filename completion. Suppose you
want to move a file that’s called shareholder-report-for-2001.txt.
You could type the entire filename, but that can become quite tedious. Most
Linux shells, including the popular bash shell, support a feature in which hit-
ting the Tab key completes an incomplete command or filename, as long as
you’ve typed enough characters to uniquely define the file or command. For
instance, suppose that ls reveals two files in a directory, thus:

$ ls

share-price-in-2001.txt shareholder-report-for-2001.txt

http://www.sybex.com

168 Chapter 3 � Software Management

If you want to move the second file to another directory, you could type
mv shareh, then the Tab key. The shell will complete the filename, so your
command line will include the entire name. You can then type the destina-
tion directory for the file (possibly using filename completion to enter it more
efficiently, as well).

What happens when the characters you enter are not unique? In this case,
the shell completes as much of the job as it can. For instance, if you type mv
sh and then hit the Tab key, bash fills out the next three characters, so that
the command line reads mv share. Some configurations also display the pos-
sible completions at this point. (For those that don’t, pressing Tab again usu-
ally displays these completions.) If you then type either h or - and press Tab
again, bash completes the filename.

Another shortcut is the use of the up and down arrow keys to scroll
through previous commands. If you need to type two similar commands in
a row, you can type one, then hit the up arrow key to retrieve the previous
command. You can then use the left arrow or Backspace keys to move back
in the line to edit it (Backspace deletes characters, but the left arrow key
doesn’t). You can go back through several commands in this way, and if
you overshoot, you can use the down arrow key to retrieve more recent
commands.

These shortcuts, and other basic shell commands for that matter, are
extremely helpful in working with packages and other files. You can perform
many tasks with a file manager, of course, but text-based utilities like the rpm
and dpkg utilities discussed in this chapter were designed to be used from
shells. Because package filenames are frequently very long, using filename
completion can be particularly helpful with them.

Although not a shortcut in the same sense as using the Tab key, one par-
ticularly important tool is the Linux man page system. The man program
(short for “manual”) contains usage information on many Linux commands
and files. Type man followed by the command name to learn more about the
command, as in man mv. Linux man pages are usually written in a very suc-
cinct style; they aren’t intended as complete documentation, but rather as a
reference aid.

http://www.sybex.com

Package Concepts 169

Package Concepts

Any OS is defined largely by the files it installs on the computer. In the
case of Linux, these files include the Linux kernel; critical utilities stored in
directories like /bin, /sbin, /usr/bin, and /usr/sbin; and configuration
files stored in /etc. How those files came to reside in their locations is irrel-
evant to the identity of the computer as a Linux box, but this detail is criti-
cally important to the day-to-day duties of a system administrator. When an
updated version of a program is released, it’s extremely helpful to be able to
track down the installed version of the program, determine just what version
the installed program is, and update all the necessary files. A failure to do all
of this can leave a system with two copies of a program or its support files,
which can result in confusion. It’s also important that when you install a new
program, you not accidentally overwrite files that belong to another program.

In order to keep track of installed programs, documentation, and so on,
various package maintenance utilities have emerged. Some of these, such as
RPM and Debian package tools, are tightly woven into various Linux distri-
butions, thus providing a centralized mechanism for program updates.

File Collections

Most programs today consist of several files. Many programs come with one
or more documentation files, configuration files, and support programs. For
this reason, it’s long been common practice, on all platforms, to package
related files together in one carrier file. This carrier file typically uses com-
pression to save disk space and download time, and it may include informa-
tion on the placement of specific files once they’re extracted and installed on
the computer.

Linux package file formats all provide these useful features. A single pack-
age file may contain a single program file or dozens (even hundreds or thou-
sands) of files. A complete Linux distribution, in turn, consists of hundreds
of package files, all designed to coexist and even work together to provide
the features associated with Linux.

In addition to providing a common carrier mechanism for package trans-
port, the RPM and Debian package systems provide a means of recording
additional information about the package. This information includes a ver-
sion number, a build number, the name of the package maintainer, the date
and time of the package’s last compilation, the hostname of the computer

http://www.sybex.com

170 Chapter 3 � Software Management

that built the package, one or more descriptions of the package, and a few
other miscellaneous pieces of information. Typically, you can access all of
this information either before or after installing a package on the computer,
which can be quite helpful—you can read the package description to deter-
mine whether it’s really what you want to install, before you do so.

The Installed File Database

One of the problems with a simple file collection mechanism is that there’s
no way to track what files you’ve installed, what files are associated with
other files, and so on. It’s easy for a system using such a simple package
mechanism to fall into chaos or collect detritus. A partial solution to these
problems is to maintain a centralized database of installed files. Both the
RPM and Debian systems provide this feature. With RPM, the database is
stored in the /var/lib/rpm directory; for Debian packages, the database is
in /var/lib/dpkg. These directories actually contain several files, each of
which tracks a different type of information. Tarballs, however, don’t sup-
port a package management database.

Tarballs are file collections created by the tar utility program. Although they
lack some of the features of RPM and Debian packages, they’re more univer-
sally compatible, and they’re easier to create than are RPM or Debian pack-
ages. Chapter 5 covers tarballs, RPMs, and Debian packages in more detail.

Most people don’t need to understand the details of how the installed file
database works; this information is most useful to those who write the tools
or need to recover a seriously corrupted system. What is important are the
features that the database provides to a Linux system, which include those
listed here:

Package information The supplementary information associated with a
package—build date, description, version number, and so on—is copied
from the package file to the installed file database when you install the
package. This allows you to retrieve this information even if you delete
the original package file.

File information The database includes information on all of the files
installed on the computer via the package system. This information
includes the name of the package to which the file belongs so that you can

http://www.sybex.com

Package Concepts 171

track a file back to its owner. There’s also a checksum value and infor-
mation on file ownership and permissions, which make it possible to
detect when a file has been altered—assuming the database hasn’t been
altered as well. This file information does not extend to any files users cre-
ate or even to non-standard configuration files for some packages. Stan-
dard configuration files are typically tracked, however.

Dependencies A dependency is a reliance of one package upon another.
For instance, many programs rely upon libc. Packages include informa-
tion on the files or packages upon which they depend. This feature allows
the package management system to detect these dependencies and block
installation of a package if its dependencies are unmet. The system can
also block the removal of a package if others depend upon it.

Provision information Some packages provide features that are used by
other packages. For instance, a mail client may rely upon a mail server,
and various different mail servers exist for Linux. In this case, a simple file
or package dependency can’t be used because more than one mail server
can be used to fulfill the client’s requirements. Nonetheless, this feature is
essentially a type of dependency.

Whenever you install, remove, or modify a package through a package
management system, that system updates its database to reflect the changes
you’ve made. You can then query the database about your installed pack-
ages, and the system can use the database when you subsequently modify
your installation. In this way, the system can head off trouble—for instance,
it can warn you and abort installation of a package if that package contains
files that would overwrite files belonging to another package.

The package database does not include information on files or packages
installed in any way but through the package management system. For this
reason, it’s best not to mix different types of packages. Although it’s possible
to install both RPM and Debian package management systems on one com-
puter, their databases remain separate, thus cutting the benefits of conflict
tracking, dependencies, and so on. For instance, you might install an impor-
tant library in Debian format, but RPM packages that rely on that library
won’t know the library is installed, and so they will not install unless you
provide an override switch. Further, you may not be warned that other pro-
grams require the library when you remove or upgrade it, so you might inad-
vertently break the RPM packages.

http://www.sybex.com

172 Chapter 3 � Software Management

Some programs are distributed only in tarball form. In such cases, you can
attempt to build an RPM or Debian package from the tarball or install from
the tarball without the benefit of a package management system. Although
the latter option has the drawbacks just outlined, it’s often simpler than try-
ing to create an RPM or Debian package. If you only install a few such pro-
grams, chances are you won’t have too much trouble, especially if you keep
good records on what you’re installing from tarballs. Typically, programs
you compile from source code go in the /usr/local directory tree, which
isn’t used by most RPM or Debian packages. This fact helps keep the two
program types isolated, further reducing the chance of trouble.

If you have a binary tarball package, you may be able to convert it to RPM or
Debian format using the alien utility, described in the upcoming “Converting
between Package Formats” section.

Rebuilding Packages

One of the features of package systems is that they allow you to either install
a binary package (sometimes referred to as a precompiled package) or
recompile a source package on your own system. The former approach is
usually simpler and less time-consuming, but the latter approach has its
advantages, too. Specifically, it’s possible to customize a program when you
recompile it from source code. This can include both changes to the program
source code and compile-time customizations (such as compiling a package
on an unusual architecture). Recompilation is possible both with the sophis-
ticated RPM and Debian systems and with simpler tarballs—in fact, the pri-
mary means of source code distribution is usually as a tarball.

If you find a tarball for a package that is not available in other forms, you
have two basic choices: You can compile or install the software as per the
instructions in the tarball, which bypasses your RPM or Debian database if
your distribution uses one; or you can create an RPM or Debian package
from the original source code, and install the resulting binary package. The
former approach is usually simpler when you want to install the package on
just one system, despite the drawback of losing package database informa-
tion. The latter approach is superior if you need to install the package on
many similar systems, but it takes more effort—you must create special files
to control the creation of a final RPM or Debian package, and then use spe-
cial commands to create that package. (Using the alien utility to convert a
binary tarball is an exception, though.)

http://www.sybex.com

Package Concepts 173

These actions are beyond the scope of this book. Consult the documentation
for the package system for more information. In particular, the RPM HOWTO
(http://www.linuxdoc.org/HOWTO/RPM-HOWTO) contains this information for
RPM. The book Maximum RPM by Ed Bailey (Red Hat Press, 1997) may also
be useful for those who need to delve deeply into the RPM system.

Source code is available in formats other than tarballs. Today, many pro-
gram authors take the time to create source RPMs, which are source code
packages meant to be processed by the RPM tools. It’s also possible to create
equivalent Debian packages, but these are most commonly found on sites
catering specifically to Debian-based systems. A source RPM is easy to com-
pile into a binary RPM for any given computer; all you need to do is call the
rpm program with the --rebuild argument and the name of the source
package. (Sometimes additional arguments are needed, as when you are
cross-compiling for one platform on another.) This recompilation may take
anywhere from a few seconds to several minutes, or conceivably hours for
large packages on slow computers. The result is one or more binary RPMs
in the /usr/src/redhat/RPMS/i386 directory or someplace similar
(redhat may be something else on non-Red Hat distributions, and i386 may
be something else on non-x86 platforms or on distributions that optimize for
Pentium or later CPUs).

However you do it, recompiling programs from source code has several
advantages and disadvantages compared to using a ready-made binary pack-
age. One of the primary advantages is that you can control various compi-
lation options, and you can even modify the source code to fix bugs or
customize the program for your particular needs. Making such changes is
much easier when you start with a tarball than when you start with an RPM
or Debian source package, however. Another advantage is that you can com-
pile a program for an unusual distribution. You might not be able to find a
package of a particular program for Alpha or PowerPC architectures, for
instance, but if a source package is available, you can compile it yourself.
Similarly, if you compile a package yourself, you can work around some
library incompatibilities you might encounter with pre-built binaries, partic-
ularly if the binaries were created on a distribution other than the one you use.

The primary drawback to compiling your own packages is that it takes
time. This problem is exacerbated if you need to install additional develop-
ment libraries, compilers, or other tools in order to make a package compile.

http://www.sybex.com

174 Chapter 3 � Software Management

(Many programs need particular utilities to compile but not to run.) Some-
times a source package needs particular versions of other programs to com-
pile, but you may have an incompatible version, making compilation
impossible until you change the version you’ve got. New Linux users also
often have troubles with recompiling because of unfamiliarity with the
procedures.

Installing and Removing Packages

The three most common package formats in Linux are Red Hat
Package Manager (RPM) packages, Debian packages, and tarballs (files
collected together using the tar program). Of these three, tarballs are the
most primitive, but they are also the most widely supported. Most distribu-
tions use RPMs or Debian packages as the basis for most installed files.
Therefore, it’s important to understand how to use at least one of these two
formats for most distributions, as well as tarballs.

RPM Packages

The most popular package manager in the Linux world is RPM. In fact,
RPM is available on non-Linux platforms, although it sees less use outside of
the Linux world. The RPM system provides all the basic tools described
in the earlier section, “Package Concepts,” such as a package database that
allows for checking conflicts and ownership of particular files.

Distributions That Use RPM

As RPM’s full name (Red Hat Package Manager) implies, RPM was devel-
oped by Red Hat for its own distribution. Red Hat released the software
under the General Public License (GPL), however, so others have been free
to use it in their own distributions, and in fact, this is precisely what has hap-
pened. Some distributions, such as Mandrake, TurboLinux, LinuxPPC, and
Yellow Dog, are based on Red Hat, and so they use RPMs as well as many
other parts of the Red Hat distribution. Others, such as SuSE and Caldera,
borrow less from the Red Hat template, but they do use RPMs. Of course,
all Linux distributions share many common components, so even those that
weren’t originally based on Red Hat are very similar to it in many ways other

http://www.sybex.com

Installing and Removing Packages 175

than just their use of RPM packages. On the other hand, distributions that
were originally based on Red Hat have diverged from it over time. As a
result, the group of RPM-using distributions shows substantial variability,
but all of them are still Linux distributions that provide the same basic tools,
such as the Linux kernel, common shells, XFree86, and so on.

RPM is a cross-platform tool. As noted earlier, some non-Linux Unix sys-
tems can use RPM, although most don’t use it as their primary package dis-
tribution system. RPM supports any CPU architecture. In fact, Red Hat
Linux is or has been available for at least three CPUs: x86, Alpha, and
SPARC. Among the distributions mentioned earlier, LinuxPPC and Yellow
Dog are PowerPC distributions (they run on Apple PowerMacs and some
non-Apple systems), and SuSE is available on x86, PowerPC, and Alpha sys-
tems. For the most part, source RPMs are transportable across architec-
tures—you can use the same source RPM to build packages for x86,
PowerPC, Alpha, SPARC, or any other platform you like. Some programs
are actually composed of architecture-independent scripts, and so they need
no recompilation. There are also documentation and configuration packages
that work on any CPU.

The convention for naming RPM packages is as follows:

packagename-a.b.c-x.arch.rpm

Each of the filename components has a specific meaning:

packagename This is the name of the package, such as samba for the
Samba file and print server.

a.b.c This is the package version number, such as 2.0.7. The version
number doesn’t have to be three period-separated numbers, but that’s the
most common form. The program author assigns the version number.

x The number following the version number is the build number (aka
the release number). This number represents minor changes made by the
package maintainer, not by the program author. These changes may rep-
resent altered startup scripts or configuration files, changed file locations,
added documentation, or patches appended to the original program to fix
bugs or to make the program more compatible with the target Linux dis-
tribution. Some distribution maintainers add a letter code to the build
number to distinguish their packages from those of others. Note
that these numbers are not comparable across package maintainers—
George’s build number 5 of a package is not necessarily an improvement
on Susan’s build number 4 of the same package.

http://www.sybex.com

176 Chapter 3 � Software Management

arch The final component preceding the .rpm extension is a code for
the package’s architecture. i386 is the most common architecture code; it
represents a file compiled for any x86 CPU from the 80386 onward. Some
packages include optimizations for Pentiums or above (i586 or i686),
and non-x86 binary packages use codes for their CPUs, such as ppc for
PowerPC CPUs. Scripts, documentation, and other CPU-independent
packages generally use the noarch architecture code. The main exception
to this rule is source RPMs, which use the src architecture code.

For instance, the Linux Mandrake 7.2 distribution ships with a Samba
package called samba-2.0.7-18mdk.i586.rpm, indicating that this is build
18 from Mandrake of Samba 2.0.7, compiled with Pentium optimizations.
These naming conventions are just that, though—conventions. It’s possible
to rename a package however you like, and it will still install and work. The
information in the filename is retained within the package. This fact can be
useful if you’re ever forced to transfer RPMs using a medium that doesn’t
allow for long filenames. In fact, the SuSE distribution eschews long file-
names, preferring short filenames such as samba.rpm.

In an ideal world, any RPM package will install and run on any RPM-
based distribution that uses an appropriate CPU type. Unfortunately, there
are compatibility issues that can crop up from time to time. These include the
following:

� Distributions may use different versions of the RPM utilities, as dis-
cussed shortly. This problem can completely prevent an RPM from
one distribution being used on another.

� An RPM package designed for one distribution may have dependen-
cies that are unmet in another distribution. A package may require a
newer version of a library than is present on the distribution you’re
using, for instance. This problem can usually be overcome by install-
ing or upgrading the depended-upon package, but sometimes this
causes problems because the upgrade may break other packages. By
rebuilding the package you want to install from a source RPM, you
can often work around these problems, but sometimes the underlying
source code also needs the upgraded libraries.

� An RPM package may be built to depend upon a package of a partic-
ular name, such as samba-client depending upon samba-common,
but if the distribution you’re using has named the package differently,
the rpm utility will object. You can override this objection by using the

http://www.sybex.com

Installing and Removing Packages 177

--nodeps switch, but sometimes the package won’t work once
installed. Rebuilding from a source RPM may or may not fix this
problem.

� Even when a dependency appears to be met, different distributions
may include slightly different files in their packages. For this reason, a
package meant for one distribution may not run correctly when
installed on another distribution. Sometimes installing an additional
package will fix this problem.

� Some programs include distribution-specific scripts or configuration
files. This problem is particularly acute for servers, which may include
startup scripts that go in /etc/rc.d/init.d or elsewhere. Overcom-
ing this problem usually requires that you remove the offending script
after installing the RPM and either start the server in some other way
or write a new startup script, perhaps modeled after one that came
with some other server for your distribution.

Despite this list of caveats, mixing and matching RPMs from different dis-
tributions usually works reasonably well for most programs, particularly if
the distributions are closely related or you rebuild from a source RPM. If you
have trouble with an RPM, though, you may do well to try to find an equiv-
alent package that was built with your distribution in mind.

Upgrades to RPM

The earliest versions of RPM were quite primitive by today’s standards; for
instance, they did not support dependencies. Over time, though, improve-
ments have been made. This fact occasionally causes problems when Red Hat
releases a new version of RPM. For instance, Red Hat 7.0 uses version 4 of the
RPM utilities, but version 4 RPM files cannot be installed with most earlier
versions of RPM. This led to frustration on the part of many people who
used RPM-based distributions in late 2000 because they couldn’t use Red
Hat 7.0 RPMs on their systems.

It’s usually possible to overcome such problems by installing a newer ver-
sion of RPM and upgrading the RPM database. Unfortunately, there’s a
chicken-and-egg problem, because without the new version of RPM, it’s
impossible to install the updated version of RPM. Red Hat and many other
RPM-based distribution providers frequently do make a version of the next-
generation version of RPM available for older systems. In the case of the

http://www.sybex.com

178 Chapter 3 � Software Management

switch to RPM 4.0 with Red Hat 7.0, Red Hat has made this upgrade avail-
able in their Red Hat 6.2 updates area, for instance. After installing such an
upgrade, be sure to type rpm --rebuilddb to have the system rebuild your
RPM database to conform to the new program’s expectations. If you fail to
do this, you may be unable to install new programs or access information on
old ones.

The rpm Command Set

The main RPM utility program is known as rpm. Use this program to install
or upgrade a package at the shell prompt. rpm has the following syntax:

rpm [operation][options] [package-files|package-names]
Table 3.1 summarizes the most common rpm operations, and Table 3.2

summarizes the most important options. Be aware, however, that rpm is a
very complex tool, so this listing is necessarily incomplete. Tables 3.1 and
3.2 do include information on the most common rpm features, however. For
information on operations and options more obscure than those listed in
Tables 3.1 and 3.2, see the rpm man pages. Many of rpm’s less-used features
are devoted to the creation of RPM packages by software developers.

T A B L E 3 . 1 Common rpm Operations

rpm Operation Description

-i Installs a package; system must not contain a
package of the same name

-U Installs a new package or upgrades an existing one

-F or --freshen Upgrades a package only if an earlier version
already exists

-q Queries a package—finds if a package is installed,
what files it contains, and so on

-V or -y or --verify Verifies a package—checks that its files are present
and unchanged since installation

-e Uninstalls a package

http://www.sybex.com

Installing and Removing Packages 179

-b Builds a binary package, given source code and
configuration files

--rebuild Builds a binary package, given a source RPM file

--rebuilddb Rebuilds the RPM database to fix errors

T A B L E 3 . 2 Common rpm Options

rpm Option

Used with

Operations Description

--root dir Any Modifies the Linux system hav-
ing a root directory located at
dir. This option can be used to
maintain one Linux installation
discrete from another one (say,
during OS installation or emer-
gency maintenance).

--force -i, -U, -F Forces installation of a package
even when it means overwrit-
ing existing files or packages.

-h or --hash -i, -U, -F Displays a series of pound
signs (#) to indicate the
progress of the operation.

-v -i, -U, -F Used in conjunction with the -h
option to produce a uniform
number of hash marks for each
package.

T A B L E 3 . 1 Common rpm Operations (continued)

rpm Operation Description

http://www.sybex.com

180 Chapter 3 � Software Management

--nodeps -i, -U, -F, -e Performs no dependency
checks. Installs or removes the
package even if it relies on
a package or file that’s not
present or is required by a
package that’s not being
uninstalled.

--test -i, -U, -F Checks for dependencies, con-
flicts, and other problems
without actually installing the
package.

--prefix path -i, -U, -F Sets the installation directory
to path (works only for some
packages).

-a or --all -q, -V Queries or verifies all
packages.

-f file or --file file -q, -V Queries or verifies the package
that owns file.

-p package-file -q Queries the uninstalled RPM
package-file.

-i -q Displays package information,
including the package
maintainer, a short description,
and so on.

-R or --requires -q Displays the packages and files
upon which this one depends.

-l or --list -q Displays the files contained in
the package.

T A B L E 3 . 2 Common rpm Options (continued)

rpm Option

Used with

Operations Description

http://www.sybex.com

Installing and Removing Packages 181

To use rpm, you combine one operation with one or more options. In most
cases, you include one or more package names or package filenames, as well.
(A package filename is a complete filename, but a package name is a short-
ened version. For instance, a package filename might be samba-2.0.7-
18mdk.i586.rpm, while the matching package name is samba.) You can
either issue the rpm command once for each package, or you can list multiple
packages, separated by spaces, on the command line. The latter is often pref-
erable when you’re installing or removing several packages, some of which
depend upon others in the group. Issuing separate commands in this situa-
tion requires that you install the depended-upon package first or remove it
last, whereas issuing a single command allows you to list the packages on the
command line in any order.

Some operations require that you give a package filename, and others
require a package name. In particular, -i, -U, -F, and the rebuild oper-
ations require package filenames. -q, -V, and -e normally take a package
name, although the -p option can modify a query (-q) operation to work on
a package filename.

When installing or upgrading a package, the -U operation is generally the
most useful because it allows you to install the package without manually
uninstalling the old one. This one-step operation is particularly helpful when
packages contain many dependencies because rpm detects these and can per-
form the operation should the new package fulfill the dependencies provided
by the old one.

To use rpm to install or upgrade a package, issue a command similar to the
following:

rpm -Uvh samba-2.0.7-18mdk.i586.rpm

You could also use rpm -ivh in place of rpm -Uvh if you don’t already
have a samba package installed.

It’s possible to distribute the same program under different names. In this sit-
uation, upgrading may fail, or it may produce a duplicate installation, which
can yield bizarre program-specific malfunctions. Red Hat has described a for-
mal system for package naming to avoid such problems, but they still occur
occasionally. Therefore, it’s best to upgrade a package using a subsequent
release provided by the same individual or organization that provided the
original.

http://www.sybex.com

182 Chapter 3 � Software Management

Verify that the package is installed with the rpm -qi command, which
displays information such as when and on what computer the binary pack-
age was built. Listing 3.1 demonstrates this command. (rpm -qi also dis-
plays an extended plain-English summary of what the package is, which has
been omitted from Listing 3.1.)

Listing 3.1: RPM Query Output

$ rpm -qi samba

Name : samba Relocations: (not
�relocateable)

Version : 2.0.7 Vendor:
�MandrakeSoft

Release : 18mdk Build Date: Mon
�16 Oct 2000 09:54:0 6 AM EDT

Install date: Sat 04 Nov 2000 11:36:09 AM EST Build
�Host: no.mandrakesoft.com

Group : System/Servers Source RPM:
�samba-2.0.7-18mdk.src.rpm

Size : 10429317 License: GPL

Packager : Till Kamppeter <till@mandrakesoft.com>

Summary : Samba SMB server.

RPM Compared to Other Package Formats

RPM is a very flexible package management system. In most respects, it’s
comparable to Debian’s package manager, and it offers many more features
than tarballs do. When compared to Debian packages, the greatest strength
of RPMs is probably their ubiquity. Many software packages are available in
RPM form from their developers and/or from distribution maintainers.

Distribution packagers frequently modify the original programs in order to
make them integrate more smoothly into the distribution as a whole. For
instance, distribution-specific startup scripts may be added, program binaries
may be relocated from default /usr/local subdirectories, and program
source code may be patched to fix bugs or add features. Although these
changes can be useful, you may not want them, particularly if you’re using a
program on another distribution.

http://www.sybex.com

Installing and Removing Packages 183

The fact that there are so many RPM-based distributions can also be a
boon. You may be able to use an RPM intended for one distribution on
another, although as noted earlier, this isn’t certain. In fact, this advantage
can turn into a drawback if you try to mix and match too much—you can
wind up with a mishmash of conflicting packages that can be very difficult
to disentangle.

The RPMFind Web site, http://rpmfind.net/linux/RPM, is an extremely use-
ful resource when you want to find an RPM of a specific program. This site
includes links to RPMs built by programs’ authors, specific distributions’
RPMs, and those built by third parties.

Compared to tarballs, RPMs offer much more sophisticated package
management tools. This can be important when upgrading or removing
packages and also for verifying the integrity of installed packages. On the
other hand, although RPMs are very common in the Linux world, they’re
less common on other platforms. Therefore, you’re more likely to find tar-
balls of generic Unix source code, and tarballs are preferred if you’ve written
a program that you intend to distribute for other platforms.

Debian Packages

In their overall features, Debian packages are similar to RPMs, but the
details of operation for each differ, and Debian packages are used on differ-
ent distributions than are RPMs. Because each system uses its own database
format, RPMs and Debian packages aren’t interchangeable, although con-
version between the formats is possible. (This process is described in one of
the upcoming sections, “Converting between Package Formats.”)

Distributions That Use Debian Packages

As the name implies, Debian packages originated with the Debian distribu-
tion. Since that time, the format has been adopted by several other distribu-
tions, including Storm, Corel, and Libranet. All three of these are derived
from the original Debian, which means that packages from the original
Debian are likely to work well on other Debian-based systems. Although Debian
doesn’t emphasize flashy GUI installation or configuration tools, its deriva-
tives—particularly Corel and Storm—add GUI configuration tools to the

http://www.sybex.com

184 Chapter 3 � Software Management

base Debian system, which makes these distributions more appealing to
Linux novices. The original Debian favors a system that’s as bug-free as pos-
sible, and it tries to adhere strictly to open source software principles, rather
than invest effort in GUI configuration tools. The original Debian is unusual
in that it’s maintained by volunteers who are motivated by the desire to build
a product they want to use, rather than by a company that is motivated by
profits.

Like RPM, the Debian package format is neutral with respect to both OS
and CPU type. Debian packages are extremely rare outside of Linux,
although there are efforts underway to create a Debian distribution that uses
the GNU Hurd kernel rather than the Linux kernel. Such a distribution
would not be Linux but would closely resemble Debian GNU/Linux in oper-
ation and configuration.

The original Debian distribution has been ported to many different CPUs,
including x86, PowerPC, Alpha, 680x0, MIPS, and SPARC. x86 was the
original architecture, and subsequent ports exist at varying levels of matu-
rity. Derivative distributions generally work only on x86 systems, but this
could change in the future.

Debian packages follow a naming convention similar to those for RPMs,
but Debian packages generally don’t include codes in the filename to specify
a package’s architecture—there is no i386, for instance, to specify an x86
binary. Some Debian-based distributions, however, do use these codes. In
Corel Linux 1.1 and later, for instance, a filename ending in i386.deb indi-
cates an x86 binary, and all.deb indicates a CPU-independent package,
such as documentation or scripts. As with RPM files, this file-naming con-
vention is only that—a convention. You can rename a file as you see fit,
either to include or omit the processor code. There is no code for Debian
source packages because, as described shortly, these actually consist of sev-
eral separate files.

The dpkg Command Set

Debian packages are incompatible with RPM packages, but the basic prin-
ciples of operation are the same across both package types. Like RPMs,
Debian packages include dependency information, and the Debian package
utilities maintain a database of installed packages, files, and so on. You use
the dpkg command to install a Debian package. This command’s syntax is
similar to that of rpm:

dpkg [options][action] [package-files|package-name]

http://www.sybex.com

Installing and Removing Packages 185

The action is the action to be taken; common actions are summarized in
Table 3.3. The options (Table 3.4) modify the behavior of the action, much
like the options to rpm.

T A B L E 3 . 3 dpkg Primary Actions

dpkg Action Description

-i or --install Installs a package

--configure Reconfigures an installed package:
runs the postinstallation script to
set site-specific options

-r or --remove Removes a package, but leaves
configuration files intact

-P or --purge Removes a package, including con-
figuration files

-p or --print-avail Displays information about an
installed package

-I or --info Displays information about an
uninstalled package file

-l pattern or --list pattern Lists all installed packages whose
names match pattern

-L or --listfiles Lists the installed files associated
with a package

-S pattern or --search pattern Locates the package(s) that own the
file(s) specified by pattern

-C or --audit Searches for partially installed
packages and suggests what to do
with them

http://www.sybex.com

186 Chapter 3 � Software Management

T A B L E 3 . 4 Options to Fine-Tune dpkg Actions

dpkg Option

Used with

Actions Description

--root=dir All Modifies the Linux system
using a root directory
located at dir. Can be used
to maintain one Linux
installation discrete from
another one, say during OS
installation or emergency
maintenance.

-B or --auto-deconfigure -r Disables packages that rely
upon one that is being
removed.

--force-things Assorted Forces specific actions to be
taken. Consult the dpkg man
page for details of things
this option does.

--ignore-depends=package -i, -r Ignores dependency
information for the specified
package.

--no-act -i, -r Checks for dependencies,
conflicts, and other
problems without actually
installing or removing the
package.

--recursive -i Installs all packages that
match the package name
wildcard in the specified
directory and all
subdirectories.

-G -i Doesn’t install the package if
a newer version of the same
package is already installed.

http://www.sybex.com

Installing and Removing Packages 187

As with rpm, dpkg expects a package name in some cases and a package
filename in others. Specifically, --install (-i) and --info (-I) both
require the package filename, but the other commands take the shorter pack-
age name.

As an example, consider the following command, which installs the
samba-common_2.0.7-3.deb package:

dpkg -i samba-common_2.0.7-3.deb

If you’re upgrading a package, you may need to remove an old package
before installing the new one. To do this, use the -r option to dpkg, as in

dpkg -r samba

To find information on an installed package, use the -p parameter to
dpkg, as shown in Listing 3.2. This listing omits an extended English descrip-
tion of what the package does.

Listing 3.2: dpkg Package Information Query Output

$ dpkg -p samba-common_2.0.7-3.deb

Package: samba-common

Priority: optional

Section: net

Installed-Size: 3206

Maintainer: Eloy A. Paris <peloy@debian.org>

Architecture: i386

Source: samba

Version: 2.0.7-3

Replaces: samba (<= 2.0.5a-2)

Depends: libpam-modules, libc6 (>= 2.1.2), libncurses5,
�libpam0g, libreadline4 (>= 4.1)

Filename: dists/potato/main/binary-i386/net/
�samba-common_2.0.7-3.deb

Size: 569658

MD5sum: 12212667de0fd35aeb656624af2ac7d2

-E or --skip-same-version -i Doesn’t install the package if
the same version of the
package is already installed.

T A B L E 3 . 4 Options to Fine-Tune dpkg Actions (continued)

dpkg Option

Used with

Actions Description

http://www.sybex.com

188 Chapter 3 � Software Management

Debian-based systems often use a somewhat higher-level utility called
dselect to handle package installation and removal. dselect provides a
text-mode list of installed packages and packages available from a specified
source (such as a CD-ROM drive or an FTP site), and it allows you to select
which packages you want to install and remove. This interface can be very
useful when you want to install several packages, but dpkg is often more con-
venient when manipulating just one or two packages. Because dpkg can take
package filenames as input, it’s also the preferred method of installing
a package that you download from an unusual source or create yourself.

Using apt-get

Another option for Debian package management is the apt utilities, and par-
ticularly apt-get. This tool allows you to perform easy upgrades of pack-
ages, especially if you have a fast Internet connection. Debian-based systems
include a file, typically /etc/apt/sources.list, that specifies locations
from which important packages can be obtained. If you installed the OS from a
CD-ROM drive, this file will initially list directories on the installation CD-
ROM in which packages can be found. There are also likely to be a few lines
near the top, commented out with pound signs (#), indicating directories on
an FTP or Web site from which you can obtain updated packages. (These
lines may be uncommented if you did a network install initially.)

Don’t add a site to /etc/apt/sources.list unless you’re sure it can be
trusted. apt-get does automatic and semi-automatic upgrades, so if you add
a network source to sources.list and that source contains unreliable pro-
grams or programs with security holes, your system will become vulnerable
after upgrading via apt-get.

apt-get works by obtaining information on available packages from the
sources listed in /etc/apt/sources.list and then using that information
to upgrade or install packages. The syntax is similar to that of dpkg:

apt-get [options][command] [package-names]
Table 3.5 lists the apt-get commands, and Table 3.6 lists the most com-

monly used options. In most cases, you won’t actually use any options with
apt-get, just a single command and possibly one or more package names.
One particularly common use of this utility is to keep your system up-to-date
with any new packages. The following two commands will accomplish this

http://www.sybex.com

Installing and Removing Packages 189

goal, if /etc/apt/sources.list includes pointers to up-to-date file archive
FTP sites:

apt-get update

apt-get dist-upgrade

T A B L E 3 . 5 apt-get Commands

apt-get

Command Description

update Obtains updated information on packages available from the instal-
lation sources listed in /etc/apt/sources.list.

upgrade Upgrades all installed packages to the newest
versions available, based on locally stored
information on available packages.

dselect-upgrade Performs any changes in package status (installation, removal, etc.)
left undone after running dselect.

dist-upgrade Similar to upgrade, but performs “smart” conflict
resolution to avoid upgrading a package if that would break a depen-
dency.

install Installs a package by package name (not by package filename),
obtaining the package from the source that contains the most up-to-
date version.

remove Removes a specified package by package name.

source Retrieves the newest available source package file by package file-
name, using information on available packages and installation
archives listed in /etc/apt/sources.list.

check Checks the package database for consistency and
broken package installations.

clean Performs housekeeping to help clear out information on retrieved
files from the Debian package database. If you don’t use dselect for
package management, run this from time to time in order to save
disk space.

http://www.sybex.com

190 Chapter 3 � Software Management

autoclean Similar to clean, but only removes information on packages that can
no longer be downloaded.

T A B L E 3 . 6 Most Useful apt-get Options

apt-get Option

Used with

Commands Description

-d or --download-only upgrade,
dselect-upgrade,
install, source

Downloads package files but
does not install them.

-f or --fix-broken install, remove Attempts to fix a system on
which dependencies are
unsatisfied.

-m, --ignore-missing, or
--fix-missing

upgrade,
dselect-upgrade,
install, remove,
source

Ignores all package files that
can’t be retrieved (because of
network errors, missing files, or
the like).

-q or --quiet All Omits some progress indicator
information. May be doubled
(for instance, -qq) to produce
still less progress information.

-s, --simulate, --just-print,
--dry-run, --recon, or --no-act

All Performs a simulation of the
action without actually modify-
ing, installing, or removing files.

-y, --yes, or --assume-yes All Produces a “yes” response to
any yes/no prompt in
installation scripts.

T A B L E 3 . 5 apt-get Commands (continued)

apt-get

Command Description

http://www.sybex.com

Installing and Removing Packages 191

If you use apt-get to automatically upgrade all packages on your system, you
are effectively giving control of your system to the distribution maintainer.
Although Debian or other distribution maintainers are unlikely to try to break
into your computer in this way, an automatic update with minimal supervi-
sion on your part could easily break something on your system, particularly if
you’ve obtained packages from unusual sources in the past.

Debian Packages Compared to Other Package Formats

The overall functionality of Debian packages is similar to that of RPMs,
although there are differences. Debian source packages are not actually sin-
gle files; they’re groups of files—the original source tarball, a patch file that’s
used to modify the source code (including a file to control the building of a
Debian package), and a .dsc file that contains a digital “signature” to help
verify the authenticity of the collection. The Debian package tools can com-
bine these and compile the package to create a Debian binary package. This
structure makes Debian source packages slightly less convenient to transport
because you must move at least two files (the tarball and patch file; the .dsc
file is optional) rather than just one. Debian source packages also support
just one patch file, whereas RPM source packages may contain multiple
patch files. Although you can certainly combine multiple patch files into one,
doing so makes it less clear where a patch comes from, thus making it harder
to back out of any given change.

These source package differences are mostly of interest to software devel-
opers, however. As a system administrator or end user, you need not nor-
mally be concerned with them, unless you must recompile a package from a

-b, --compile, or --build source Compiles a source package
after retrieving it.

--no-upgrade install Causes apt-get to not upgrade
a package if an older version is
already installed.

T A B L E 3 . 6 Most Useful apt-get Options (continued)

apt-get Option

Used with

Commands Description

http://www.sybex.com

192 Chapter 3 � Software Management

source form—and even then, the differences between the formats need not be
overwhelming. The exact commands and features used by each system differ,
but they accomplish similar overall goals.

Because all distributions that use Debian packages in 2001 are derived
from Debian, these distributions tend to be more compatible with one
another (in terms of their packages) than are RPM-based distributions. In
particular, Debian has defined details of its system startup scripts and many
other features to help Debian packages install and run on any Debian-based
system. This helps Debian-based systems avoid the sorts of incompatibilities
in startup scripts that can creep into RPM systems. Of course, some future
distribution could violate Debian’s guidelines for these matters, so this
advantage isn’t guaranteed to hold over time.

As a practical matter, it can be harder to locate Debian packages than
RPM packages for some more exotic programs. Nonetheless, Debian main-
tains a good collection at http://www.debian.org/distrib/packages,
and some program authors make Debian packages available, as well. If you
can find an RPM but not a Debian package, you may be able to convert the
RPM to Debian format using the alien tool, described shortly. If all else
fails, you can use a tarball, but you’ll lose the advantages of the Debian pack-
age database.

Tarballs

All distributions can use tarballs—files collected together with the tar utility
and typically compressed with compress, gzip, or bzip2. Like RPM and
Debian packages, tarballs may contain source code, binary files, or architecture-
independent files such as documentation or fonts. These files lack depen-
dency information, however, and tar maintains no database of installed
files, so it’s harder to remove programs installed via tarballs than it is to
remove RPM or Debian packages.

The Ubiquity of Tarballs

tar is a multipurpose tool. The program was originally created for archiving
files to tape—the name stands for “tape archiver.” Because Unix (and hence
Linux) treats hardware devices as files, a tape archiving program like tar can
be used to create archives as files on disk. These files can then be compressed,
copied to floppy disk or other removable media, sent over a network, and so on.

http://www.sybex.com

Installing and Removing Packages 193

In the Linux world, tarballs fill a role that’s similar to that of zip files in
the DOS and Windows worlds. There are differences, however. Zip utilities
(including the zip and unzip commands in Linux) compress files and then
add them to the archive. tar, by contrast, does not directly support com-
pression, so to compress files, the resulting archive is compressed with a sec-
ond utility, such as gzip, bzip2, or compress. gzip is the most popular on
Linux systems, although bzip2 is becoming more common and compress is
still used on some older Unix systems. (gzip can uncompress old compress
archives, so many Linux systems omit compress.) The resulting file may
have two extensions (such as.tar.gz or .tar.bz2), or that dual extension
may be combined into a single, three-character extension (.tgz) for easy
storage on filesystems (like DOS’s FAT) that don’t support longer or multi-
ple extensions. (The older compress archives used an uppercase Z extension,
so these tarballs have .tar.Z extensions.)

Both RPM and Debian packages are similar to tarballs internally. RPM uses a
compressed cpio archive (similar to a compressed tar archive) to store its
files, and custom file components aside from the cpio archive to store RPM-
specific information. Debian packages use tarballs for file storage and a con-
trol file, merged together into one file using the ar utility. (ar is an archiving
utility similar to tar in overall principles.)

Considered as a package distribution mechanism, tarballs are used prima-
rily by the Slackware distribution, which is the oldest of the major Linux dis-
tributions still in common use. Slackware eschews flashy configuration tools
in favor of a bare-bones approach. In this respect, Slackware resembles
Debian, but Slackware also foregoes the package management tools upon
which Debian relies. As noted earlier, Debian also uses source tarballs as part
of its source package management system, but most administrators don’t
need to be concerned with this detail.

Although most other distributions don’t rely upon tarballs, they can be
used with any distribution. Tarballs are particularly likely to be useful when
you’re faced with the task of compiling a program from source code, and
particularly if you must modify that source code for your system. If you like,
you can go to the effort of creating appropriate control files and turn a
source tarball into an RPM or Debian package, but if you only need to use
a program on a single computer, it’s usually not worth the effort to do this.

http://www.sybex.com

194 Chapter 3 � Software Management

Source code in tarball form usually comes with installation instructions.
These will probably tell you to edit one or two configuration files, run a con-
figuration command, and run two or three commands to build binary files
from the source code and install them on your system. Details vary substan-
tially from one package to another, though, so check the instructions.

Binary tarballs contain precompiled programs. Sometimes the tarball
contains the program files in a form that allows you to expand the tarball
directly into a target directory. For instance, you could change to the /usr/
local directory and uncompress the tarball to have the program files
dropped directly into /usr/local/bin, /usr/local/man, and so on. Other
times you may need to uncompress the tarball in a temporary directory and
then run an installation utility to install the software.

If you’re unsure of how to proceed with a tarball installation, extract it into a
temporary directory and look for instructions. Sometimes, you’ll find separate
installation instructions on the program’s Web site or on the FTP site from
which you obtained the software.

The tar Command Set

tar is a complex package with many options. Most of what you’ll do with tar,
however, can be covered with a few common commands. Table 3.7 lists the
primary tar commands, and Table 3.8 lists the qualifiers for these com-
mands that modify what the command does. Whenever you run tar, you use
exactly one command and you usually use at least one qualifier.

T A B L E 3 . 7 tar Commands

Command Abbreviation Description

--create c Creates an archive

--concatenate A Appends tar files to an archive

--append r Appends non-tar files to an archive

--update u Appends files that are newer than
those in an archive

http://www.sybex.com

Installing and Removing Packages 195

--diff or --compare d Compares an archive to files on disk

--list t Lists archive contents

--extract or --get x Extracts files from an archive

T A B L E 3 . 8 tar Qualifiers

Command Abbreviation Description

--directory dir C Changes to directory dir before performing
operations

--file [host:]file f Uses file called file on computer called host
as the archive file

--listed-incremental file g Performs incremental backup or restore,
using file as a list of previously archived files

--one-file-system l Backs up or restores only one filesystem
(partition)

--multi-volume M Creates or extracts a multitape archive

--tape-length N L Changes tapes after N kilobytes

--same-permissions p Preserves all protection information

--absolute-paths P Retains the leading / on filenames

--verbose v Lists all files read or extracted; when used
with --list, displays file sizes, ownership,
and time stamps

--verify W Verifies the archive after writing it

T A B L E 3 . 7 tar Commands (continued)

Command Abbreviation Description

http://www.sybex.com

196 Chapter 3 � Software Management

Of the commands listed in Table 3.7, the most commonly used are
--create, --extract, and --list. The most useful qualifiers from
Table 3.8 are --file, --listed-incremental, --one-file-system,
--same-permissions, --gzip, --bzip2, and --verbose. (--bzip2 is a
fairly recent addition, so it may not work if you’re using an older version of
tar.) If you fail to specify a filename with the --file qualifier, tar will try
to use a default device, which is often (but not always) a tape device file.

A typical tar command to extract files from a tarball looks like this:

tar --extract --verbose --gunzip --file
�samba-2.0.7.tar.gz

This command can be expressed somewhat more succinctly using com-
mand abbreviations:

tar xvzf samba-2.0.7.tar.gz

In either form, this tar command extracts files from samba-
2.0.7.tar.gz to the current directory. Most tarballs include entire direc-
tory trees, so this command results in one or more directories being created,
if they don’t already exist, as well as files within the directories.

Before extracting a tarball, use the --list command to find out what files and
directories it contains. This information can help you locate the files stored in
the tarball. In addition, it can help you spot problems before they should occur
in case a tarball does not contain a neat directory structure, but instead con-
tains files that would all be dropped in the current directory.

--exclude file (none) Excludes file from the archive

--exclude-from file X Excludes files listed in file from the archive

--gzip or --ungzip z Processes archive through gzip

--bzip2 I or y Processes archive through bzip2

T A B L E 3 . 8 tar Qualifiers (continued)

Command Abbreviation Description

http://www.sybex.com

Installing and Removing Packages 197

Tarballs Compared to Other Package Formats

Although all Linux distributions ship with tar, gzip, and usually bzip2,
few use these tools as a means of distributing packages that are part of the
OS. The reason is that tar lacks any means of maintaining a package data-
base. Although it’s possible to create a set of tarballs that together contain a
complete Linux distribution, and it’s even possible to write installation
scripts to install appropriate subsets of tarballs, maintaining such a system
poses certain challenges. Without dependency information or information
on what files belong to what packages, it can become difficult to remove
packages or even install new ones that may depend on other packages. If you
install a new mail reader, for instance, it might crash or fail to start because
it depends on a library you don’t have or on a newer version of a library that
you do have. Experienced system administrators can sometimes diagnose
such problems without too much trouble, but these difficulties frequently
stump new administrators.

One feature of tar that can be very useful is that the program can be used
to easily create packages, as well as extract files from them. You can use this
feature to move data files, documentation, or programs you’ve written or
built yourself. Of course, you can also create RPM or Debian packages, but
this process is more complex, and the usual method of doing this requires
that you provide a tarball of the source code to begin with. It’s easiest to cre-
ate a tarball of all the files in a single directory, thus:

tar cvzf my-stuff.tgz my-stuff-dir

A similar command can be used to back up a directory or even an entire
computer to tape. Instead of providing a tarball filename, though, you spec-
ify the name of a tape device file, such as /dev/st0, for the first SCSI tape
unit. This topic is further discussed in Chapter 7.

Whether or not you create your own tarballs or your distribution uses tar-
balls for its packages, you should be familiar with tar because of the com-
mon nature of tarballs as a source code distribution mechanism and because
of tar’s utility as a tape backup tool. (You may choose to use other tools for
tape backup, but tar is the lowest-common-denominator choice for this task.)

Converting between Package Formats

Sometimes you’re presented with a package file in one format, but you want
to use another format. This is particularly common when you use a Debian-
based distribution and can only find tarballs or RPM files of a package, or

http://www.sybex.com

198 Chapter 3 � Software Management

when you use a tarball-based distribution and want to use an RPM or
Debian package. When this happens, you can keep looking for a package file
in the appropriate format, install the tools for the foreign format, create a
package from a source tarball using the standard RPM or Debian tools, or
convert between package formats with a utility like alien.

This section focuses on this last option. The alien program comes with
Debian and a few other distributions. This program can convert between
RPM packages, Debian packages, Stampede packages (used by Stampede
Linux), and tarballs. There are some caveats, however. For one thing, alien
requires that you have appropriate package manager software installed—for
instance, both RPM and Debian to convert between these formats. alien
doesn’t always convert all dependency information completely correctly.
When converting from a tarball, alien copies the files directly as they had
been in the tarball, so alien works only if the original tarball has files that
should be installed off of the root directory (/) of the system.

Although alien requires both RPM and Debian package systems to be
installed to convert between these formats, alien doesn’t use the database
features of these packages unless you use the --install option. The pres-
ence of a foreign package manager isn’t a problem so long as you don’t use
it to actually install software that might duplicate or conflict with software
installed with your primary package manager.

The basic syntax of alien is as follows:

alien [options] file[...]
The most important options are --to-deb, --to-rpm, --to-slp, and

--to-tgz, which convert to Debian, RPM, Stampede, or tarball format,
respectively. (If you omit the destination format, alien assumes you want a
Debian package.) The --install option installs the converted package and
removes the converted file. Consult the alien man page for additional
options.

For instance, suppose you have a Debian package called someprogram-1
.2.3-4_i386.deb, but you want to create an RPM from this. You could
issue the following command to create an RPM called someprogram-1
.2.3-5.i386.rpm:

alien --to-rpm someprogram-1.2.3-4_i386.deb

http://www.sybex.com

Installing and Removing Packages 199

If you use a Debian-based system and want to install a tarball but keep a
record of the files it contains in your Debian package database, you can do
so with the following command:

alien --install bbbbiiiinnnnaaaarrrryyyy----ttttaaaarrrrbbbbaaaallllllll....ttttaaaarrrr....ggggzzzz

It’s important to remember that converting a tarball converts the files in
the directory structure of the original tarball using the system’s root direc-
tory as the base. Therefore, you may need to unpack the tarball, juggle files
around, and repack it to get the desired results prior to installing the tarball
with alien. For instance, suppose you’ve got a binary tarball that creates a
directory called program-files, with bin, man, and lib directories under
this. The intent might have been to unpack the tarball in /usr or /usr/
local and create links for critical files. To convert this tarball to an RPM,
you might issue the following commands:

tar xvfz program.tar.gz

mv program-files usr

tar cvfz program.tgz usr

rm -r usr

alien --to-rpm program.tgz

By renaming program-files to usr and creating a new tarball
(program.tgz as opposed to the original program.tar.gz), you’ve created
a tarball that, when converted to RPM format, will have files in the locations
you want—/usr/bin, /usr/man, and /usr/lib. You might need to per-
form more extensive modifications, depending upon the contents of the orig-
inal tarball.

GUI Package Management Tools

The text-mode utilities that underlie all Linux package management tools
are very flexible, but they can be intimidating to new administrators. For this
reason, several GUI administrative tools also exist. These programs typically
serve as front ends to the text-based programs described earlier—that is, they
call the text-mode programs and interpret the results in a GUI window.
Many distributions ship with their own unique GUI package management
tools, and it’s impossible to cover them all here. Therefore, this section out-
lines just one: GNOME RPM. Others are similar to this one.

http://www.sybex.com

200 Chapter 3 � Software Management

GNOME RPM is useful only on systems that use RPM. If you’re using a
Debian-based system, a similar utility is the Storm Package Manager, which
is part of Storm Linux (http://www.stormix.com), but it can be used on
Debian or other Debian-based systems.

The GNOME RPM program (see Figure 3.1) is a popular GUI interface
to the RPM utilities. GNOME RPM ships with the Red Hat and Mandrake
distributions, and it can be installed and used on other RPM-based distribu-
tions. GNOME RPM supports basic package installation, removal, upgrad-
ing, and maintenance functions. It lacks interfaces to some of the more
advanced RPM features, such as the tools used to build binary RPMs from
source RPMs, or to create your own RPM packages. To start it, type gnorpm
in a command prompt window such as an xterm.

F I G U R E 3 . 1 GNOME RPM provides a point-and-click interface to package management on
RPM-based systems.

The left pane of GNOME RPM contains a list of package groups. Some
of these groups have subgroups—for instance, Figure 3.1 shows the System
group open, revealing the subgroups of Base, Configuration, Fonts, and so
on. These groups are not unique to GNOME RPM; they’re stored as part of

http://www.sybex.com

Installing and Removing Packages 201

an RPM file’s basic information. You can learn an RPM’s group from the
command line by typing rpm -qi packagename.

Not all distributions use package groups. In particular, SuSE doesn’t group its
packages. This can make it difficult to locate packages by type, but because
the classification isn’t entirely standardized in distributions that use groups,
the presence of groups isn’t always a great help.

One trouble with RPMs is that the structure of package groups isn’t
always consistent. You might think that a package should be in System/Servers,
but it might actually be in Networking/Daemons. If you know the pack-
age name, this isn’t a problem with text-based tools, but it can be with
GNOME RPM. The solution is to use the Find Packages feature, which you
can open by choosing Operations � Find. This produces the Find Packages
dialog box (Figure 3.2). Enter search parameters in the Find Packages That
field and select a search criterion, such as Match Label, shown in Figure 3.2.
Click Find and Find Packages will display all the packages that match the cri-
terion you entered. You can then select the package from the list (only one
is shown in Figure 3.2) and query, uninstall, or verify the package by clicking
the appropriate button.

F I G U R E 3 . 2 The GNOME RPM Find Packages dialog box locates packages that meet your
criteria and lets you perform certain actions on them.

The right pane of the main GNOME RPM window shows all the pack-
ages installed in whatever group you’ve selected in the left pane of the win-
dow. If you want to perform an operation on an installed package, you can
click one or more of these packages and choose the appropriate action from
the menu bar. For instance, to uninstall a package, select it and choose Pack-
ages � Uninstall. To verify a package’s integrity, select the package and
choose Packages � Verify. (Alternatively, you can use the appropriate

http://www.sybex.com

202 Chapter 3 � Software Management

buttons just below the menu bar.) In both cases, GNOME RPM will show
a dialog box with information on the tool’s progress, and then a status dialog
box. When verifying a package, the status dialog box will include informa-
tion on any deviations from the original installed state of the package, such
as missing or altered files.

GNOME RPM separates its package group and package listings into two
panes, but this isn’t true of all package management utilities. Some use a sin-
gle pane similar to the package group listing of GNOME RPM, but individual
packages are included in this list.

To install a package, choose Operations � Install. The result is the Install
dialog box, shown in Figure 3.3. If you’ve mounted your installation CD-
ROM, you should see uninstalled packages listed in an expandable group
tree. Locate the package you want and check the box to the right of its name,
as shown for GXedit in Figure 3.3; then click Install. If you want to install
a package you’ve downloaded, click Add. This produces a file selection dia-
log box in which you can pick the packages you’ve obtained and add them
to the list of packages, then install them.

F I G U R E 3 . 3 The GNOME RPM Install dialog box lets you install packages from your
distribution’s installation CD-ROM or from any other source.

http://www.sybex.com

Validating Proper Program Functioning 203

Validating Proper Program Functioning

Unfortunately, it’s usually not sufficient to install a package and then
walk away from the system. Programs frequently require configuration, and
even those that should not require explicit attention by the system adminis-
trator may misbehave in various ways. Problems may be caused by incom-
patible libraries, missing dependencies, bugs, invalid assumptions the
program makes about the working system, and so on. Some of these issues
are covered in greater detail in Chapter 9,“Troubleshooting.” Before jump-
ing the gun and assuming problems exist, though, you should perform at
least minimal tests of the software.

Checking an Application on a Test System

In a mission-critical production environment, it’s seldom wise to install new
software directly on the main production system. Even a trivial upgrade (say,
version 2.4.6 to 2.4.7) can introduce bugs, changes to configuration file for-
mats, incompatibilities with interdependent programs, and so on. For this
reason, evaluating new software on a test system is generally a good idea.

Why Use GUI over Command-Line Package Management
Tools?

Even experienced administrators who understand the command-line tools
can make good use of GNOME RPM, Storm Package Manager, or similar
utilities. The fact that such programs provide browseable listings of all
packages installed in a system makes them excellent tools for pruning a
system of unneeded packages. By spending a few minutes examining all
the package categories, you can get a good idea of what your distribution
has installed in your computer and remove anything that’s unnecessary.
This action can save many megabytes of disk space, and it can even
improve your system’s security, if you remove unwanted servers or pro-
grams that might pose security risks.

http://www.sybex.com

204 Chapter 3 � Software Management

Ideally, your test system should be configured identically to the ultimate
production system you plan to use—or as identically as can be managed. For
instance, you should have the same hardware, the same version of Linux,
and all the same libraries and other support packages. The systems should be
configured the same way in terms of networking (but they probably won’t
have the same IP addresses unless you can set up a small isolated test net-
work). If the software you want to test is an upgrade of a package that’s
already installed on the production system, you should first install the ver-
sion that’s working on the production system on the test system, and then
configure it in the same way. If possible, copy the production system’s con-
figuration files to the test system, along with any data files. For instance, if
you were testing an upgrade to a Web server, you would copy the Web
server’s configuration files and your entire collection of Web pages. Note
that in some cases, these files will require modification so that they reference
the test system rather than the production system. Web pages may have
URLs that point to the production system by name, for instance.

In practice, however, you may not have the luxury of creating a near-
exact copy of the production system for testing purposes. You may have to
make do with a previous-generation computer system with radically differ-
ent hardware, for instance. Depending upon what software you’re testing,
this may not be too big of a handicap, though, because most software doesn’t
really care about your hardware. Be aware, however, that drivers are a nota-
ble exception to this rule. Therefore, it’s important that you test with the
same Linux distribution you use on the production system. Distributions fre-
quently contain radically different package collections, so a product that
runs perfectly on the test system could fail miserably on the production system.

Once you’ve configured your test system to be as similar to your produc-
tion computer as possible, read the documentation! Some administrators
take an install-first-and-ask-questions-later approach to software installa-
tion. Such an approach may work well on occasion, but it’s like playing Rus-
sian Roulette—sooner or later, you’ll end up killing your system, or at least
doing it serious damage. Of course, if you’re doing the installation on a dis-
posable test system, this won’t be a crippling setback, but it will still cost you
the time it took to prepare the test system. Reading the documentation can
alert you to important software features, changes since the release you’re
currently running, bugs, and what files the software will be installing or
replacing.

If you’re using a package system like RPM or Debian, you may think you
have to install the software in order to read its documentation, but you can

http://www.sybex.com

Validating Proper Program Functioning 205

often find the documentation on the package’s Web site. If you do have to
install the documentation, see if the program you are using comes with sep-
arate documentation packages; that way you can install and read the docu-
mentation before you install the main package. Of course, one of the benefits
of package management systems is that you can easily back out of an
upgrade, so it’s unlikely you’ll do too much damage even if you install the
main package without checking out its documentation first. If you do this,
though, be sure to read the documentation soon after installing the software,
so you’ll know what to expect when you try to use it.

When you install or upgrade your test software, pay particular attention
to what happens to configuration files. RPM and Debian packages usually
leave configuration files alone, or at least back up your old configuration
files; but sometimes the package isn’t built correctly, and installing the pack-
age wipes out your old configuration files. If this happens, you’ll need to
restore your original configuration files, presumably from the production
system.

If you’re lucky, the software will run perfectly the first time you try it. If
not, you’ll have to track down the cause of the problem. This is as much an
art as a science, so it’s hard to say where to begin, especially as a general
rule—different packages are so different that good advice for one can be use-
less for another. As a general rule, configuration files and library problems
are good places to start looking. In the case of a package upgrade, configu-
ration file formats sometimes change. This is particularly true of major ver-
sion upgrades and upgrades within alpha- or beta-test cycles. (Running such
prerelease software is generally inadvisable on a production system, but
sometimes you have no choice because nothing else is available or you need
the advanced features being added in the alpha or beta software.)

You can refer to Chapter 9 for more detailed information on troubleshooting
installation errors and setbacks.

Precisely how you test the software depends on the program in question.
A small utility might require simply using it on a few test cases. A major
package like a new Web server for an important Web site might require
extensive formal tests, using multiple Web browsers to access all of the site’s
pages, and perhaps even performing benchmarks of its operation compared
to that of its predecessor. Upgrading important support libraries, such as
libc, can have consequences for literally hundreds of other programs, so you

http://www.sybex.com

206 Chapter 3 � Software Management

may need to test lots of separate packages when you do such an upgrade.
You’ll have to be the judge of how much testing to do. Keep in mind the con-
sequences of installing a bad package on the production system. If such an
upgrade could cause you or your users serious grief, substantial verification
on the test system is in order.

During this entire process, you should take notes. If you run into problems
and find solutions, your notes will help you implement these solutions when
it comes time to install the software on the production system. If you encoun-
ter many problems or have trouble finding a solution, you may want to get
your notes in order, restore the test system to its original condition, and prac-
tice reinstalling the new software so that you’re sure you can do it with min-
imal downtime on the production system.

Checking an Application on a Production System

Once you’ve checked the application on the test system, it’s time to install it
on a production system. It’s usually wise to back up this computer before the
upgrade, particularly if it’s a major upgrade. This way, if some snafu occurs,
you can restore the system to its original state and go back to your test sys-
tem to try to determine what went wrong.

After backing up the production system, install the new software, follow-
ing your notes if necessary. If you’re upgrading a program and this upgrade
requires taking down a server program or the entire computer, be sure to
schedule the upgrade for some time when it will cause the least disruption,
such as a weekend or late at night. If such a swap is practical, you might also
want to have your test system standing by, ready to take over the main sys-
tem’s duties in case you run into unexpected difficulties. Be sure to notify
your users of the upgrade so that they’re not caught unaware.

Once you’ve performed the installation or upgrade, you should run
through at least minimal tests of the software in its new production environ-
ment. You may not have time to perform a full suite of tests, particularly for
a big package, but you should at least be able to assess minimal functionality.

Some packages are so trivial that the preceding discussion may seem like
overkill. Likewise, in a small shop, you may not have the luxury of hardware
to use for a test system. In such situations, you should be extra careful to
check the documentation before you install, and in the case of an upgrade,

http://www.sybex.com

Kernel Issues 207

make sure to back up the configuration files and have a plan to restore the
original software should you encounter problems. It’s easy to install a “new
and improved” package, find that it doesn’t work, and then spend an hour
or more frantically searching for the version you had been using, or perhaps
you will find it but you’ll have trouble compiling or installing it. If you plan
properly, you can avoid the aggravation and embarrassment of this situation.

Ongoing Application Monitoring

Many programs require ongoing monitoring. Shortly after installing a major
package, you should certainly check that it’s working correctly however you
can, say by running it with test data or checking the operation of a server
from another system. You can periodically use ps to see that it’s still running
(if it should be running constantly), or try to use the software (for instance,
by using another system’s Web browser to access a new Web server).

Some programs produce log files. You can use these to monitor their per-
formance. Log files generally go in the /var/log directory tree. Consult
your package’s documentation for details. It’s usually a good idea to monitor
these logs with extra diligence soon after an upgrade. Doing so can alert you
to problems that you might not otherwise notice, like a Web server that’s
delivering Web pages only to local systems and not to the Internet at large.

Log files are discussed in more detail in the “Monitoring Log Files” section of
Chapter 4.

Kernel Issues

The Linux kernel is at the heart of any Linux system. In fact, techni-
cally speaking, the kernel is Linux. Everything else—the C libraries, the
startup files, the X servers, and so on—is independent of the Linux kernel,
and most of this code is used in other Unix-like OSs, such as FreeBSD. Many
of these programs were written under the auspices of the Free Software
Foundation’s GNU’s Not Unix (GNU) project. For this reason, some people
refer to Linux as an OS as GNU/Linux.

http://www.sybex.com

208 Chapter 3 � Software Management

In any event, the Linux kernel is both critically important and unusual in
its requirements. Therefore, it’s important that you understand how this par-
ticular piece of the software puzzle fits into Linux as a complete OS.

The Role of the Kernel

Any OS’s kernel provides critical low-level facilities. These include the
following:

� Memory management, including handling swap space, if present

� Most low-level hardware drivers (X’s video drivers and printer drivers
are two major exceptions)

� Process scheduling—determining when specific programs get access to
the CPU

� Large chunks of the network stack, providing programs with network
access

� Filesystems, for access to files on disk

For the most part, users don’t interact directly with the kernel, except
insofar as the kernel handles keyboard input and text-based video output.
Programs, however, rely upon the kernel for the just-mentioned functions.
Because of this, programs can only be as reliable as the kernel—an unreliable
kernel can manifest itself in unreliable programs or overall system instability.
Similarly, applications may be limited in what they can accomplish if the ker-
nel lacks features. Most 2.2.x Linux kernels, for instance, lacked support for
Universal Serial Bus (USB) devices, so programs using these kernels couldn’t
use USB hardware. (The 2.2.18 and 2.4.x kernels include much-improved
USB support.)

As a system administrator, you have several kernel-related duties:

� You must determine what kernel to use. A too-old kernel can limit
your hardware options, but a too-new kernel can be unreliable. The
upcoming section, “Kernel Version Numbering,” includes important
information about this.

� You must determine how to install a kernel. All Linux distributions
ship with precompiled kernels in packages similar to other software.
You may prefer to compile a kernel yourself, though. “When to
Recompile the Kernel” will help you decide when to do this.

http://www.sybex.com

Kernel Issues 209

� You must configure your system to boot the kernel you desire. “Con-
figuring Boot Loaders” covers this topic. (This is done automatically
when you install Linux, but you’ll need to deal with this if you upgrade
your kernel.)

� You must configure kernel modules for new or upgraded hardware.
This topic is covered in Chapter 8, “Hardware Issues.”

Kernel Version Numbering

Because the kernel is arguably the most important software component in a
Linux computer, it’s particularly important that you understand how Linux
kernel version numbers work. There’s a definite system to the Linux kernel
version numbers, and understanding it can help you determine when you
might want to upgrade the kernel. Also, this method of version numbering
has been adopted by some non-kernel software projects, and so it can be use-
ful in understanding them, as well.

Don’t confuse the Linux kernel version number with the Linux distribution
version number. The two are unrelated. For instance, Linux Mandrake 8.0 (a
distribution) ships with kernel 2.4.3. Some new Linux administrators merge
the two, and say they’re running (for instance) “Linux 8.0.” There is no such
thing—at least, not in 2001. “Linux 2.4.3” unambiguously refers to the kernel
version 2.4.3, but when referring to a distribution, you must specify its name.

Linux kernel versions all have three numbers, separated by periods (.):

� The first number is the major version number. In 2001, this number is 2.
A change in the major version number typically indicates a fairly sub-
stantial change in the way the kernel works.

� The second number carries special meaning. When this number is
even, it indicates a stable kernel or release kernel—one that the kernel
developers believe to be fairly bug-free and ready for use by the public
at large. Odd second numbers indicate development kernels. These
kernels are experimental—they contain major new drivers, major
rewrites of existing code, and so on. You should only use a develop-
ment kernel if you’re desperate for some feature it provides—and even
then, you can often find a backport (transfer of newer drivers to older
kernels) of such features to a stable kernel.

http://www.sybex.com

210 Chapter 3 � Software Management

� The final number indicates a minor upgrade. In the case of stable ker-
nels, these numbers typically indicate small bug fixes and occasionally
the addition of an important but well-tested new driver. In the case of
development drivers, the final number indicates progression in adding
features, fixing bugs, and (being realistic) adding new bugs along with
the new features.

At any given time, two Linux kernels are current—one in the stable
release tree, and another in the development line. When Linus Torvalds
decides that a development kernel is approaching stability with the target
features for the next stable release, he calls for a feature freeze so that no new
drivers or features will be added or changed, except to fix bugs. Over the
next few weeks or months, the development kernel’s stability improves, and
it’s eventually released as the next stable kernel. For instance, the 2.3.x ker-
nel series led to the release of a 2.4.0 kernel. When a new stable kernel is
released, the former development kernel is abandoned and work is begun on
a new line—2.5.x after the release of 2.4.0, for instance. This line will even-
tually lead to the release of a 2.6.0 or 3.0.0 kernel.

Major Linux distributions always ship with stable kernels. In early 2001,
these were late in the 2.2.x series, but with the release of the 2.4.0 kernel, dis-
tributions released by mid-2001 had 2.4.x kernels. As a general rule, it’s best
to use a kernel in the same series that the distribution uses. Changes to the
second value of the kernel number tend to introduce changes to kernel inter-
faces required by some low-level utilities, modifications to filesystem for-
mats, new driver names, and the like. Although most distributions continue
to function with such an upgraded kernel, there may be a few glitches, such
as drivers that don’t load automatically. Near the release of a new kernel,
some distributions try to make their systems ready for the new kernel. Red
Hat 7.0, for instance, aimed to be compatible with the 2.4.0 kernel. Such
attempts are not always completely successful, but if you must upgrade soon
after a new kernel is released, using such a distribution can help.

Within a single series, upgrades are usually safe. The most common rea-
son to upgrade is if a new version fixes a bug that’s been found in an older
version. Another reason to upgrade is if a new version adds a driver. For
instance, the 2.2.18 kernel added a large number of drivers that had been
developed in the 2.3.x series. This allowed people to take advantage of many
2.4.0 kernel features, such as support for USB devices, without upgrading
to 2.4.0 and running into the glitches that would be likely with such an
upgrade.

http://www.sybex.com

Kernel Issues 211

When to Recompile the Kernel

Kernels can be upgraded much like other packages, by installing a single
binary package file. (You may also need to explicitly reconfigure your boot
loader, although this may be done by automatic installation scripts.) Many
Linux administrators, though, prefer to compile their own kernels from
source code. Doing so offers several advantages:

Optimizing the kernel If you compile your own kernel, you can opti-
mize it for your particular level of CPU (486, Pentium, and so on). This
can improve performance slightly.

Individual driver configuration Most Linux drivers can be compiled
either as part of the main kernel file or as add-in modules. Most distribu-
tions ship with most drivers compiled as modules, but you can configure
a custom kernel to include in the main kernel file drivers you normally
have loaded, such as drivers for your SCSI adapter or Ethernet card. Like-
wise, you can completely remove drivers that you don’t need, such as
EIDE drivers on a SCSI-only system.

Kernel standardization Many distributions include modified versions of
the kernel by default. Changes may include adding non-standard or
updated drivers. These changes are often beneficial, but sometimes they
cause problems. Compiling your own kernel from a standard kernel
source tarball ensures you’re using a standard kernel, or at least one with
just the changes you’ve decided to make. Note that many distribution
maintainers provide kernel source in RPM or Debian package format, but
these sources may include changes, as well. You’re best off getting a ker-
nel from a generic Linux kernel repository site, like http://
www.kernel.org.

Ability to apply patches Some drivers are developed separately from the
main kernel source tree, at least initially. Sometimes, these must be
patched into the kernel source code and compiled with the rest of the ker-
nel. This is impossible if you use a precompiled kernel.

Kernel patches are generally intended for specific kernel versions. You can
often get away with applying a patch for a close version (such as a patch
intended for 2.2.16 applied to 2.2.17), but the greater the version difference,
the more likely it is that a problem will crop up.

http://www.sybex.com

212 Chapter 3 � Software Management

As a general rule, it’s seldom strictly necessary to compile your own ker-
nel; however, it’s often beneficial to do so, for any or all of the preceding rea-
sons. The details of kernel configuration and compilation are beyond the
scope of this book, however. Consult the Linux Kernel HOWTO document
(http://www.linuxdoc.org/HOWTO/Kernel-HOWTO.html) for more
details.

Configuring Boot Loaders

The kernel is an unusual program in many ways, not the least of which
is how it’s loaded. Because the kernel must run before Linux is completely
booted, the kernel must be loaded into memory in a unique way. A program
known as a boot loader handles this task. Several boot loaders are available,
some of which can boot a Linux kernel directly, others of which require help
to do the job.

This section discusses boot loaders for x86 systems. If you’re using Linux on
another architecture, such as PPC (Macintosh) or Alpha, the available boot
loaders will be different. Consult your distribution’s documentation for
details.

The Role of the Boot Loader

When it’s first powered up, an x86 CPU checks a specific area of memory for
code to execute. This code is the Basic Input/Output System (BIOS). You’re
probably familiar with the BIOS through your computer’s BIOS setup
screens, which allow you to configure features such as RAM timing and
whether or not on-board ports are active. The BIOS also provides code that
allows the computer to boot. The BIOS checks the first sector of your hard
disk (or of your floppy disk, CD-ROM, or other disk devices, depending
upon the BIOS’s capabilities and configuration) for a small boot loader pro-
gram. This program normally resides on the master boot record (MBR) of a
hard disk, or the boot sector of a floppy disk. The MBR resides on the first
sector of a hard disk, and controls the boot process. A boot sector is the
first sector of a floppy or of a hard disk partition and also controls the boot
process. (In the case of a partition’s boot sector, it’s used after the MBR.)

http://www.sybex.com

Configuring Boot Loaders 213

In the case of a PC that runs nothing but Windows, the boot loader in the
MBR is hard-coded to check for a secondary boot loader in the active pri-
mary partition. This secondary boot loader directly loads the Windows ker-
nel. The approach in Linux is similar, but standard Linux boot loaders are
somewhat more complex. The most popular Linux boot loader, the Linux
Loader (LILO), allows you to select from several different boot options, for
both Linux and non-Linux OSs. Other boot loaders are also available, as
described shortly, most of which also allow you to select which of several
OSs to run. Unfortunately, this added complexity comes at a cost: Advanced
boot loaders are more difficult to configure than is the simple single-OS boot
loader used with Windows.

In some cases, a system uses multiple boot loaders. One resides in the
MBR, and another resides in the boot sector of an individual disk partition.
(OSs on different partitions can each have their own boot sector–based boot
loaders.) In this configuration, the MBR-based boot loader is the primary
boot loader, and the one in a partition’s boot sector is a secondary boot
loader. Some boot loaders work in only one of these positions. It’s often pos-
sible for a secondary boot loader to redirect the boot process to a different
partition, in which case that partition’s boot loader becomes the tertiary
boot loader, although the configuration is the same as for secondary status.

Available Boot Loaders

Many OSs ship with their own boot loaders, and others are available from
third parties. Here are some of the most common boot loaders:

LILO As mentioned earlier, LILO is the most popular boot loader for
Linux. It can directly boot a Linux kernel, and it can function as either a
primary or a secondary boot loader. It may also be installed on a floppy
disk, which is unusual for a boot loader. When used as a secondary boot
loader, LILO should only be installed in a Linux partition; it will damage
the contents of most non-Linux filesystems. Installing LILO in a swap
partition is also inadvisable since it will be wiped out by swap activity.
LILO can redirect the boot process to non-Linux partitions, and so it can
be used to select Linux or Windows in a dual-boot system.

GRUB The GRand Unified Bootloader (GRUB) is an alternative to
LILO that’s becoming more common. GRUB was the first boot loader
that could directly boot Linux from above the 1024th cylinder of a hard
disk, which gained it some popularity. LILO has since achieved similar
capabilities, though.

http://www.sybex.com

214 Chapter 3 � Software Management

OS Loader This is one name by which Windows NT/2000’s boot loader
goes. Another is NTLDR. This is a secondary boot loader that cannot
directly boot Linux, but it can boot a disk file that can contain LILO, and
hence boot Linux indirectly. It’s common on some dual-boot installations.

System Commander This boot loader, from V Communications
(http://www.v-com.com), is the Cadillac of boot loaders, with some
very advanced features. It cannot directly boot Linux, but like many oth-
ers, it can direct the boot process to a Linux partition on which LILO is
installed.

LOADLIN This is an unusual boot loader in that it’s neither a primary nor
a secondary boot loader. Rather, it’s a DOS program that can be used to
boot Linux after DOS has already loaded. It’s particularly useful for emer-
gency situations since it allows you to boot a Linux kernel using a DOS
boot floppy, and you can also use it to pass kernel parameters to influence
the booted system’s behavior. LOADLIN comes with most Linux distribu-
tions, generally in a directory on the main installation CD-ROM.

After installing Linux, create a DOS boot floppy with LOADLIN and a copy of
your Linux kernel. You can then use this boot floppy to boot Linux if LILO mis-
behaves or your kernel is accidentally overwritten.

There are many additional third-party boot loaders, most of which, like
System Commander, cannot directly boot a Linux kernel but can boot a par-
tition on which LILO is installed. For this reason, this chapter emphasizes
LILO configuration—LILO can be used to boot Linux, whether LILO func-
tions as a primary, secondary, or tertiary boot loader. If you opt to use LILO
as a secondary boot loader, you’ll need to consult the documentation for
your primary boot loader to learn how to configure it.

On a Linux-only system, there’s no need to deal with an advanced third-party
boot loader; LILO can function as a primary boot loader without trouble on
such systems. Third-party boot loaders are most useful when you have two or
more OSs installed, and particularly when LILO has troubles redirecting the
boot process to the other OSs, which is rare.

http://www.sybex.com

Configuring Boot Loaders 215

The usual configuration for LILO places it in the MBR. Even in a Linux-
only situation, however, it’s sometimes desirable to place LILO in the Linux
boot partition. Used in this way, a standard DOS/Windows MBR will boot
Linux if the Linux boot partition is a primary partition that’s marked as
active. This configuration can be particularly helpful in DOS/Linux or
Windows/Linux dual-boot configurations because DOS and Windows tend
to overwrite the MBR at installation. Therefore, putting LILO in the Linux
boot sector puts it out of harm’s way, and you can get LILO working after
installing or reinstalling DOS or Windows by using the DOS or Windows
FDISK program and marking the Linux partition as active. If LILO is on the
MBR and is wiped out, you’ll need to boot Linux in some other way, such
as by using LOADLIN, and then rerunning the lilo program to restore LILO
to the MBR.

The 1024-Cylinder Limit

One bane of the PC world that reared its ugly head twice in the 1990s was
the so-called 1024-cylinder limit. This limit is derived from the fact that the
x86 BIOS uses a 3-number scheme for addressing hard disk sectors. Each
sector is identified by a cylinder number, a head number, and a sector num-
ber, known collectively as the sector’s CHS address. The problem is that
each of these values is limited in size. The cylinder number, in particular, is
allotted only 10 bits, and so cannot exceed 210, or 1024, values. In conjunc-
tion with the limits for sectors and heads, this limited addressable EIDE hard
disk size to precisely 504MB in the early 1990s.

When disks larger than 504MB became common, BIOSes were adjusted
with CHS translation schemes, which allowed them to juggle numbers
between cylinders, heads, and sectors. This increased the effective limit to
just under 8MB. A similar scheme abandoned CHS addressing for BIOS-to-
disk communications but retained it for BIOS-to-software communications.
This was known as linear block addressing (LBA) mode.

These limits never affected Linux once it had booted, because Linux could
handle more than 10-bit cylinder values, and it could access disks directly
using LBA mode. The Linux boot process was limited, however, because
LILO relied upon CHS addressing via the BIOS to boot the kernel. Therefore,
the Linux kernel has traditionally had to reside below the 1024-cylinder mark.

http://www.sybex.com

216 Chapter 3 � Software Management

An Overview of the LILO Configuration File

LILO is configured through the /etc/lilo.conf file. This file consists of
lines with general configuration options, followed by one or more stan-
zas—groups of lines that define a single OS to be booted. For instance,
Listing 3.3 shows a simple lilo.conf file that defines a system that can
boot either Linux or Windows.

Listing 3.3: Sample lilo.conf File

boot=/dev/hda

prompt

delay=40

map=/boot/map

install=/boot/boot.b

default=linux

lba32

message=/boot/message

image=/boot/bzImage-2.2.17

 label=linux

 root=/dev/hda9

 append="mem=128M"

 read-only

other=/dev/hda3

 label=windows

 table=/dev/hda

Each line contains a command that defines some aspect of LILO’s
operation. The following entries describe important general configura-
tion options shown in Listing 3.3:

boot=/dev/hda This option tells LILO that it will install itself to /dev/
hda—the MBR of the first physical EIDE disk. To install LILO as a sec-
ondary boot loader, put it in a Linux partition, such as /dev/hda9.

Today, all new BIOSes include support for so-called extended INT13 calls,
which bypass the CHS addressing scheme. These BIOSes allow booting an
OS from past the 1024-cylinder mark on a hard disk, but only if the boot
loader and OS support this feature. Recent versions of LILO support
extended INT13 calls, so new Linux distributions can be installed anywhere
on a hard disk—if the BIOS supports this feature.

http://www.sybex.com

Configuring Boot Loaders 217

prompt This option tells LILO to prompt the user. By default, LILO
uses a simple text-mode prompt, such as lilo:. Many modern distribu-
tions include additional parameters that add menu-based and graphical
prompts.

delay=40 LILO boots a default OS after a configurable delay,
expressed in tenths of a second. This line sets the delay to 4 seconds.

default=linux This specifies the default OS or kernel to boot; it refers
to the label line in the stanza in question. If this option is omitted, LILO
uses the first stanza as the default.

lba32 This option enables the ability to boot kernels located past the
1024th cylinder of the disk (about 8MB on most modern hard drives).

Other options are present, but you’re not likely to need to change them
unless you need to customize how LILO appears for users or enable
advanced features.

Each stanza begins with its own line—image= for Linux kernels or
other= for other OSs, such as DOS or Windows. Listing 3.3 shows all but
the first line of each stanza indented, but this isn’t required; it simply helps
distinguish the stanzas from each other. Important options for specific stan-
zas include the following:

label This is the name by which an OS or kernel will be known. In the
default LILO configuration, the user types this name at the lilo:
prompt. If LILO is configured to use a menu, the name appears in that
menu. Every stanza must have a label definition. Although Listing 3.3
shows labels named after the OSs in question, these labels are, in fact,
arbitrary.

root This option sets the root (/) filesystem for a Linux system. Once
booted, the Linux kernel looks here for startup scripts, /etc/fstab (for
the locations of other filesystems), and so on.

append This optional line lets you pass parameters to the kernel. These
parameters influence the way the kernel treats hardware. Listing 3.3
includes an append option that tells the kernel that the system has 128MB
of RAM. (Linux usually detects this correctly, but some BIOSes throw
Linux off.) You can also tell Linux what settings (IRQs and DMA chan-
nels) to use for hardware, if the drivers are built into the kernel.

http://www.sybex.com

218 Chapter 3 � Software Management

read-only Linux normally starts up by booting the root filesystem in
read-only mode, and later switches it to full read/write mode. This option
tells Linux to behave in this way; it’s a standard part of a Linux boot
stanza.

table This option allows LILO to pass the location of the boot disk’s
partition table to a non-Linux OS. This is required for some OSs to boot.
Its normal value is /dev/hda for EIDE disks or /dev/sda for SCSI disks.

LILO is a complex program that has many additional options. Consult
the lilo.conf man page for more information on these options.

It’s important to realize that there are three aspects to LILO:

� The LILO configuration file, /etc/lilo.conf

� The installed boot loader, which resides in the MBR or boot sector

� The lilo program, which converts a lilo.conf file into an installed
boot loader

After you’ve edited /etc/lilo.conf, you must type lilo to activate
your changes. If you omit this step, your system will continue to use the old
boot loader.

Adding a New Kernel to LILO

It’s possible to configure LILO to boot either of two or more kernels using
the same distribution. This can be very convenient when you want to test a
new kernel. Rather than eliminate your old working configuration, you
install a new kernel alongside the old one and create a new lilo.conf entry
for the new kernel. The result is that you can select either the old kernel or
the new one at boot time. If the new kernel doesn’t work as expected, you
can reboot and select the old kernel. This procedure allows you to avoid oth-
erwise ugly situations should a new kernel not boot at all.

Assuming you don’t need to change kernel append options or other fea-
tures, one procedure for adding a new kernel to LILO is as follows:

1. Install the new kernel file, typically in /boot. Ensure that you do not
overwrite the existing kernel file, though. If you compile your own
kernel, remember to install the kernel modules (with make modules_
install), as well.

http://www.sybex.com

Configuring Boot Loaders 219

2. Copy the stanza for the existing kernel file in /etc/lilo.conf. The
result is two identical stanzas.

3. Modify the name (label) of one of the stanzas to reflect the new ker-
nel name. You can use any arbitrary name you like, even a numeric
one, such as 242 for the 2.4.2 kernel.

4. Adjust the image line in the new kernel’s stanza to point to the new
kernel file.

5. If you want to make the new kernel the default, change the default
line to point to the new kernel.

It’s generally best to hold off on making the new kernel the default until you’ve
tested it. If you make this change too early and then can’t get around to fixing
problems with the new kernel for a while, you might find yourself accidentally
booting the bad kernel. This is normally a minor nuisance.

6. Save your /etc/lilo.conf changes.

7. Type lilo to install LILO in the MBR or boot partition’s boot sector.

Naming Kernel Files

A good practice when adding a new kernel is to give it a name that includes
its version number or other identifying information. For instance, Listing 3.3’s
kernel is called bzImage-2.2.17, identifying it as a 2.2.17 kernel. If you had
such a kernel and wanted to try adding, say, the experimental filesystem
XFS, you might call this new kernel bzImage-2.2.17-xfs. There are no hard-
and-fast rules for such naming, so use whatever system you like. As a gen-
eral rule, though, the base of the name begins with vmlinux (for a “raw” ker-
nel file), vmlinuz (for a kernel compressed with gzip), zImage (another name
for a kernel compressed with gzip), or bzImage (for a kernel compressed
with bzip2). Most distributions use vmlinuz for their kernels, but locally
compiled kernels usually go by the zImage or bzImage names. bzip2 pro-
vides greater compression than gzip does, and so it is more common with
today’s large kernels.

http://www.sybex.com

220 Chapter 3 � Software Management

Once you’ve done this, you can reboot the computer to load the new ker-
nel. Be sure to select the new kernel at the lilo: prompt, or you’ll boot the
old one. If everything works, you can go back to step 5 if you skipped it ini-
tially (remember to repeat steps 6 and 7, as well). If the new kernel doesn’t
work properly, you can reboot the computer and select the old kernel in
LILO to boot it.

Adding a New OS to LILO

Adding a new OS to LILO works much as does adding a new Linux kernel.
There are two basic ways to do this:

Multiple Linuxes You may want to install two or more Linuxes on one
computer—say, to have a small emergency system for disaster recovery or
to be able to run and test multiple distributions on one computer. When
doing this, the procedure is basically the same as that for adding a new
kernel, except that you must also specify the correct root partition (with
the root parameter). In many cases, you’ll need to mount your alternate
Linux’s root partition within the first one’s filesystem and point to the
alternate system’s kernel on this mount point. For instance, when install-
ing an emergency boot system and configuring it from the main Linux
system, you might mount the emergency installation’s root filesystem
at /emerg, so the image line might read image=/emerg/boot/
bzImage-2.2.17.

Linux and another OS LILO can boot most non-Linux OSs using the
other line in /etc/lilo.conf, as shown in Listing 3.3. Model the entry
for your non-Linux OS after this, pointing to the correct boot partition
for the alternate OS.

In either case, once you’ve saved your changes, you must remember to
type lilo. This action writes a new customized LILO to the MBR or Linux
boot partition. If you fail to do this, you’ll continue to use the old configu-
ration the next time you boot.

http://www.sybex.com

Exam Essentials 221

Summary

It is likely that you will use a text-based shell, such as bash, for much of
the work you do at a Linux system. A handful of commands can go a long
way towards making such a shell useful, giving you the ability to move about
the computer’s directory, view files, and so on.

One of your primary duties as a system administrator is to manage the
packages installed on a computer. To do this, you must often remove unused
programs, install new ones, and upgrade existing packages. You may also
need to verify the integrity of installed programs or track down what librar-
ies or other programs another one uses. In all these tasks, the RPM and
Debian package management systems can be extremely helpful. These sys-
tems track installed files and dependencies, giving you access to information
that’s not otherwise available. On occasion, though, you may need to use the
simpler tarballs—particularly if you use a tarball-based distribution like
Slackware. Sometimes you can convert between package formats using
alien or other package conversion tools.

Another of a system administrator’s duties is to check the operation of a
new package after installing it. Ideally, you can do a test installation on a
non-production system before installing the package on your main system.

Perhaps the most important package is the Linux kernel, which presents
some unique issues for package management. Many system administrators
prefer to compile their own kernels, even when they normally use binary
packages. Compiling your own kernel lets you introduce optimizations that
influence many other programs.

After you compile your kernel, you run it through the system boot pro-
cess, which is controlled by a boot loader program such as LILO. LILO is
capable of booting many OSs, not just Linux, and of selecting which of sev-
eral Linux kernels you use.

Exam Essentials

Identify critical features of RPM and Debian package formats. RPM
and Debian packages store all files for a given package in a single file that
also includes information on what other packages the software depends
upon. These systems maintain a database of installed packages and their
associated files and dependencies.

http://www.sybex.com

222 Chapter 3 � Software Management

Describe the process of installing an RPM or Debian package. Use the
rpm program to install an RPM package, or use dpkg or apt-get to install
a Debian package. These programs install, upgrade, or remove all files
associated with a package and maintain the associated databases.

Describe the ways tarballs differ from RPM or Debian packages. Tar-
balls contain no dependency information, and the tar utility doesn’t
maintain package databases comparable to those maintained by the RPM
or Debian systems.

Summarize procedures for verifying proper program functioning. Ide-
ally, programs should be tested on a disposable test system before being
installed on a production system. On both the test and production sys-
tems, basic program functioning should be tested by using the program in
typical ways before ordinary users can do so.

Explain the Linux kernel version numbering system. Kernel version
numbers consist of three components corresponding to less and less
important changes. The middle number takes on even values for stable
kernels and odd values for development kernels.

Describe the basic function of a boot loader. A boot loader is a low-
level program run by the BIOS as a step towards booting an operating sys-
tem. The common LILO boot loader for Linux can boot a Linux kernel or
redirect the boot process to another boot loader stored on a partition’s
boot sector.

Describe how LILO is configured. LILO uses a configuration file called
/etc/lilo.conf, which consists of general-purpose lines and one or
more stanzas of multiple lines associated with specific Linux kernels or
non-Linux OSs. After editing this file, an administrator must type lilo to
install the boot loader in the MBR or Linux boot sector.

http://www.sybex.com

Key Terms 223

Commands in This Chapter

Key Terms

Before you take the exam, be sure you’re familiar with these terms:

Command Description

rpm Installs, removes, updates, queries, or verifies packages
on an RPM-based Linux distribution

dpkg Installs, removes, updates, queries, or verifies packages
on a Debian-based Linux distribution

apt-get Installs, removes, or updates packages on a Debian-
based Linux distribution; can automatically retrieve
packages from a remote site

tar Adds to, deletes from, or displays the contents of a
tarball

alien Converts between Linux package formats

gnorpm GUI front-end to the rpm utility

lilo Installs a configured LILO boot loader in the MBR or
boot sector

1024-cylinder limit dependency

binary package development kernel

boot loader extended INT13

boot sector filename completion

build number GNU/Linux

CHS translation linear block addressing (LBA)

command prompt Linux Loader (LILO)

Debian package major version number

http://www.sybex.com

224 Chapter 3 � Software Management

parameter shell

primary boot loader source package

Red Hat Package Manager
(RPM)

source RPM

release kernel stable kernel

release number tarball

secondary boot loader

http://www.sybex.com

Review Questions 225

Review Questions

1. Which of the following procedures normally launches a shell? (Choose
all that apply.)

A. By starting an xterm window

B. By typing shell at a command prompt

C. By logging in using SSH

D. You can’t; the shell is started automatically at boot time

2. What key does the bash shell use to complete filenames based on the
first few characters?

A. End

B. Tab

C. Enter

D. Insert

3. What features are shared by tarballs, RPMs, and Debian packages?
(Choose all that apply.)

A. They all hold collections of files, including directory structures.

B. They all provide dependency information.

C. They all individually compress the files they contain.

D. They can all be used to store cross-platform files.

4. Which of the following is not an advantage of a source package over
a binary package?

A. A single source package can be used on multiple CPU
architectures.

B. By recompiling a source package, you can sometimes work around
library incompatibilities.

C. You can modify the code in a source package, altering the behavior
of a program.

D. Source packages can be installed more quickly than binary pack-
ages can.

http://www.sybex.com

226 Chapter 3 � Software Management

5. Which is true of using both RPM and Debian package management
systems on one computer?

A. It’s generally inadvisable because the two systems don’t share
installed file database information.

B. It’s impossible because their installed file databases conflict with
one another.

C. It causes no problems if you install important libraries once in each
format.

D. It’s a common practice on Red Hat and Debian systems.

6. Which of the following statements is true about binary RPM packages
that are built for a particular distribution?

A. They can often be used on another RPM-based distribution for the
same CPU architecture, but this isn’t guaranteed.

B. They may be used in another RPM-based distribution only when
using the --convert-distrib parameter to rpm.

C. They may be used in another RPM-based distribution only after
converting the package with alien.

D. They can be recompiled for an RPM-based distribution running on
another type of CPU.

7. Which is true of source RPM packages?

A. They consist of three files: an original source tarball, a patch file of
changes, and a PGP signature indicating the authenticity of the
package.

B. They require programming knowledge to rebuild.

C. They can sometimes be used to work around dependency problems
with a binary package.

D. They are necessary to compile software for RPM-based
distributions.

http://www.sybex.com

Review Questions 227

8. Which of the following do RPM filenames conventionally include?

A. Single-letter codes indicating Red Hat-certified build sites

B. Build date information

C. Version number and CPU architecture information

D. The initials of the package’s maintainer

9. To use dpkg to remove a package called theprogram, including its
configuration files, which of the following commands would you
issue?

A. dpkg -P theprogram

B. dpkg -p theprogram

C. dpkg -r theprogram

D. dpkg -r theprogram-1.2.3-4.deb

10. Which of the following describes a difference between apt-get
and dpkg?

A. apt-get provides a GUI interface to Debian package manage-
ment; dpkg does not.

B. apt-get can install RPMs and tarballs in addition to Debian pack-
ages; dpkg can not.

C. apt-get can automatically retrieve and update programs from
Internet sites; dpkg can not.

D. apt-get is provided only with the original Debian distribution,
but dpkg comes with Debian and its derivatives.

11. Which of the following is true of an attempt to use a Debian package
from one distribution on another Debian-derived distribution?

http://www.sybex.com

228 Chapter 3 � Software Management

A. It’s unlikely to work because of library incompatibilities and diver-
gent package-naming conventions.

B. It’s guaranteed to work because of Debian’s strong package defi-
nition and enforcement of standards for startup scripts and file
locations.

C. It will work only when the distributions are built for different
CPUs or when the alien package is already installed on the target
system.

D. It’s likely to work because of the close relationship of Debian-
based distributions, assuming the two distributions are for the
same CPU architecture.

12. The tar program may be used to complete which of the following
tasks? (Choose all that apply.)

A. Install RPM and Debian packages.

B. Install software from binary tarballs.

C. Back up a computer to tape.

D. Create source code archive files.

13. tar provides a much easier _________ process than do RPM and
Debian package tools.

A. Dependency tracking

B. Source code compilation

C. File ownership setting

D. Package creation

14. Which of the following is the default destination format when using
alien?

A. Tarball

B. RPM

C. Debian package

D. Stampede package

http://www.sybex.com

Review Questions 229

15. Which of the following methods is least likely to be useful for moni-
toring the operation of a program once you’ve installed it on a pro-
duction system?

A. Checking log entries in the /var/log directory tree

B. Periodically testing the program using test data

C. Periodically using ps to see if a server is still running

D. Running the program on a test system with a different
configuration

16. In which of the following situations does recompiling a Linux kernel
yourself make the most sense?

A. You need to upgrade to a new kernel to obtain a bug fix included
in that kernel.

B. Your system is not recognizing all of its installed memory.

C. You need to be sure the kernel resides below the 1024-cylinder
mark because you have an old BIOS.

D. You need to include an unusual experimental driver for your
system.

17. You’re administrating a system that uses a 2.2.4 kernel. Which of the
following kernel changes is least likely to cause problems?

A. Upgrading to kernel 2.4.2

B. Upgrading to kernel 2.3.27

C. Upgrading to kernel 2.2.17

D. Applying kernel patches intended for 2.4.2 and recompiling

18. Where may LILO be installed?

A. The MBR, a Linux partition’s boot sector, or a floppy disk

B. The MBR, a Linux partition’s boot sector, or a Windows parti-
tion’s boot sector

C. A Linux partition’s boot sector or a Windows partition’s boot
sector

D. The MBR, a floppy disk, or a swap partition

http://www.sybex.com

230 Chapter 3 � Software Management

19. Which of the following is an advantage of installing LILO in a primary
Linux partition’s boot sector?

A. LILO can then boot a kernel from beyond the 1024-cylinder mark.

B. LILO can then redirect the boot process to other OSs’ boot sectors.

C. The DOS or Windows FDISK utility can be used to reset LILO as
the boot loader if the MBR is overwritten.

D. LILO can work in conjunction with LOADLIN to boot multiple
kernels.

20. Which of the following is true of the hardware on a system used to test
new software?

A. It must always be identical to that of the targeted production
system.

B. It is unimportant only when testing new drivers.

C. It is usually less important to make sure it matches the hardware
on the production system than it is to make sure that the system
software matches.

D. It must be used with identical drivers to that of the production sys-
tem, even if the hardware differs.

http://www.sybex.com

Answers to Review Questions 231

Answers to Review Questions

1. A, C. Shells are started automatically when you log in or start xterm
windows unless you configure your account strangely or specify
another program to run when you launch an xterm. Typing shell
won’t start a shell, because no standard shell is called shell. (Typing
the shell name will do the job, though.) Shells aren’t normally started
when the computer boots; you must first log in.

2. B. When you press the Tab key when you are typing a command or
filename, bash checks to see if the characters you’ve typed so far are
enough to uniquely identify the command or filename. If they are,
bash completes the command or filename, saving you keystrokes.

3. A, D. Tarballs, RPMs, and Debian packages all hold collections of
files, which may be usable on multiple platforms, although this isn’t
guaranteed. Tarballs do not provide dependency information. All
three formats compress an archive of multiple files, rather than
archive a set of compressed files.

4. D. Because they must be compiled prior to installation, source pack-
ages require more time to install than binary packages do.

5. A. Package management systems don’t share information, but nei-
ther do their databases actively conflict. Installing the same libraries
using both systems would almost guarantee that the files served by
both systems would conflict with one another. Actively using both
RPM and Debian packages isn’t common on any distribution,
although it’s possible with all of them.

6. A. RPMs are usually portable across distributions, but occasionally
they contain incompatibilities. There is no --convert-distrib
parameter to rpm, nor is alien used to convert from RPM format to
RPM format. Binary packages can’t be rebuilt for another CPU
architecture, but source packages may be rebuilt for any supported archi-
tecture, provided the source code doesn’t rely on any CPU-specific
features.

http://www.sybex.com

232 Chapter 3 � Software Management

7. C. Some dependencies result from dynamically linking binaries to
libraries at compile time, and so they can be overcome by recompiling
the software from a source RPM. Option A describes Debian source
packages, not RPM packages. Recompiling a source RPM requires
only issuing an appropriate command, although you must also have
appropriate compilers and libraries installed. Source tarballs can also
be used to compile software for RPM systems, although this results in
none of RPM’s advantages.

8. C. The package version number (as well as an RPM build number)
and CPU architecture code (or src for source code or noarch for
architecture-independent files) are included in most RPM package
filenames. Red Hat does not provide certification for RPM maintain-
ers. Build dates and package maintainers’ names are stored in the
RPM, but not in the filename. (Some distributions include a code for
the distribution name in the RPM filename, but this is not a universal
practice.)

9. A. An uppercase -P invokes the purge operation, which completely
removes a package and its configuration files. The lowercase -p causes
dpkg to print information on the package’s contents. The -r parame-
ter removes a package, but leaves configuration files behind. The final
variant (option D) also specifies a complete filename, which isn’t
used for removing a package—you should specify only the shorter
package name.

10. C. You can specify Debian package archive sites in /etc/apt/
sources.list, then you can type apt-get update and apt-get
upgrade to quickly update a Debian system to the latest packages.
Storm and Corel Linux both ship with GUI package management
tools, but they aren’t apt-get. The alien program can convert an
RPM file and install the converted package on a Debian system. dpkg
and apt-get both come with all Debian-based distributions.

http://www.sybex.com

Answers to Review Questions 233

11. D. In 2001, systems that use Debian are based on the same core OS,
and so they share most components, making package transplants
likely—but not certain—to succeed. Library incompatibilities could
cause problems, but aren’t likely to, especially if you use recent pack-
ages and distributions. Although Debian has clearly defined key file
locations, startup scripts, and so on, these can’t guarantee success.
Binary packages built for different CPUs are almost guaranteed not to
work, although scripts or other non-binary packages most likely will
work across CPU types.

12. B, C, D. tar can do all these things except for directly installing
RPM or Debian packages, although it could be used to do so after con-
verting the package with alien.

13. D. The tar --create command creates an archive from any speci-
fied directory; RPM and Debian package creation tools are more com-
plex than this. tar provides no dependency tracking mechanisms at
all, making you do that work. Although tar can be used to distribute
source code, it’s not used in compiling it per se. All the package tools
discussed in this chapter automatically set file ownership appropriately.

14. C. alien can convert to any of these formats, but if you omit the
specification, it defaults to a Debian output package.

15. D. A test system can be useful for familiarizing yourself with a new
program, but once that’s done and the program is up and running on
a production system, a test system will not be likely to give you infor-
mation about the production system that you could not obtain from
the production system itself.

16. D. Unusual experimental drivers generally come in source-only form,
and therefore they require you to recompile your kernel yourself.
Upgrading a kernel may be done via binary RPM or Debian packages.
Problems recognizing memory can generally be overcome by append
options in lilo.conf. 1024-cylinder problems can be overcome by
placing the kernel in a partition that resides entirely below the
1024-cylinder mark.

http://www.sybex.com

234 Chapter 3 � Software Management

17. C. The 2.2.4 and 2.2.17 kernels are part of the same kernel series,
and so they will interface with other OS components in the same way.
The 2.3.27 kernel is a development kernel in-between the 2.2.x and
2.4.x kernel series, and so it is likely to be unstable and have some
changed interfaces. The 2.4.2 kernel is part of the next kernel series,
and so it has some OS interface requirements that may not completely
match other software on the system. Patching the 2.2.4 kernel with
patches intended for 2.4.2 is unlikely to work correctly, because so
many kernel files will have changed.

18. A. LILO may reside in any of the locations listed in Option A. If you
install it in a FAT or NTFS partition (used by DOS or Windows), these
partitions will be damaged, and if you install LILO in a swap partition
that is then used, LILO will be wiped out.

19. C. When installed in the MBR, LILO is susceptible to being com-
pletely wiped out by other OSs’ installation routines. Installing LILO
in a primary Linux partition’s boot sector eliminates this risk, making
recovery easier. LILO’s ability to boot from beyond the 1024-cylinder
mark or to boot multiple OSs is identical no matter where it’s
installed. Likewise, LILO can boot multiple OSs without the use of
LOADLIN no matter where LILO is installed.

20. C. It’s usually more important to match the system software than the
hardware when testing new software on a test system. One exception
to this is when testing new drivers, in which case matching the hard-
ware is more important. Using identical drivers when the hardware
doesn’t match is generally pointless since the drivers are tied to partic-
ular hardware components.

http://www.sybex.com

http://www.sybex.com

Traditional PC operating systems, such as DOS and early ver-
sions of Windows, are basically single-user OSs. Although it’s certainly pos-
sible for two or more people to use computers running these OSs, the OSs
themselves provide no mechanisms to help keep users from reading or even
damaging each other’s files. Linux, on the other hand, is modeled after Unix,
which was designed as a multiuser OS. In Linux and Unix, the OS provides
tools designed to help keep users from harming each other’s files. The same
mechanisms are used to provide security and to keep users from damaging
the OS as a whole. For these reasons, Linux system administrators must
understand how the OS handles users and what tools are available to help
you manage the users on your own system.

One particularly important aspect of user configuration is security—but
security encompasses additional territory, such as controlling remote access
to your system. The Computer Emergency Response Team (CERT; http://
www.cert.org) tracks security violations (which it calls incidents) and vul-
nerabilities in software. In 1998, CERT recorded 3,734 incidents and 262
new vulnerabilities; in 1999, the numbers were 9,859 incidents and 417 new
vulnerabilities; and in 2000, CERT recorded a total of 21,756 incidents and
774 new vulnerabilities. These increasing numbers probably don’t mean that
software is becoming shoddier; they most likely reflect the increasing num-
bers of computers and computer server programs. Nonetheless, the large
number of problems emphasizes the need for caution in dealing with com-
puter security. There are many issues related to this topic, ranging from net-
work security to account maintenance to keeping programs up-to-date and
installed properly. This chapter covers these issues, in addition to basic user
administration.

http://www.sybex.com

Linux Multiuser Concepts 237

Linux Multiuser Concepts

Before dealing with the nitty-gritty details of administering user
accounts on a Linux system, it’s necessary to understand the underlying con-
cepts, including a few implementation details. Understanding this informa-
tion will help you to plan an effective account structure or expand an
existing one to meet new needs. This information may also be critically
important when moving accounts from one computer to another, when add-
ing a new hard disk, or when performing other types of system maintenance.

User Accounts: The Core of a Multiuser System

Linux user accounts are basically the same as user accounts in other Unix-
like OSs. They allow several people to use the same system, either at different
times or at the same time, without interfering with each other. A single user
can even have several simultaneous logins active, which is sometimes conve-
nient. It’s important to understand what user accounts allow you to do with
a system, and also how users are identified.

Accounts in a Multiuser System

Technically, a user is a person, whereas an account is a set of data structures
and permissions associated with that user. Frequently, though, the term user
is used as if it were synonymous with account, as in “you must delete this
user.” Don’t take such language literally—delete the account, not the user.

Several important features have been associated with Linux accounts,
including the following:

Username The username is the name by which the account is known to
humans, such as ellen. The characteristics of Linux usernames are
described in more detail shortly, in “Linux Usernames.”

Login privileges An account allows an individual to log into a Linux
computer. Depending upon the system’s configuration, this could be a
login at the console (that is, the keyboard and monitor that are directly
connected to the computer) or remotely (via serial line, modem, or net-
work). When an individual logs in, that person may use some or all of the
programs and resources available on the computer. Some other resources,
like files delivered by a Web server, don’t require a login.

http://www.sybex.com

238 Chapter 4 � Users and Security

Password protection Linux accounts are protected by a password. A
person attempting to log in must provide both a username and a pass-
word. The username is generally public knowledge, but the password is
secret. Some forms of login bypass the password protection, usually by
deferring to authentication performed by another computer.

Permissions Every account has permission to run certain programs and
access certain files. These permissions are controlled on a file-by-file basis,
as described later in this chapter, in “File Permissions.”

Home directory Every account has a home directory associated with it.
This is a directory in which the user can store data files. Typically, each
user has his or her own home directory, although it’s possible to configure
a system so that two or more users share a home directory. It’s also pos-
sible, but seldom useful, to specify a home directory to which a user can-
not write. (You might use such a configuration if a user should be able to
run programs that don’t generate their own data but should not be able
to store files on the computer.)

User and Group IDs Computers operate on numbers, not words—the
words we see on computer screens are encoded as numbers internally. To
save storage space, Linux associates two numbers with each account. The
first is the user ID (UID), which is mapped to a specific username. The
second is the group ID (GID), which is mapped to a specific group of
users. Both these processes are described further shortly, in “Mapping
UIDs and GIDs to Users and Groups.”

Default shell When using a Linux computer at a text-based login (say, at
the console without the X Window System running, or via a text-based
network protocol like Telnet), Linux presents users with a program
known as a shell. The shell accepts commands, such as ls and cd, and
allows the user to run additional programs. Several shells are available for
Linux and can be set on an account-by-account basis.

Program-specific files Some programs generate files that are associated
with a particular user, in or out of that user’s home directory. Many pro-
grams create configuration files in the user’s home directory, for instance.
Another important example is the mail spool, in which a Linux system
stores incoming e-mail messages for a user. Assuming the basic mail soft-
ware is installed, creating a mail account is usually necessary and suffi-
cient for a user to receive mail, although there are exceptions to this rule,
particularly with some mail server packages.

http://www.sybex.com

Linux Multiuser Concepts 239

Some of these features are defined in one or two critical system configu-
ration files: /etc/passwd and /etc/shadow. /etc/passwd is the traditional
repository for most critical account information, including the username,
UID number, GID number, password, home directory location, and default
shell specification. Creating or modifying an account is mostly a matter of
modifying this one file. There are enough additional details, though, that
most administrators use special tools to perform these tasks, as described
shortly, in “Configuring User Accounts.”

Unfortunately, the needs of the system dictate that /etc/passwd be read-
able by all users. This fact makes the placement of password information in
/etc/passwd—even in encrypted form—a risky proposition. For this reason,
most Linux distributions in 2001 ship with shadow password support. In
this system, users’ passwords are stored in a separate file, /etc/shadow. This
file cannot be read by most users, making it more difficult for a miscreant
with an account on the computer to break into other users’ accounts.

Accounts in a Multitasking System

Linux is both a multiuser and a multitasking system. Linux’s multiuser
nature allows multiple people to use one computer without causing prob-
lems for one another. Linux’s multitasking ability allows multiple programs
to run at one time. Although there are single-user multitasking OSs avail-
able, combining the two has many advantages, particularly in a networked
environment. Specifically, several people can be logged onto a Linux com-
puter at one time, and they can run the same or different programs simulta-
neously. For instance, Sally can run the Emacs editor while Sam and Ellen
both run the Netscape Web browser and George runs the GNU C compiler.

Although it’s possible to use a single account for multiple simultaneous
logins, using multiple accounts can be very helpful, particularly when mul-
tiple individuals are involved. Each account can be configured with its
owner’s preferences in mind, and therefore, simultaneous logins can present
different defaults for things like the placement of icons on a desktop envi-
ronment or the command shell to be used. Furthermore, if a user changes a
default value, that change will not affect other users currently logged on to
the system. If the system were a single-user computer that allowed multiple
logins, changes to system defaults could adversely affect other users or be
undone when other users logged out.

Of course, Linux’s multitasking ability doesn’t mean that the computer
can support an unlimited number of simultaneous users. Some activities,

http://www.sybex.com

240 Chapter 4 � Users and Security

such as George’s C program compilation, are likely to consume a great deal
of RAM, CPU time, or disk I/O. If many users try to run such resource-
intensive programs simultaneously, all the users will see a performance
decrease. Just how many simultaneous users a Linux computer can support
depends on many factors, including the types of programs they’re likely to
run and how much of critical system resources (RAM, CPU speed, network
speed, disk speed, and disk capacity) the system has. If the applications used
aren’t very resource-intensive, a single modern computer can support dozens
or hundreds of simultaneous users; but if the programs are hogs of one or
more resources, one user per computer may seem like too many.

Simultaneous use of one computer by multiple users generally requires
some form of network connectivity, although it can also be handled through
terminals connected to serial ports. Typically, remote login protocols like
Telnet or the Secure Shell (SSH) allow for text-mode logins. Linux’s GUI
environment, the X Window System (or X for short), is network-enabled,
and so it permits remote use of GUI programs. Alternatively, the VNC pro-
gram (http://www.uk.research.att.com/vnc) allows similar connectivity.

Linux supports multiple simultaneous logins through its standard console
through a feature known as virtual terminals (VTs). From a text-mode login,
hitting the Alt key along with a function key from 1–6 typically switches to
a different virtual screen, and you can log into as many of these as you like.
You can even run multiple X sessions at different resolutions by issuing
appropriate parameters to startx. Ordinarily, the first X session runs on
VT 7. When switching out of a VT that’s running X, you must add Ctrl to
the key sequence—for instance, you must hit Ctrl+Alt+F1 to switch from X
to the first text-mode VT. You can run a second X session by logging into a
text VT and issuing the following command:

$ startx -- :1 vt8

This will run X in VT 8. You can switch back and forth between it and the
first X session by typing Ctrl+Alt+F7 and Ctrl+Alt+F8.

Of course, this VT capability is most useful for a single-user work-
station—two people can’t make practical use of the same keyboard at the
same time. Nonetheless, it’s still useful if you as an administrator want to run
Linux under multiple accounts or X configurations or if you want to easily
switch between multiple text-based programs without running X.

http://www.sybex.com

Linux Multiuser Concepts 241

The Superuser Account

One particularly important account on all Linux systems is that of the super-
user. The superuser is also referred to as the administrator. The account used
by the superuser is normally known as root.

Whenever you perform system administration tasks on a Linux computer,
you’ll do so as root. You can do this in any of several ways:

root login You can log into the computer as root. Thereafter, any
action you perform will be done as the superuser. This can be a very dan-
gerous way to use the system, so it’s best to do this only for brief periods.
Most systems contain restrictions on root logins, so they can only be
done from the console. This helps prevent outsiders from gaining access
to a system over a network by using a stolen password.

su The su program lets you temporarily acquire superuser privileges or
take on any other user’s identity. Type su and press the Enter key after
logging on as an ordinary user, and the system will prompt you for the
root password. If you type that password correctly, subsequent com-
mands will be executed as root. Type exit to return to your normal user
privileges. To take on a non-root user’s privileges, add that user’s name,
as in su george, to take on the george account’s role. If you’re already
root, you can take on another user’s identity without that user’s pass-
word; su doesn’t ask root for a password. This can be useful when debug-
ging problems that may be related to a particular user’s configuration.

sudo Once configured, the sudo command allows you to execute a single
command as root. This limits the danger of running as root, and so it can
be a good way to run the programs that you most frequently run as root.
The /etc/sudoers file contains a list of users who may use sudo, and
with what commands. You can edit this file with the visudo command,
which invokes the vi editor (Chapter 7, “Managing Partitions and
Processes”) in such a way that it helps you get the format of the config-
uration file right.

SUID root files As described later in this chapter, in “Interpreting File
Access Codes,” it’s possible to set a file to execute as if run by root even
when it’s run by another user. This must be set on a program-by-program
basis.

Program prompts Some configuration tools prompt you for the root
password and then run themselves as root. This setup is most common
with the GUI configuration tools that ship with many Linux distributions.

http://www.sybex.com

242 Chapter 4 � Users and Security

The root account is special because it bypasses normal security features.
Specifically, the superuser may read, write, or delete any file on the com-
puter, no matter who owns that file or whether the owner has granted other
users read or write access to it. This sort of power is dangerous not just
because of the ability to invade other users’ privacy, but because it allows
root to do serious damage to the computer. For instance, suppose you want
to delete a directory and its contents. You might issue the following com-
mand to do so:

rm -r /home/george/olddir

This command deletes the /home/george/olddir directory and all its
files and subdirectories. Unfortunately, a single typo can create a much more
destructive command:

rm -r / home/george/olddir

Note the stray space between / and home/george/olddir. This typo
causes the computer to delete all files in the / directory—that is, all files on
the computer as well as files in home/george/olddir. This is the sort of
power that you should grant yourself only when you absolutely need it.

Linux Usernames

Linux is fairly flexible about its usernames. Most versions of Linux support
usernames consisting of any combination of upper- and lowercase letters,
numbers, and many punctuation symbols, including periods and spaces.
Some punctuation symbols, however, such as spaces, cause problems for cer-
tain Linux utilities, so it’s generally best to avoid using punctuation in Linux
usernames. Underscores (_) and periods (.) are relatively unlikely to cause
problems and so are occasionally used. Also, usernames must begin with a
letter, so a username such as 45u is invalid, although u45 is fine. Although
usernames may be up to 32 characters in length, many utilities truncate user-
names longer than eight characters or so in their displays, so many adminis-
trators try to limit username length to eight characters.

Linux treats usernames in a case-sensitive way. Therefore, a single com-
puter can support both ellen and Ellen as separate users. This practice can
lead to a great deal of confusion, however, so it’s best to avoid creating
accounts whose usernames differ only in case. In fact, the traditional practice
is to use entirely lowercase letters in Linux usernames, such as sally, sam,
ellen, and george. Usernames don’t need to be based on first names, of

http://www.sybex.com

Linux Multiuser Concepts 243

course—you could use sam_jones, s.jones, sjones, jones, jones17, or
u238, to name just a few possibilities. Most sites develop a standard method
of creating usernames, such as using the first initial and the last name. Cre-
ating and following such a standard practice can help you locate an account
that belongs to a particular individual. If your computer has many users,
though, you may find a naming convention produces duplicates, particularly
if your standard uses initials to shorten usernames. You may therefore be
forced to deviate from the standard or incorporate numbers to distinguish
between all the Davids or Smiths of the world.

Groups: Linking Users Together for Productivity

Linux uses groups as a means of organizing users. In many ways, groups par-
allel users. Groups are similar to users in ways such as the following:

� Groups are defined in a single file, /etc/group, which has a structure
similar to that of /etc/passwd.

� Groups have names similar to usernames.

� Group names are tied to group IDs (GIDs).

Groups are not accounts, however. Rather, groups are a means of orga-
nizing collections of accounts, largely as a security measure. As described
shortly, in “File Permissions,” every file on a Linux system is associated with
a specific group, and various permissions can be assigned to members of that
group. For instance, group members (such as faculty at a university) might
be allowed to read a file, but others (such as students) might be disallowed
such access. Because Linux provides access to hardware (such as serial ports
and tape backup units) through files, this same mechanism can be used to
control access to hardware.

Every group has anywhere from no members to as many members as there
are users on the computer. Group membership is controlled through the
/etc/group file. This file contains a list of groups and the members belong-
ing to each group. The details of this file’s contents are described later in this
chapter, in “Configuring Groups.”

In addition to membership defined in /etc/group, each user has a default
or primary group. The user’s primary group is set in the user’s configuration
in /etc/passwd. When users log onto the computer, their group member-
ship is set to their primary groups. When users create files or launch pro-
grams, those files and running programs are associated with a single group—
the current group membership. A user can still access files belonging to other

http://www.sybex.com

244 Chapter 4 � Users and Security

groups, so long as the user belongs to that group and the group access per-
missions allow the access. To run programs or create files with other than the
primary group membership, however, the user must run the newgrp com-
mand to switch current group membership. For instance, to change to the
project2 group, you might type the following:

$ newgrp project2

If the user typing this command is listed as a member of the project2
group in /etc/group, the user’s current group membership will change.
Thereafter, files created by that user will be associated with the project2
group. Alternatively, users can change the group associated with an existing
file by using the chgrp or chown commands, as described shortly, in “Chang-
ing File Permissions.”

This group structure allows you to design a security system that permits
different collections of users to easily work on the same files while simulta-
neously keeping other users of the same computer from prying into files they
should not be able to access. In a simple case, you might create groups for
different projects, classes, or workgroups, with each user restricted to one of
these groups. A user who needs access to multiple groups could be a member
of each of these groups—for instance, a student who takes two classes could
belong to the groups associated with each class, or a supervisor might belong
to all the supervised groups. “Common User and Group Strategies,” later in
this chapter, describes the approaches taken by various Linux distributions
by default, and it then explains how you can expand and use these strategies
to suit your own needs.

Mapping UIDs and GIDs to Users and Groups

As mentioned earlier, Linux defines users and groups by numbers (UIDs and
GIDs, respectively). Internally, Linux tracks users and groups by these num-
bers, not by name. For instance, the user sam might be tied to UID 523, and
ellen might be UID 609. Similarly, the group project1 might be GID 512,
and project2 might be GID 523. For the most part, these details take care
of themselves—you use names, and Linux uses /etc/passwd or /etc/
group to locate the number associated with the name. You may occasionally
need to know how Linux assigns numbers when you tell it to do something,
though. This is particularly true when you are troubleshooting or if you have
cause to manually edit /etc/passwd or /etc/group.

Linux distributions reserve the first hundred user and group IDs (0–99)
for system use. The most important of these is 0, which corresponds to root

http://www.sybex.com

Linux Multiuser Concepts 245

(both the user and the group). Subsequent low numbers are used by accounts
and groups that are associated with specific Linux utilities and functions. For
instance, UID 2 and GID 2 are generally the daemon account and group,
respectively, which are used by various servers; and UID 8 and GID 12 are
usually the mail account and group, which can be used by mail-related serv-
ers and utilities. Not all account and group numbers from 0–99 are in use;
there are usually only one or two dozen accounts and a dozen or so groups
used in this way. You can check your /etc/passwd and /etc/group files to
determine which user and group IDs are so used.

Beyond 100, user and group IDs are available for use by ordinary users
and groups. Many distributions, however, reserve up to 500 or even 1000
for special purposes. Frequently, therefore, the first normal user account is
assigned a UID of 500 or 1000. When you create additional accounts, the
system typically locates the next-highest unused number, so the second user
you create is UID 501, the third is 502, and so on. When you remove an
account, that account’s ID number may be reused, but the automatic
account-creation tools typically don’t do so if subsequent numbers are in
use, leaving a gap in the sequence. This gap causes no harm unless you have
so many users that you run out of ID numbers. (The limit is 65,536 users
with the 2.2.x kernels and over 4.2 billion with the 2.4.x kernels, including
root and other system accounts. The limit can be set lower in configuration
files or because of limits in support programs.) In fact, reusing an ID number
can cause problems if you don’t clear away the old user’s files—the new user
will become the owner of the old user’s files, which can lead to confusion.

Typically, GID 100 is users—the default group for some distributions.
(See “Common User and Group Strategies” later in this chapter.) On any but
a very small system with few users, you’ll probably want to create your own
groups. Because different distributions have different default ways of assign-
ing users to groups by default, it’s best that you familiarize yourself with
your distribution’s way of doing this, and plan your own group-creation pol-
icies with this in mind. For instance, you might want to create your own
groups within certain ranges of IDs to avoid conflicts with the distribution’s
default user- and group-creation processes.

http://www.sybex.com

246 Chapter 4 � Users and Security

It’s possible to create multiple usernames that use the same UID, or mul-
tiple group names that use the same GID. In some sense, these are different
accounts or groups; they have different entries in /etc/passwd or /etc/
group, so they can have different home directories, different passwords, and
so on. Because these users or groups share IDs with other users or groups,
though, they’re treated identically in terms of file permissions. Unless you
have a compelling reason to do so, you should avoid creating multiple users
or groups that share an ID.

The Importance of Home Directories

A user’s home directory is a directory on the disk that’s usually intended for
one user alone. On Linux systems, the standard placement of home directo-
ries is in the /home directory tree, with each user’s home directory named
after the user’s account name. For instance, the home directory for the sally

Coordinating UIDs and GIDs across Systems

If you maintain several Linux computers and want to set up Network File-
system (NFS) file sharing, one problem that can arise is keeping UIDs and
GIDs synchronized across systems. Because all Linux filesystems, including
NFS, track numeric IDs rather than the names that humans use, mis-
matched UIDs and GIDs can cause one person’s files to appear to be owned
by another person on an NFS mount. For instance, suppose that two com-
puters each have two users, ellen and george. On one computer, ellen has
UID 500 and george has UID 501, but these numbers are reversed on the
other. As a consequence, when one computer mounts the other’s files via
NFS, the UID values will indicate that ellen owns files that are really owned
by george, and vice-versa.

One solution to this problem is to keep UIDs and GIDs consistent across
computers. This isn’t too difficult with a handful of small systems with few
users, but it becomes tedious with larger or more systems. NFS also sup-
ports various mapping options, such as querying a remote login database,
using a static map file, or using a user ID mapping server run on the client
system. These options are described in the exports man page.

http://www.sybex.com

File Permissions 247

account would be /home/sally. This naming and placement is only a con-
vention, though—it’s not a requirement. The /etc/passwd file contains the
location of each user’s home directory, so you can modify this location by
editing that file. You can also specify an alternative location when you create
an account (as described shortly in “Adding Users”), or use the usermod util-
ity to change it after the fact.

Typically, a user’s home directory belongs to that user only. Therefore,
it’s created with fairly restrictive permissions, particularly for writing to the
directory. The exact permissions used by default vary from one distribution
to another, so you should check yours to see how it’s done. If you want to
create more stringent or laxer permissions, you’ll have to do so yourself after
creating an account, or you’ll need to create your own account-creation
scripts to automate the process.

You can create separate directories for shared projects, if you like. For
instance, you might want to have a directory in which group members can
store files that belong to the group as a whole, or in which group members
may exchange files. Linux distributions don’t create such directories auto-
matically when creating groups, so you’ll have to attend to this task yourself,
as well as decide where to store them. (Somewhere in /home is a logical
choice, but it is up to you.)

One problem that’s commonly faced by Linux system administrators is
the depletion of available disk space. The /home directory frequently resides
on a separate partition, and sometimes an entirely separate physical hard
disk, from other Linux files. This arrangement can help to make the system
more secure because it helps to isolate the data—filesystem corruption on
one partition need not affect data on another. It also limits room for expan-
sion, however. If your users begin creating very large files, or if the number
of users you must support grows and causes your initial estimates of required
/home disk space to be exceeded, you’ll need to take action to correct this
matter. For instance, you might move home directories to some other parti-
tion, enlarge the home partition with a tool like resize2fs or Partition-
Magic (http://www.powerquest.com), or add a new hard disk to store
some or all of the user home directories.

File Permissions

Support for individual user accounts and groups is wasted if it’s not
used. In Linux, these features are applied in various ways, the most obvious

http://www.sybex.com

248 Chapter 4 � Users and Security

and important from a system administration point of view being file permis-
sions. (User and group information is also associated with running programs
and may be used by specific programs—say to locate and load a specific
user’s settings.) File permissions are at the heart of Linux’s local security con-
figuration, as discussed later in this chapter. In order to use these features,
though, you must understand how Linux treats file permissions, and what
tools the OS provides to allow you to manipulate permissions.

File Access Permissions

File access permissions in Linux involve several components, which combine
to determine who may access a file and in what way. These components also
help to determine precisely what a file is—an ordinary data file, a program
file, a subdirectory, or so on. Understanding this setup is necessary if you’re
to manipulate file permissions.

File Access Components

There are three components to Linux’s file permission handling:

Username (or UID) A username (or UID, as it’s stored in this form) is
associated with each file on the computer. This is frequently referred to as
the file owner.

Group (or GID) Every file is associated with a particular GID, which
links the file to a group. This is sometimes referred to as the group owner.
Normally, the group of a file is one of the groups to which the file’s owner
belongs, but root may change the file’s group to one unassociated with
the file’s owner.

File access permissions The file access permissions (or file permissions
for short) are a code that represents who may access the file, relative to the
file’s owner, the file’s group, and all other users.

You can see all three elements by using the ls -l command on a file, as
shown here:

$ ls -l /usr/sbin/lsof

-rwxr-xr-x 1 root kmem 84124 Oct 3 02:37
�/usr/sbin/lsof

http://www.sybex.com

File Permissions 249

The output of this command has several different components, each with
a specific meaning:

Permission string The first component, -rwxr-xr-x, is the permission
string. Along with the user and group names, it’s what determines who
may access a file. As displayed by ls -l, the permission string is a series
of codes, which are described in more detail shortly, in “Interpreting File
Access Codes.” Sometimes the first character of this string is omitted, par-
ticularly when discussing ordinary files, but it’s always present in an ls
-l listing.

Number of hard links Linux supports hard links in its filesystems. A
hard link allows one file to be referred to by two or more different file-
names. Internally, Linux uses a data structure known as an inode to keep
track of the file, and multiple filenames point to the same inode. The num-
ber 1 in the preceding example output means that just one filename points
to this file; it has no hard links. Larger numbers indicate that hard links
exist—for instance, 3 means that the file may be referred to by three dif-
ferent filenames.

Hard links and soft (or symbolic) links are handled differently. There’s no way
to tell if a file has soft links from its directory listing alone, although the soft
links to a file are indicated by an l in the first character of the permission
string.

Owner The next field, root in this example, is the owner of the file. In
the case of long usernames, the username may be truncated.

Group kmem is the group to which the example file belongs. Many sys-
tem files belong to the root owner and root group; for this example, I
picked a file that belongs to a different group.

File size The next field, 84124 in this example, is the size of the file in
bytes.

Creation time The next field contains the file creation time and date
(Oct 3 02:37 in this example). If the file is older than a year, you’ll see
the year rather than the creation time, although the time is still stored
with the file.

http://www.sybex.com

250 Chapter 4 � Users and Security

Filename The final field is the name of the file. Because the ls command
in the preceding example specified a complete path to the file, the com-
plete path appears in the output. If the command had been issued without
that path but from the /usr/sbin directory, lsof would appear alone.

Although information such as the number of hard links and file creation
date may be useful on occasion, it’s not critical for determining file access
rights. For this, you need the file’s owner, group, and file access permission
string.

Interpreting File Access Codes

The file access control string is ten characters in length. The first character
has special meaning—it’s the file type code. The type code determines how
Linux will interpret the file—as ordinary data, a directory, or a special file
type. Table 4.1 summarizes Linux type codes.

T A B L E 4 . 1 Linux File Type Codes

Code Meaning

- Normal data file; may be text, an executable program, graphics,
compressed data, or just about any other type of data.

d Directory; disk directories are files just like any others, but they
contain filenames and pointers to disk inodes.

l Symbolic link; the file contains the name of another file or direc-
tory. When Linux accesses the symbolic link, it tries to read the
linked-to file.

p Named pipe; a pipe allows two running Linux programs to com-
municate with each other. One opens the pipe for reading, and
the other opens it for writing, allowing data to be transferred
between the programs.

s Socket; a socket is similar to a named pipe, but it permits network
and bidirectional links.

http://www.sybex.com

File Permissions 251

The remaining nine characters of the permission string (rwxr-xr-x in the
preceding example) are broken up into three groups of three characters. The
first group controls the file owner’s access to the file, the second controls the
group’s access to the file, and the third controls all other users’ access to the
file (often referred to as world permissions).

In each of these three cases, the permission string determines the presence
or absence of each of three types of access: read, write, and execute. Read
and write permissions are fairly self-explanatory, at least for ordinary files.
If the execute permission is present, it means that the file may be run as a pro-
gram. (Of course, this doesn’t turn a non-program file into a program; it only
means that a user may run a program if it is a program. Setting the execute
bit on a non-program file will probably cause no real harm, but it could be
confusing.) The absence of the permission is denoted by a hyphen (-) in the
permission string. The presence of the permission is indicated by a letter—r
for read, w for write, or x for execute.

Thus, the example permission string of rwxr-xr-x means that the file’s
owner, members of the file’s group, and all other users can read and execute
the file. Only the file’s owner has write permission to the file. You can easily
exclude those who don’t belong to the file’s group, or even all but the file’s
owner, by changing the permission string, as described shortly.

Individual permissions, such as execute access for the file’s owner, are
often referred to as permission bits. This is because Linux encodes this infor-
mation in binary form. Because it is binary, the permission information can
be expressed as a single 9-bit number. This number is usually expressed in
octal (base 8) form because a base-8 number is three bits in length, which
means that the base-8 representation of a permission string is three digits
long, one digit for each of the owner, group, and world permissions. The

b Block device; a hardware device to and from which data is trans-
ferred in blocks of more than one byte. Disk devices (hard disks,
floppies, CD-ROMs, and so on) are common block devices.

c Character device; a hardware device to and from which data is
transferred in units of one byte. Examples include parallel and
serial port devices.

T A B L E 4 . 1 Linux File Type Codes (continued)

Code Meaning

http://www.sybex.com

252 Chapter 4 � Users and Security

read, write, and execute permissions each correspond to one of these bits.
The result is that you can determine owner, group, or world permissions by
adding base-8 numbers: 1 for execute permission, 2 for write permission,
and 4 for read permission. Table 4.2 shows some examples of common per-
missions and their meanings. This table is necessarily incomplete, though;
with nine permission bits, the total number of possible permissions is 29, or
512. Most of those possibilities are very peculiar, and you’re not likely to
encounter or create them except by accident.

T A B L E 4 . 2 Example Permissions and Their Likely Uses

Permission

string Octal code Meaning

rwxrwxrwx 777 Read, write, and execute permissions for
all users.

rwxr-xr-x 755 Read and execute permission for all
users. The file’s owner also has write
permission.

rwxr-x--- 750 Read and execute permission for the
owner and group. The file’s owner also
has write permission. Non-group
members have no access to the file.

rwx------ 700 Read, write, and execute for the file’s
owner only; all others have no access.

rw-rw-rw- 666 Read and write permissions for all users.
No execute permissions to anybody.

rw-rw-r-- 664 Read and write permissions to the owner
and group. Read-only permission to all
others.

rw-rw---- 660 Read and write permissions to the owner
and group. No world permissions.

rw-r--r-- 644 Read and write permissions to the owner.
Read-only permission to all others.

http://www.sybex.com

File Permissions 253

Execute permission makes sense for ordinary files, but it’s meaningless for
most other file types, such as device files. Directories, though, make use of
the execute bit in another way. When a directory’s execute bit is set, that
means that the directory’s contents may be searched. This is a highly desir-
able characteristic for directories, so you’ll almost never find a directory on
which the execute bit is not set in conjunction with the read bit.

Directories can be confusing with respect to write permission. Recall that
directories are files that are interpreted in a special way. As such, if a user can
write to a directory, that user can create, delete, or rename files in the direc-
tory, even if the user isn’t the owner of those files and does not have permis-
sion to write to those files. The sticky bit (described shortly) can alter this
behavior.

Symbolic links are unusual with respect to permissions. This file type
always has 777 (rwxrwxrwx) permissions, thus granting all users full access
to the file. This access applies only to the link file itself, however, not to the
linked-to file. In other words, all users can read the contents of the link to
discover the name of the file to which it points, but the permissions on the
linked-to file determine its file access. Attempting to change the permissions
on a symbolic link affects the linked-to file.

Many of the permission rules do not apply to root. The superuser can
read or write any file on the computer—even files that grant access to
nobody (that is, those that have 000 permissions). The superuser still needs
an execute bit to be set to run a program file, but the superuser has the power
to change the permissions on any file, so this limitation isn’t very substantial.

rw-r----- 640 Read and write permissions to the owner,
and read-only permission to the group.
No permission to others.

rw------- 600 Read and write permissions to the owner.
No permission to anybody else.

r-------- 400 Read permission to the owner. No
permission to anybody else.

T A B L E 4 . 2 Example Permissions and Their Likely Uses (continued)

Permission

string Octal code Meaning

http://www.sybex.com

254 Chapter 4 � Users and Security

Some files may be inaccessible to root but only because of an underlying
restriction—for instance, even root can’t access a hard disk that’s not
installed in the computer.

There are a few special permission options that are also supported, and
they may be indicated by changes to the permission string:

Set user ID (SUID) The set user ID (SUID) option is used in conjunction
with executable files, and it tells Linux to run the program with the per-
missions of whoever owns the file, rather than with the permissions of the
user who runs the program. For instance, if a file is owned by root and
has its SUID bit set, the program runs with root privileges and can there-
fore read any file on the computer. Some servers and other system pro-
grams run in this way, which is often called SUID root. SUID programs
are indicated by an s in the owner’s execute bit position of the permission
string, as in rwsr-xr-x. (As discussed later in this chapter, SUID pro-
grams can pose a security risk.)

Set group ID (SGID) The set group ID (SGID) option is similar to the
SUID option, but it sets the group of the running program to the group of
the file. It’s indicated by an s in the group execute bit position of the per-
mission string, as in rwxr-sr-x.

Sticky bit The sticky bit has changed meaning during the course of Unix
history. In modern Linux implementations (and most modern versions of
Unix), it’s used to protect files from being deleted by those who don’t own
the files. When this bit is present on a directory, the directory’s files can
only be deleted by their owners, the directory’s owner, or root. The sticky
bit is indicated by a t in the world execute bit position, as in rwxr-xr-t.

Changing File Ownership and Permissions

Changing who can read, write, or execute a file can be done using several
programs, depending upon the desired effect. Specifically, chown changes a
file’s owner, and optionally, its group; chgrp changes the file’s group; and
chmod changes the permissions string.

Ownership Modification

To begin, chown’s syntax is as follows:

chown [options] [newowner][.newgroup] filename...

newowner and newgroup are, of course, the new owner and group of the
file. One or both are required. If both are included, there must be no space

http://www.sybex.com

File Permissions 255

between them, only a single period (.). For instance, the following command
gives ownership of the file report.tex to sally, and sets the file’s group to
project2:

chown sally.project2 report.tex

The chown command supports a number of options, such as
--dereference (which changes the referent of a symbolic link) and
--recursive (which changes all the files within a directory and all its sub-
directories). The latter is probably the most useful option for chown.

The chgrp command is similar to chown, except that it doesn’t change or
alter the file’s owner—it works only on the group. The group name is not
preceded by a period. For instance, to change the group of report.tex to
project2, you could issue the following command:

chgrp project2 report.tex

chgrp takes the same options as does chown. One caveat to the use of both
commands is that even the owner of a file may not be able to change the owner-
ship or group of a file. The owner may change the group of a file to any
group to which the file’s owner belongs, but not to other groups. Normally,
only root may change the owner of a file.

Permissions Modification

You can modify a file’s permissions using the chmod command. This com-
mand may be issued in many different ways to achieve the same effect. Its
basic syntax is as follows:

chmod [options] [mode[,mode...]] filename...

The chmod options are similar to those of chown and chgrp. In particular,
--recursive (or -R) will change all the files within a directory tree.

Most of the complexity of chmod comes in the specification of the file’s
mode—that is, its permissions. There are two basic forms in which you can
specify the mode: as an octal number or as a symbolic mode, which is a set
of codes related to the string representation of the permissions.

The octal representation of the mode is the same as that described earlier
and summarized in Table 4.2. For instance, to change permissions on
report.tex to rw-r--r--, you could issue the following command:

chmod 644 report.tex

http://www.sybex.com

256 Chapter 4 � Users and Security

In addition, it’s possible to precede the three digits for the owner, group,
and world permissions with another digit that sets special permissions. Three
bits are supported (hence values between 0 and 7): adding 4 sets the set user
ID (SUID) bit; adding 2 sets the set group ID (SGID) bit; and adding 1 sets
the sticky bit. If you omit the first digit (as in the preceding example), Linux
clears all three bits. Using four digits causes the first to be interpreted as the
special permissions code. For instance, the following command sets the pro-
gram file bigprogram to have both SUID and SGID bits set (6), to be read-
able, writeable, and executable by the owner (7), to be readable and
executable by the group (5), and completely inaccessible to all others (0):

chmod 6750 bigprogram

A symbolic mode, by contrast, consists of three components: a code indi-
cating the permission set you want to modify (the owner, the group, and so
on); a symbol indicating whether to add, delete, or set the mode equal to the
stated value; and a code specifying what the permission should be. Table 4.3
summarizes all these codes. Note that these codes are all case-sensitive.

T A B L E 4 . 3 Codes Used in Symbolic Modes

Permission

set code Meaning

Change

type code Meaning

Permission to

modify code Meaning

u owner + add r read

g group - remove w write

o world = set
equal to

x execute

a all X execute only if file is
directory or already
has execute
permission

 s SUID or SGID

 t sticky bit

http://www.sybex.com

File Permissions 257

To use symbolic permission settings, you combine together one or more
of the codes from the first column of Table 4.3 with one symbol from the
third column and one or more codes from the fifth column. You can combine
multiple settings by separating them by commas. Table 4.4 provides some
examples of chmod using symbolic permission settings.

As a general rule, symbolic permissions are most useful when you want to
make a simple change (such as adding execute or write permissions to one or
more class of users), or when you want to make similar changes to many files
without affecting their other permissions—for instance, adding write per-
missions without affecting execute permissions. Octal permissions are most

 u existing owner’s
permissions

 g existing group
permissions

 o existing world
permissions

T A B L E 4 . 4 Examples of Symbolic Permissions with chmod

Command

Initial

Permissions End Permissions

chmod a+x bigprogram rw-r--r-- rwxr-xr-x

chmod ug=rw report.tex r-------- rw-rw----

chmod o-rwx bigprogram rwxrwxr-x rwxrwx---

chmod g=u report.tex rw-r--r-- rw-rw-r--

chmod g-w,o-rw report.tex rw-rw-rw- rw-r-----

T A B L E 4 . 3 Codes Used in Symbolic Modes (continued)

Permission

set code Meaning

Change

type code Meaning

Permission to

modify code Meaning

http://www.sybex.com

258 Chapter 4 � Users and Security

useful when you want to set some specific absolute permission, such as
rw-r--r-- (644). In any event, a system administrator should be familiar
with both methods of setting permissions.

A file’s owner and root are the only users who may adjust a file’s permis-
sions. Even if other users have write access to a directory in which a file
resides and write access to the file itself, they may not change the file’s per-
missions (but they may modify or even delete the file). To understand why
this is so, you need to know that the file permissions are stored as part of the
file’s inode, which isn’t part of the directory entry. Read/write access to the
directory entry, or even the file itself, doesn’t give a user the right to change
the inode structures (except indirectly—for instance, if a write changes the
file’s size or a file deletion eliminates the need for the inode).

Setting Default Permissions

When a user creates a file, that file has default ownership and permissions.
The default owner is, understandably, the user who created the file. The
default group is the user’s primary group, as described earlier. The default
permissions, however, are configurable. These are defined by the user mask
(umask), which is set by the umask command. This command takes as input
an octal value that represents the bits to be removed from 777 permissions
for directories, or from 666 permissions for files, when creating a new file or
directory. For instance, to have Linux create files with 640 permissions, and
0750 for directories, you would enter the following command:

$ umask 027

Note that the umask isn’t a simple subtraction from the values of 777 or
666; it’s a bit-wise removal. Any bit that’s set in the umask is removed from
the final permission for new files, but if the execute bit isn’t set (as in ordi-
nary files), its specification in the umask doesn’t do any harm. For instance,
consider the trailing 7 in the preceding umask command. This corresponds to
a binary value of 111. An ordinary file might have rw- (110) permissions,
but applying the umask’s 7 (111) eliminates 1 values but doesn’t touch 0
values, thus producing a 000 (binary) value—that is, --- permissions,
expressed symbolically.

Ordinary users can enter the umask command to change the permissions
on new files they create. The superuser can also modify the default setting for
all users by modifying a system configuration file. Typically, /etc/profile

http://www.sybex.com

Configuring User Accounts 259

contains one or more umask commands. Setting the umask in /etc/profile
might or might not actually have an effect, because it can be overridden at
other points, such as a user’s own configuration files. Nonetheless, setting
the umask in /etc/profile or other system files can be a useful procedure
if you want to change the default system policy. Most Linux distributions use
a default umask of 002 or 022.

To find what the current umask is, type umask alone, without any param-
eters. Typing umask -S produces the umask expressed symbolically, rather
than in octal form. You may also specify a umask in this way when you want
to change it, but in this case, you specify the bits that you do want set. For
instance, umask u=rwx,g=rx,o=rx is equivalent to umask 022.

Configuring User Accounts

How frequently you’ll do user maintenance depends on the nature of
the system you administer. Some systems, such as small personal work-
stations, will need changes very rarely. Others, such as large systems in envi-
ronments in which users are constantly coming and going, may require daily
maintenance. The latter situation would seem to require more knowledge of
user account configuration tools, but even in a seldom-changing system, it’s
useful to know how to do these things so that you can do them quickly and
accurately when you do need to add, modify, or delete user accounts.

Adding Users

Adding users can be accomplished through the useradd utility. (This pro-
gram is called adduser on some distributions.) Its basic syntax is as follows:

useradd [-c comment] [-d home-dir] [-e expire-date]
�[-f inactive-time] [-g initial-group] [-G group[,...]]
�[-m [-k skeleton-dir] | -M] [-p password] [-s shell]
�[-u UID [-o]] [-r] [-n] username

Some of these parameters modify settings that are valid only when the sys-
tem uses shadow passwords. This is the standard configuration for most dis-
tributions today.

http://www.sybex.com

260 Chapter 4 � Users and Security

In its simplest form, you may type just useradd username, where
username is the username you want to create. The rest of the parameters are
used to modify the default values for the system, which are stored in the file
/etc/login.defs. The parameters and their meanings are as follows:

-c comment The comment field for the user. Some administrators store
public information like a user’s office or telephone number in this field.
Others store just the user’s real name, or no information at all.

-d home-dir The account’s home directory. This defaults to /home/
username on most systems.

-e expire-date The date on which the account will be disabled,
expressed in the form YYYY-MM-DD. (Many systems will accept alternative
forms, such as MM-DD-YYYY, or a single value representing the number of
days since January 1, 1970, as well.) The default is for an account that
does not expire. This option is most useful in environments in which user
accounts are inherently time-limited, such as accounts for students taking
particular classes or temporary employees.

-f inactive-days The number of days after a password expires after
which the account becomes completely disabled. A value of -1 disables
this feature, and is the default.

-g default-group The name or GID of the user’s default group. The
default for this value varies from one distribution to another, as described
later, in “Common User and Group Strategies.”

-G group[,...] The names or GIDs of one or more groups to which
the user belongs. These groups need not be the default group, and more
than one may be specified by separating them with commas.

-m [-k skeleton-dir] The system automatically creates the user’s
home directory if -m is specified. Normally, default configuration files are
copied from /etc/skel, but you may specify another template directory
with the -k option. Many distributions use -m as the default when run-
ning useradd.

-M This option forces the system to not automatically create a home
directory, even if /etc/login.defs specifies that this action is the
default.

http://www.sybex.com

Configuring User Accounts 261

-p encrypted-password This parameter passes the pre-encrypted
password for the user to the system. The encrypted-password value will
be added, unchanged, to the /etc/passwd or /etc/shadow file. This
means that if you type an unencrypted password, it won’t work as you
probably expected. In practice, this parameter is most useful in scripts,
which can encrypt a password (using crypt) and then send the encrypted
result through useradd. The default value disables the account, so you
must run passwd to change the user’s password.

-s shell The name of the user’s default login shell. On most systems,
this defaults to /bin/bash, but Linux supports many alternatives, such as
/bin/tcsh and /bin/zsh.

-u UID [-o] Creates an account with the specified user ID value (UID).
This value must be a positive integer, and it is normally above 500 for user
accounts. System accounts typically have numbers below 100. The -o
option allows the number to be reused so that two usernames are associ-
ated with a single UID.

-r This parameter allows the creation of a system account—an account
with a value lower than UID_MIN, as specified in /etc/login.defs. (This
is normally 100, 500, or 1000.) useradd also doesn’t create a home direc-
tory for system accounts.

-n In some distributions, such as Red Hat, the system creates a group
with the same name as the specified username. This parameter disables
this behavior.

Suppose you’ve added a new hard disk in which some users’ home direc-
tories are located and mounted it as /home2. You want to create a user
account in this directory and make the new user a member of the project1
and project4 groups, with default membership in project4. The user has
also requested tcsh as her default shell. You might use the following com-
mands to accomplish this goal:

useradd -d /home2/sally -g project4 -G project1,project4
�-s /bin/tcsh sally

passwd sally

Changing password for user sally

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

http://www.sybex.com

262 Chapter 4 � Users and Security

The passwd command asks for the password twice, but it does not echo what
you type. This prevents somebody who sees your screen from reading the
password off of it. passwd is discussed in more detail in “Modifying User
Accounts.”

Modifying User Accounts

User accounts may be modified in many different ways: You can directly edit
critical files such as /etc/passwd, modify user-specific configuration files in
the account’s home directory, or use system utilities like those used to create
accounts. You usually modify an existing user’s account at the user’s request
or to implement some new policy or system change, such as moving home
directories to a new hard disk. Sometimes, though, you must modify an
account immediately after its creation, in order to customize it in ways that
aren’t easily handled through the account creation tools or because you real-
ize you forgot a parameter to useradd.

Setting a Password

Although useradd provides the -p parameter to allow you to set a pass-
word, this tool is not very useful when directly adding a user because it
requires a pre-encrypted password. Therefore, it’s usually easiest to create an
account in disabled form (by not using -p with useradd) and set the pass-
word after creating the account. This can be done with the passwd com-
mand, which has the following syntax:

passwd [-k] [-l] [-u [-f]] [-d] [-S] [username]

The parameters to this command have the following meanings:

-k This parameter indicates that the system should update an expired
account.

-l This parameter locks an account, by prefixing the encrypted pass-
word with an exclamation mark (!). The result is that the user can no
longer log into the account, but the files are still available and the change
can be easily undone.

http://www.sybex.com

Configuring User Accounts 263

-u [-f] The -u parameter unlocks an account by removing a leading
exclamation mark. useradd creates accounts that are locked and have no
password, so using this command on a fresh account would result in an
account with no password. Normally, passwd doesn’t allow this—it
returns an error if you attempt it. Adding -f forces passwd to turn the
account into one with no password.

-d This parameter removes the password from an account, rendering it
password-less.

-S This option displays information on the password for an account—
whether or not it’s set and what type of encryption it uses.

Ordinary users may use passwd to change their passwords, but many
passwd parameters may only be used by root. Specifically, -l, -u, -f, -d,
and -S are all off-limits to ordinary users. Similarly, only root may specify
a username to passwd. When ordinary users run the program, they should
omit their usernames, and passwd will change the password for the user who
ran the program. As a security measure, passwd asks for a user’s old pass-
word before changing the password when an ordinary user runs the pro-
gram. This precaution is not taken when root runs the program so that the
superuser may change a user’s password without knowing it. Since the
administrator normally doesn’t know the user’s password, this is necessary.

Linux passwords may consist of letters, numbers, and punctuation. Linux
distinguishes between upper- and lowercase letters in passwords, which
means you can use mixed-case passwords to improve security.

“Account Security” later in this chapter includes additional information on
selecting good passwords.

Using usermod

The usermod program closely parallels useradd in its features and parame-
ters. This utility changes an existing account rather than create a new one,
however. The major differences between useradd and usermod are as follows:

� usermod allows the addition of a -m parameter when used with -d.
-d alone changes the user’s home directory, but it does not move any
files. Adding -m causes usermod to move the user’s files to the new
location.

http://www.sybex.com

264 Chapter 4 � Users and Security

� usermod supports a -l parameter, which changes the user’s login
name to the specified value. For instance, usermod sally -l sjones
changes the username from sally to sjones.

� You may lock or unlock a user’s password with the -L and -U options,
respectively. This duplicates functionality provided by passwd.

usermod changes the contents of /etc/passwd or /etc/shadow, depend-
ing upon the option used. If -m is used, usermod also moves the user’s files,
as already noted.

Changing an account’s characteristics while the owner is logged in can have
undesirable consequences. This is particularly true of the -d -m combination,
which can cause the files a user was working on to move. Most other changes,
such as changes to the account’s default shell, simply don’t take effect until
the user has logged out and back in again.

If you change the account’s UID, this action does not change the UIDs
stored with a user’s files. Because of this, the user may lose access to these
files. You can manually update the UIDs on all files by using the chown com-
mand described earlier, in “Ownership Modification.” Specifically, a command
like the following, issued after changing the UID on the account sally, will
restore proper ownership on the files in sally’s home directory:

chown -R sally /home/sally

This action does not change the ownership of files that aren’t in sally’s
home directory. If you believe such files exist, you may need to track them
down with the find command, as described shortly in “Deleting Accounts.”
Also, this command blindly changes ownership of all files in the /home/
sally directory. This is probably desirable, but it’s conceivable that some
files in that directory should be owned by somebody else—say, because
sally and another user are collaborating on a project.

When using the -G option to add a user to new groups, be aware that any
groups not listed will be removed. The gpasswd command, described
shortly, provides a way to add a user to one or more specific groups without
affecting existing group memberships, and so it is generally preferable for
this purpose.

http://www.sybex.com

Configuring User Accounts 265

Using chage

The chage command allows you to modify account settings relating to
account expiration. It’s possible to configure Linux accounts so that they
automatically expire if either of two conditions is true:

� The password hasn’t been changed in a specified period of time.

� The system date is past a predetermined time.

The first option is generally used to enforce password changes—say, to
get users to change their passwords once a month. The second option is use-
ful when an account should exist for a specific limited period of time, such
as until the end of an academic semester or until a temporary employee
leaves. These settings are controlled through the chage utility, which has the
following syntax:

chage [-l] [-m mindays] [-M maxdays] [-d lastday]
�[-I inactive] [-E expiredate] [-W warndays] username

Each parameter has a specific meaning:

-l This option causes chage to display account expiration and pass-
word aging information for a particular user.

-m mindays This is the minimum number of days between password
changes. 0 indicates that a user can change a password multiple times in
a day; 1 means that a user can change a password once a day; 2 means a
user may change a password once every two days; and so on.

-M maxdays This is the maximum number of days that may pass
between password changes. For instance, 30 would require a password
change approximately once a month.

If the user changes a password before the deadline, the counter is reset from
the password change date.

-d lastday This is the last day a password was changed. This value is
normally maintained automatically by Linux, but you can use this param-
eter to artificially alter the password change count. For instance, you
could use this to set the last changed date to force a password change in
some period of time you determine. lastday is expressed in the format
YYYY/MM/DD, or as the number of days since January 1, 1970.

http://www.sybex.com

266 Chapter 4 � Users and Security

-I inactive This is the number of days between password expiration
and account disablement. An expired account may not be used or may
force the user to change the password immediately upon logging in,
depending upon the distribution. A disabled account is completely dis-
abled, however.

-E expiredate You can set an absolute expiration date with this
option. For instance, you might use -E 2003/05/21 to have an account
expire on May 21, 2003. The date may also be expressed as the number
of days since January 1, 1970. A value of -1 represents no expiration date.

-W warndays This is the number of days before account expiration that
the system will warn the user of the impending expiration. It’s generally
a good idea to use this feature to alert users of their situation, particularly
if you make heavy use of password change expirations.

chage can normally only be used by root. The one exception to this rule
is if the -l option is used; this feature allows ordinary users to check their
account expiration information.

Directly Modifying Account Configuration Files

It’s possible to directly modify user configuration files. /etc/passwd and
/etc/shadow control most aspects of an account’s basic features, but many
files within a user’s home directory control user-specific configuration; for
instance, .bashrc can be used to set user-specific bash shell features. This
latter class of configuration files is far too broad to cover here (Chapter 6,
“Managing Files and Services,” covers a few of them), but /etc/passwd and
/etc/shadow are not. Both files consist of a set of lines, one line per account.
Each line begins with a username and continues with a set of fields, delimited
by colons (:). Many of these items may be modified with usermod or
passwd. A typical /etc/passwd entry resembles the following:

sally:x:529:100:Sally Jones:/home/sally:/bin/bash

Each field has a specific meaning, as follows:

Username The first field in each /etc/passwd line is the username
(sally in this example).

Password The second field has traditionally been reserved for the pass-
word. Most Linux systems, however, use a shadow password system in
which the password is stored in /etc/shadow. The x in the example’s
password field is an indication that shadow passwords are in use. In a sys-
tem that does not use shadow passwords, an encrypted password will
appear here instead.

http://www.sybex.com

Configuring User Accounts 267

UID Following the password is the account’s user ID (529 in this example).

Primary GID The default login group ID is next in the /etc/passwd
line for an account. The example uses a primary GID of 100.

Comment The comment field may have different contents on different
systems. In the preceding example, it’s the user’s full name. Some systems
place additional information here, in a comma-separated list. Such infor-
mation might include the user’s telephone number, office number, title,
and so on.

Home directory The user’s home directory is next up in the list.

Default shell The default shell is the final item on each line in /etc/
passwd. This is normally /bin/bash, /bin/tcsh, or some other common
command shell. It’s possible to use something unusual here, though. For
instance, many systems include a shutdown account with /bin/shutdown
as the shell. If you log into this account, the computer immediately shuts
down. You can create user accounts with a shell of /bin/false, which
prevents users from logging in as ordinary users but leaves other utilities
intact. Users can still receive mail and retrieve it via a remote mail retrieval
protocol like POP or IMAP, for instance. A variant on this scheme uses
/bin/passwd so that users may change their passwords remotely but not
actually log on using a command shell.

You can directly modify any of these fields, although in a shadow pass-
word system, you probably do not want to modify the password field; you
should make password-related changes via passwd so that they can be prop-
erly encrypted and stored in /etc/shadow. As with changes initiated via
usermod, it’s best to change /etc/passwd directly only when the user in
question isn’t logged in, to prevent a change from disrupting an ongoing session.

Like /etc/passwd, /etc/shadow may be edited directly. An example
/etc/shadow line resembles the following:

sally:E/moFkeT5UnTQ:11372:0:-1:7:-1:-1:

Most of these fields correspond to options set with the chage utility,
although some are set with passwd, useradd, or usermod. The meaning of
each colon-delimited field of this line is as follows:

Username Each line begins with the username. Note that the UID is not
used in /etc/shadow; the username links entries in this file to those in
/etc/passwd.

Password The password is stored in encrypted form, so it bears no obvi-
ous resemblance to the actual password.

http://www.sybex.com

268 Chapter 4 � Users and Security

If you’ve forgotten the root password for a system, you can boot with an
emergency recovery system (as discussed in Chapter 9, “Troubleshooting”)
and copy the contents of a password field for an account whose password you
do remember. You can then boot normally, log in as root, and change the
password. In a real pinch, you can delete the contents of the password field,
which results in a root account with no password. Be sure to immediately
change the root password after rebooting if you do this, though!

Last password change The next field (11372 in this example) is the date
of the last password change. This date is stored as the number of days
since January 1, 1970.

Days until change allowed The next field (0 in this example) is the num-
ber of days before a password change is allowed.

Days before change required This field is the number of days after the
last password change before another password change is required. Values
of -1 or 9999 typically indicate that this feature has been disabled.

Days warning before password expiration If your system is configured
to expire passwords, you may set it to warn the user when an expiration
date is approaching. A value of 7, as in the preceding example, is typical.

Days between expiration and deactivation Linux allows for a gap
between the expiration of an account and its complete deactivation. An
expired account either cannot be used, or requires that the user change the
password immediately after logging in. In either case, its password
remains intact. A deactivated account’s password is erased, and the
account cannot be used until it’s reactivated by the system administrator.

Expiration date This field shows the date on which the account will be
expired. As with the last password change date, the date is expressed as
the number of days since January 1, 1970.

Special Flag This field is reserved for future use and is normally not used
or contains a meaningless value. This field is empty in the preceding
example.

These values are generally best left to modification through the usermod
or chage commands because they can be tricky to set manually—for

http://www.sybex.com

Configuring User Accounts 269

instance, it’s easy to forget a leap year or the like when computing a date as
the number of days since January 1, 1970. Similarly, because of its encrypted
nature, the password field cannot be edited effectively except through
passwd or similar utilities. (You could cut-and-paste a value from a compat-
ible file, or use crypt yourself, but it’s usually easier to use passwd. Copying
encrypted passwords from other systems is also somewhat risky because it
means that the users will have the same passwords on both systems, and this
fact will be obvious to anybody who’s acquired both encrypted password
lists.)

/etc/shadow is normally stored with very restrictive permissions—rw------,
with ownership by root. This fact is critical to the shadow password system’s
utility since it keeps non-root users from reading the file and obtaining the
password list, even in an encrypted form. Therefore, if you manually modify
/etc/shadow, be sure it has the correct permissions when you’re done.

Deleting Accounts

On the face of it, deleting user accounts is easy. You may use the userdel
command to do the job of removing a user’s entries from /etc/passwd and,
if the system uses shadow passwords, /etc/shadow. userdel takes just one
parameter: -r. This parameter causes the system to remove all files from the
user’s home directory, as well as the home directory itself. Thus, removing a
user account such as sally is easily accomplished with the following
command:

userdel -r sally

You may omit the -r parameter if you want to preserve sally’s files.
There is one potential complication, however: Users may create files outside
of their home directories. For instance, many programs use the /tmp direc-
tory as “scratch space,” so user files often wind up there. These will be
deleted automatically after a certain period, but you may have other direc-
tories in which users might store files. To locate all such files, you can use the
find command with its -uid parameter. For instance, if sally had been
UID 529, you might use the following command to locate all her files:

find / -uid 529

http://www.sybex.com

270 Chapter 4 � Users and Security

The result will be a list of files owned by UID 529 (formerly sally). You
can then go through this list and decide what to do with the files—change
their ownership to somebody else, delete them, back them up to floppy, or
what have you. It’s wise to do something with these files, though, or else they
may be assigned ownership to another user if sally’s UID is reused. This
could become awkward if the files exceed the new user’s disk quota or if they
contain information that the new user should not have—such a person might
mistakenly be accused of indiscretions or even crimes.

A few servers—most notably Samba—may keep their own list of users. If
you run such a server, it’s best to remove the user’s listing from that server’s
user list when you remove the user’s main account. In the case of Samba, this
is normally done by manually editing the smbpasswd file (usually located in
/etc, /etc/samba, or /etc/samba.d) and deleting the line corresponding
to the user in question.

Configuring Groups

Linux provides group configuration tools that parallel those for user
accounts in many ways. Groups are not accounts, however, so many features
of these tools differ. Likewise, you can create or modify groups by directly
editing the configuration files in question. Their layout is similar to that for
account control files, but the details differ.

Adding Groups

Linux provides the groupadd command to add a new group. This utility
is similar to useradd, but has fewer options. The groupadd syntax is
shown here:

groupadd [-g GID [-o]] [-r] [-f] groupname

Each parameter to this command has a specific meaning:

-g GID [-o] You can provide a specific GID with the -g parameter. If
you omit this parameter, groupadd uses the next available GID. Nor-
mally, the GID you specify must be unused by other groups, but the -o
parameter overrides this behavior, allowing you to create multiple groups
that share one GID.

http://www.sybex.com

Configuring Groups 271

-r This parameter instructs groupadd to create a group with a GID of
less than 500. Not all distributions support this option; it was added by
Red Hat and has been used on some related distributions. Red Hat uses
GIDs of 500 and above for user private groups, as discussed shortly, in
“The User Private Group,” hence the -r parameter.

-f Normally, if you try to create a group that already exists, groupadd
returns an error message. This parameter suppresses that error message.
Not all versions of groupadd support this parameter.

In most cases, you’ll create groups without specifying any parameters
except for the group name itself, thus:

groupadd project3

This command creates the project3 group, giving it whatever GID the
system finds convenient—usually the highest existing GID plus 1. Once
you’ve done this, you can add users to the group, as described shortly in
“Modifying Group Information.” When you add new users, you can add
users directly to the new group with the -g and -G useradd parameters,
described earlier.

Modifying Group Information

Group information, like user account information, may be modified either
using utility programs or by directly editing the underlying configuration
file, /etc/group. As with creation, there are fewer options for modifying
groups than for modifying accounts, and the utilities and configuration files
are similar. In fact, usermod is one of the tools that’s used to modify groups.

Using groupmod and usermod

The groupmod command modifies an existing group’s settings. Its syntax is
shown here:

groupmod [-g GID [-o]] [-n newgroupname] oldgroupname

The meanings of each of these options is as follows:

-g GID [-o] Specify the new group ID using the -g option. groupmod
returns an error if you specify a new group ID that’s already in use, unless
you include the -o parameter, in which case you can create two groups
that share a single GID.

-n newgroupname Specify a new group name with the -n option.

http://www.sybex.com

272 Chapter 4 � Users and Security

One of the most common group manipulations you’ll perform, however,
is not handled through groupmod; it’s done with usermod. Specifically,
usermod allows you to add a user to a group with its -G parameter. For
instance, the following command sets sally to be a member of the users,
project1, and project4 groups, and it removes her from all other groups:

usermod -G users,project1,project4 sally

Be sure to list all the user’s current groups in addition to any groups to which
you want to add the user. Omitting any of the user’s current groups will
remove the user from those groups. You can discover the groups to which a
user currently belongs with the groups command, as in groups sally. To
avoid accidentally omitting a group, many system administrators prefer to
modify the /etc/group file in a text editor, or use gpasswd. Both options
allow you to add users to groups without specifying a user’s existing group
memberships.

Using gpasswd

The gpasswd command is the group equivalent to passwd. gpasswd also
allows you to modify other group features and to assign group administra-
tors—users who may perform some group-related administrative functions
for their groups. This is the basic syntax for this command:

gpasswd [-a user] [-d user] [-R] [-r] [-A user[,...]]
�[-M user[,...]] group

The meanings of the options are as follows:

-a user This option adds the specified user to the specified group.

-d user This option deletes the specified user from the specified group.

-R This option configures the group to not allow anybody to become
members through newgrp.

-r This option removes the password from a group.

-A user[,...] root may use this parameter to specify group admin-
istrators. Group administrators may add and remove members from a
group and change the group password. Using this parameter completely
overwrites the list of administrators, so if you want to add an administrator

http://www.sybex.com

Configuring Groups 273

to an existing set of group administrators, you must specify all their
usernames.

-M user[,...] This option works like -A, but it also adds the specified
user(s) to the list of group members.

If entered without any parameters except a group name, gpasswd changes
the password for the group.

Group passwords allow you to control temporary membership in a
group, as granted by newgrp. Ordinarily, members of a group may use
newgrp to change their current group membership (affecting the group of
files they create). If a password is set, even those who aren’t members of a
group may become temporary group members; newgrp prompts for a pass-
word that, if entered correctly, gives the user temporary group membership.

Unfortunately, some of these features are not implemented correctly in all
distributions. In particular, password entry by non-group members some-
times does not give group membership—the system responds with an
access denied error message. The -R option also sometimes doesn’t work
correctly—group members whose primary group membership is with
another group may still use newgrp to set their primary group membership.

Directly Modifying Group Configuration Files

Group information is stored primarily in the /etc/group file. Like account
configuration files, the /etc/group file is organized as a set of lines, one line
per group. A typical line in this file resembles the following:

project1:x:501:sally,sam,ellen,george

Each field is separated from the others by a colon. The meanings of the
four fields are as follows:

Group name The first field (project1 in the preceding example) is the
name of the group.

Password The second field (x in the preceding example) is the group
password. Distributions that use shadow passwords typically place an x
in this field; others place the encrypted password directly in this field.

GID The group ID number goes in this field.

User list The final field is a comma-separated list of group members.

http://www.sybex.com

274 Chapter 4 � Users and Security

Users may also be members of a group based on their own /etc/passwd
file primary group specification. For instance, if george had project1 listed
as his primary group, he need not be listed in the project1 line in /etc/
group. If george uses newgrp to change to another group, though, he won’t
be able to change back to project1 unless he’s listed in the project1 line
in /etc/group.

Systems with shadow passwords also use another file, /etc/gshadow, to
store shadow password information on groups. This file stores the shadow
password and information on group administrators, as described earlier, in
“Using gpasswd.”

Deleting Groups

Deleting groups is done via the groupdel command, which takes a single
parameter: a group name. For instance, groupdel project3 removes the
project3 group. You can also delete a group by editing the /etc/group file
(and /etc/gshadow, if present) and removing the relevant line for the group.
It’s generally better to use groupdel, though, because groupdel checks to
see if the group is any user’s primary group. If it is, groupdel refuses to
remove the group; you must change the user’s primary group or delete the
user account first.

As with deleting users, deleting groups can leave “orphaned” files on the
computer. You can locate them with the find command. For instance, if the
deleted group had used a GID of 503, you can find all the files on the com-
puter with that GID by using the following command:

find / -gid 503

Once you’ve found any files with the deleted group’s ownership, you must
decide what to do with them. In some cases, leaving them alone won’t cause
any immediate problems, but if the GID is ever reused, it could lead to con-
fusion and even security breaches. Therefore, it’s usually best to delete the
files or assign them other group ownership using the chown or chgrp
commands.

Common User and Group Strategies

Linux’s tools for handling users and groups can be quite powerful, but
until you have some experience using them in a practical working environ-
ment, it’s not always easy to see how best to use them. This is also one area

http://www.sybex.com

Common User and Group Strategies 275

of system configuration that can’t be preconfigured by distribution main-
tainers in a way that’s very helpful. After all, user accounts and groups are
necessarily local features—your system’s users and groups will almost cer-
tainly be different from those of a system across town. Nonetheless, Linux
distributions need to have some sort of default scheme for handling users and
groups—what UIDs and GIDs to assign, and what groups to use for newly
created users by default. Two such schemes are in common use, and each
may be expanded in ways that may be useful to your system.

The User Private Group

The user private group scheme is used by Red Hat Linux and some of its
derivative distributions, such as Mandrake. This scheme creates an initial
one-to-one mapping of users and groups. In this system, whenever a user
account is created, a matching group is created, usually of the same name.
This matching group has one member—its corresponding user. For instance,
when you create the account sally, a group called sally is also created. The
account sally’s primary group is the group sally. When used without
modification, the user private group strategy effectively eliminates groups as
a factor in Linux security—because each group has just one member, group
permissions on files become meaningless.

It’s possible to modify group membership to control file access, however.
For instance, if you want george to be able to read sally’s files, you can add
george to the sally group and set sally’s umask to provide group read
access to new files created by sally. Indeed, if you make all users group
administrators of their own groups, users may control who has access to
their own files by using gpasswd themselves. Overall, this approach provides
considerable flexibility, particularly when users are sophisticated enough to
handle gpasswd. Giving users such power may run counter to your system’s
security needs, though. Even when security policy dictates against making
users group administrators, a user private group strategy can make sense if
you need to fine-tune file access on a user-by-user basis. This approach can
also provide asymmetrical file access. For instance, george may be able to
read sally’s files (at least, those with appropriate group permissions), but
sally might not have access to george’s files (unless george sets the world
read bit on his files).

Project Groups

A second approach to group configuration is to create separate groups for
specific purposes or projects. Therefore, I refer to this as the project group

http://www.sybex.com

276 Chapter 4 � Users and Security

approach. Consider an example of a company that’s engaged in producing
three different products. Most employees work on just one product, and for
security reasons, you don’t want users working on one product to have
access to information relating to the other two products. In such an environ-
ment, a Linux system may be well served by having three main user groups,
one for each product. Most users will be members of precisely one group. If
you configure the system with a umask that denies world access, those who
don’t belong to a specific product’s group won’t be able to read files relating
to that product. You can set read or read/write group permission to allow
group members to easily exchange files. (Individual users may use chmod to
customize permissions on particular files and directories, of course.) If a user
needs access to files associated with multiple products, you can assign that
user to as many groups as are needed to accommodate the need. For
instance, a supervisor might have access to all three groups.

The project group approach tends to work well when a system’s users can
be easily broken down into discrete groups whose members must collaborate
closely. It can also work well when users need not (and even should not) have
ready access to each others’ files, as with students taking the same class. In
such a case, you would set the umask to block group access to users’ files.
The logical grouping of users can still be helpful to you as an administrator,
however, because you can easily track users according to their group—you
can easily find all files owned by users taking a particular class, for instance.
(This tracking ability breaks down when users are members of multiple
groups, though.)

Many Linux distributions default to using a type of project group
approach. The default primary group for new users on such systems is typ-
ically called users. You can, and in most cases should, create additional
groups to handle all your projects. You can leave the users group intact but
not use it, rename it to the first project group name, or use users as an over-
arching group for when you want to give access to a file to most ordinary
users, but perhaps not everyone (such as guest users on an FTP server).

Multiple Group Membership

On any system but a very simple one, it’s likely that at least some users will
be members of multiple groups. This means that these users will be able to
do the following things:

� Read files belonging to any of the user’s groups, provided that the file
has group read permission.

http://www.sybex.com

Account Security 277

� Write files belonging to any of the user’s groups, provided that the file
has group write permission.

� Run programs belonging to any of the user’s groups, provided that the
file has group execute permission.

� Change the group ownership of any of the user’s own files to any of
the groups to which the user belongs.

� Use newgrp to make any of the groups to which the user belongs the
user’s primary group. Files created thereafter will have the selected
group as the group owner.

Multiple group membership is extremely important when using user pri-
vate groups, as described above—without this, it’s impossible to fine-tune
access to users’ files. Even in a project group configuration, though, multiple
group membership is critical for users who need access to multiple groups’
files.

You may find yourself creating a group membership scheme that’s some
combination of these two, or one that’s unique unto itself. For instance, you
might create multiple overlapping subgroups in order to fine-tune access
control. It might be common in such a situation for users to belong to mul-
tiple groups. Part of the problem with such configurations is in teaching
users to properly use the newgrp and chgrp commands, though—many less
technically savvy users prefer to simply create files and not worry about such
details.

Account Security

Creating, maintaining, and removing user accounts are obviously
important activities on a Linux system. One particularly important account
maintenance task (or set of tasks) is maintaining account security. Miscre-
ants sometimes attack a system through vulnerable user accounts. Once
access to a normal account is achieved, bugs or lax internal security can be
exploited to allow the cracker to acquire root access, or the account can be
used to attack other systems. Therefore, it’s important that you attend to this
matter, and periodically review your configuration to see that it remains
secure.

http://www.sybex.com

278 Chapter 4 � Users and Security

The popular media uses the term hacker to refer to computer miscreants. This
term has an older meaning, however—somebody who enjoys programming
or doing other technically challenging work on computers but not in an ille-
gal or destructive sense. Many Linux programmers consider themselves
hackers in this positive sense. Thus, I use the term cracker to refer to those
who break into computers.

Enforcing User Password Security

As a general rule, people tend to be lazy when it comes to security. In com-
puter terms, this means that users tend to pick passwords that are easy to
guess, and they change them infrequently. Both these conditions make a
cracker’s life easier, particularly if the cracker knows the victim. Fortunately,
Linux includes tools to help make your users pick good passwords and
change them regularly.

Common (and therefore poor) passwords include those based on the
names of family members, friends, and pets; favorite books, movies, televi-
sion shows, or the characters in any of these; telephone numbers, street
addresses, or Social Security numbers; or other meaningful personal infor-
mation. Any single word that’s found in a dictionary (in any language) is a
poor choice for a password. The best possible passwords are random collec-
tions of letters, digits, and punctuation. Unfortunately, such passwords are
difficult to remember. A reasonable compromise is to build a password in
two steps: First, choose a base that’s easy to remember but difficult to guess.
Second, modify that base in ways that increase the difficulty of guessing the
password.

One approach to building a base is to use two unrelated words, such as
“bun” and “pen.” You can then merge these two words (bunpen). Another
approach, and one that’s arguably better than the first, is to use the first let-
ters of a phrase that’s meaningful to the user. For instance, the first letters of
“yesterday I went to the dentist” become yiwttd. In both cases, the base
should not be a word in any language. As a general rule, the longer the pass-
word the better. Older versions of Linux had password length limits of eight
characters, but those limits have now been lifted. Many Linux systems
require passwords to be at least four or five characters in length; the passwd
utility won’t accept anything shorter than that.

http://www.sybex.com

Account Security 279

With the base in hand, it’s time to modify it to create a password. Listed
below are several possible modifications; the user should apply at least a cou-
ple of them:

Adding numbers or punctuation The single most important modifica-
tion is to insert random numbers or punctuation in the base. This step
might yield, for instance, bu3npe&n or y#i9wttd. As a general rule, add
at least two symbols or numbers.

Mixing case Linux uses case-sensitive passwords, so jumbling the case
of letters can improve security. Applying this rule might produce
Bu3nPE&n and y#i9WttD, for instance.

Order reversal A change that’s very weak by itself but that can add
somewhat to security when used in conjunction with the others is to
reverse the order of some or all letters. You might apply this to just one
word of a two-word base. This could yield nu3BPE&n and DttW9i#y, for
instance.

Your best tool for getting users to pick good passwords is to educate
them. Tell them that passwords can be guessed by malicious individuals who
know them, or even who target them and look up personal information in
telephone books, on Web pages, and so on. Tell them that, although Linux
encrypts its passwords internally, programs exist that feed entire dictionaries
through Linux’s password encryption algorithms for comparison to encrypted
passwords. If a match is found, the cracker has found the password. There-
fore, using a password that’s not in a dictionary, and that isn’t a simple vari-
ant of a dictionary word, improves security substantially. Tell your users
that their accounts might be used as a first step towards compromising the
entire computer, or as a launching point for attacks on other computers.
Explain to your users that they should never reveal their passwords to others,
even people claiming to be system administrators—this is a common scam,
but real system administrators don’t need users’ passwords. You should also
warn them not to use the same password on multiple systems because doing
so quickly turns a compromised account on one system into a compromised
account on all the systems. Telling your users these things will help them
understand the reasons for your concern, and it is likely to help motivate at
least some of them to pick good passwords.

If your users are unconcerned after being told this (and in any large instal-
lation, some will be), you’ll have to rely on the checks possible in passwd.
Most distributions’ implementations of this utility require a minimum pass-
word length (typically four or five characters). They also usually check the

http://www.sybex.com

280 Chapter 4 � Users and Security

password against a dictionary, thus weeding out some of the absolute worst
passwords. Some require that a password contain at least one or two digits
or punctuation.

Password cracking programs, such as Crack (http://www.users.dircon.co
.uk/~crypto), are easy to obtain. You might consider running such programs
on your own encrypted password database to spot poor passwords, and in
fact, this is a good policy in many cases. It’s also grounds for dismissal in
many organizations, and can even result in criminal charges being brought, at
least if done without authorization. If you want to weed out bad passwords in
this way, discuss the matter with your superiors and obtain permission before
proceeding. Take extreme care with the files involved, too; it’s probably best
to crack the passwords on a computer with no network connections.

Another password security issue is password changes. Changing pass-
words frequently minimizes the window of opportunity for crackers to do
damage; if a cracker obtains a password but it changes before the cracker can
use it (or before the cracker can do further damage using the compromised
account), the password change has averted disaster. As described earlier in
this chapter, you can configure accounts to require periodic password
changes. When so configured, an account will stop accepting logins after a
period of time if the password isn’t changed periodically. (You can configure
the system to warn users when this time is approaching.) This is a very good
option to enable on sensitive systems or those with many users. Don’t set the
expire time too low, though—if users have to change their passwords too fre-
quently, they’ll probably just switch between a couple of passwords, or pick
poor ones. Precisely what “too low” a password change time is depends on
the environment. For most systems, 1–4 months is probably a reasonable
change time, but for some it might be longer or shorter.

Steps to Reduce the Risk of Compromised Passwords

Passwords can end up in crackers’ hands in various ways, and you must take
steps to minimize these risks. Steps you can take to improve your system’s
security include the following:

Change passwords frequently. As just mentioned, doing this can mini-
mize the chance of damage due to a compromised password. Likewise,
choosing a good password can minimize the risk that it will be discovered
through any of several means described here.

http://www.sybex.com

Account Security 281

Use shadow passwords. If a cracker who’s broken into your system
through an ordinary user account can read the password file, or if one of
your regular users is a cracker who has access to the password file, that
individual can run any of several password-cracking programs on the file.
For this reason, you should use shadow passwords stored in /etc/
shadow whenever possible. Most Linux distributions use shadow pass-
words by default.

Keep passwords secret. You should remind your users not to reveal
their passwords to others. Such trust is sometimes misplaced, and some-
times even a well-intentioned password recipient might slip up and let the
password fall into the wrong hands. This can happen by writing the pass-
word down, storing it in electronic form, or sending it by e-mail or other
electronic means. Indeed, users shouldn’t e-mail their own passwords
even to themselves, because e-mail can be intercepted at various points.

Use secure remote login protocols. Certain remote login protocols are
inherently insecure; all data traverse the network in an unencrypted form.
Intervening computers can be configured to snatch passwords from such
sessions. Because of this, it’s best to disable Telnet, FTP, and other pro-
tocols that use cleartext passwords, in favor of protocols that encrypt
passwords, such as Secure Shell (SSH). Chapter 5, “Networking,” dis-
cusses these protocols in more detail.

Be alert to shoulder surfing. If your users log on using public terminals,
as is common on college campuses, in Internet cafes, and the like, it’s pos-
sible that others will be able to watch them type their passwords (a prac-
tice sometimes called “shoulder surfing”). Users should be alert to this
possibility and minimize such logins if possible.

Some of these steps are things you can do, such as replacing insecure
remote login protocols with encrypted ones. Others are things your users
must do. Once again, this illustrates the importance of user education, par-
ticularly on systems with many users.

Disabling Unused Accounts

Linux computers sometimes accumulate unused accounts. This occurs when
employees leave a company, when students graduate, and so on. You should
be diligent about disabling such accounts because they can easily be abused,
either by the individual who’s left your organization or by others who dis-
cover the password through any of the means already discussed. As

http://www.sybex.com

282 Chapter 4 � Users and Security

discussed in detail earlier in this chapter you do this with the userdel
command.

If the individual has had legitimate access to the root account, you must
carefully consider how to proceed. If you have no reason to suspect the indi-
vidual of wrongdoing, changing the root password and deleting the user’s
regular account are probably sufficient. If the individual might have sabo-
taged the computer, though, you’ll have a hard time checking for every
possible type of damage, particularly if the individual was a competent
administrator. In such situations, you’re better off backing up user data and
reinstalling from scratch, just as you should if your system is compromised
by an outsider.

Many Linux distributions create a number of specialized accounts that
are normally not used for conventional user logins. These may include
daemon, lp, shutdown, mail, news, uucp, games, nobody, and others. Some
of these accounts have necessary functions. For instance, daemon is used by
some servers, lp is associated with Linux’s printing system, and nobody is
used by various programs that don’t need high-privilege access to the system.
Other accounts are likely to be unused on many systems. For instance, games
is used by some games, and so it isn’t of much use on most servers or true
productivity workstations. You may be able to delete some of these unused
specialty accounts, but if you do so, you should definitely record details on
the accounts’ configurations so that you can restore them if you run into
problems because the account wasn’t quite as unused as it first seemed.

Filesystem Security

Security isn’t just about protecting your system from unauthorized
access by outsiders; it’s also about preventing local users from damaging the
system or each other’s files, whether intentionally or not. A large Linux sys-
tem can easily have one or two users who’ll try doing malicious things and
more who’ll do dangerous things without knowing any better. There’s also
the possibility that a cracker could break into a local account, even on a
small system with trusted users. For these reasons, Linux provides filesystem
security in the form of permissions on files, as described earlier in this chapter.

http://www.sybex.com

Filesystem Security 283

Evaluating Your User File Permissions Scheme

As discussed earlier in this chapter, you can adjust the umask to set the
default permissions set on new files created by users. The umask command
that accomplishes this task may reside in system-wide startup scripts like
/etc/profile, but individual users can override this setting, so you should
keep in mind that you don’t have absolute control over this setting.

An appropriate umask depends on the security needs of your system and
interacts strongly with the group plan you use—user private groups, project
groups, or some other strategy. Some possible configurations include the
following:

High security If users should not have routine access to each other’s
files, you may want to use a umask of 077, which eliminates all permis-
sions for everybody but the file’s owner. If you use a project group strat-
egy, users will be able to give other group members selective access to files
by changing access rights on specific files. If you use a user private group
strategy and give users group administrative privileges over their own
groups, they’ll be able to fine-tune access. In either case, users can grant
world access to their files, as well.

Default user private groups If users need to routinely collaborate with
arbitrary other users, you may want to use a user private group strategy
and a umask of 027 or even 007. This will give members of the users’ pri-
vate groups read or read/write access to users’ files by default. Users will
have to run chmod, change their umask, or remove members from their
private groups to restrict access.

Default project groups You can use a umask of 027 or 007 and a project
group strategy to give members of a project group access to each others’
files. Again, individuals may further restrict or widen permissions on indi-
vidual files by using chmod.

Open system On a system in which users might legitimately need to
access each others’ files, a umask of 022 or even 002 is common. These
give world read-only access to users’ files. A umask of 002 also allows
group members to write to these files. It’s generally unwise to use a umask
of 000, which gives full read/write access to the world; even on a system
in which users generally trust each other, this sort of access can easily be
abused or cause accidents.

http://www.sybex.com

284 Chapter 4 � Users and Security

In addition to evaluating default user permissions, you should examine
permissions on common directories in the Linux filesystem. Most directories
should be world-readable, but not world-writeable. In most cases, directo-
ries should be owned by root (with the root group), and the group permis-
sions should reflect the world permissions. (With this ownership, the group
permissions are actually seldom important, but they could be important if
the root group were compromised.) Exceptions to these rules include the
following:

/tmp and /var/tmp These directories need to be world-writeable
because any user should be able to store temporary files here. They should
also have their sticky bits set so that users cannot delete each others’ files.

/var/spool directories As a general rule, /var/spool subdirectories
are an odd lot. Some, such as /var/spool/mail, may have group own-
ership by special groups, with write access to those groups. Others, like
/var/spool/cron, may not be readable by anybody but the owner. Some
may be owned by daemon, uucp, or some other special user. The details
sometimes differ from one distribution to another because of differing
servers or security philosophies.

/mnt/mountpoint Mount point permissions are largely irrelevant since
they can change when a partition or device is mounted.

/home/username Users’ home directories need to be owned by the users
in question, usually with group ownership set to the user’s default group.
Permissions should be set in accordance with your overall permissions
policy—typically the same as directories created using the default umask.

/root The root user’s home directory normally has 0700 permissions
so that ordinary users can’t see what’s in that directory.

Unfortunately, it’s impossible to give hard and fast rules about what
directories should have particular permissions. If you’re in doubt, try to find
out what programs use a particular directory, and check their documenta-
tion. This can be a good way to learn about directories that are used by just
one or two programs. Other times, the FHS (discussed in Chapter 7 and
detailed at http://www.pathname.com/fhs) may provide clues for directo-
ries that are standardized.

Evaluating Permissions on Programs

Linux places most program files in binary directories, such as /bin, /sbin,
and /usr/X11R6/bin. To be run, programs must have at least one execute

http://www.sybex.com

Filesystem Security 285

bit set. Most programs have all three execute bits set (owner, group, and
world). This allows any user to run the program. You might, however, want
to restrict access to certain programs to all but certain users. To do this, you
should remove world execute permissions and world read permissions. (If
users can read a file, they can copy it to their own directories, change per-
missions, and run the copy.) You can then create a group that contains the
users who should be able to run the program, change the program’s group
ownership to that group, and be sure group execute permissions exist on the
program file. If you want only the program’s owner to be able to execute the
program, give only the owner execute permission.

Removing execute permission from a file won’t prevent a truly determined
user from running most programs. Because source code to all standard Linux
programs is readily available, users could download the source code and
compile their own copies of utilities. This approach won’t work for proprietary
programs, though, and it might be ineffective if a program requires SUID
access, as described shortly, in “Setting Process Permissions.”

Removing Unnecessary Programs

You should take some time to get to know the programs that are installed on
your computer. One excellent type of program to help you do this if your sys-
tem is based on RPM or Debian packages is a GUI package installation util-
ity. Red Hat and most of its derivative systems come with one called
GNOME RPM (type gnorpm to launch it). SuSE’s YaST (type yast or yast2
to launch it) includes similar functionality. For Debian systems, the Storm
Package Manager (type stormpkg to launch it) plays a similar role. Storm Pack-
age Manager comes with Storm Linux, but can be installed on other Debian-
based systems. Chapter 3, “Software Management,” discusses the use of
such packages.

Removing packages you don’t use saves disk space and can improve secu-
rity by reducing the risk that a miscreant can abuse a bug in a program to do
things you’d rather not be done. Crackers sometimes exploit buggy pro-
grams—particularly buggy SUID root programs, as discussed shortly—to
do things the programs were never intended to do. On a system with many
users, you may even want to remove many seemingly innocuous and com-
mon tools if they aren’t being used. This may prevent miscreants from using
your system as a launching pad for attacks on other computers. For instance,
removing Linux’s Telnet client and C compilers can go a long way toward

http://www.sybex.com

286 Chapter 4 � Users and Security

making a system an unappealing platform for attacks on others. Removing
such tools is particularly important for systems that have a high profile, such
as mail and Web servers, or for systems that serve as routers or firewalls. If
your firewall lacks tools that an intruder might use to inflict further damage,
you’ve made the network it protects safer in the event the firewall is com-
promised. Note the use of the relative term safer, though; a sufficiently
resourceful cracker can certainly overcome a few missing utilities, particu-
larly if just one opening is available. For instance, a cracker could use an FTP
client to retrieve missing tools from another system.

You should be particularly diligent about removing unnecessary servers.
If a local program, like su or mount, contains a bug that can be exploited,
only local users or those who’ve already broken into the computer as local
users can use the bug to wreak further havoc. If a server contains a bug,
though, there’s at least a chance that anybody on the Internet could abuse the
bug and cause problems for you. This is true even if the server has no legit-
imate users.

You can find some unused servers by browsing through your installed
packages as just described. There are some other places you should check,
as well:

/etc/inetd.conf This file, described in Chapter 6, controls inetd,
which starts many servers on some systems. As a general rule, if you don’t
understand a line in this file, you should comment it out by preceding it
with a pound sign (#).

/etc/xinetd.conf or /etc/xinetd.d files xinetd is a replacement
for inetd on some distributions. As with inetd.conf, if you see an entry
you don’t understand in /etc/xinetd.conf or a custom file in /etc/
xinetd.d, you should disable that server. Do this by adding the line
disable = yes to the server definition.

SysV startup scripts Check the SysV startup scripts in /etc/rc.d/
init.d or /etc/init.d. Many of these are necessary for system opera-
tion, so you shouldn’t be as quick to disable them as you are to disable
inetd or xinetd services. You can find the package to which a startup file
belongs by using your package management system, if your distribution uses
one. Specifically, type something like rpm -qf /etc/rc.d/scriptname
or dpkg -S /etc/rc.d/scriptname to locate the package that owns
scriptname. You can then use rpm -qi packagename or dpkg -p
packagename to find out about that package.

When removing servers, you should be sure you shut down the server
either before or after changing the configuration. With servers that launch

http://www.sybex.com

Filesystem Security 287

through inetd or xinetd, you should restart the inetd or xinetd server
itself after you remove the package or disable the server (by typing something
like /etc/rc.d/inetd restart). For servers that start through SysV
startup scripts, run the script with the stop parameter to stop the server
before you remove the package.

Keeping Software Up-to-Date

Removing unnecessary programs can be important for various reasons, as
just described. One of these reasons is that an unnecessary program may con-
tain a bug that can be used to compromise your system. Unfortunately, this
possibility exists even for necessary programs. Therefore, it’s important that
you keep your software up-to-date. This is particularly important for serv-
ers, but security flaws are found even in non-server programs.

The simplest way to keep a system current is to periodically check the dis-
tribution maintainer’s Web or FTP site for updates. If an upgrade for a pack-
age you have installed is available, check its description to see if it fixes any
security flaws. If it does (or even if it doesn’t), you may want to install the
update. Chapter 3 discusses such upgrades in more detail, including using
common Linux package management tools to do it.

Detecting Intruders

If the worst should occur and a cracker breaks into your system, how can
you detect the invasion? If the cracker is restricted to using a single account,
such detection might be very difficult; you might not be able to tell the dif-
ference between normal users’ activities and those of an unwelcome guest.
You might, however, notice some unusual entries in your log files (as
described shortly, in “Monitoring Log Files”), particularly if the intruder
attempts to use utilities such as su, which produce log file entries. If your
intruder is logging in from a distant computer, you might also notice the
unusual login source, assuming your users don’t normally do such things.
Likewise, you might notice unusual temporal patterns in the account’s login
activities, such as back-to-back logins from different networks or logins
when you know the account’s owner is on vacation, camping without tele-
communications equipment.

Attempts to break in are also likely to show up in log files—but as noted
earlier, competent crackers frequently erase the evidence of such intrusions
from log files, so you might not notice anything amiss from the log files
alone. On the other hand, the vast majority of intruders aren’t really com-
petent crackers; they’re script kiddies—so called because they break into

http://www.sybex.com

288 Chapter 4 � Users and Security

computers using intrusion scripts they did not devise. Such intruders fre-
quently don’t understand the subtleties of the systems they compromise, so
they tend to leave traces in log files, and sometimes in the form of collateral
damage—servers that mysteriously crash, features that cease working, and
so on. Of course, you shouldn’t jump to the conclusion that your system has
been invaded because it’s malfunctioning; many other factors can cause a
computer to misbehave. It is one possibility, though.

Many crackers aren’t content to merely break into a computer; they want
to do something with that system. To that end, they modify the computer’s
files—they may create accounts for themselves, or give passwords to
accounts that don’t normally have them so they can log on more easily in the
future. The intruders may install modified versions of critical system soft-
ware. For instance, a modified login program might collect the passwords
of other users, which sometimes allow entry to other systems. Some modified
programs might be downright malicious or contain bugs that can cause seri-
ous damage to the computer. For these reasons, you should take the poten-
tial for damage to your system very seriously.

Perhaps the best way to detect system compromise is with an intrusion
detection utility like Tripwire (http://www.tripwire.org). This utility
records a set of information about all the important files on a computer,
including various types of checksums and hashes—short digital “signatures”
that allow you to quickly determine whether or not a file has been changed.
(These can also be used in other ways; for instance, Linux uses hashes to
store passwords.) With this database stored in a secure location, you can
check your system periodically for alteration. If an intruder has modified any
of your files, Tripwire will alert you to this fact. If you like, you can run a
Tripwire verification on a regular basis—say, once a week in a cron job.

The RPM system also records checksums for packages. You can verify these
with the -V parameter to rpm. Typing rpm -Va checks all files on the system.
(This command also returns the names of missing files, files with altered date
stamps, and so on.) RPM’s checksums are easily overcome, though; a cracker
need only install software via RPM to make the software appear legitimate to
such a check.

Many distributions ship with Tripwire, but it may not be installed by
default. The utility is controlled through two configuration files: tw.cfg and
tw.pol, which often reside in /etc/tripwire. tw.cfg controls overall con-
figuration options, such as where tw.pol resides, how Tripwire sends
reports to the system administrator, and so on. tw.pol includes information
on the files it’s to include in its database, among other things. Both files are

http://www.sybex.com

Setting Process Permissions 289

binary files created from text-mode files called twcfg.txt and twpol.txt,
respectively. You may need to edit twpol.txt to eliminate references to files
you don’t have on your system and to add information on files you do have
but that the default file doesn’t reference. Use the twinstall.sh program
(which often resides in /etc/tripwire) to generate the binary configuration
files and other critical database files. This utility will ask you to set a pair of
pass phrases, which are like passwords but are typically longer, to control
access to the Tripwire utilities. You’ll then need to enter these pass phrases
to have the utility do its encoding work.

Once you’ve generated the basic setup files, type tripwire --init to
have it generate initial checksums and hashes on all the files it’s configured
to monitor. This process is likely to take a few minutes. Thereafter, typing
tripwire --check will check the current state of the system against the
database, and tripwire --update will update the database (say, in case
you upgrade a package). The --init and --update operations require you
to enter the pass phrase, but --check doesn’t. Therefore, you can include an
automated Tripwire check in a cron job.

Tripwire is best installed and initialized on a completely fresh installation,
before connecting the computer to the Internet but after all programs have
been configured. Although it’s possible to install it on a system that’s been up
and running for some time, if that system has already been compromised
without your knowledge, Tripwire won’t detect that fact.

Setting Process Permissions

Most Linux programs run with the permissions of the user who exe-
cuted them. For instance, if jane runs a program, that program can read pre-
cisely the same files that jane can read. A few programs, though, need
additional privileges. For instance, su, which allows one user to take on
another’s identity, requires root privileges to do this identity switching.
Such programs use the SUID bit, introduced earlier in this chapter, to have
the program run with the privileges of the program file’s owner. That is, the
SUID bit alters the effective user ID. The SGID bit works in a similar man-
ner, but it sets the group with which the process is associated. Although these

http://www.sybex.com

290 Chapter 4 � Users and Security

features are very useful and even occasionally necessary, they’re also at least
potential security risks, so you should be sure that as few programs use these
features as possible.

The Risk of SUID and SGID Programs

There are two major potential risks with SUID and SGID programs:

� If the program allows users to do something potentially dangerous,
ordinary users might abuse the program. For instance, Linux’s fdisk
program can modify a disk’s partitions, potentially leading to a com-
pletely destroyed system if abused. Even comparatively innocuous
programs like cp could be abused if set to be SUID root—if so con-
figured, any user could copy any file on the computer, which is clearly
undesirable in the case of sensitive files like /etc/shadow. For these
reasons, neither fdisk nor cp is normally installed as an SUID program.

� Bugs in SUID and SGID programs can cause damage with greater than
normal privileges. If some random program contains a bug that causes
it to try to recursively remove all files on the computer, and if an ordi-
nary user encounters this bug, Linux’s filesystem security features will
minimize the damage. If this program were SUID root, though, the
entire system would be wiped out.

For these reasons, only programs that absolutely require SUID or SGID
status should be so configured. Typically, these are programs that ordinary
users might reasonably be expected to use and that require privileged access
to the system. The programmers who work on such programs take great
pains to ensure they’re bug-free. As described earlier in this chapter, though,
it’s possible for root to set any program’s SUID or SGID bit.

When Is SUID or SGID Necessary?

SUID and SGID are necessary when a program needs to perform privileged
operations but may also legitimately be run by ordinary users. Some common
programs that meet this description include passwd, gpasswd, crontab, su,
sudo, mount, umount, and ping. This list is not complete, however.

You can remove the SUID bits on some of these programs, but that may
mean that ordinary users won’t be able to use them. Sometimes this may be
acceptable—for instance, you might not want ordinary users to be able to
mount and unmount filesystems. Other times, though, ordinary users really

http://www.sybex.com

Setting Process Permissions 291

do need access to these facilities. su is the best way for you to acquire root
privileges in many cases, for instance; and ordinary users should be able to
change their passwords with passwd.

Some programs have SUID or SGID bits set, but they aren’t SUID or SGID
root. These programs may need special privilege to access hardware device
files or the like, but they don’t need full root privilege to do so. For instance,
SuSE and Debian both configure their xterm programs in this way. Such con-
figurations are much less dangerous than are SUID root programs because
these special users typically don’t have unusual privileges except to a handful
of device or configuration files.

Finding SUID or SGID Programs

You can use the find command to locate files with their SUID or SGID bits
set. Specifically, you need to use the -perm parameter to this command, and
specify the s permission code in the user or group. For instance, the follow-
ing command locates all SUID or SGID files on a computer:

find / -perm +ug+s

You may want to run this command and study the results for your system.
If you’re uncertain about whether a command should have its SUID or SGID

Controlling Daemon Process Permissions

Servers are run in various ways, as described in Chapter 6. Some of these
allow you to set the effective user IDs of the server processes. For instance,
both inetd and xinetd allow you to specify the user under whose name the
server runs. Sometimes a server needs to run with root permissions, but
other times that’s not necessary. You should consult a server’s documen-
tation to learn what its requirements are.

Some servers let you adjust their process ownership through configuration
files. For instance, Apache lets you adjust the username used on most of its
processes with the User option in its httpd.conf file. (In the case of Apache,
one process still runs as root, but it spawns children that run with the own-
ership you specify.)

http://www.sybex.com

292 Chapter 4 � Users and Security

bit set, check its man page and try to verify the integrity of its package using
RPM, if your system uses RPM. For instance, type rpm -V packagename.
This will turn up changes to the permissions of files in packagename, includ-
ing changes to SUID or SGID bits. Of course, it’s conceivable that a program
might have had its SUID or SGID bit set inappropriately even in the original
package file.

Monitoring Log Files

Keeping your filesystem in good order is important for security, but a
Linux computer is a dynamic system. It’s therefore important to monitor
ongoing system activities. Many Linux programs, including most servers,
login processes, and the kernel, record a summary of their activities in log
files. As a result, these files contain a synopsis of important system activities.
As such, they’re useful security tools—if somebody attempts to do something
unauthorized, there’s a good chance that evidence of that activity will show
up in one or more log files. Successful intruders often delete evidence of their
activities from log files, though, so they aren’t a 100 percent reliable means
of detecting intruders. Nonetheless, monitoring your log files for evidence of
intrusion attempts, or just plain malfunctioning software, is an important
activity for a Linux system administrator.

Locating Important Log Files

The first trick to monitoring log files is knowing where they are. Most of
these files are maintained by the system log daemon (syslogd) and the ker-
nel log daemon (klogd). These utilities both rely upon the /etc/
syslog.conf file for configuration. This file consists of a series of lines that
define how to log certain types of messages. Lines that begin with pound
signs (#) are comments and are ignored. A non-comment line begins with a
definition of the type of log item (the “selector”) and ends with an “action”
for logging. For instance, consider the following entries:

mail.=debug;mail.=info;mail.=notice /var/log/mail/info

mail.=warn /var/log/mail/warnings

mail.err @logger

http://www.sybex.com

Monitoring Log Files 293

The selectors are broken into two parts, separated by periods: a facility
and a priority. The facility in each of these cases is mail, which defines mes-
sages related to e-mail delivery. The priorities are named codes, and in this
example they’re debug, info, notice, warn, and err. These correspond to
increasing severity. Many servers let you adjust the verbosity of their logging
at specific severity levels. Normally, any message of a specified priority or
higher is logged using the action of the specified line; however, preceding the
severity code with an equal sign (=) causes only messages of that severity to
be logged. The preceding example uses this trick for most severities to keep
log information isolated.

The action for most of these examples is to log the message to a file (/var/
log/mail/info or /var/log/mail/warnings). The err priority, however,
passes the log information to another computer—logger. Using one com-
puter to hold logging information for others can be an important security
precaution; if a cracker breaks into one system, the cracker can’t modify logs
without breaking into another computer.

Armed with this information, you can use /etc/syslog.conf to locate
most of your important log files. These typically reside in /var/log and its
subdirectories. On most distributions, /var/log/messages, /var/log/
secure, and /var/log/syslog are particularly important. One or more of
these files typically holds important general-purpose log information.

Some servers create their own log files. Typically, you configure the loca-
tion of these log files in the server’s own native configuration files. For
instance, Samba uses the log file parameter in its smb.conf file to control
the location of its logs. As with system logs, server-specific logs usually end
up in /var/log or a subdirectory of it.

Most user programs don’t log their activities. Shells, however, often keep
simple records of their last few commands. Bash, for instance, uses the
.bash_history file in the user’s home directory for this purpose. Such logs
are intended primarily to allow users to quickly repeat recent commands by
pressing the up arrow key, but if you suspect a user of wrongdoing, you can
check this file for evidence.

Information Recorded in Log Files

Servers and other processes record differing information depending upon
their programming. The following is a list of information you might be par-
ticularly interested in monitoring:

� Logins by root and attempts to use su to acquire root privileges.
Both successful and failed attempts are potentially important.

http://www.sybex.com

294 Chapter 4 � Users and Security

� Information logged by firewalls, which may include attempts to access
closed ports. Although such accesses may be honest mistakes, they
may also indicate malicious activity.

� Failed access attempts logged by TCP Wrappers, xinetd, or individ-
ual servers. As with firewall logs, these may indicate either honest mis-
takes or malicious activity.

� System shutdowns and startups. With Linux, these should be rare
enough that any shutdown you didn’t supervise is suspicious.

� Unscheduled server restarts, which, like system restarts, may indicate
a successful intrusion.

� Bizarre server error messages. Sometimes attempts to break into a sys-
tem using bugs in particular servers turn up as strange error messages,
which may include strings of gibberish. Most often, if you see such an
error, the attempt was not successful; but it’s still good to know the
attempt was made. Other errors may indicate server misconfiguration.

� Hardware error messages, such as kernel oopses. Messages that
include the word oops indicate kernel bugs or failed hardware.

You may want to familiarize yourself with the contents of your system’s
log files. Although certain types of activity are common to many Linux sys-
tems, others are more system- or distribution-specific. For instance, you
won’t find sendmail log file entries on a stock Mandrake or Debian system
since these distributions use other mail servers. Likewise, a system with lots
of users will see many login attempts, some of which will be unsuccessful
because users will forget or mistype their passwords; but a workstation with
just one user may only see one or two logins a day.

Usual and Unusual Log File Activity

As an example, let’s consider a few system log entries. These entries were
produced on a system running Linux Mandrake 7.2; the log files and entry
details may differ on other distributions. Let’s look at a failed and successful
user login, followed by a use of su to become root:

Apr 21 17:03:25 nessus PAM_unix[1302]: authentication
�failure; LOGIN(uid=0) -> rodsmith for system-auth service

Apr 21 17:03:25 nessus login[1302]: FAILED LOGIN 1 FROM
�(null) FOR rodsmith, Authentication failure

http://www.sybex.com

Monitoring Log Files 295

Apr 21 17:03:44 nessus PAM_unix[1302]: (system-auth)
�session opened for user rodsmith by LOGIN(uid=0)

Apr 21 17:03:44 nessus -- rodsmith[1302]: LOGIN ON tty2
�BY rodsmith

Apr 21 17:04:54 nessus PAM_unix[3094]: (system-auth)
�session opened for user root by rodsmith(uid=500)

The first two entries, with time stamps of 17:03:25, represent a failed
login—the user entered the wrong password. The login process logged the
time and username, among other information. The next two lines, with time
stamps of 17:03:44, show a successful login. Because of the proximity in
time of these actions, it’s a fair bet that the user simply mistyped a password
the first time—but you can’t be sure of that. The final line, with a time stamp
of 17:04:54, shows that the user rodsmith used su to acquire root privi-
leges. Especially on sensitive systems, it’s often wise to monitor such activi-
ties carefully.

System logs normally include a date and time, as well as the name of the
computer logging the activity (nessus in this example). Depending upon the
process making the entry, there may be information on the user or server
making the entry, a process ID number (1302 and 3094 in the preceding
examples), and more.

Tools to Aid in Log File Analysis

System log files can become quite large and unwieldy. Linux distributions
include cron jobs (discussed in Chapter 7) that rotate log files. The logging
process is temporarily shut down, existing log files are renamed, and the pro-
cess is restarted. Such rotation might occur on a daily, weekly, or monthly
basis, depending upon the amount of activity and the desire to keep log files
available. Old log files are typically kept for a few rotations, then deleted.

Because daily and weekly cron jobs normally run late at night, Linux systems
should be left powered up through the night, at least occasionally. This is
standard practice for servers, but many people power down workstations
every night. If you do this, Linux will never rotate its log files, so they may
grow to a huge size, possibly even filling a partition.

http://www.sybex.com

296 Chapter 4 � Users and Security

Log rotation is helpful in keeping your system uncluttered, but other tools
exist to help you analyze your log files. One of these is Logcheck (http://
www.psionic.com/abacus/logcheck). This package comes with some dis-
tributions, such as Mandrake and Debian. Unfortunately, it requires a fair
amount of customization for your own system, so it’s most easily imple-
mented if it comes with your distribution, preconfigured for its log file for-
mat. If you want to use it on another distribution, you must edit the
logcheck.sh file that’s at the heart of the package. This file calls the
logtail utility that checks log file contents, so you must configure the script
to check the log files you want monitored. You can also adjust features such
as the user who’s to receive violation reports and the locations of files that
contain strings for which the utility should look in log files. Once it’s con-
figured, you call logcheck.sh in a cron job. Logcheck then e-mails a report
concerning any suspicious system logs to the user defined in logcheck.sh
(root, by default).

Physical Security

Although a lot of attention is focused upon network and other elec-
tronic forms of security, computer security really begins with physical secu-
rity. If your computer isn’t properly protected against physical tampering or
theft, it becomes an easy target for abuse. There are several steps you can
take to minimize the damage should an intruder gain physical access to your
computer, so for any critical system, you should create and follow a plan to
secure your computer starting with such mundane tools as locks on the door.

What an Intruder Can Do with Physical Access

Linux systems provide various software safeguards against abuse and unau-
thorized access, such as passwords, file permissions, and system logs. These
mechanisms can be effective against remote attacks when used properly, but
they’re next to useless if an intruder can touch the computer hardware. Two
obvious methods of attack, when given such access, are to steal the hard disk
and to boot the system with the intruder’s own boot medium.

If a thief takes your hard disk, that thief has access to all the data on the
disk. Linux’s password protection mechanisms are under the control of the
OS, so all the burglar needs to do is install the disk in a system the burglar
controls to gain access to your computer’s files. Indeed, a spy could conceiv-
ably copy your hard disk’s contents and you’d be none the wiser.

http://www.sybex.com

Physical Security 297

Even short of stealing a hard disk, if a computer can boot from a floppy
disk, an intruder can gain access to your system. The miscreant need only
bring a Linux emergency boot floppy and boot that. The end result is full
access to your files. If the goal is destruction, the intruder need not even be
versed in Linux—a DOS boot floppy with a few disk utilities can quite effec-
tively wipe out your data.

Theft of the entire computer is also a possibility, of course. Such a theft
might not even be motivated by a desire to steal your data or do you harm
personally—the burglar might be after the hardware.

Steps to Mitigate Damage from Physical Attacks

You aren’t completely powerless against the threat of physical attacks on
your computer. The following are some of the steps you can take to protect
yourself:

Remove removable media. If a computer has no floppy drive, no Zip
drive, no CD-ROM drive, no tape backup drive, and so on, it will be dif-
ficult for an intruder to either boot the computer from anything other
than its hard disk or walk out with data on a removable disk. Of course,
an intruder could bring a hard disk for booting, but that would require
opening the computer’s case, thus slowing down the operation. Short of
removing the drives, you can buy special locks that make them accessible
only when the user has a key.

Restrict BIOS boot options. Most BIOSes include options to enable and
disable particular boot media. If your computer must have removable
media, you can set the BIOS to boot only from the hard disk. This will
slow down an intruder, but these settings can be easily changed, so this
measure has a noticeable security impact only if used in conjunction with
the use of BIOS passwords (discussed next). This measure may still be
worthwhile as a protection against viruses, however, some of which are
transmitted on floppies. Although these viruses can’t infect Linux, a few
can damage LILO and render a system unbootable.

Use BIOS passwords. Most BIOSes have an option to set a password
that must be entered before the system will boot or before BIOS settings
can be changed. Setting this can go a long way toward preventing tam-
pering, but it’s not perfect. Motherboard BIOSes can be reset by modify-
ing a jumper setting, so an intruder who can open the case can overcome
this measure.

http://www.sybex.com

298 Chapter 4 � Users and Security

Use a LILO password. If a boot image includes the option password =
pass, LILO will only boot that image if the user enters the password
(pass). If the boot image also includes the restricted keyword, LILO
only applies this password rule if the user tries to issue any boot param-
eters, such as single, which normally boots the system into a single-
user mode.

Secure the computer. To prevent tampering with the insides of a com-
puter, you can replace the normal screws used on most computer cases
with screws that require special tools. Check with a locksmith or hard-
ware store for such screws. You can also buy a hinge with a lock, if you
need heavy-duty case security. Many computer shops sell kits that consist
of chains and additional hardware to secure a computer to a desk or wall
in order to deter outright theft of the entire computer.

Secure the room. Locks on the doors can go a long way towards keep-
ing a computer secure. If an intruder can’t touch the computer, the
intruder can’t do any of the other nasty things I’ve been describing. You
may need to secure windows, as well—or better yet, place the computer
in a room that doesn’t have windows. Don’t just install the locks, but be
sure to use them, too.

Use data encryption. Assuming that an intruder can gain physical
access to the computer, the best protection may not be a lock or a BIOS
setting; it may be data encryption. Many applications provide some way
to encrypt data. Some of these schemes are good, but some aren’t. There
are also separate programs that can encrypt any data file. In mid-2001, no
standard Linux filesystem supports automatic data encryption, but this
feature may arrive in the future. There’s also a tool that lets you add auto-
matic encryption to files through a loopback device. Check http://
www.linuxdoc.org/HOWTO/Loopback-Encrypted-Filesystem-
HOWTO.html for details.

The bottom line is that no security is perfect. You’ll have to judge just how
much security you need. In some environments, with some systems, you
might be content to lock the door. In others, you may need to take extreme
measures, up to and including routinely encrypting your data files.

http://www.sybex.com

Exam Essentials 299

Summary

Linux’s accounts and its security model are inextricably intertwined. A
single Linux system can support many users, who can be tied together in
groups. Users can create files that they own, and that have permissions that
define which other users may access the files and in what ways. To manage
these users, you’ll use a handful of commands, such as useradd, groupadd,
userdel, usermod, and passwd. These commands allow you to manage
your user accounts to suit your system’s needs.

Once you’ve set up your user accounts, you’ll need to engage in ongoing
system security monitoring. This may include educating your users about the
need for good passwords, enforcing password changes, and reviewing the
permissions on common system files and directories. Particularly important
are the SUID and SGID bits on programs, which cause the programs to be
run with the authority of the user who owns the file, rather than the user who
runs the program. If set incorrectly or if an SUID or SGID program has a
bug, the result can be security breaches.

Another ongoing security task is monitoring log files. These files contain
information on important system events, such as attempted logins and the
major actions of servers. Crackers’ actions sometimes manifest themselves in
these files, so checking them can be important.

Last but not least is physical security. Somebody with physical access to
your computer can, if given enough time, do just about anything to the sys-
tem. Therefore, it’s very important that unauthorized personnel not have
physical access to a system.

Exam Essentials

Describe why accounts are important on a Linux system. Accounts
allow several users to work on a computer with minimal risk that they’ll
damage or (if you so desire) read each others’ files. Accounts also allow
you to control normal users’ access to critical system resources, limiting
the risk of damage to the Linux installation as a whole.

Summarize the Linux ownership and permissions system. Files are
owned by an individual account, and are also associated with one group.
Permission bits allow the file’s owner to control separately the read, write,
and execute access for the file’s owner, members of the file’s group, and
all other users.

http://www.sybex.com

300 Chapter 4 � Users and Security

Describe the purpose of groups in Linux. Groups allow system admin-
istrators and users to provide a level of access control between individual-
user and world (all users) access. You can use groups to give an arbitrary
set of users read or write access to a directory or to at least some of each
others’ files, for instance, while keeping other users out of those directo-
ries and files.

Locate important log files. Log files typically reside in /var/log or its
subdirectories. Their exact locations are controlled through /etc/
syslog.conf and the configuration files for specific servers.

Describe the characteristics of a good password. Good passwords
resemble random strings of letters, numbers, and punctuation. To make
them memorable to the account holder, they can be generated by starting
from a base built on a personally-relevant acronym or a pair of unrelated
words, then modified by adding letters and punctuation, mixing the case
of letters, and reversing some sequences in the password.

Describe how to detect intruders on a computer. The RPM utility can
spot files changed by careless intruders, but more sophisticated tools like
Tripwire do so much more reliably. Sometimes unusual log file entries will
tip you off to the activities of a cracker.

Evaluate the need for SUID or SGID programs. Some programs, such
as su and passwd, must have enhanced privileges in order to operate.
Most programs, though, do not need these privileges and so should not
have their SUID or SGID bits set.

Summarize important physical security measures. Whenever possible,
computers should be stored behind locked doors, or possibly chained in
place. Depending upon your needs and environment, you may want to
eliminate removable media, set the computer to boot only from the hard
disk, lock the case shut, set a BIOS password, set a LILO password, or
encrypt files on the hard disk.

http://www.sybex.com

Commands in This Chapter 301

Commands in This Chapter

Command Description

su Changes a user’s login account. Often used to acquire
superuser privileges after a normal user login.

sudo Executes a single command with alternative
permission. Often used to run administrative
programs as root.

newgrp Changes a user’s login group.

chown Changes a file’s owner.

chgrp Changes a file’s group.

chmod Changes a file’s permissions.

umask Changes the current umask; alters the permissions on
files created by a process.

useradd Creates a new user account.

usermod Modifies settings for an existing user account.

chage Changes account expiration (aging) information.

userdel Deletes an existing user account.

passwd Changes an account’s password.

groups Displays the groups to which a user belongs.

groupadd Adds a new group.

groupmod Modifies settings for an existing group.

groupdel Deletes an existing group.

http://www.sybex.com

302 Chapter 4 � Users and Security

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

gpasswd Changes a group password; adds and deletes users
from a group.

logcheck.sh Called from a cron job, this script checks your log files
for suspicious or dangerous events and e-mails you a
report.

tripwire Records information on a system’s programs in an
encrypted database, updates that database, or verifies
that the monitored files have not been altered.

account hacker

checksum hard link

cracker hash

effective user ID home directory

file access permissions inode

file owner kernel oops

file permissions log file

file type code mode

group administrator permission bit

group ID (GID) script kiddies

group owner set group ID (SGID)

group set user ID (SUID)

Command Description

http://www.sybex.com

Key Terms 303

shadow password user ID (UID)

soft link user mask (umask)

sticky bit user private group

superuser username

symbolic link virtual terminal (VT)

user

http://www.sybex.com

304 Chapter 4 � Users and Security

Review Questions

1. Which of the following are legal Linux usernames? (Choose all that
apply.)

A. larrythemoose

B. 4sale

C. PamJones

D. Samuel_Bernard_Delaney_the_Fourth

2. Why are groups important to the Linux user administration and secu-
rity models?

A. They can be used to provide a set of users with access to files, with-
out giving all users access to the files.

B. They allow you to set a single login password for all users within
a defined group.

C. Users may assign file ownership to a group, thereby hiding their
own creation of the file.

D. By deleting a group, you can quickly remove the accounts for all
users in the group.

3. Which of the following actions allow one to perform administrative
tasks? (Choose all that apply.)

A. Logging in as an ordinary user and using the chgrp command to
acquire superuser privileges

B. Logging in at the console with the username root

C. Logging in as an ordinary user and using the su command to
acquire superuser privileges

D. Logging in when nobody else is using the system, thus using it as
a single-user computer

http://www.sybex.com

Review Questions 305

4. What command would you issue to change the ownership of
somefile.txt from ralph to tony?

A. chown ralph.tony somefile.txt

B. chmod somefile.txt tony

C. chown somefile.txt tony

D. chown tony somefile.txt

5. Which of the following umask values will result in files with
rw-r----- permissions?

A. 640

B. 210

C. 022

D. 027

6. Which of the following is true of Linux passwords?

A. They are changed with the password utility.

B. They may consist only of lowercase letters and numbers.

C. They must be changed once a month.

D. They may be changed by the user who owns an account or
by root.

7. Which of the following commands configures the laura account to
expire on January 1, 2003?

A. chage -I 2003-01-01 laura

B. usermod -e 2003-01-01 laura

C. usermod -e 2003 laura

D. chage -E 2003/01/01 laura

http://www.sybex.com

306 Chapter 4 � Users and Security

8. Which of the following does groupadd allow you to create?

A. One group at a time

B. An arbitrary number of groups with one call to the program

C. Only user private groups

D. Passwords for groups

9. Which of the following is true of the groupdel command? (Choose all
that apply.)

A. It won’t remove a group if that group is any user’s default group.

B. It won’t remove a group if the system contains any files belonging
to that group.

C. It removes references to the named group in /etc/group and
/etc/gshadow.

D. It won’t remove a group if it contains any members.

10. Which of the following describes the user private group strategy?

A. It is a requirement of the Red Hat and Mandrake distributions.

B. It cannot be used with Debian GNU/Linux.

C. It lets users define groups independently of the system administrator.

D. It creates one group per user of the system.

11. Which of the following is true when a user belongs to the project1
and project2 groups?

A. The user must type newgrp project2 to read files belonging to
project2 group members.

B. If group read permissions are granted, any file created by the user
will automatically be readable to both project1 and project2
group members.

C. The user may use the newgrp command to change the default
group associated with files the user subsequently creates.

D. The user’s group association (project1 or project2) just after
login is assigned randomly.

http://www.sybex.com

Review Questions 307

12. Which of the following is an advantage of designating one well-
protected computer to record log files for several other computers?

A. Logging information in this way minimizes network use.

B. The logging system can analyze the logs using Tripwire.

C. Logs stored on a separate computer are less likely to be compro-
mised by a cracker.

D. You can log information to a separate computer that you can’t log
locally.

13. Why is a log file analysis tool like Logcheck useful?

A. Logcheck translates log file entries from cryptic comments into
plain English.

B. Logcheck sifts through large log files and alerts you to the most
suspicious entries.

C. Logcheck compares patterns of activity across several days or
weeks and spots anomalies.

D. Logcheck uses information in log files to help identify a cracker.

14. A computer is chained firmly to the wall, all of its accounts are secured
with good shadowed passwords, and it’s configured to boot only from
its hard disk, but the system has no BIOS or LILO password. No users
are currently logged into this system. How might a malicious individ-
ual without an account on this system corrupt it if given a few minutes
alone with it? (Choose all that apply.)

A. The intruder could reboot it, reconfigure it to boot from floppy,
boot a DOS floppy, and use DOS’s disk utilities to delete the Linux
partitions and erase the hard disk.

B. The intruder could run a password-cracking program on the sys-
tem’s /etc/passwd file, thus obtaining all the user’s passwords for
use in further compromising the system at a later date.

C. The intruder could open the case, remove the hard disk and insert
it in another computer, then modify the configuration files and
return the hard disk to the original machine.

D. The intruder could utilize a bug in su, passwd, or some other SUID
root program to acquire root privileges and then alter the sys-
tem’s configuration files.

http://www.sybex.com

308 Chapter 4 � Users and Security

15. Which of the following steps would not substantially improve security
over the typical Linux installation to a computer with typical hard-
ware and settings?

A. Set a BIOS password.

B. Set the computer to boot from a CD-ROM before a floppy.

C. Remove servers that were installed by default but that are not
being used.

D. Lock the computer case shut.

16. How should you engage users in helping to secure your computer’s
passwords?

A. Educate them about the importance of security, the means of
choosing good passwords, and the ways crackers can obtain
passwords.

B. Give some of your users copies of the encrypted database file as
backup in case a cracker breaks in and corrupts the original.

C. Enforce password change rules but don’t tell users how crackers
obtain passwords since you could be educating a future cracker.

D. Instruct your users to e-mail copies of their passwords to them-
selves on other systems so that they’re readily available in case of
an emergency.

17. Which of the following accounts is the most likely prospect for dele-
tion on a mail server?

A. daemon

B. games

C. mail

D. nobody

http://www.sybex.com

Review Questions 309

18. Adjusting program files’ execute permissions can limit who may run
the programs. What is a limitation to such restrictions?

A. Users can compile their own copies of most programs.

B. If users know a program’s location, they can run it by specifying a
complete path.

C. Execute permission restrictions apply only to the bash shell.

D. Users can set the SUID bit to overcome restrictions.

19. At what point during system installation should you configure
Tripwire?

A. Prior to installing major servers like Apache

B. After installing major servers but before configuring them

C. After installing and configuring major servers but before connect-
ing the computer to the Internet

D. After connecting the computer to the Internet and running it for
1–4 weeks

20. Which of the following are risks of SUID and SGID programs?
(Choose all that apply.)

A. The program files are large and so they may cause a disk to run out
of space.

B. Bugs in the programs may cause more damage than they would in
ordinary programs.

C. Users may be able to abuse a program’s features, thus doing more
damage than would otherwise be possible.

D. Because the programs require password entry, running them over
an insecure network link runs the risk of password interception.

http://www.sybex.com

310 Chapter 4 � Users and Security

Answers to Review Questions

1. A, C. A Linux username must be less than 32 characters in length,
may contain letters, numbers, and certain symbols, and must start with
a letter. Options A and C both meet these criteria. (Option C uses mixed
upper- and lowercase characters, which is legal but discouraged.)
Option B begins with a number, which is invalid. Option D is longer than
32 characters.

2. A. Groups provide a good method of file-access control. Although
they may have passwords, these are not account login passwords;
those passwords are set on a per-account basis. Files do have associ-
ated groups, but these are in addition to individual file ownership, and
so they cannot be used to mask the file’s owner. Deleting a group does
not delete all the accounts associated with the group.

3. B, C. Direct login as root and using su to acquire root privileges from
an ordinary login both allow a user to administer a system. The chgrp
command is used to change group ownership of a file, not to acquire
administrative privileges. Although Linux does support a single-user
emergency rescue mode, this mode isn’t invoked simply by having
only one user logged on.

4. D. chown ralph.tony somefile.txt sets the owner of the file to
ralph and the group to tony. chmod is used to change file permissions,
not ownership. Option C reverses the order of the filename and the
owner.

5. D. 027 removes write permissions for the group and all world per-
missions. (Files normally don’t have execute permissions set, but
explicitly removing write permissions when removing read permis-
sions ensures reasonable behavior for directories.) 640 is the octal
equivalent of the desired rw-r----- permissions, but the umask sets
the bits that are to be removed from permissions, not those that are to
be set. 210 would remove write permission for the owner, but it would
not remove write permission for the group, which is incorrect. This
would also leave all world permissions open. 022 would not remove
world read permission.

http://www.sybex.com

Answers to Review Questions 311

6. D. Both the superuser and the account owner may change an account’s
password. The utility for doing this is called passwd, not password.
Although an individual user might use just lowercase letters and num-
bers for a password, Linux also supports uppercase letters and punctu-
ation. The system administrator may enforce once-a-month password
changes, but such changes aren’t required by Linux per se.

7. D. Either chage -E or usermod -e may be used for this task, followed
by a date expressed in YYYY/MM/DD format. Options A and B use
dashes (-) instead of slashes (/) in the date format, and option A uses
the wrong parameter (-I), as well. Option C is actually a legal com-
mand, but it specifies a date 2003 days after January 1, 1970—in
other words, in mid-1975.

8. A. groupadd creates one group per call to the program. Such a group
may be a user private group, but need not be. Group passwords are
created with gpasswd, not groupadd.

9. A, C. groupdel modifies the group configuration files, but it checks
the user configuration files to be sure that it doesn’t “orphan” any
users first. The group may contain members, though, so long as none
list the group as their primary group. groupdel performs no search
for files belonging to the group, but it’s a good idea for you to do this
manually after removing the group.

10. D. Although Red Hat and Mandrake use the user private group strat-
egy by default, you can design and use another strategy yourself. Like-
wise, you may use the user private group strategy with any Linux
distribution, even if it doesn’t use this strategy by default. Ordinary
users can’t create groups by themselves, although if they’re group
administrators in a user private group system, they may add other
users to their own existing groups.

11. C. The newgrp command changes the user’s active group member-
ship, which determines the group associated with any files the user cre-
ates. This command is not required to give the user access to files with
other group associations, if the user is a member of the other group
and the file has appropriate group access permissions. Files have
exactly one group association, so a user who belongs to multiple
groups must specify to which group any created files belong. This is
handled at login by setting a default or primary group recorded with
the user’s other account defaults in /etc/passwd.

http://www.sybex.com

312 Chapter 4 � Users and Security

12. C. Crackers often try to doctor system logs to hide their presence.
Placing logs on another computer makes it less likely that they’ll be
able to achieve this goal, so you’re more likely to detect the intrusion.
Logging to a separate computer actually increases network use. Trip-
wire doesn’t do log analyses; that job is done by Logcheck, and
Logcheck can run on any computer that stores logs. System loggers
can record any information locally that can be logged remotely.

13. B. Logcheck uses pattern-matching rules to extract log file entries con-
taining keywords associated with suspicious activity. Although the
other options might be useful to have, Logcheck and other common
log file analysis tools cannot perform these tasks.

14. A, C. BIOS options can easily be changed if the system has no BIOS
password, and even a DOS floppy can be used to destroy a Linux
installation. Linux’s own filesystem security features are useless if the
disk is moved to another computer. Password-cracking programs can
only be run once the individual has access to the password file, which
this malicious individual does not have. Furthermore, with shadow
passwords enabled, the passwords are stored in /etc/shadow, not
/etc/passwd, and good passwords are unlikely to yield to a password-
cracking program. Without an account, the individual cannot exploit
bugs in SUID root programs (and such bugs are extremely rare and
are patched quickly once discovered, so the odds are they don’t exist
on this system).

15. B. Many computers boot from a floppy first, and this configuration is
undesirable; but booting from a CD-ROM first is not significantly bet-
ter, because bootable CD-ROMs are common and give a malicious
individual as much control of the system as can a bootable floppy. The
system should be set to boot from the hard disk first to improve secu-
rity. The other options can all improve security.

16. A. Education allows users to understand the reasons to be concerned,
which can motivate conformance with password procedures. Crack-
ing procedures are common knowledge, so withholding general infor-
mation won’t keep that information out of the hands of those who
want it. Copying password files and sending unencrypted passwords
through e-mail are both invitations to disaster; encrypted files can be
cracked, and e-mail can be intercepted.

http://www.sybex.com

Answers to Review Questions 313

17. B. One or both of daemon and mail might be required by the mail
server or other system software, so these are poor prospects for
removal. Likewise, nobody is used by a variety of processes that need
only low-privilege access rights. games is most frequently used by
games for high score files and the like, and so is most likely unused on
a mail server.

18. A. Because source code is available for all standard Linux compo-
nents, a user can compile a personal copy of any standard Linux pro-
gram, thus bypassing any permissions restrictions you might place on
the version installed with the system. Option B describes a way to run
programs that aren’t on the path; it won’t have any effect if the file
doesn’t have appropriate execute permissions. Execute permission
restrictions apply to all shells. Only root or the file’s owner may set
the SUID bit on a program.

19. C. Tripwire records checksums and hashes of major files, including
server executables and configuration files. Thus, these files should be
in place and properly configured before you configure Tripwire. Once
the system has been running on the Internet, there’s a chance that it’s
been compromised; you should install Tripwire prior to connecting
the computer to the Internet in order to reduce the risk that its data-
base reflects an already-compromised system.

20. B, C. SUID and SGID programs run with effective permissions other
than those of the person who runs the program—frequently as root.
Therefore, bugs or abuses perpetrated by the user may do more dam-
age than could be done if the programs were not SUID or SGID. These
programs don’t consume more disk space than otherwise identical
ordinary programs. Although some SUID and SGID programs ask for
passwords (such as passwd and su), this isn’t true of all such programs
(such as mount and ping).

http://www.sybex.com

Chapter

5
Networking

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 3.2 Configure the client’s workstation for remote access

(e.g., ppp, ISDN).

� 3.4 Configure basic network services and settings (e.g.,

netconfig, linuxconf; settings for TCP/IP, DNS, DHCP).

� 3.5 Configure basic server services (e.g., X, SMB, NIS, NFS).

� 3.6 Configure basic Internet services (e.g., HTTP, POP, SMTP,

SNMP, FTP).

� 3.15 Configure access rights (e.g., rlogin, NIS, FTP, TFTP, SSH,

Telnet).

� 4.11 Use network commands to connect to and manage remote

systems (e.g., telnet, ftp, ssh, netstat, transfer files, redirect

Xwindow).

� 5.4 Run and interpret ifconfig.

� 7.8 Identify basic networking concepts, including how a

network works.

http://www.sybex.com

Networking is a complex topic that’s touched upon in several
chapters of this book. This chapter provides an introduction to basic Trans-
mission Control Protocol/Internet Protocol (TCP/IP) network configuration
and proceeds with an overview of many of the network client functions a
Linux system can fulfill. (Although the CompTIA objectives 3.5 and 3.6
refer to “services,” they mean clients.) This chapter also includes informa-
tion on administering a Linux computer from a distance by using network-
ing protocols. For more information on network clients and servers, you’ll
need to consult other books or documentation.

When considered broadly, networking is a way for computers to commu-
nicate with one another. Just as with human-to-human communication,
though, computer communication can be used to accomplish many different
goals. These goals are associated with one or more networking protocols.
For instance, e-mail transfer uses certain protocols, which are different from
the protocols used in file sharing. This chapter is devoted largely to these
protocols and the basics of configuring them.

Understanding Networks

In the last two decades of the 20th century, networks grew dramati-
cally. Both local networks and larger networks exploded in importance as
increasingly sophisticated network applications were written. In order to
understand these applications, it’s useful to know something about network
hardware and the most common network protocols. Both of these things
influence what a network can do.

http://www.sybex.com

Understanding Networks 317

Basic Functions of Network Hardware

Network hardware is designed to allow two or more computers to commu-
nicate with one another. As described shortly, this hardware can take a vari-
ety of forms. Most network hardware comes as a card you plug into a
computer, although some devices are external and interface through an ordi-
nary port like a USB port or even an internal network card. Most networks
rely upon wires or cables to transmit data between machines as electrical
impulses, but some devices use radio waves or even light to do the job.

Sometimes the line between network hardware and peripheral interface
ports can be blurry. For instance, a parallel port is normally not considered
a network port; but when it is used with the Parallel Line Interface Protocol
(PLIP; http://www.linuxdoc.org/HOWTO/mini/PLIP.html), the parallel
port becomes a network device. More commonly, a USB or RS-232 serial port
can become a network interface when used with the Point-to-Point Pro-
tocol (PPP), as discussed later in this chapter.

At its core, network hardware is hardware that facilitates the transfer of
data between computers. Hardware that’s most often used for networking
includes features that help this transfer in various ways. For instance, such
hardware may include ways to address data intended for specific remote
computers, as discussed later on in “Hardware Addresses.” When basically
non-network hardware is pressed into service as a network medium, the lack
of such features may limit the utility of the hardware or require extra soft-
ware to make up for the lack. If extra software is required, you’re unlikely
to notice the deficiencies as a user or system administrator because the pro-
tocol drivers handle the work.

Types of Network Hardware

Aside from traditionally non-network ports like USB, RS-232 serial, and
parallel ports, common network hardware on Linux includes the following:

Ethernet Ethernet is the most common type of network hardware on
local networks today. It comes in several varieties ranging from the old
10Base-2 and 10Base-5 (which use coaxial cabling similar to cable TV
cable) to 10Base-T and 100Base-T (which use twisted-pair cabling that
resembles telephone wire, but with broader connectors) to the cutting-
edge 1000Base-T and 1000Base-SX (aka gigabit Ethernet, using twisted-
pair or optical cables, respectively). In all these cases, the number preced-
ing the “Base” indicates the technology’s speed in megabits per second
(Mbps). Plans are underway to develop another ten-fold speed increase.

http://www.sybex.com

318 Chapter 5 � Networking

Of the versions in use in 2001, 100Base-T is the most common for new
installations, but gigabit Ethernet is likely to become more common as its
price drops. Linux includes excellent Ethernet support, including drivers
for almost every Ethernet card on the market.

Token Ring At one time an important competitor to Ethernet, IBM’s
Token Ring technology is rapidly falling behind. The fastest type of
Token Ring clocks in at just 16Mbps. Just as important, it’s costlier than
Ethernet and has less in the way of hardware support. For instance, fewer
printers support direct connection to Token Ring networks than to Ether-
net networks. Linux includes support for several Token Ring cards, so if
you need to connect Linux to an existing Token Ring network, you can do so.

FDDI Fiber Distributed Data Interface (FDDI) is a networking technol-
ogy that’s comparable to 100Base-T Ethernet in speed. FDDI uses fiber-
optic cables, but a variant known as CDDI works over copper cables sim-
ilar to those of 100Base-T. Both technologies are supported by the Linux
FDDI drivers.

HIPPI High-Performance Parallel Interface (HIPPI) provides 800Mbps
or 1600Mbps speeds. It’s most commonly used to link computer clusters or
supercomputers over dozens or hundreds of meters. Linux includes lim-
ited HIPPI support.

LocalTalk LocalTalk is a network hardware protocol developed by
Apple for its Macintosh line. It’s slow by today’s standards (2Mbps),
and Apple no longer includes LocalTalk connectors on modern Macin-
toshes. Nonetheless, there were a few x86 LocalTalk boards produced,
and Linux supports some of these. Therefore, if you need to connect an
x86 Linux system to a LocalTalk network, you can do so—if you can
find a LocalTalk board on the used market. (Ironically, the PPC port of
Linux doesn’t support the LocalTalk hardware on older Macintoshes.)

Fibre Channel Fibre Channel supports both optical and copper media,
with speeds of between 133Mbps and 1062Mbps. The potential reach of
a Fibre Channel network is unusually broad—up to 10 kilometers. Linux
support for Fibre Channel is relatively new and incomplete, but it does
exist.

Wireless protocols Several wireless networking products are becoming
popular, particularly in small offices and homes. These products vary in
speed and range. Linux supports several of them, but because they’re so
new, you should make sure Linux supports a given device before you buy it.

http://www.sybex.com

Understanding Networks 319

If you’re putting together a new network for a typical office, chances are
that 100Base-T or gigabit Ethernet will be the best choice. If you need to con-
nect to an existing network, you should find out what type of hardware it
uses. If necessary, consult with your local network administrator to find out
what type of network card you need.

Some computers ship with network hardware preinstalled. This is true of all
modern Macintoshes and some x86 PCs, especially those sold as office work-
stations. This hardware is almost always Ethernet.

In addition to the network cards you place in your computers, you need
network hardware outside of the computer. With the exception of wireless
networks, you’ll need some form of network cabling that’s unique to your
hardware type. (For 100Base-T Ethernet, get cabling that meets at least Cat-
egory 5, or Cat-5, specifications.) Many network types, including twisted-
pair Ethernet, require the use of a central device known as a hub or switch.
You plug every computer on a local network into this central device, as
shown in Figure 5.1. The hub or switch then passes data between the
computers.

F I G U R E 5 . 1 Many networks link computers together via a central device known as a hub
or switch.

As a general rule, switches are superior to hubs. Hubs mirror all traffic to
all computers, whereas switches are smart enough to send packets only to the
intended destination. The result is that switches let two pairs of computers

Hub or switch

http://www.sybex.com

320 Chapter 5 � Networking

engage in full-speed data transfers with each other; with a hub, these two
transfers would interfere with each other. Switches also allow full-duplex
transmission, in which both parties can send data at the same time (like two
people talking on a telephone). Hubs permit only half-duplex transmission,
in which the two computers must take turns (like two people using walkie-
talkies).

A hub or switch is located centrally in a logical sense, but it doesn’t have to be
so located geographically. An approximately central location may help sim-
plify wiring, but when you decide where to put the device, take into account
the layout of your computers, your rooms, and available conduits between
rooms.

Network Packets

Modern networks operate on discrete chunks of data known as packets.
Suppose you want to send a 100KB file from one computer to another.
Rather than send the file in one burst of data, you break it down into smaller
chunks. You might send 100 packets of 1KB each, for instance. This way, if
there’s an error sending one packet, you can resend just that one packet,
rather than the entire file. (Network protocols invariably include error-
detection procedures.)

Typically, each packet includes an envelope, which includes the sender
address, the recipient address, and other housekeeping information; and a
payload, which is the data intended for transmission. When the recipient sys-
tem receives packets, it must hold onto them and reassemble them in the cor-
rect order to re-create the complete data stream. (It’s not uncommon for
packets to be delayed or even lost in transmission, so these error-recovery
procedures are critical. They’re handled transparently by the computer’s net-
working hardware.)

There are several different types of packets, and they can be stored within
each other. For instance, Ethernet includes its own packet type (known as a
frame), and the packets generated by networking protocols that run atop
Ethernet, such as those discussed in the next section, “Network Protocol
Stacks,” are stored within Ethernet frames. All told, a data transfer can
involve several layers of wrapping and unwrapping data. With each layer,
packets from the layer above may be merged or split up.

http://www.sybex.com

Understanding Networks 321

Network Protocol Stacks

The packing and unpacking of network data is frequently described in terms
of a protocol stack. Understanding how the pieces of such a stack fit together
can help you understand networking as a whole, including the various net-
work protocols used by Linux. Therefore, this section presents this informa-
tion; it starts with a description of protocol stacks in general and moves on
to the TCP/IP stack and alternatives to it.

What Is a Protocol Stack?

It’s possible to think of network data at various levels of abstractness. For
instance, at one level, a network carries data packets for a specific network
type (such as Ethernet), which are addressed to specific computers on a local
network. Such a description, while useful for understanding a local network,
isn’t very useful for understanding higher-level network protocols, such as
those that handle e-mail transfers. These high-level protocols are typically
described in terms of commands sent back and forth between computers, fre-
quently without reference to packets. The addresses used at different levels
also vary, as described in “Types of Network Addresses.”

A protocol stack is a set of software that converts and encapsulates data
between layers of abstraction. For instance, the stack can take the commands
of e-mail transfer protocols, and the e-mail messages that are transferred,
and package them into packets. Another layer of the stack can take these
packets and repackage them into Ethernet frames. There are several layers to
any protocol stack, and they interact in highly specified ways. It’s often pos-
sible to swap out one component for another at any given layer. For instance,
at the top of each stack is a program that uses the stack, such as an e-mail cli-
ent. You can switch from one e-mail client to another without too much dif-
ficulty; both rest atop the same stack. Likewise, if you change a network
card, you have to change the driver for that card, which constitutes a layer
very low in the stack. Applications above that driver can remain the same.

Each computer in a transaction requires a compatible protocol stack.
When they communicate, the computers pass data down their respective
stacks, then send data to the partner system, which passes the data up its
stack. Each layer on the receiving system sees the data as packaged by its
counterpart on the sending computer.

http://www.sybex.com

322 Chapter 5 � Networking

The OSI Model

The interactions of a protocol stack should become clearer with an example.
A common model used for describing protocol stacks generically is the Open
System Interconnection (OSI) model, illustrated in Figure 5.2. This model
breaks networking tasks down into seven layers, from the Application layer
(in which users’ clients and the servers to which they connect run) to the
Physical layer (which consists of network hardware like Ethernet cards).
Each layer in between these does some task related to the packaging of data
for transport or its unpacking.

F I G U R E 5 . 2 Information travels “down” and “up” protocol stacks, being checked and
packed at each step of the way.

Each component layer of the sending system is equivalent to a layer on the
receiving system, but these layers need not be absolutely identical. For
instance, you can have different models of network card at the Physical layer,
or you can even use entirely different network hardware types, such as Ether-
net and Token Ring, if some intervening system translates between them.
The computers may run different OSs entirely and hence use different—but
logically equivalent—protocol stacks. What’s important is that the stacks
operate in compatible ways.

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Request

Reply

http://www.sybex.com

Understanding Networks 323

The TCP/IP Protocol Stack

The OSI model describes an idealized protocol stack; its features can be
implemented in many different ways. One of the most common implemen-
tations is the Transmission Control Protocol/Internet Protocol (TCP/IP)
stack. The TCP/IP stack is usually described in slightly different terms than
is the OSI stack. Specifically, the TCP/IP stack is generally described using
just four layers (Application, Transport, Internet, and Link), as opposed to
OSI’s seven (shown in Figure 5.2). The principles are the same for both mod-
els; the differences are just a matter of how the terms are applied and pre-
cisely how the stacks are implemented.

TCP/IP has several important features that make it a popular network
protocol and the one upon which the Internet is based. These characteristics
include the following:

Routable TCP/IP was designed so that computers configured in a par-
ticular manner could route packets between two networks. These com-
puters (known as gateways or routers) make the Internet possible. A small
network links to another one via a router, which links to another, and so
on. Such a collection of networks is known as an internet (without capi-
talization). The Internet (capitalized) is a particularly large globe-
spanning internet.

Flexible naming system TCP/IP supports two levels of names, one based
on numbers and one based on text. The numeric system supports approx-
imately four billion addresses, and the textual system supports multiple
levels of names. Both features support large and complex network
structures.

Multiple connection types TCP/IP supports several different types of
connection, including the Transmission Control Protocol (TCP) after
which the stack is named, the User Datagram Protocol (UDP), and the
Internet Control Message Protocol (ICMP). These connection protocols
support differing levels of complexity and error correction.

Standards-based The TCP/IP stack and many of the protocols that use it
are described by documents maintained by the Internet Engineering Task
Force (IETF; http://www.ietf.org), an international standards organi-
zation. IETF protocols are nonproprietary, so they may be implemented
by anybody who cares to examine and put to use the IETF standards doc-
uments, which are known as Requests for Comments (RFCs).

http://www.sybex.com

324 Chapter 5 � Networking

This combination has made TCP/IP a formidable protocol stack. It’s been
implemented in a huge array of OSs, ranging from DOS to Linux. A huge
number of network tools are built atop TCP/IP, including everything related
to the Internet—Web browsers, e-mail clients, and so on. A few networking
programs, though, either don’t use TCP/IP or use it only optionally. Other
protocol stacks remain popular in certain environments, and you should be
aware of these and how they interact and compete with TCP/IP.

Alternatives to TCP/IP

TCP/IP was initially developed using Unix, but today it is used on many
other platforms. Some of these other OSs have their own protocol stacks.
Most of these have also been implemented on other OSs, including Linux.
These TCP/IP alternatives don’t support as many networking applications,
though, and they’re generally limited to use on much smaller networks than
TCP/IP supports. Nonetheless, you may encounter these protocol stacks in
some environments. They include those listed here:

NetBEUI IBM and Microsoft have been the driving forces behind Net-
BEUI, which is a protocol stack that was developed for local networks of
DOS and, later, OS/2 and Windows systems. NetBEUI is closely associ-
ated with NetBIOS, upon which Microsoft’s file sharing protocols are
built. For this reason, many Windows networks make extensive use of
NetBEUI. It’s also possible to use NetBIOS over TCP/IP, and this is the
approach that Linux’s Samba file server package uses to interconnect with
Windows clients. Linux doesn’t include a NetBEUI stack of its own,
although Procom Technologies (http://www.procom.com) has devel-
oped one that is not part of the regular Linux kernel. Chances are you
won’t need to use this because Samba works well over TCP/IP, and Samba
is the only Linux package that might use a NetBEUI stack.

IPX The Internet Packet Exchange (IPX) and Sequenced Packet
Exchange (SPX) protocols constitute a protocol stack that’s similar in
broad strokes to TCP/IP or NetBEUI. IPX/SPX are the core of Novell’s
networking tools, which compete for file and printer sharing in DOS and
Windows networks. IPX/SPX support is included in the Linux kernel,
although it might not be compiled by default in all kernels. There are also
file- and printer-sharing packages available that use the IPX/SPX stack.

AppleTalk Apple developed the AppleTalk stack for use with its Local-
Talk network hardware. Its main use is with the AppleShare file-sharing
protocols. Although initially tied to LocalTalk, AppleTalk can now be
used over Ethernet (a combination that’s sometimes called EtherTalk).

http://www.sybex.com

Understanding Networks 325

The Linux kernel includes support for AppleTalk, but this may not be
compiled in all kernels. The Linux package that supports AppleTalk and
AppleShare is Netatalk. Netatalk supports not just the old AppleTalk,
but AppleShare IP, which uses TCP/IP as the protocol stack for file shar-
ing. For the best functionality on a Macintosh network, you need both
TCP/IP and AppleTalk support in Linux.

These alternatives to TCP/IP are all used on local networks, not on the
Internet at large, which is a TCP/IP-based network. All of these alternatives
are limited in ways that restrict their expansion. For instance, they lack the
capacity to handle more than a couple of levels in their machine names. That
is, as described shortly in “Hostnames,” TCP/IP supports a hierarchical
name structure that reduces the chance of conflicts in names, allowing every
computer connected to the Internet to have a unique name. The naming
schemes of these alternative stacks are much simpler, making it extremely
impractical to maintain a worldwide naming system.

In 2001, IPv6 is still experimental, but some sites are beginning to use it.
It’s likely to be phased in over the next few years. The Linux kernel includes
IPv6 support, so you can use it if you need to. Chances are that by the time
the average office will need IPv6, it will be standard. Configuring a system

The Coming of IPv6

Another alternative protocol stack is actually an extension of TCP/IP. The
current version of the IP portion of TCP/IP is 4. A major upgrade to this is in
the works, however, and it goes by the name IPv6, for IP version 6. IPv6 adds
several features and improvements to TCP/IP, including standard support
for more secure connections and support for many more addresses. Check
http://playground.sun.com/pub/ipng/html/ipng-main.html for detailed
information on IPv6.

Although the four billion addresses allowed by TCP/IP sounds like a lot,
there’s been a lot of inefficiency in the allocation of those addresses. There-
fore, as the Internet has expanded, the number of truly available addresses
has been shrinking at a rapid rate. IPv6 raises the number of addresses to
2128, or 3.4 × 1038. This is enough to give every square millimeter of land sur-
face on Earth 2.2 × 1018 addresses.

http://www.sybex.com

326 Chapter 5 � Networking

for IPv6 will be somewhat different than configuring it for IPv4, which is
what this chapter describes.

Different protocol stacks are incompatible in the sense that they aren’t
completely interchangeable—for instance, you can’t run an FTP client using
AppleTalk. (A few protocols, like those used for Windows file sharing, can
bind to multiple protocol stacks, though.) In another sense, these protocol
stacks are not incompatible. Specifically, you can run multiple protocol stacks
on one network or one computer. Many local networks today run two,
three, or more protocol stacks. For instance, an office with both Macin-
toshes and Windows systems might run TCP/IP, NetBEUI, and AppleTalk.

Network Addressing

In order for one computer to communicate with another over a net-
work, the computers need to have some way to refer to each other. The basic
mechanism for doing this is provided by a network address, which can take
several different forms, depending upon the type of network hardware, pro-
tocol stack, and so on. Large and routed networks pose additional challenges
to network addressing, and TCP/IP provides answers to these challenges.
Finally, to address a specific program on a remote computer, TCP/IP uses a
port number, which identifies a specific running program, something like a
telephone extension number identifies an individual in a large company. This
section describes all these methods of addressing.

Types of Network Addresses

Consider an Ethernet network. When an Ethernet frame leaves one com-
puter, it must be addressed to another Ethernet card. This addressing is done
using low-level Ethernet features, independent of the protocol stack in ques-
tion. Recall, however, that the Internet is composed of many different net-
works that use many different low-level hardware components. A user might
have a dialup telephone connection (through a serial port) but connect to one
server that uses Ethernet and another that uses Token Ring. Each of these
devices uses a different type of low-level network address. TCP/IP requires
something more to integrate across different types of network hardware. In
total, there are three types of addresses that are important when you are try-
ing to understand network addressing: network hardware addresses,
numeric IP addresses, and text-based hostnames.

http://www.sybex.com

Network Addressing 327

Hardware Addresses

At the lowest level of the OSI model is the Physical layer, which corresponds
to network hardware. One of the characteristics of dedicated network hard-
ware such as Ethernet or Token Ring cards is that they have unique hard-
ware addresses, also known as Media Access Control (MAC) addresses,
programmed into them. In the case of Ethernet, these addresses are six bytes
in length, and they’re generally expressed as hexadecimal (base 16) numbers
separated by colons. You can discover the hardware address for an Ethernet
card by using the ifconfig command. Type ifconfig ethn, where n is the
number of the interface (0 for the first card, 1 for the second, and so on).
You’ll see several lines of output, including one like the following:

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

This line tells you that the device is an Ethernet card and that its hardware
address is 00:A0:CC:24:BA:02. What use is this, though? Certain low-level
network utilities and hardware use the hardware address. For instance, net-
work switches use it to direct data packets. The switch learns that a partic-
ular address is connected to a particular wire, and so it sends data directed
at that address only over the associated wire. The Dynamic Host Configu-
ration Protocol (DHCP), which is discussed later in this chapter, is a means
of automating the configuration of specific computers. It has an option that
uses the hardware address to consistently assign the same IP address to a
given computer. There are also advanced network diagnostic tools that let
you examine packets that come from or are directed to specific hardware
addresses.

For the most part, though, you don’t need to be aware of a computer’s
hardware address. You don’t enter it in most utilities or programs. It’s
important for what it does in general.

IP Addresses

Earlier, I said that TCP/IP allows for about 4 billion addresses. This figure is
based on the size of the IP address used in TCP/IP: four bytes (32 bits). Spe-
cifically, 232 = 4,294,967,296. Not all of these addresses are useable; some
are overhead associated with network definitions, and some are reserved.

The 4-byte IP address and 6-byte Ethernet address are mathematically
unrelated. Instead, the TCP/IP stack converts between the two using the
Address Resolution Protocol (ARP). This protocol allows a computer to

http://www.sybex.com

328 Chapter 5 � Networking

send a broadcast query—a message that goes out to all the computers on the
local network. This query asks the computer with a given IP address to iden-
tify itself. When a reply comes in, it includes the hardware address, so the
TCP/IP stack can direct traffic for a given IP address to the target computer’s
hardware address.

The procedure for computers that aren’t on the local network is more com-
plex. For such computers, a router must be involved, as described shortly, in
“DNS and Routers: Linking It All Together.”

IP addresses are usually expressed as four base-10 numbers (0–255) sep-
arated by periods, as in 192.168.29.39. If your Linux system’s protocol
stack is already up and running, you can discover its IP address by using
ifconfig, as described earlier. The output includes a line like the following,
which identifies the IP address (inet addr):

inet addr:192.168.29.39 Bcast:192.168.1.255
�Mask:255.255.255.0

Although not obvious from the IP address alone, this address is broken
down into two components: a network address and a computer address. The
network address identifies a block of IP addresses that are used by one orga-
nization, and the computer address identifies one computer within that net-
work. The reason for this breakdown is to make the job of routers easier—
rather than record how to direct packets directed to each of the four billion
IP addresses, routers can be programmed to direct traffic based on packets’
network addresses, which is a much simpler job.

The network mask (aka the subnet mask or netmask) is a number that
identifies the portion of the IP address that’s a network address and the part
that’s a computer address. It’s helpful to think of this in binary (base 2)
because the netmask uses binary 1 values to represent the network portion
of an address and binary 0 values to represent the computer address. The
network portion always leads the computer portion. Expressed in base 10,
these addresses usually consist of 255 or 0 values, 255 being a network byte
and 0 being a computer byte. If a byte is part network and part computer
address, it will have some other value. Another way of expressing a netmask
is as a single number representing the number of network bits in the address.
This number usually follows the IP address and a slash. For instance,
192.168.29.39/24 is equivalent to 192.168.29.39 with a netmask of

http://www.sybex.com

Network Addressing 329

255.255.255.0—the last number shows the network portion to be three
solid 8-bit bytes, hence 24 bits.

IP addresses and netmasks are extremely important for network configu-
ration. If your network doesn’t use DHCP or a similar protocol to assign IP
addresses automatically, you must configure your system’s IP address man-
ually. A mistake in this configuration can cause a complete failure of net-
working or more subtle errors, such as an inability to communicate with just
some computers.

Non-TCP/IP stacks have their own addressing methods. NetBEUI uses
machine names; it has no separate numeric addressing method. AppleTalk
uses two 16-bit numbers. These addressing schemes are independent from IP
addresses.

Hostnames

Computers work with numbers, so it’s not surprising that TCP/IP uses num-
bers as computer addresses. People, though, work better with names. For
this reason, TCP/IP includes a way to link names for computers (known as
hostnames) to IP addresses. In fact, there are several ways to do this, the most
important of which is discussed in the next section, “DNS and Routers:
Linking It All Together.”

As with IP addresses, hostnames are composed of two parts: machine
names and domain names. The former refers to a specific computer, and the
latter to a collection of computers. Domain names are not equivalent to the
network portion of an IP address, though; they’re completely independent
concepts. Domain names are registered for use by an individual or organi-
zation, which may assign machine names within the domain and link those
machine names to any arbitrary IP address desired. Nonetheless, there is fre-
quently some correspondence between domains and network addresses
because an individual or organization that controls a domain is also likely to
want a block of IP addresses for the computers in that domain.

Internet domains are structured hierarchically. At the top of the hierarchy
are the top-level domains (TLDs), such as .com, .edu, and .uk. These TLD
names appear at the end of an Internet address. Some correspond to nations
(such as .uk and .us, for the United Kingdom and the United States, respec-
tively), but others correspond to particular types of entities (such as .com

http://www.sybex.com

330 Chapter 5 � Networking

and .edu, which stand for commercial and educational organizations,
respectively). Within each TLD are various domains that identify specific
organizations, such as sybex.com for Sybex or loc.gov for the Library of
Congress. These organizations may optionally break their domains into sub-
domains, such as cis.upenn.edu for the Computer and Information Sci-
ence department at the University of Pennsylvania. Even subdomains may be
further subdivided into their own subdomains; this structure can continue
for many levels, but usually doesn’t. Domains and subdomains include spe-
cific computers, such as www.sybex.com, Sybex’s Web server.

When you configure your Linux computer, you may need to know its
hostname. This will be assigned by your network administrator and will be
a machine within your organization’s domain. If your computer isn’t part of
an organizational network (say, if it’s a system that doesn’t connect to the
Internet at all, or if it connects, it does so only via a dialup account), you’ll
have to make up a hostname. If your network uses DHCP, it may or may not
assign your system a hostname automatically.

If you need to make up a hostname, choose an invalid TLD, such as .invalid.
This will guarantee that you don’t accidentally give your computer a name
that legitimately belongs to somebody else. Such a name conflict could pre-
vent you from contacting that system, and it could cause other problems as
well, such as misdirected e-mail.

DNS and Routers: Linking It All Together

The Internet is big, and directing network traffic in a way that doesn’t cause
conflicts is a difficult task. There are two components that are particularly
important in handling this task: the Domain Name System (DNS) and
routers.

DNS is a distributed database of computers that convert between IP
addresses and hostnames. Every domain must maintain at least two DNS
servers that can either provide the names for every computer within the
domain or that can redirect a DNS query to another DNS server that can bet-
ter handle the request. Therefore, looking up a hostname involves querying
a series of DNS servers, each of which redirects the search until the server
that’s responsible for the hostname is found. In practice, this process is hid-
den from you because most organizations maintain DNS servers that do all

http://www.sybex.com

Network Addressing 331

the dirty work of chatting with other DNS servers. You need only point your
computer to your organization’s DNS servers. This detail may be handled
through DHCP, or it may be information you need to configure manually, as
described in “Basic Network Configuration.”

As described earlier, routers pass traffic from one network to another.
You configure your Linux system to directly contact systems on the local net-
work. You also give the computer a router’s address, which your system uses
as a gateway to the Internet at large. Any traffic that’s not destined for the
local network is directed at this router, which passes it on to its destination.
In practice, there are likely to be a dozen or more routers between you and
most Internet sites. Each router has at least two network interfaces and keeps
a table of rules concerning where to send data based on the destination IP
address. Your own Linux computer has such a table, but it’s likely to be very
simple compared to those on major Internet routers. (Linux can function as
a router, but such a configuration is beyond the scope of this book.)

Network Ports

Contacting a specific computer is important, but one additional type of
addressing is still left: The sender must have an address for a specific pro-
gram on the remote system. For instance, suppose you’re using a Web
browser. The Web server computer may be running more servers than just a
Web server—it might also be running an e-mail server or an FTP server, to
name just two of many possibilities. Another number beyond the IP address
allows you to address traffic to a specific program. This number is a network
port number, and every program that accesses a TCP/IP network does so
through one or more ports.

When they start up, servers tie themselves to specific ports, which by con-
vention are associated with specific server programs. For instance, port 25 is
associated with e-mail servers, and port 80 is used by Web servers. Thus, a
client can direct its request to a specific port and expect to contact an appro-
priate server. The client’s own port number isn’t fixed; it’s assigned by the
OS. Because the client initiates a transfer, it can include its own port number
in the connection request, so clients don’t need fixed port numbers. Assign-
ing client port numbers dynamically also allows one computer to easily run
several instances of a single client because they won’t compete for access to
a single port.

http://www.sybex.com

332 Chapter 5 � Networking

Fortunately, for basic functioning, you need to do nothing to configure
ports on a Linux system. You may need to deal with this issue if you run
unusual servers, though, because you may need to configure the system to
link the servers to the correct ports.

Basic Network Configuration

Now that you know something about how networking functions, the
question arises: How do you implement networking in Linux? Most Linux
distributions provide you with the means to configure a network connection
during system installation, as described in Chapter 2, “ Installing Linux.”
Therefore, chances are good that networking already functions on your sys-
tem. In case it doesn’t, though, this section summarizes what you must do to
get the job done. Chapter 9, “Troubleshooting,” includes a few additional
network troubleshooting tips, so if you have problems, you may want to
consult Chapter 9.

Clients and Servers

Before proceeding further, one important distinction is the one between cli-
ents and servers. A client is a program that initiates a network connection to
exchange data. A server listens for such connections and responds to them.
For instance, a Web browser, such as Netscape or Opera, is a client program.
You launch the program and direct it to a Web page, which means that the
Web browser sends a request to the Web server at the specified address.
The Web server sends back data in reply to the request. Clients can also send
data, however, as when you enter information in a Web form and click a
Submit or Send button.

The terms “client” and “server” can also be applied to entire computers
that operate mostly in one or the other role. Thus, a phrase such as “Web
server” is somewhat ambiguous—it can refer either to the Web server pro-
gram or to the computer that runs that program. When this distinction is
important and unclear from context, I clarify it (for instance, by referring to
“the Web server program”).

http://www.sybex.com

Basic Network Configuration 333

DHCP Configuration

One of the easiest ways to configure a computer to use a TCP/IP network is
to use the Dynamic Host Configuration Protocol (DHCP), which allows one
computer on a network to manage the settings for many other computers. It
works like this: When a computer running a DHCP client boots up, it sends
a broadcast in search of a DHCP server. The server replies with the config-
uration information the client needs to allow it to communicate with other
computers on the network—most importantly the client’s IP address and
netmask and the network’s gateway and DNS server addresses. The DHCP
server may also give the client a hostname. The client then configures itself
with these parameters. From time to time, the client checks back with the
DHCP server to “renew its lease” so that the DHCP server doesn’t give the
same IP address to another system.

There are three DHCP clients in common use on Linux: pump, dhclient,
and dhcpcd (not to be confused with the DHCP server, dhcpd). Some Linux
distributions ship with just one of these, but others ship with two or even all
three. All distributions have a default DHCP client, though—the one that’s
installed when you tell the system you want to use DHCP at system instal-
lation time. Those that ship with multiple DHCP clients typically allow you
to swap out one for another simply by removing the old package and install-
ing the new one.

Ideally, the DHCP client runs at system bootup. This is usually handled
either by a SysV startup file, as discussed in Chapter 6, “Managing Files and
Services,” or as part of the main network configuration startup file (typically
a SysV startup file called network or networking). The system often uses a
line in a configuration file to determine whether or not to run a DHCP client.
For instance, Red Hat Linux sets this option in a file called /etc/
sysconfig/network-scripts/ifcfg-eth0 (this filename may differ if
you use something other than a single Ethernet interface). The line in ques-
tion looks like this:

BOOTPROTO="dhcp"

If the BOOTPROTO variable is set to something else, changing it as shown
here will configure the system to use DHCP. It’s usually easier to use a GUI
configuration tool to set this option, however, as described shortly, in
“Using GUI Configuration Tools.”

http://www.sybex.com

334 Chapter 5 � Networking

Static IP Address Configuration

If a network lacks a DHCP server, you must provide basic network config-
uration options manually. There are several specific items that are required:

IP address You can set the IP address manually via the ifconfig com-
mand, but to set it automatically, you’ll need to set it in a startup script
such as /etc/sysconfig/network-scripts/ifcfg-eth0 (as with
DHCP configuration, the exact location of this information varies from
one distribution to another). The IPADDR item contains the IP address.

Network mask The netmask can be set manually via the ifconfig
command. To set it permanently, you must adjust a configuration file like
/etc/sysconfig/network-scripts/ifcfg-eth0, in which it’s set via
the NETMASK item.

Gateway address You can manually set the gateway via the route com-
mand. To set it permanently, you need to adjust a configuration file, such
as /etc/sysconfig/network-scripts/ifcfg-eth0 (the GATEWAY
item) or /etc/sysconfig/network (also the GATEWAY item). The gate-
way isn’t necessary on a system that isn’t connected to a wider network—
that is, if the system works only on a local network that contains no routers.

DNS settings In order for Linux to use DNS to translate between IP
addresses and hostnames, you need to specify at least one DNS server in
the /etc/resolv.conf file. Precede the IP address of the DNS server
by the keyword nameserver, as in nameserver 192.168.29.1. You can
include up to three nameserver lines in this file. Adjusting this file is all
you need to do to set the name server addresses; you don’t need to do any-
thing else to make the setting permanent.

If you’re unsure of what to enter for these values, you should consult your
network administrator. Do not enter random values or values you make up
that are similar to those used by other systems on your network. Doing so is
unlikely to work at all, and it could conceivably cause a great deal of trouble—
say, if you mistakenly use an IP address that’s reserved for another computer.

As just mentioned, the ifconfig program is critically important for set-
ting both the IP address and netmask. This program can also display current
settings. Basic use of ifconfig to bring up a network interface resembles the
following:

ifconfig interface up addr netmask mask

http://www.sybex.com

Basic Network Configuration 335

For instance, the following command brings up eth0 (the first Ethernet
card) using the address 192.168.29.39 and the netmask 255.255.255.0:

ifconfig eth0 up 192.168.29.39 netmask 255.255.255.0

This command links the specified IP address to the card so that the com-
puter will respond to the address and claim to be that address when sending
data. It doesn’t, though, set up a route for traffic beyond your current net-
work. For that, you need to use the route command, thus:

route add default gw 192.168.29.1

Substitute your own gateway address for 192.168.29.1. Both ifconfig
and route can display information on the current network configuration.
For ifconfig, omit up and everything that follows; for route, omit add and
everything that follows. For instance, to view interface configuration, you
might issue the following command:

ifconfig eth0

eth0 Link encap:Ethernet HWaddr 00:A0:CC:24:BA:02

 inet addr:192.168.29.39 Bcast:192.168.29.255
�Mask:255.255.255.0

 UP BROADCAST NOTRAILERS RUNNING MTU:1500 Metric:1

 RX packets:16110258 errors:1 dropped:0 overruns:0
�frame:1

 TX packets:14234890 errors:1 dropped:0 overruns:0
�carrier:1

 collisions:0 txqueuelen:100

 Interrupt:10 Base address:0xc800

When configured properly, ifconfig should show a hardware address
(HWaddr), an IP address (inet addr), and additional statistics. There should
be few or no errors, dropped packets, or overruns for both received (RX) and
transmitted (TX) packets. Ideally, there should be few collisions, but some are
unavoidable if your network uses a hub rather than a switch. If collisions
total more than a few percent of the total transmitted and received packets,
you may want to consider replacing a hub with a switch. To use route for
diagnostic purposes, you might use it as follows:

route

Kernel IP routing table

http://www.sybex.com

336 Chapter 5 � Networking

Destination Gateway Genmask Flags Metric Ref
�Use Iface

192.168.29.0 * 255.255.255.0 U 0 0
�0 eth0

127.0.0.0 * 255.0.0.0 U 0 0
�0 lo

default 192.168.29.1 0.0.0.0 UG 0 0
�0 eth0

This shows that data destined for 192.168.29.0 (that is, any computer
with an IP address between 192.168.29.1 and 192.168.29.254) goes directly
over eth0. The 127.0.0.0 network is a special interface that “loops back” to
the originating computer. Linux uses this for some internal networking pur-
poses. The last line shows the default route—everything that doesn’t match
any other entry in the routing table. This line specifies the default route’s
gateway system as 192.168.29.1. If it’s missing or misconfigured, some or all
traffic destined for external networks, such as the Internet, won’t make it
beyond your local network segment.

As with DHCP configuration, it’s almost always easier to use a GUI con-
figuration tool to set up static IP addresses, at least for new administrators.
The exact locations of the configuration files differ from one distribution to
another, so the examples listed earlier may not apply to your system.

Using GUI Configuration Tools

Most distributions include their own GUI configuration tools for network
interfaces. For instance, Red Hat and many of its derivatives ship with
linuxconf and netconfig; SuSE has YaST; and Caldera uses COAS. The
details of operating these programs differ, but the GUI configuration tool
provides a means to enter the information described earlier.

For instance, consider linuxconf. This program can be run from X, in
text mode, or from a Web browser. The following procedure will configure
a system using linuxconf and its X-based interface, but the other interfaces
work in a similar way. (To use the Web interface, though, you must first con-
figure linuxconf to operate in this way, which it doesn’t do by default for
security reasons.)

1. Start the utility by typing linuxconf in an xterm command prompt
window or by selecting it from your desktop environment’s menus.
(You’ll need to be root or an authorized administrative user to launch
linuxconf.)

http://www.sybex.com

Basic Network Configuration 337

2. In the linuxconf window, select Networking � Client Tasks � Basic
Host Information. A configuration panel entitled This Basic Host
Configuration will appear to the right.

3. Click the Adaptor 1 tab. The display should now resemble that shown
in Figure 5.3, although the entries will probably be different.

F I G U R E 5 . 3 Network configuration using a GUI tool is a matter of entering information
into fields that clearly identify the required information.

4. If your network uses DHCP, click the Dhcp item for the Config Mode
and skip ahead to step 12.

5. Enter your computer’s hostname in the Primary Name + Domain field.

6. Enter your IP address in the IP Address field.

7. After entering your IP address, a default netmask should appear in the
Netmask (Opt) field. If yours differs, correct it.

8. Select Networking � Client Tasks � Name Server Specification (DNS)
in the list to the left. You’ll see a new configuration tab open to the
right.

http://www.sybex.com

338 Chapter 5 � Networking

9. Enter your DNS servers in the fields provided on the right.

10. Select Networking � Client Tasks � Routing and Gateways � Set
Defaults in the list to the left. Again, a new configuration tab will
appear on the right.

11. Enter your gateway address in the field provided for this purpose.

12. Click Accept in each of the open configuration tabs to the right, fol-
lowed by Act/Changes below the list to the left. The result should be
a small dialog box informing you that the system’s status isn’t syn-
chronized with what you’ve configured.

13. Click Activate the Changes in the information dialog box to have it
change your system’s configuration and immediately enable the new
network settings.

14. Click Quit in the remaining linuxconf window.

Not all network configuration tools are as elaborate as linuxconf. For
instance, netconfig is a much simpler text-based tool. (Figure 5.4 shows it
running in an xterm window.) You can enter the four required components
in one place using netconfig, so it can be quicker than linuxconf—but it’s
also much less flexible.

F I G U R E 5 . 4 netconfig is simpler than linuxconf, but it also does less.

http://www.sybex.com

Configuring Remote Client Access 339

Configuring Remote Client Access

Many Linux systems are connected directly to a network via a net-
work card. Such systems are configured as just described—via DHCP or
static IP address assignment. Other computers, though, use less direct con-
nection methods. These computers are frequently located in homes or small
businesses, and they need to use dial-up telephone connections, Integrated
Services Digital Network (ISDN) links, or broadband connections. Such sys-
tems sometimes work much like direct connections, but they also sometimes
require a different method of configuration.

Initiating a PPP Connection

A conventional telephone modem is the low end of network connectivity.
This device turns the public telephone network into a computer networking
medium, linking precisely two points together. In its simplest form, a modem
can be used to initiate a text-mode connection using a terminal program—a
program that allows for remote text-based logins but nothing else. Today,
though, a modem is more often used in conjunction with PPP. PPP estab-
lishes a TCP/IP link between the two computers, so you can use any of the
many TCP/IP-based tools, such as those discussed later in this chapter, in
“Network Application Configuration.” Most PPP accounts, though, are
designed to be used for brief periods at a time, not continuously. Therefore,
running servers on such systems is usually inadvisable because most servers
require always-up Internet connections. Some ISPs do offer full-time PPP
links, though.

To initiate a PPP connection, you must have PPP software installed on
your Linux system. The most important PPP package is known as pppd, for
“PPP daemon.” This utility can both initiate PPP links and respond to
attempts to initiate them. This section describes the former.

Using Text-Based PPP Utilities

In Linux, a PPP connection usually requires an entry in a file called /etc/
ppp/pap-secrets or /etc/ppp/chap-secrets. Both files use the same for-
mat. They provide information that’s passed between the PPP client and
server for authentication, using the Password Authentication Protocol (PAP)
or Challenge-Handshake Authentication Protocol (CHAP). Because PPP

http://www.sybex.com

340 Chapter 5 � Networking

was designed for use over public dial-up telephone lines, the caller must nor-
mally present a username and password to the other system; PAP and CHAP
are merely protocols for doing this in a standard way. The format of lines in
the secrets files are as follows:

username server password IP_address

The username and password values are your username and password,
respectively. Enter the values obtained from your Internet service provider
(ISP). The server value is the name of the system to which you’re connect-
ing. Normally, it’s an asterisk (*), signifying that pppd will connect to any
computer. IP_address is the IP address that pppd expects to get. This will
normally be blank, meaning that the system will accept any IP address.

Connecting from the command line requires modifying certain connec-
tion scripts. These are called ppp-up, ppp-up-dialer, and ppp-down. The
first two start a connection, and the third breaks it. These scripts are often
stored in a documentation directory, such as /usr/share/doc/ppp-2.3.11/
scripts. Copy them to a convenient binary directory that’s on your path,
such as /usr/local/bin. You must then modify them with information rel-
evant to your ISP:

� In ppp-on, locate the lines that begin TELEPHONE=, ACCOUNT=, and
PASSWORD=, and modify them so that they’re appropriate for your ISP
and account. (The ACCOUNT and PASSWORD variables should contain
dummy values if you use PAP or CHAP, as is almost always the case.)

� Check that the DIALER_SCRIPT variable in ppp-on points to the cor-
rect location of ppp-on-dialer. The default location is /etc/ppp.

� Check the call to pppd in the last lines of ppp-on. Most of the param-
eters to this call are quite cryptic, but you should at least be able to
confirm that it’s using the correct modem device filename and speed.
Serial modems generally use /dev/ttyS0 or /dev/ttyS1 as the file-
name. 115200 is an appropriate speed in most cases, but the default is
38400.

� Check the ppp-on-dialer script. This script includes a “chat”
sequence—a series of strings the program expects to see from the
modem or remote system in one column, and a series of responses in
another column. You may need to log on using a terminal program
like Seyon or minicom and then capture to disk the prompts your ISP
uses to ask for your username and password; you’ll then need to mod-
ify the last two lines of the script in order to make it work. Alterna-
tively, you may need to comment out the last two lines by preceding

http://www.sybex.com

Configuring Remote Client Access 341

them with pound signs (#) and remove the backslash (\) from the
CONNECT line if your ISP uses PAP or CHAP.

The chat program expects a single line; its input is only formatted in columns
in ppp-on-dialer for the convenience of humans. The backslashes ending
most lines signify line continuations so that chat interprets multiple input
lines as a single line. Only the final line should lack a backslash.

When you’re done making these changes, type ppp-on (preceding it with
a complete path, if necessary) as root to test the connection. If all goes well,
your system should dial the modem, link up, and give you Internet access. If
this fails to occur, check the last few lines of /var/log/messages with a
command such as tail -n 20 /var/log/messages. There should be some
sort of error messages, which may help you to diagnose the problem. To stop
a connection, type ppp-down.

Using a GUI Dialer

Many people prefer to use GUI dialing utilities to control PPP connec-
tions. Many such programs are available. One that comes with most Linux
systems is KPPP, which is part of the KDE system. You can use KPPP even
from other environments, though, or you can use another GUI PPP dialer.
Most PPP dialers offer similar features and functionality.

Figure 5.5 shows the main KPPP window. You can launch it by typing
kppp in a terminal window or by selecting it from the main KDE menu (usu-
ally K � Internet � Kppp). Once it’s configured, you need only select your
ISP’s name from the Connect To list, enter your username (in the Login ID
field) and password, and click Connect to begin a connection. This button
changes to allow you to disconnect once a connection is initiated.

F I G U R E 5 . 5 GUI dialers allow you to select from among several ISPs or dial-up numbers
and connect by clicking a button.

http://www.sybex.com

342 Chapter 5 � Networking

To configure KPPP, follow these steps:

1. Click Setup. This produces the KPPP Configuration window shown in
Figure 5.6. This window controls basic KPPP features and allows you
to modify specific accounts.

F I G U R E 5 . 6 The KPPP Configuration window controls accounts and overall KPPP settings.

2. Click New to create a new account. The system displays a dialog box
asking if you want to use a wizard or set up using dialog boxes. The
wizard doesn’t support U.S. ISPs, so if you’re in the U.S., you’ll need
to use the dialog box option. KPPP then displays the New Account
dialog box (Figure 5.7).

F I G U R E 5 . 7 The KPPP New Account dialog box lets you enter critical account-specific
information.

http://www.sybex.com

Configuring Remote Client Access 343

3. Type an identifying name in the Connection Name field. This name
exists so you can identify the configuration, so use whatever you
like here.

4. Click Add, type in your ISP’s phone number, and click OK. Repeat
this step if your ISP provides multiple local access numbers.

5. Select the form of authentication used by your ISP (PAP is the most
common, followed by CHAP and scripted logins).

6. Click OK in the New Account dialog box to close it.

7. In the KPPP Configuration window, check the settings on the Device
and Modem tabs. You may need to adjust some of these, like the
Modem Device and Connection Speed.

When you make a connection the first time, click Show Log Window in the
main KPPP window (Figure 5.5). This produces a window that shows the inter-
actions between your system and your ISP’s, which can be helpful in case
things don’t go as you expect.

Using ISDN Services

ISDN is a digital alternative to conventional analog telephone lines. One
advantage of ISDN is that it enables you to combine a pair of 64Kbps digital
lines, for a net digital throughput of 128Kbps. This can be a substantial
improvement over the 56Kbps maximum speed possible with analog tele-
phone modems, but in today’s world it’s at best a stopgap measure; a better
upgrade is to broadband, as described shortly, in “Using DSL or Cable
Modem Services.” Also, in the United States ISDN tends to be expensive, and
availability is spotty. ISDN is much more popular in Europe, however.

ISDN service requires use of a device that’s generally known as a terminal
adapter. This fills a role that’s similar to that of an analog telephone modem,
and in fact, many of these adapters are external devices that interface
through a serial port, just like normal telephone modems. When using such
a terminal adapter, you can connect to your ISP just as you would when
using an analog telephone modem—using PPP. Therefore, the preceding
instructions on PPP connections apply equally well to such devices.

http://www.sybex.com

344 Chapter 5 � Networking

Some ISDN modems are internal cards, similar to internal analog tele-
phone modems. These devices require special drivers in Linux. The Linux
kernel includes drivers for several such cards, so there’s a good chance yours
is supported—but check on Linux support for any card before buying. The
ISDN drivers allow the ISDN card to be accessed as if it were a modem, using
commands similar to those used to dial ordinary modems. You must use
the /dev/ttyI0 (and subsequently numbered device filenames) rather than
/dev/ttyS0, however.

Although ordinary PPP utilities can handle ISDN devices, many ISDN
users prefer to use ISDN-specific utilities. These can help set up a system to
dial up and transfer mail automatically, use the system as a firewall, and so
on—tasks that are certainly possible with an analog telephone modem con-
nection but that ISDN users are particularly likely to do. A set of utilities that
can help with such configurations is available from http://www.manna.nl/
tipstekst_en.html.

Using DSL or Cable Modem Services

Digital Subscriber Line (DSL) and cable modem services are the next step up
in remote access connection methods. These methods are the most common
form of broadband connectivity in 2001—high-speed remote access. (Broad-
band can also refer to media that allow the transmission of video and voice,
as well as digital data.) Other forms of broadband include satellite, local
radio, and fiber-optic connections, but these are still relatively uncommon.
Like analog telephone and ISDN connections, broadband connections are
typically used to link small numbers of computers in homes and businesses
to the Internet via an ISP. Unlike typical PPP and ISDN connections, broad-
band connections can be operated 24 hours a day, so you may not need to
run any commands to initiate a connection before using the service. (Two
methods of connection, described shortly, are exceptions to this rule.)

DSL comes in several varieties, the most common of which are Asymmetric DSL
(ADSL), Symmetric DSL (SDSL), and ISDN-based DSL (IDSL). Although the
exact capabilities of these forms of DSL differ, as do the hardware require-
ments, configuration details are the same. Likewise, the basic principles of
configuring a cable modem are the same as those of configuring DSL,
although the hardware and underlying technologies differ.

http://www.sybex.com

Configuring Remote Client Access 345

Two factors affect broadband compatibility with Linux, and determine
how you configure it:

Hardware compatibility All broadband connections require the use of a
modem. A broadband modem isn’t compatible with an ordinary analog
telephone modem. Many external broadband modems interface to the
host computer via an Ethernet port—the same type of interface that’s used
on many local networks. This type of interface is preferred in Linux.
Other external modems use a USB interface. A few broadband modems
come as internal cards. Both USB and internal broadband modems
require special Linux drivers, which are rare.

IP address assignment method Broadband ISPs generally use one of
four methods of IP address assignment: static IP addresses, DHCP, PPP
over Ethernet (PPPoE), and PPP over ATM (PPPoA). The first two work
exactly as they do in local networks, as described earlier, in “Basic Net-
work Configuration.” PPPoE and PPPoA are variants of ordinary PPP.

If your broadband provider gives you a Linux-incompatible modem, your
only choices are to replace it with a compatible model (probably an external
Ethernet-based device) or to write your own driver. The former is usually the
easier course of action. In the IP address assignment arena, the main compli-
cation arises with ISPs that use PPPoE or PPPoA. PPPoE is the more common
of these, and most Linux distributions now ship with at least one PPPoE
package, usually Roaring Penguin (http://www.roaringpenguin.com/
pppoe). Roaring Penguin comes with a text-based configuration script
(adsl-setup) that asks you for critical information, such as your username
and password. You can then initiate a connection by typing adsl-start, or
you can stop it by typing adsl-stop.

http://www.sybex.com

346 Chapter 5 � Networking

Network Application Configuration

Once you’ve got a network connection up and running, it’s time to
investigate what can be done with that connection. This section focuses pri-
marily on popular network client programs—those programs that allow you
as a user to initiate data transfers, such as retrieving e-mail or accessing file-
systems on remote computers. The configuration of network servers (those

Security and Broadband Connections

Many broadband users connect their computers directly to the broadband
ISP’s network, using only the broadband modem between the computer
and the broadband network medium. This approach requires diligence in
securing the connection, though; just like when you are connecting a sys-
tem to a corporate network, the computer is readily accessible whenever
it’s powered on. Most corporate networks today include firewalls—devices
that block unwanted access to internal computers. Few broadband ISPs
provide firewalls, though, so a broadband-connected computer is unusu-
ally vulnerable. Furthermore, small business and home users frequently
lack the knowledge to properly secure a computer, which makes for a dan-
gerous combination.

One solution is to run a software firewall to protect the one connected com-
puter (or that computer and any others connected indirectly through it). The
“Controlling Access via a Firewall” section later in this chapter provides
some pointers on firewall configuration in Linux.

Another option is to buy an external broadband router. These devices cost
$50 to $500 (but most often $100–$150) and sit between your computer and
an Ethernet broadband modem. They’re programmed to function as fire-
walls, and they are usually very easy to configure. Most models also sup-
port network address translation (NAT), which allows you to share an
Internet connection among several computers, even if your ISP provides
just one IP address. Reviews of several models can be found at http://
www.practicallynetworked.com/reviews/index_router.htm.

http://www.sybex.com

Network Application Configuration 347

programs that respond to data transfer queries) is mostly beyond the scope
of this book, although this section discusses a couple of them.

Using a Web Browser

The most popular Web browser in Linux is Netscape (http://www
.netscape.com), but there are other choices. These include Mozilla
(http://www.mozilla.org), a more fully open source offshoot of
Netscape; Opera (http://www.opera.com), a commercial browser avail-
able on many platforms; Lynx (http://lynx.browser.org), a text-mode
browser; and Konqueror (http://www.kde.org), a part of the K Desktop
Environment (KDE).

Many desktop environments and window managers (discussed in “Basic
GUI Use” in Chapter 6) include an easy way to launch a Web browser. In
fact, Konqueror, KDE’s Web browser, doubles as the environment’s file
manager and normally launches by default whenever you start KDE. If you
prefer, you can launch a Web browser by typing its name in an xterm. (In the
case of Lynx, you can launch it from a text-mode login, as well.)

Linux’s GUI Web browsers work much as do their counterparts in other
OSs. You can view pages linked to by the page you’re viewing by clicking the
link, which usually appears in another color. (Lynx uses arrow and Tab keys
to highlight links; pressing the Enter key causes the program to load the
linked-to page.)

Using an E-Mail Client

E-mail delivery on the Internet at large relies on a protocol known as the Simple
Mail Transfer Protocol (SMTP). This is known as a push mail protocol
because the sender initiates a transfer. The mail server accepts the mail that’s
given to it and either stores it or forwards it to another system, depending
upon the recipient address and the server’s configuration. Linux computers
almost invariably include SMTP servers and so can function as SMTP mail
recipients.

Another type of mail protocol in common use today is known as a pull
mail protocol because the receiver initiates the transfer. Typically, the pull
mail client is a workstation, and the server handles mail for an entire orga-
nization. Two pull mail protocols are in common use: the Post Office Pro-
tocol (POP) and the Internet Message Access Protocol (IMAP). Of the two,

http://www.sybex.com

348 Chapter 5 � Networking

IMAP is more sophisticated and allows the mail server to store and organize
messages; POP is simpler and requires users to download and store mail
locally in order to organize it into folders.

There are two main ways to handle e-mail in Linux, which mirror these
two types of mail transfer protocols:

Read mail from the local mail queue. If you give correspondents your
Linux system’s name and your username on that system, you can let
the Linux system function as an SMTP server and read mail directly on the
Linux computer. For instance, if your system is apollo.luna.edu and
your username is hschmidt, mail from other systems addressed to
hschmidt@apollo.luna.edu will reach your system and be stored there
for you to read.

Read mail from a remote system. If you don’t want mail to be addressed
directly to your own computer, you can use a pull mail protocol in con-
junction with a separate mail server system. For instance, you might give
your e-mail address as hschmidt@mail.luna.edu, then use your apollo
workstation to retrieve mail from mail.luna.edu.

Each of these cases requires you to configure your mail reader appropri-
ately, as described shortly. Using a local mail queue can make sense if the sys-
tem has many users who don’t have mail accounts on other systems. Reading
mail from a separate mail server makes sense if your system’s IP address
changes frequently or if it’s not online at all times, because SMTP mail deliv-
ery to your system will be unreliable in these cases.

SMTP servers can be misconfigured to function as open mail relays. These
will forward mail from any address to any other address, and are beloved by
those who send spam—unsolicited bulk e-mail. All Linux distributions
released since 1999 or so are configured to not be open mail relays by default.
If you’re running an older distribution, or if you attempt to change your mail
server’s configuration, you should ensure that you aren’t running an open
mail relay. Consult http://mail-abuse.org/tsi for more information on this
important topic.

Linux supports a wide variety of e-mail clients. These include Netscape
Communicator (http://www.netscape.com), the mail portion of the
Netscape Web browser; KMail (http://www.kde.org), KDE’s mail client;
Mutt (http://www.mutt.org), an advanced text-based mail reader; and

http://www.sybex.com

Network Application Configuration 349

many others. As with Web browsers, you can launch mail clients by selecting
them from desktop environment or window manager menus, or by typing
the program’s name at a shell prompt. You must usually configure the mail
client to use either the local queue or a remote mail server. If the latter, you
must enter the server’s name, the protocols it uses, your username on that
server (this may not be the same as your local username), and perhaps other
information. Figure 5.8 shows the Add Account dialog box for KMail, in
which most of this information is entered.

F I G U R E 5 . 8 When using a pull mail protocol, your e-mail client uses your account on a
mail server to retrieve your e-mail from that server.

You’ll also have to choose how to send your mail. Because most Linux
systems include a mail server (often sendmail, but there are other options),
most mail programs give you the choice of using the local mail server to send
outgoing mail or using an outside mail server. Chances are if you receive mail
directly, you should send it using your local mail server; but if you receive
mail through another mail server, you should send it in like manner.

Many organizations maintain separate incoming and outgoing mail servers.
Therefore, you might not enter the same mail server’s address as the outgo-
ing mail server as you used when specifying the incoming mail server. Con-
sult your ISP or network administrator for details.

http://www.sybex.com

350 Chapter 5 � Networking

The details of day-to-day mail client operation vary from one program to
another, but as a general rule, these programs include functions to permit
reading new mail, replying to such mail, sending new mail, deleting old mes-
sages, and organizing messages into mail folders. Many also let you save
messages to files, spell-check your outgoing messages, and so on. When you
use a remote mail server, you must either explicitly check for new mail (by
clicking a button or selecting a menu option), or configure the program to do
this automatically every once in a while.

Using X Programs Remotely

As noted in Chapter 2, Linux’s GUI environment, the X Window System (or
X for short), is unusual in that it’s fully network-enabled. Using nothing but
the normal X software and Linux network configuration, it’s possible to run
an X program on one computer while sitting at another computer, using the
second computer’s monitor, keyboard, and mouse. In fact, it’s possible for
one of these systems to be running a Unix OS that’s not Linux. It’s even pos-
sible to run an X server on a Windows, OS/2, or other completely non-Unix
system, or on a system with a different class of CPU than the Linux system.

Although most people think of clients as running on the computers at which
they sit and servers as running on remote systems, this isn’t true of X. In X, the
server runs on the system local to the user. To make sense of this, think of it
from the program’s point of view. To a word processor, the display and key-
board are services to be used, much like a network-accessible printer.

Suppose that your local network contains two machines. The computer
called zeus is a powerful machine that hosts important programs, like a
word processor and data analysis utilities. The computer called apollo is a
much less powerful system, but it’s got an adequate monitor and keyboard.
Therefore, you want to sit at apollo and run programs that are located on
zeus. Both systems run Linux. To accomplish this task, follow these steps:

1. Log into apollo and, if it’s not already running X, start it.

2. Open a terminal (such as an xterm) on apollo.

3. Type xhost +zeus in apollo’s terminal. This command tells apollo
to accept for display in its X server data that originates on zeus.

http://www.sybex.com

Network Application Configuration 351

4. Log into zeus from apollo. You might use Telnet or Secure Shell
(SSH), for instance. (See the upcoming sections, “Setting Up a Remote
Access Server” and “Remote System Administration.”) The result
should be the ability to type commands in a shell on zeus.

5. On zeus, type export DISPLAY=apollo:0.0. (This assumes you’re
using bash; if you’re using tcsh, the command would be setenv
DISPLAY apollo:0.0.) This command tells zeus to use apollo for
the display of X programs.

6. Type whatever you need to type to run programs at the zeus com-
mand prompt. For instance, you could type soffice to launch Star
Office. You should see the programs open on apollo’s display, but
they’re running on zeus—their computations use zeus’s CPU, they
can read files accessible on zeus, and so on.

7. After you’re done, close the programs you’ve launched, log off of
zeus, and type xhost -zeus on apollo. This will tighten security so
that a miscreant on zeus won’t be able to modify your display on
apollo.

Sometimes, you can skip some of these steps. For instance, depending
upon how it’s configured, SSH can forward X connections, meaning that
SSH intercepts attempts to display X information and passes those requests
on to the system that initiated the connection. When this happens, you can
skip steps 3 and 5, as well as the xhost command in step 7.

Another option for running X programs remotely is to use the Virtual
Network Computing (VNC) system (http://www.uk.research.att.com/
vnc). VNC runs a special X server on the computer that’s to be used from a
distance, and a special VNC client runs on the computer at which you sit.
You use the client to directly contact the server. This reversal of client and
server roles over the normal state of affairs with conventional X remote
access is beneficial in some situations, such as when you are trying to access
a distant system from behind certain types of firewall. VNC is also a cross-
platform protocol; it’s possible to control a Windows or MacOS system
from Linux using VNC, but this is not possible with X. (X servers for Win-
dows and MacOS are available, allowing you to control a Linux system from
these non-Linux OSs, though.)

http://www.sybex.com

352 Chapter 5 � Networking

Using an FTP Client

The File Transfer Protocol (FTP) is one of the older Internet protocols for
transferring files. Despite its age and deficiencies, FTP continues to be used
because it’s easy to configure and because FTP client programs are extremely
common. On Linux, these programs include the original text-mode ftp, the
updated text-mode NcFTP (http://www.ncftpd.com/ncftp), and GUI
programs like gFTP (http://gftp.seul.org). In addition, Web pages may
include links to files on FTP sites, so Web browsers can function as at least
one-way FTP clients.

The purpose of FTP is, as the protocol’s name implies, to transfer files
between computers. When you run an FTP client, you can select files on the
server or on your own system, then you click a button or issue a command
to transfer the file. Text-mode FTP clients accept many commands, the most
important of which are listed here:

put This command sends a single file from your system to the FTP
server.

get You retrieve a single file from the server using the get command.

mput This command is a multifile variant of put; you can specify several
files to send them all to the server.

mget This command is a multifile variant of get; you specify several
files to retrieve them all.

cd Like the Linux shell command, cd in an FTP client changes to a new
directory, but on the server.

lcd This command is similar to cd, but it changes your local directory—
that is, the one on your own computer, not on the server.

ls or dir These two commands both produce directory listings on the
server. Some servers respond differently to these two commands, typically
producing more information (such as file sizes and dates) to dir than to ls.

binary Most FTP clients default to binary mode, which transfers files
without altering their contents. If you need to switch back to this mode,
issue this command.

ascii Because different OSs store end-of-line characters in different
ways, text files transferred via FTP sometimes don’t display properly once
retrieved. Issuing the ascii command causes a transfer that changes end-
of-line characters to conform to the client’s conventions. This is useful for
text files, but should not be used on binary files.

http://www.sybex.com

Network Application Configuration 353

quit To exit from an FTP session, you issue the quit command. This
closes the session and exits from the program.

These commands are typically accessible from menu options or using but-
tons in GUI FTP programs. For instance, Figure 5.9 shows gFTP, with the
local computer’s filesystem displayed on the left and the FTP server’s on the
right. You can click files on one side and then click one of the arrows
between the panes to move them between systems.

F I G U R E 5 . 9 GUI FTP clients let you browse remote files using a point-and-click interface.

FTP requires that the user send a username and password to access the
remote system. If the system you’re contacting is one on which you have an
account, you can use your ordinary login username and password on that
system. This is often used, for instance, when uploading files to an ISP’s Web
server for your personal Web page. Many sites don’t use usernames and
passwords in quite this way, though; these are anonymous FTP sites. To use
such a site, you send anonymous as the username and anything (convention-
ally your e-mail address) as a password. Anonymous FTP sites frequently
hold publicly accessible files like Linux distributions and individual Linux
programs. They frequently permit downloads but not uploads, although a
few anonymous FTP sites accept uploads.

http://www.sybex.com

354 Chapter 5 � Networking

FTP sends its usernames and passwords in an unencrypted form. This means
that the password is susceptible to interception if it passes over the Internet at
large. Therefore, you should minimize your use of non-anonymous FTP
whenever possible. (The insecure nature of FTP isn’t a major problem for
anonymous access.)

Although FTP access is often useful, it’s not the most transparent or con-
venient way to access files on another computer. Other protocols, described
in the next couple of sections, provide a more seamless integration of the
server’s files to the client’s system.

Accessing SMB/CIFS Shares

Microsoft Windows uses a protocol that was originally called Server Mes-
sage Block (SMB), but has been renamed Common Internet Filesystem
(CIFS), for file and printer sharing. Using this protocol, it’s possible to con-
figure one Windows system to share a hard disk or directory with other com-
puters. The client systems can mount the shared disk or directory as if it were
a local drive. Printers can be shared in a similar manner. This type of con-
figuration is very useful because it allows for easy file exchange between co-
workers and because a network administrator can install software once on
the file server rather than multiple times on each computer, saving disk space
and administrative effort.

Linux includes tools that provide the ability to interact with Windows sys-
tems that use SMB/CIFS. The main package for this is called Samba, and it
comes with all major Linux distributions. Samba includes two major client
programs: smbclient and smbmount.

smbclient provides an interface to remote SMB/CIFS shares that’s much
like that of a text-mode FTP client. To use it, type smbclient //server/
share, where server and share are the name of the server and the share
you want to access, respectively. You’ll be asked to provide a password. (By
default, smbclient passes your login name as your username.) You can then
use commands like dir, get, and put to obtain directory listings and trans-
fer files. For instance, consider the following:

$ smbclient //apollo/hschmidt

Password:

http://www.sybex.com

Network Application Configuration 355

smb: \> dir

 geology D 0 Sun Apr 2 11:59:16 2000

 drrock.wpd 152576 Thu Mar 29 13:01:16 2001

 50355 blocks of size 65536. 8625 blocks available

smb: \> get drrock.wpd

smb: \> quit

This sequence of commands shows the retrieval of a file called
drrock.wpd from the hschmidt directory on the apollo server. The FTP-
like interface of smbclient is limiting, though. SMB/CIFS was intended for
file sharing—the direct access to files by user programs. Therefore, Samba
under Linux includes a utility called smbmount that will actually mount the
remote share in Linux. This program is called much like smbclient, but you
must add the Linux mount point to the call. Here’s a sequence that accom-
plishes the same task as the preceding one:

$ smbmount //apollo/hschmidt /mnt/a17

Password:

$ ls -l /mnt/a17

total 152

-rwxr-xr-x 1 rodsmith users 152576 Mar 29 13:01
�drrock.wpd

drwxr-xr-x 1 rodsmith users 512 Apr 2 2000 geology

$ cp /mnt/a17/drrock.wpd ./

$ smbumount /mnt/a17

The advantage of smbmount is that you can do much more than copy files.
For instance, rather than copy drrock.wpd to your own computer, you can
load it directly into a word processor and save the changes directly to the
server.

One drawback to smbmount is that it assigns Linux ownership of all files
on the remote server to the user who ran the command, unless you use the
-o uid=UID option, which sets ownership to the user whose user ID is UID.
You might also need to use the -o username=name option, to set the user-
name used to access the shares.

http://www.sybex.com

356 Chapter 5 � Networking

For ordinary users to run smbmount and smbumount, the smbmnt and smbumount
programs must have their SUID bits set, which allows ordinary users to run pro-
grams with root privileges. (smbmnt is a helper program to smbmount.) If this
isn’t the case when Samba is installed, type chmod a+s /usr/bin/smbmnt /
usr/bin/smbumount as root. Thereafter, ordinary users will be able to use
these programs, but they’ll need to own the mount points they use, such as
/mnt/a17 in the preceding example.

Another way to mount SMB/CIFS shares is via the standard Linux mount
command. This requires you to pass the filesystem type of smbfs with the
-t parameter, thus:

mount -t smbfs //apollo/hschmidt /mnt/a17

Samba is primarily a server system; the client utilities are just a small part
of what Samba does. When the Samba server runs, a Linux system can func-
tion as a file server for Windows clients. The normal Samba server configu-
ration is handled through the smb.conf file, which is normally stored in
/etc, /etc/samba, /etc/samba.d, or someplace similar. Default configu-
rations normally work to a limited extent, but need some customizations.
You may need to set some of these options to use Samba as a client, as well.
The two most common of these areas follows:

Workgroup or domain name You must set the workgroup or domain
name to match your local network by using the workgroup parameter in
smb.conf.

Encrypted passwords Samba defaults to using unencrypted passwords,
but recent versions of Windows use encrypted passwords and won’t fall
back to unencrypted passwords. You must set the encrypt passwords
parameter to Yes, and then use the separate smbpasswd command to add
encrypted passwords for individual users, as in typing smbpasswd -a
hschmidt to add a password for hschmidt.

You’ll also need to define shares for your system. The default configura-
tion usually includes some examples, as well as a [homes] share definition
that gives users access to their home directories. For more information on
Samba server configuration, consult the documentation at the main Samba
Web site (http://www.samba.org) or a book on the subject, such as my
Linux Samba Server Administration (Sybex, 2001).

http://www.sybex.com

Network Application Configuration 357

Accessing NFS Shares

Like SMB/CIFS, Sun’s Network Filesystem (NFS) is a file sharing protocol,
but it was designed with the needs of Unix systems in mind. NFS includes
Unix features, like support for owners, groups, and permission strings (see
“File Permissions” in Chapter 4, “Users and Security,” for more on these fea-
tures) that aren’t supported by SMB/CIFS. Because Linux hews closely to the
Unix model, NFS is the preferred method for file sharing between Linux
systems.

In Linux, client access to NFS exports is tightly integrated into normal
Linux file-access utilities. Specifically, you use the mount command to mount
the NFS exports, and you can then access files stored on the NFS server as if
they were ordinary files. For instance, using the same example files as in the
preceding SMB/CIFS example, you might issue commands like the following:

mount apollo:/home/hschmidt /mnt/a17

ls -l /mnt/a17

total 152

-rwxr-xr-x 1 rodsmith users 152576 Mar 29 13:01
�drrock.wpd

drwxr-xr-x 1 rodsmith users 512 Apr 2 2000 geology

cp /mnt/a17/drrock.wpd ./

umount /mnt/a17

Ordinarily, only root may use the mount command. To get around this
restriction, the system administrator can create an entry in /etc/fstab for
the export. This entry should include the user option to give ordinary users the
right to mount the filesystem, thus:

apollo:/home/hschmidt /mnt/a17 nfs user,noauto,exec 0 0

When the preceding line is present, ordinary users can mount the NFS
export by typing mount /mnt/a17, and they can unmount it by typing
umount /mnt/a17. Alternatively, omitting the user and noauto options
causes the system to mount the remote filesystem automatically at system
startup so that users don’t need to explicitly mount the export at all; it will
always be mounted (assuming the server is always up), just like local filesystems.

It’s important to note that you’re not required to enter a password when
you access NFS exports. An NFS server allows a specified set of clients to
access the exported directories in a more-or-less unrestricted manner; the
server relies upon the client’s security policies to prevent abuses.

http://www.sybex.com

358 Chapter 5 � Networking

On the server side, you export directories by adding entries to /etc/
exports. For instance, the following line tells Linux to share its /home direc-
tory with the computers taurus and littrow, giving read/write access to
taurus and read-only access to littrow:

/home taurus(rw) littrow(ro)

Using an SNMP Client

The Simple Network Management Protocol (SNMP) is designed to provide
information about and control of a computer over a network. It’s usually
provided in a package called snmpd or ucd-snmp. There may be an accom-
panying package that provides the client features, which relies upon the main
SNMP package. Linux’s SNMP server is being renamed to NET-SNMP,
however, so package names are likely to change as well.

SNMP is designed to allow an administrator to define a set of information
that may be retrieved about a system. For instance, you might want to make
the time since last reboot and the number of packets transmitted over a net-
work interface accessible to at least some outside systems. If you run SNMP
on many computers and then configure another to collect this information,
you can quickly view critical information about many servers from one location.

Similarly, SNMP allows you to reconfigure a system from a remote loca-
tion. SNMP can accept input values and then pass them on to other pro-
grams or place them in critical configuration files.

When you install the SNMP package, it is usually configured to run on the
next reboot, but you may need to manually execute a SysV startup script to
get it running before then. SNMP is configured through the /etc/snmp/
snmpd.conf file. SNMP configuration is extremely complex, so if you would
like to learn more about the subject, you should consult a book on the sub-
ject, or at least read the NET-SNMP documentation at http://net-snmp
.sourceforge.net, before you attempt to use this package.

To use SNMP as a client to view or modify the configuration of other pro-
grams, you use commands such as snmpget, snmpput, snmpstatus, and
snmpwalk. Alternatively, you can use a GUI tool like tkmib (included with
some SNMP implementations) to browse your network for SNMP servers.

Using NIS

Network Information Service (NIS) is a protocol that’s designed to simplify
user authentication and related services on a network of multiple Unix or

http://www.sybex.com

Network Application Configuration 359

Linux systems. There are several variants of NIS, such as NIS+, NIS YP and
Switch (NYS), and Name Switch Service (NSS). The original NIS was once
called Yellow Pages (YP), but that’s a registered trademark in some areas, so
the name was changed. Nonetheless, most NIS utilities still include yp in
their names.

Some distributions let you configure NIS during system installation. You
may be required to enter the name of the NIS domain name (which may be
different from your DNS domain name), and the address of the NIS server.
If you want to use NIS after installing the OS, you can configure it through
a GUI configuration tool like linuxconf. Figure 5.10 shows the linuxconf
module in which you configure an NIS client—Networking � Client Tasks �
Network Information System (NIS). Enter the NIS domain and NIS server IP
address in the fields that are provided. Thereafter, the standard login proce-
dures should use the NIS username and password databases in addition to
the local databases.

F I G U R E 5 . 1 0 GUI configuration tools can help configure many network clients and servers,
including NIS.

http://www.sybex.com

360 Chapter 5 � Networking

Setting Up a Remote Access Server

Remote access servers allow a user on one computer to run programs on
another. One of the oldest remote access protocols around is Telnet, and all
major Linux distributions ship with a Telnet server, which is typically called
telnetd or in.telnetd. This file may be distributed in a package called
telnet, telnet-server, or something else. Telnet servers are very simple,
and therefore require no configuration beyond basic installation. They’re
normally launched from inetd or xinetd, which are programs that start
other servers on an as-needed basis. The “Starting and Stopping Services”
section of Chapter 6 discusses configuring these programs.

Unfortunately, Telnet suffers from the same problem as FTP—it sends
passwords (and all other data) unencrypted across the network. Therefore,
the SSH protocol has begun to emerge as a more secure replacement for Tel-
net. Until late in 2000, there were various legal barriers to the distribution of
SSH, but these barriers have largely evaporated. Because of this, SSH is
beginning to appear as a standard part of Linux distributions. The most pop-
ular SSH package in Linux is OpenSSH (http://www.openssh.com). SSH
typically comes in at least two packages: a client and a server. There may also
be a “common” package and support libraries.

Once all the required packages are installed and the server running, the
default SSH configuration tends to work well. If necessary, though, you can
fine-tune it. The normal SSH server configuration file is /etc/ssh/
sshd_config. (There’s also an /etc/ssh/ssh_config file that controls the
SSH client.)

Some SSH packages come configured to allow root to log in directly. Even
with the password encryption provided by SSH, this is inadvisable because it
makes it too easy for somebody who has obtained the root password through
other means to break into your system. To plug this security hole, change the
PermitRootLogin option in sshd_config to no. Users who need to perform
superuser tasks remotely can still log in as ordinary users and then use su to
obtain the necessary privileges. This requires an outsider to have two pass-
words in order to do serious damage to the system.

Setting Remote Access Rights

One critical aspect of network operation is controlling access to the
computer. The preceding discussions have touched on this matter—for

http://www.sybex.com

Setting Remote Access Rights 361

instance, the comments about preventing unauthorized mail relaying and
blocking root logins via SSH. Nonetheless, this issue goes far beyond these
few cases. Fortunately, Linux provides many means of controlling network
access.

Whenever possible, apply redundant access controls. For instance, you can
use both a firewall and TCP Wrappers or xinetd to block unwanted access to
particular servers. Doing this helps protect against bugs and misconfigura-
tion—if a problem emerges in the firewall configuration, for instance, the sec-
ondary block will probably halt the intruder. If you configure the system
carefully, such an access will also leave a log file message that you’ll see, so
you’ll be alerted to the fact that the firewall didn’t do its job.

Controlling Access via a Firewall

Traditionally, firewalls have been routers that block undesired network
transfers between two networks. Typically, one network is a small network
under one management, and the other network is much larger, such as the
Internet. Figure 5.11 illustrates this arrangement. (More complex firewalls
that use multiple computers are also possible.) Dedicated external firewalls
are available, and can be good investments in many cases. In fact, it’s possi-
ble to turn an ordinary computer into such a device by using Linux—either
with a special-purpose distribution like the Linux Router Project (http://
www.linuxrouter.org) or by using an ordinary distribution and configur-
ing it as a router with firewall features.

F I G U R E 5 . 1 1 Firewalls can selectively pass some packets but not others, using assorted
criteria.

Desired access (passed by firewall)

Undesired access (blocked by firewall)

Internet

Firewall

Local network

http://www.sybex.com

362 Chapter 5 � Networking

As described earlier in this chapter, servers operate by associating them-
selves with particular network ports. Likewise, client programs bind to
ports, but client port bindings aren’t standardized. The most common type
of firewall, a packet filter, blocks access by examining individual network
packets and determining whether or not to let them pass based on the source
and destination port number, the source and destination IP address, and pos-
sibly other low-level criteria, such as the network interface in a computer
with more than one. For instance, in Figure 5.11, you might run a Samba file
server internally, but outside computers have no business accessing that
server. Therefore, you’d configure the firewall to block external packets
directed at the ports used by Samba.

In addition to running a firewall on a router that serves an entire network,
it’s possible to run a firewall on an individual system. This approach can pro-
vide added protection to a sensitive computer, even if an external firewall
protects that computer. It’s also useful on computers that don’t have the pro-
tection of a separate firewall, such as many broadband-connected systems.

Either way, Linux uses the ipfwadm, ipchains, and iptables tools to
configure firewall functions. These tools are designed for the 2.0.x, 2.2.x,
and 2.4.x kernels, respectively. (The 2.4.x kernel series includes the ability to
use the older tools, but only as a compile-time option.) There are several
ways you can configure a firewall:

Manually You can read up on the syntax of the tool used to configure
your kernel and write your own script. Although this is possible, it’s dif-
ficult for new Linux administrators because the options are both complex
and subtle, making it easy to produce a firewall that doesn’t do what you
want. If you choose to pursue this path, I recommend that you read a
book on the subject, such as Robert L. Ziegler’s Linux Firewalls (New
Riders, 1999).

With the help of a GUI configuration tool A few GUI configuration
tools are available for Linux firewall configuration, such as Firestarter
(http://firestarter.sourceforge.net) and Guarddog (http://
www.simonzone.com/software/guarddog). A few distributions, such
as Red Hat, are now shipping with such tools, as well. These tools let you
specify certain basic information, such as the network port and the client
and server protocols you wish to allow, and they generate firewall scripts
that can run automatically when the system boots.

http://www.sybex.com

Setting Remote Access Rights 363

With the help of a Web site Robert Ziegler, the author of Linux Fire-
walls, has made a Web site available that functions rather like the GUI
configuration tools but via the Web. You enter information on your sys-
tem, and the Web site generates a firewall script. This tool is available at
http://linux-firewall-tools.com/linux.

If you use a GUI tool or Web site, be sure it supports the firewall tool your
kernel requires. As of May of 2001, only Firestarter supports iptables, but
that could change by the time you read this. Also, you shouldn’t consider a
firewall to be perfect protection. You might create a configuration that actu-
ally contains flaws, or there might be flaws in the Linux kernel code that
actually implements the firewall rules.

One of the advantages of a firewall, even to protect just one computer, is that
it can block access attempts to any server. Most other measures are more lim-
ited. For instance, TCP Wrappers protects only servers configured to be run
via TCP Wrappers from inetd; and passwords are good only to protect the
servers that are coded to require them.

Controlling Access via TCP Wrappers

One popular means of running servers is via inetd, a server that listens for
network connections on behalf of other servers and then launches the target
servers as required. This approach can reduce the RAM requirements on a
server computer when the server programs are seldom in use because only
inetd need be running at all times. Chapter 6 covers inetd in more detail.

Not all Linux systems use inetd. Mandrake and Red Hat have switched to
xinetd, which includes its own access control features. TCP Wrappers isn’t
normally used in conjunction with xinetd.

One further advantage of inetd is that it can be used in conjunction with
another package, known as TCP Wrappers. This package uses a program
known as tcpd. Instead of having inetd call a server directly, inetd calls
tcpd, which does two things: It checks whether a client is authorized to
access the server; and if the client has this authorization, tcpd calls the server
program.

http://www.sybex.com

364 Chapter 5 � Networking

TCP Wrappers is configured through two files: /etc/hosts.allow and
/etc/hosts.deny. The first of these specifies computers that are allowed
access to the system in a particular way, the implication being that systems
not listed are not allowed access. hosts.deny, by contrast, lists computers
that are not allowed access; all others are given permission to use the system.
If a system is listed in both files, hosts.allow takes precedence.

Both files use the same basic format. The files consist of lines of the fol-
lowing form:

daemon-list : client-list

The daemon-list is a list of servers, using the names for the servers that
appear in /etc/services. There are also wildcards available, such as ALL
for all servers.

The client-list is a list of computers to be granted or denied access to
the specified daemons. You can specify computers by name or by IP address,
and you can specify a network by using (respectively) a leading or trailing
dot (.). For instance, .luna.edu blocks all computers in the luna.edu
domain, and 192.168.7. blocks all computers in the 192.168.7.0/24 net-
work. You can also use wildcards in the client-list, such as ALL (all com-
puters). EXCEPT causes an exception. For instance, when placed in
hosts.deny, 192.168.7. EXCEPT 192.168.7.105 blocks all computers in
the 192.168.7.0/24 network except for 192.168.7.105.

The hosts.allow and hosts.deny man pages (they’re actually the same
document) provide additional information on more advanced features. You
should consult them as you build TCP Wrappers rules.

Remember that not all servers are protected by TCP Wrappers. Normally, only
those servers that inetd runs via tcpd are so protected. Such servers typically
include, but are not limited to, Telnet, FTP, TFTP, rlogin, finger, linuxconf,
POP, and IMAP servers. A few servers can independently parse the TCP Wrap-
pers configuration files, though; consult the server’s documentation if in
doubt.

Controlling Access via xinetd

In 2000 and 2001, the shift began to xinetd from inetd. Although xinetd
can use TCP Wrappers, it normally doesn’t because it incorporates similar
functionality of its own. In 2001, the distributions that use xinetd use a

http://www.sybex.com

Setting Remote Access Rights 365

main configuration file called /etc/xinetd.conf; but this file is largely
empty because it calls separate files in the /etc/xinetd.d directory to do
the real work. This directory contains separate files for handling individual
servers. Chapter 6 includes information on basic xinetd configuration. For
now, know that security is handled on a server-by-server basis through the
use of configuration parameters, some of which are similar to the function of
hosts.allow and hosts.deny:

bind This option tells xinetd to listen on only one network interface
for the service. For instance, you might specify bind = 192.168.23.7 on
a router to have it listen only on the Ethernet card associated with that
address. This feature is extremely useful in routers, but it is not very useful
in computers with just one network interface. A synonym for this option
is interface.

only_from You can specify IP addresses, networks (as in
192.168.78.0/24), or computer names in this line, separated by spaces.
The result is that xinetd will accept connections only from these
addresses, similar to TCP Wrappers’ hosts.allow entries.

no_access This option is the opposite of only_from; you list comput-
ers or networks here that you want to blacklist. This is similar to the
hosts.deny file of TCP Wrappers.

You should enter these options into the files in /etc/xinetd.d that cor-
respond to the servers you want to protect. Place the lines between the open-
ing brace ({) and closing brace (}) for the service. If you want to restrict all
your xinetd-controlled servers, you can place the entries in the defaults
section in /etc/xinetd.conf.

Some servers provide access control mechanisms similar to those of TCP
Wrappers or xinetd by themselves. For instance, Samba provides hosts
allow and hosts deny options that work much like the TCP Wrappers file
entries, and NIS includes similar configuration options. These options are
most common on servers that are awkward or impossible to run via inetd or
xinetd.

http://www.sybex.com

366 Chapter 5 � Networking

Controlling Access via Passwords

Servers differ in who they’ll serve. Some, such as Web servers and SMTP
e-mail servers, are generally configured as publicly accessible. Anybody may
access these servers, although the servers may not do all things for all people—
for instance, a mail server might relay mail only for certain computers. Oth-
ers, such as Telnet and FTP servers, require that users authenticate them-
selves in some way. This method is often a password, which usually corre-
sponds to the user’s normal login password.

Passwords can be a useful security tool, but they’re not without their
flaws. For one thing, as noted earlier, some protocols send passwords in an
unencrypted form by default. These include, but are not limited to, Telnet,
FTP, POP, and IMAP. There are secure variants of many of these protocols,
which send the password, and sometimes other data, in an encrypted form.
The encryption prevents the password from being used even if it’s inter-
cepted. Other protocols, such as SSH, are designed from the ground up to be
secure.

Some protocols use a method of authentication other than a password.
SSH, for instance, can be configured to use special keys on the client and
server. When SSH is so configured, the user need not enter a password.
Although this configuration provides for secure authentication, this config-
uration is risky should the user’s normal client computer be compromised,
because the encrypted key is stored on the hard disk, and so it can be stolen.

Still more risky is the method used by rlogin, rsh, and rcp—the so-
called “r commands.” These commands allow a user on one Unix or Linux
system to log in to, run programs on, or copy files to or from another Unix
or Linux system without being authenticated. Like NFS shares, the server
system trusts the client system’s authentication mechanism. Individual users
can control their own r-command access. This is done by creating a file
called .rhosts in the user’s home directory. This file contains a list, one per
line, of hosts that are trusted, optionally followed by a username on the host.
(If no username is specified, the system requires the same login name on both
computers.) It’s generally unwise to leave the r-command servers running, if
they’re configured to run at all; they’re just too much of a security risk. If you
must use these servers, use a firewall and TCP Wrappers or xinetd options
to restrict access to just those computers that require the access.

http://www.sybex.com

Remote System Administration 367

Controlling Access via File Permissions

Finally, remote access rights can be restricted by the use of file permissions.
These are described more fully in Chapter 4. In brief, though, any server runs
as if it were a particular user. Servers that require logins, such as FTP, Telnet,
and SSH servers, typically give the user the access rights associated with the
username used to gain access. Therefore, if an individual logs in as ecernan,
that person may read, write, and modify files for which ecernan has access
rights.

Some servers, though, don’t use passwords. These typically run with the
rights of one account that’s specified by a startup script or super server. The
nobody account is a common choice for this. nobody is a low-access account;
normally, the user nobody can’t read files unless they’re given world read
access. Many servers create their own low-privilege users so that these mat-
ters can be fine-tuned for a particular server. By carefully planning the users
associated with servers and your file permission scheme, you can limit the
access given to servers’ users.

File permission restrictions are most useful in giving anonymous users
partial access to your system. For instance, you might want an FTP or Web
server to give clients access to some directories, but not others. You can use
file permissions to ensure that the server can read only those files that are in
the target directories, and no others. (There are often other ways to achieve
similar effects, such as via server-specific configuration options or by using
the chroot command to launch a server in an environment in which it can-
not read outside of a specified set of directories. This second option is an
advanced one that’s beyond the scope of this book.)

Remote System Administration

One of the reasons it’s so important to control remote access rights is
that many different protocols can be used to provide administrative access to
a Linux computer. Although using such protocols can pose a security risk,
remote administration is often extremely convenient, or even necessary in
some situations. You can use several types of tools to remotely administer
your Linux system, including text-mode logins, GUI logins, file transfers,
and dedicated remote administration protocols.

http://www.sybex.com

368 Chapter 5 � Networking

Text-Mode Logins

The earlier section, “Setting Up a Remote Access Server,” described setting
up a couple different types of servers that accept text-mode logins from dis-
tant systems: Telnet and SSH. You can use either of these to administer one
system from another—even from a computer running another OS, like Win-
dows or MacOS. Typically, you log in using a regular user account, and then
you use su to enter the root password to acquire superuser privileges. There-
after, you can do almost anything you could do from a text-mode login at the
console.

Telnet passes all data in an unencrypted form. This means that both your ordi-
nary user’s login password and the root password you enter in conjunction
with su might be intercepted by an unscrupulous individual on the source,
destination, or any intervening network. For this reason, it’s best not to use
Telnet for remote administration. For that matter, if it’s possible, you should
totally avoid using Telnet. SSH encrypts all the data that pass between two
systems, and so it is a much better choice for remote administration.

To use Telnet from Linux, you type telnet hostname, where hostname
is the DNS hostname of the computer you wish to contact. You’ll then see
the remote system’s login prompt. The entire procedure looks like this:

$ telnet apollo.luna.edu

Trying 192.168.1.1...

Connected to apollo.luna.edu.

Escape character is '^]'.

Caldera OpenLinux(TM)

Version 2.4 eDesktop

Copyright 1996-2000 Caldera Systems, Inc.

login: ecernan

Password:

You have old mail in /var/spool/mail/ecernan.

Last login: Sat May 5 13:05:29 2001 from gemini on 4

[ecernan@apollo ecernan]$

http://www.sybex.com

Remote System Administration 369

At this point, anything you type (aside from Ctrl+], which is an “escape”
character to let you enter commands into your local Telnet program) is pro-
cessed by the remote system. You can use su to acquire root privileges, edit
files with Vi, Emacs, or any other text-based editor, and so on.

SSH works in a similar way, except that you don’t see the login: prompt;
SSH passes your current username to the server, which attempts to use the
same username to authenticate you. If you want to use a different username
on the server than on your current system, you should include the -l
username parameter on the command line, thus:

$ ssh apollo.luna.edu -l ecernan

ecernan@apollo.luna.edu's password:

Last login: Mon May 7 11:14:51 2001 from gemini.luna.edu

[ecernan@apollo ecernan]$

The first time you make a connection to a given server, you’ll see a message
informing you that the authenticity of the server can’t be verified. The mes-
sage goes on to display a code associated with the server. If you want to con-
tinue connecting, type yes in response to the query about this.

You may omit the -l username parameter if your username is the same
on both systems. Once you’ve logged in with SSH, you can use the system
much as you would from a Telnet login or from the console—by typing text-
mode commands, editing files with text-mode editors, and so on. Because
SSH encrypts all data, it’s extremely unlikely that your original password, or
the password you type when you use su, will be usable to anybody who
intercepts the data stream.

There are other remote text-mode login tools besides Telnet and SSH.
One particularly common tool is rlogin, which uses a trusted hosts security
model, in which the server relies upon the client to authenticate users. As
described earlier, rlogin is a potential security vulnerability. Because of this,
it’s best to either completely eliminate the rlogin server (typically called
/usr/sbin/in.rlogind) using your package management tools (as
described in Chapter 3, “ Software Management”) or stop the server from
running (as described in Chapter 6).

http://www.sybex.com

370 Chapter 5 � Networking

The rlogin server is often included in a package along with other utilities that
you may need. Don’t remove the package to which this server belongs with-
out first verifying that you don’t need its other programs.

GUI Logins

If you want to use GUI administration tools remotely, you can do so, but
you’ll need appropriate software on the system you’re using to access the
Linux computer. Normally, this is an X server, as described earlier in this
chapter, in “Using X Programs Remotely.” Because all major Linux distri-
butions include X servers, it’s usually possible to use a Linux computer as a
terminal for GUI configuration of another. (The main exception to this is if
you’ve not installed X on the computer that you want to use to administer
another.) Likewise, you can use a Windows system running an X server or
VNC client (if you’ve installed the VNC server on Linux) to remotely control
a Linux system with a GUI.

Once you’ve logged on, you can use the su command to acquire root priv-
ileges, just as you can when using a text-mode login. You can then run GUI
administrative tools like Red Hat’s linuxconf, SuSE’s YaST2, or
Caldera’s COAS.

Neither X nor VNC encrypts most data transmitted over the network, although
VNC encrypts its initial password. Therefore, when you issue the su command
to acquire root privileges, you’ll send the root password unencrypted. As a
result, it’s possible that it will be compromised. The simplest solution to this
problem is usually to use SSH to make the initial connection. When properly
configured, SSH will tunnel the X protocols through its own encrypted con-
nection. This will slow down the display slightly, but it will protect the data
(including passwords you type) from prying eyes.

File Transfers

Although generally not thought of as such, file transfer tools can be useful in
remote administration. If you like, you can edit a configuration file on one

http://www.sybex.com

Remote System Administration 371

system and transfer it to another system. You might want to do this if one system
has more sophisticated editors or configuration checking tools than does
another system. For instance, if you’re administering a print server on which
you have only bare-bones tools, you might want to modify the configuration
files in a more comfortable environment on some other computer and then
transfer the configuration files to the print server. (This would require the
print server to be running some file-transfer server like FTP, NFS, or Samba,
of course.)

When using file transfers in this way, it’s generally not a good idea to give
direct access to the target directory for the configuration files. For instance,
you probably shouldn’t export a system’s /etc directory using NFS or
Samba. Although doing so makes it easy to read and write configuration
files, it also makes it that much easier for an intruder to modify these files,
especially if there is a flaw in the server or its configuration. Instead, you
should transfer files to and from an ordinary user account and then use a
remote login protocol, such as SSH, to enable the copying of files from that
account to their ultimate destinations.

Remote Administration Protocols

There are several tools designed to allow you to administer a computer
remotely. To do so, you’ll need to run the server version of one of these tools
on the computer you plan to administer, and you’ll need to run a client on
the system you intend to use to do the administration. (Many of these tools
use ordinary Web browsers as clients, so you can administer a Linux com-
puter from any system that supports a Web browser, even if it’s not a Linux
computer itself.) Examples of these tools include the following:

SNMP This protocol was described earlier in this chapter. It was
designed as a remote administration protocol, but it requires fairly
tedious configuration on the system that’s to be administered. It also
requires specialized client programs. For these reasons, it’s never become
a very popular Linux administration protocol.

SWAT The Samba Web Administration Tool (SWAT) is, as the name
implies, a Web-based means of administering a Samba server. Once con-
figured, SWAT can be accessed on port 901 using an ordinary Web
browser. You specify the port number by adding a colon (:) and the num-
ber to the URL; so to administer apollo.luna.edu, you’d enter http://
apollo.luna.edu:901 in a Web browser. SWAT is limited to adminis-
tering the Samba server functions of a computer, which limits the utility
of this tool. SWAT provides unusually complete control of Samba, however.

http://www.sybex.com

372 Chapter 5 � Networking

Webmin Webmin is an ambitious Web-based administration tool. Its
ambitiousness derives from the fact that it aims to allow Web-based
administration of multiple Linux distributions (and other Unix-like sys-
tems) that use different configuration files. It accomplishes this goal by
installing a series of configuration modules that are unique to each distri-
bution. Once installed and running, Webmin binds to port 10000, so
you’d enter http://apollo.luna.edu:10000 in a Web browser to
administer apollo.luna.edu. You can read more about Webmin on its
Web page, http://www.webmin.com/webmin.

Remote administration tools frequently send passwords in an unencrypted
form, so they’re potentially dangerous tools to use except on well-protected
local networks. Webmin supports using Secure Sockets Layer (SSL) to
encrypt transmissions, but doing so requires extra configuration (consult the
Webmin Web page for more details).

Web administration tools may be started using either standalone config-
urations or a super server. Both options are discussed in the “Starting and
Stopping Services” section of Chapter 6.

Network Diagnostic Tools

Network configuration is a complex topic, and unfortunately, things
don’t always work as planned. Fortunately, there are a few commands you
can use to help diagnose a problem. The simplest of these is ping. This com-
mand sends a simple packet to the system you name (via IP address or host-
name) and waits for a reply. In Linux, ping continues sending packets once
every second or so until you interrupt it with a Ctrl+C keystroke. Here’s an
example of its output:

$ ping speaker

PING speaker.rodsbooks.com (192.168.1.1) from 192.168.1.3
�: 56(84) bytes of data.

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_
�seq=0 ttl=255 time=149 usec

http://www.sybex.com

Network Diagnostic Tools 373

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_
�seq=1 ttl=255 time=136 usec

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_
�seq=2 ttl=255 time=147 usec

64 bytes from speaker.rodsbooks.com (192.168.1.1): icmp_
�seq=3 ttl=255 time=128 usec

--- speaker.rodsbooks.com ping statistics ---

4 packets transmitted, 4 packets received, 0% packet loss

round-trip min/avg/max/mdev = 0.128/0.140/0.149/0.008 ms

This command sent four packets and waited for their return, which
occurred quite quickly (in an average of 0.140ms) because the target system
was on the local network. By pinging systems on both local and remote net-
works, you can isolate where a network problem occurs. For instance, if you
can ping local systems but not remote systems, the problem is most probably
in your router configuration. If you can ping by IP address but not by name,
the problem is with your DNS configuration.

Another useful diagnostic tool is netstat. This is something of a Swiss
Army knife of network tools because it can be used in place of several others,
depending upon the parameters it is passed. It can also return information
that’s not easily obtained in other ways. Some examples include the following:

Interface information Pass netstat the --interface or -i parameter
to obtain information on your network interfaces similar to what
ifconfig returns. (Some versions of netstat return information in the
same format, but others display the information differently.)

Routing information You can use the --route or -r parameter to
obtain a routing table listing similar to what the route command
displays.

Masquerade information Pass netstat the --masquerade or -M
parameter to obtain information on connections mediated by the
ipchains or iptables tools. (These tools allow a Linux router to per-
form IP masquerading, in which a Linux system “hides” a network
behind a single IP address. This can be a good way to stretch limited IP
addresses.)

http://www.sybex.com

374 Chapter 5 � Networking

Program use Some versions of netstat support the --program or -p
parameters, which attempt to provide information on the programs that
are using network connections. This attempt isn’t always successful, but
it often is, so you can see what programs are making outside connections.

Open ports When used with various other parameters, or without any
parameters at all, netstat returns information on open ports and the sys-
tems to which they connect.

netstat is a very powerful tool, and its options and output aren’t entirely
consistent from one distribution to another. You may want to peruse its man
page and experiment with it to learn what it can do.

Summary

Networking is very important to many modern Linux systems, which
frequently function as servers or workstations on local networks. Networks
operate by breaking data into individual packets in a manner that’s dictated
by the particular protocol stack in use by the system. Linux includes support
for several protocol stacks, the most important of which is TCP/IP, the pro-
tocol stack upon which the Internet is built. You can configure Linux for
TCP/IP networking by using DHCP to automatically obtain an address, by
entering the information manually, or by establishing a PPP link. You can do
any of these things using text-mode or GUI tools, although the GUI tools
aren’t standardized across different distributions.

Once Linux is connected to a network, you can use any of many client
programs to access resources on the network (either the local network or the
Internet). File transfer and sharing, Web browsing, e-mail, and remote access
are just some of the applications of networking possible in Linux.

Because most Linux distributions ship with a large number of network
servers, it’s important that you know how to restrict access to your system.
If you don’t, chances are that sooner or later somebody undesirable will gain
unauthorized access to your system. Firewalls, TCP Wrappers, xinetd,
passwords, and file permissions can all be used to protect your computer.

http://www.sybex.com

Exam Essentials 375

Exam Essentials

Determine appropriate network hardware for a Linux computer. If the
computer is to be used on an existing network, you must obtain a network
card of a type that’s compatible with that network, such as Ethernet,
Token Ring, and so on. If you’re building a new local network, Ethernet
is the most common choice, although more exotic alternatives are also
available and may be suitable in some specific situations.

Describe the information needed to configure a computer on a static IP
network. Four pieces of information are critical: the IP address, the net-
mask (aka network mask or subnet mask), the network’s gateway
address, and the address of at least one DNS server.

Summarize the function of PPP. The Point-to-Point Protocol negotiates
a TCP/IP connection, typically acquiring requisite information from the
PPP server. It’s used to connect computers via telephone lines, and is used
in modified form for some broadband links.

Explain the nature of X clients and servers. An X server controls a
screen display and handles input from the user’s mouse and keyboard.
Therefore, the X server is used directly by the user, and X clients are the
programs that rely upon the X server’s services.

Summarize common access control mechanisms. Firewalls, TCP Wrap-
pers, and xinetd can all control access to particular ports, either by
blocking them entirely or by controlling access to the servers that run on
those ports. Passwords and file permissions can control access to individ-
uals, by requiring authentication or restricting access to specific files once
a user has gained entry to the system.

Describe how a Linux system may be administered remotely. Remote
administration may be achieved through text-mode login protocols like
Telnet or SSH, through remote GUI sessions (X or VNC), or through spe-
cialized remote administration tools like SWAT or Webmin.

http://www.sybex.com

376 Chapter 5 � Networking

Commands in This Chapter

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

Command Description

ifconfig Configures a network interface, or displays
information on that configuration

route Configures a routing table entry, or displays
information on the routing table

smbclient Transfers files to and from SMB/CIFS shares using an
FTP-like user interface

smbmount Mounts an SMB/CIFS share in the Linux
filesystem tree

smbumount Unmounts an SMB/CIFS share from the Linux
filesystem tree

netstat Displays information on a Linux computer’s network
configuration or the processes that use network
resources

Address Resolution Protocol
(ARP)

client

anonymous FTP site default route

AppleTalk Domain Name System (DNS)

broadband domain name

broadcast Dynamic Host Configuration
Protocol (DHCP)

http://www.sybex.com

Key Terms 377

envelope Media Access Control (MAC)
address

Fiber Distributed Data Interface
(FDDI)

NetBEUI

Fibre Channel NetBIOS

File Transfer Protocol (FTP) netmask

frame Network Filesystem (NFS)

full-duplex Network Information Service
(NIS)

gateway network mask

gigabit Ethernet open mail relay

half-duplex Open System Interconnection
(OSI) model

hardware address packet filter

High-Performance Parallel
Interface (HIPPI)

packet

hostname payload

hub Point-to-Point Protocol (PPP)

Integrated Services Digital
Network (ISDN)

port number

internet Post Office Protocol (POP)

Internet protocol stack

Internet Message Access Protocol
(IMAP)

pull mail protocol

Internet Packet Exchange (IPX) push mail protocol

IP address Requests for Comment (RFC)

IPv6 router

LocalTalk Samba Web Administration Tool
(SWAT)

machine name Sequenced Packet Exchange (SPX)

http://www.sybex.com

378 Chapter 5 � Networking

Simple Mail Transfer Protocol
(SMTP)

switch

Simple Network Management
Protocol (SNMP)

terminal program

spam Token Ring

subdomain Transmission Control Protocol/
Internet Protocol (TCP/IP)

subnet mask

http://www.sybex.com

Review Questions 379

Review Questions

1. Which types of network hardware does Linux support? (Choose all
that apply.)

A. Token Ring

B. Ethernet

C. DHCP

D. Fibre Channel

2. Which of the following is a valid IP address on a TCP/IP network?

A. 202.9.257.33

B. 63.63.63.63

C. 107.29.5.3.2

D. 98.7.104.0/24

3. Which of the following is not a Linux DHCP client?

A. pump

B. dhcpcd

C. dhcpd

D. dhclient

4. You try to set up a computer on a local network via a static TCP/IP
configuration, but you lack a gateway address. Which of the following
is true?

A. Because the gateway address is necessary, no TCP/IP networking
functions will work.

B. TCP/IP networking will function, but you’ll be unable to convert
hostnames to IP addresses or vice-versa.

C. You’ll be able to communicate with machines on your local net-
work segment but not with other systems.

D. The computer won’t be able to tell which other computers are local
and which are remote.

http://www.sybex.com

380 Chapter 5 � Networking

5. Which of the following types of information is returned by typing
ifconfig eth0? (Choose all that apply.)

A. The names of programs that are using eth0

B. The IP address assigned to eth0

C. The hardware address of eth0

D. The hostname associated with eth0

6. In what way do GUI network configuration tools simplify the network
configuration process?

A. They’re the only way to configure a computer using DHCP, which
is an easier way to set networking options than static IP addresses.

B. They provide the means to configure PPPoE or PPPoA, which are
easier to configure than DHCP or static IP addresses.

C. Once running, they provide easy-to-find labels for options, obvi-
ating the need to locate appropriate configuration files.

D. They’re consistent across distributions, making it easier to find
appropriate options on an unfamiliar distribution.

7. Which of the following pieces of information is usually required to ini-
tiate a PPP connection over an analog telephone line? (Choose all that
apply.)

A. The ISP’s telephone number

B. The client IP address

C. An account name (username)

D. A password

8. What is the usual full speed of ISDN service?

A. 56Kbps

B. 128Kbps

C. 608Kbps

D. 1.5Mbps

http://www.sybex.com

Review Questions 381

9. Which is the ideal interface type for a broadband modem under
Linux?

A. Ethernet

B. USB

C. RS-232 serial

D. Internal PCI card

10. You want to use an X server on an old Pentium computer to run X cli-
ents on a modern Alpha CPU system, with the goal of performing
computationally intensive spreadsheet calculations. Which of the fol-
lowing is true?

A. The spreadsheet will compute slowly because of the slow speed of
the Pentium server.

B. You won’t be able to run the spreadsheet because the Alpha and
Pentium CPUs need different executables.

C. The computation will run swiftly, but graphics displays may be
slowed by the Pentium’s limited speed.

D. Computations will run swiftly only if the Alpha computer makes
its filesystem available via NFS.

11. You want to allow Linux users running StarOffice to directly edit files
stored on a Windows 2000 SMB/CIFS file server. Which of the follow-
ing would you use to enable this?

A. Linux’s standard NFS file sharing support

B. An FTP server running on the Windows system

C. The Linux smbclient program

D. The Linux smbmount program

12. How does an NFS server determine who may access files it’s
exporting?

http://www.sybex.com

382 Chapter 5 � Networking

A. It uses the local file ownership and permission in conjunction with
the client’s user authentication and a list of trusted client
computers.

B. It uses a password that’s sent in unencrypted form across the
network.

C. It uses a password that’s sent in encrypted form across the
network.

D. It uses the contents of individual users’ .rlogin files to determine
which client computers may access a share.

13. Why might you configure a Linux computer to function as an NIS
client?

A. To mount remote filesystems as if they were local

B. To defer to a network’s central authority concerning user
authentication

C. To set the system’s clock according to a central time server

D. To automatically obtain IP address and other basic network con-
figuration information

14. What function does SNMP fill?

A. It allows remote systems to send mail to users of the computer.

B. It allows for remote monitoring and configuration of a computer.

C. It monitors several network ports and runs other servers as
required.

D. It retrieves mail from a remote system using the POP protocol.

15. Why is it unwise to allow root to log on directly using SSH?

A. Somebody with the root password but no other password could
then break into the computer.

B. The root password should never be sent over a network connec-
tion; allowing root logins in this way is inviting disaster.

C. SSH stores all login information, including passwords, in a pub-
licly readable file.

D. When logged on using SSH, root’s commands can be easily inter-
cepted and duplicated by undesirable elements.

http://www.sybex.com

Review Questions 383

16. A server/computer combination appears in both hosts.allow and
hosts.deny. What’s the result of this configuration when TCP Wrap-
pers runs?

A. TCP Wrappers refuses to run and logs an error in /var/log/
messages.

B. The system’s administrator is paged to decide whether to allow
access.

C. hosts.deny takes precedence; the client is denied access to the
server.

D. hosts.allow takes precedence; the client is granted access to the
server.

17. When is the bind option of xinetd most useful?

A. When you want to run two servers on one port

B. When you want to specify computers by name rather than IP
address

C. When xinetd is running on a system with two network interfaces

D. When resolving conflicts between different servers

18. How do you change the password used by rlogin?

A. Use the rpasswd command.

B. Change the normal user account password.

C. Change the Samba encrypted password.

D. You can’t; rlogin doesn’t use passwords.

19. Which of the following types of access do servers that require user-
names and passwords normally provide?

A. Access with the permissions of the nobody account

B. Access with the permissions of the account under which name
they’re run

C. Access with root permissions

D. Access with the permissions of the username that’s entered

http://www.sybex.com

384 Chapter 5 � Networking

20. Which of the following tools may you run on a Linux computer to
allow you to administer it remotely? (Choose all that apply.)

A. Netscape

B. TCP Wrappers

C. An SSH server

D. Webmin

http://www.sybex.com

Answers to Review Questions 385

Answers to Review Questions

1. A, B, D. Ethernet is the most common type of network hardware for
local networks in 2001. Linux supports it very well, and Linux also
includes support for Token Ring and Fibre Channel network hard-
ware. DHCP is a protocol used to obtain a TCP/IP configuration over
a TCP/IP network. It’s not a type of network hardware, but it can be
used over hardware that supports TCP/IP.

2. B. IP addresses consist of four 1-byte numbers (0-255). They’re nor-
mally expressed in base 10 and separated by periods. 63.63.63.63
meets these criteria. 202.9.257.33 includes one value (257) that’s not
a 1-byte value. 107.29.5.3.2 includes five 1-byte numbers. 98.7.104.0/24
is a network address—the trailing /24 indicates that the final byte is a
machine identifier and the first three bytes specify the network.

3. C. dhcpd is the Linux DHCP server. The others are all DHCP clients.
Most distributions ship with just one or two of the DHCP clients.

4. C. The gateway computer is a router that transfers data between two
or more network segments. As such, if a computer isn’t configured to
use a gateway, it won’t be able to communicate beyond its local net-
work segment. (If your DNS server is on a different network segment,
name resolution via DNS won’t work, although other types of name
resolution, such as /etc/hosts file entries, will still work.)

5. B, C. When used to display information on an interface, ifconfig
shows the hardware and IP addresses of the interface, the protocols
(such as TCP/IP) bound to the interface, and statistics on transmitted
and received packets. This command does not return information on
programs using the interface or the hostname associated with the
interface.

6. C. Once you know what tool to run in a distribution, it’s usually not
difficult to find the label for any given network configuration option
in a GUI tool. You can configure DHCP, PPPoA, and PPPoE in text
mode (and the latter two are arguably more complex than DHCP).
GUI configuration tools, although they provide similar functionality,
are not entirely consistent from one distribution to another.

http://www.sybex.com

386 Chapter 5 � Networking

7. A, C, D. You need a telephone number to dial the call (although this
is not needed for a PPPoE or PPPoA broadband connection). Most
ISPs use a username and password to authenticate access. Although
you can specify an IP address, this option is only used in specialized
circumstances.

8. B. ISDN usually operates at 128Kbps, although it can drop back to
64Kbps if one data channel is required for voice service. 608Kbps and
1.5Mbps are both well above ISDN’s capabilities; these are broad-
band speeds.

9. A. Ethernet broadband interfaces allow you to use any supported
Ethernet card. USB and internal broadband modems require special
Linux drivers, which are rare. RS-232 serial broadband interfaces are
extremely rare, and they don’t permit true broadband speeds (most
RS-232 serial ports top out at about 115Kbps).

10. C. The X server handles the display and user input only, so its speed
will influence graphics displays. Computations occur on the fast
Alpha-based X client system.

11. D. smbmount allows you to mount a remote SMB/CIFS share as if it
were a local disk. Linux’s NFS support would work if the Windows
system was running an NFS server, but the question specifies that it’s
using SMB/CIFS, not NFS. An FTP server on the Windows system
would allow file transfers, but not direct file access. The same would
be true for the Linux smbclient program.

12. A. NFS uses a “trusted host” policy to let clients police their own
users, including access to the NFS server’s files. NFS does not use a
password, nor does it use the .rlogin file in users’ home directories.

13. B. NIS functions as a means of distributing database information
across a network, most notably including user authentication infor-
mation. It’s not used for file sharing, clock setting, or distributing
basic TCP/IP configuration information.

14. B. SNMP is a network management protocol. Option A describes
SMTP. Option C describes the function of inetd or xinetd. Option
D describes a program called fetchmail, which isn’t a server at all.

http://www.sybex.com

Answers to Review Questions 387

15. A. Allowing only normal users to log in via SSH effectively requires
two passwords for any remote root maintenance, improving security.
SSH encrypts all connections, so it’s unlikely that the password, or
commands issued during an SSH session, will be intercepted. (None-
theless, some administrators prefer not to take even this small risk.)
SSH doesn’t store passwords in a file.

16. D. TCP Wrappers uses this feature to allow you to override broad
denials by adding more specific explicit access permissions to
hosts.allow, as when setting a default deny policy (ALL : ALL)
in hosts.deny.

17. C. The bind option of xinetd lets you tie a server to just one network
interface, rather than link to them all. It has nothing to do with run-
ning multiple servers on one port, specifying computers by hostname,
or resolving conflicts between servers.

18. D. rlogin relies on the client system to authenticate users. To control
access, you specify trusted clients in the user’s .rhosts file.

19. D. One of the reasons for requiring a username is to determine whose
permissions to use when granting access to the filesystem.

20. C, D. An SSH server enables you to log in and use normal text-based
configuration utilities to administer a system. Webmin is a specialized
remote administration tool that lets you administer a system from any
computer with a Web browser. Although Netscape is such a Web
browser, its installation on the computer you intend to administer
remotely won’t enable remote administration, because it’s only a cli-
ent. TCP Wrappers can be an important security tool in preventing
unauthorized administrative access, but it doesn’t enable remote
administration by itself.

http://www.sybex.com

Chapter

6
Managing Files and
Services

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 3.3 Set environment variables (e.g., PATH, DISPLAY, TERM).

� 3.11 Identify the purpose and characteristics of configuration

files (e.g., BASH, inittab, fstab, /etc/*).

� 3.12 Edit basic configuration files (e.g., BASH files, inittab,

fstab).

� 3.14 Document the installation of the operating system,

including configuration.

� 4.13 Manage runlevels using init and shutdown.

� 4.14 Stop, start, and restart services (daemons) as needed (e.g.,

init files).

� 4.17 Manage and navigate the Graphical User Interface (e.g.,

menus, xterm).

� 4.18 Program basic shell scripts using common shell commands

(e.g., grep, find, cut, if).

� 5.9 Document work performed on a system.

http://www.sybex.com

Much of what it takes to manage a Linux computer is han-
dling specific configuration files, setting environment variables, and manag-
ing services and runlevels. These tasks control much of what a Linux
computer does, from its startup process to the default information that is
available to various programs. Therefore, this chapter covers these tasks,
beginning with configuration files and moving on to environment variables,
services, and runlevels.

This chapter also covers a few additional administrative and user tasks.
These include handling Linux’s GUI environment, shell scripting, and docu-
menting your system’s configuration. GUI use and possibly shell scripting
can be important even to non-administrators, although shell scripts are par-
ticularly handy in dealing with administrative tasks.

Basic Configuration File Locations

Before you can edit configuration files, you must be able to locate
them. As a multiuser OS, Linux stores two types of configuration files: user
and system. User configuration files store settings that apply to individual
users. These may include things like users’ desktop icon placements, window
manager preferences, and scripts that run automatically when starting a
command prompt shell. In theory, individual users are usually responsible
for controlling their own configuration files, but a system administrator
must be able to handle this task as well. For one thing, a system administra-
tor is a user as well as the administrator. For another thing, users may come
to the system administrator when they damage their configurations. root
can edit any file on the system, including users’ own configuration files, and
so root can bail them out of any trouble they’ve created for themselves.

http://www.sybex.com

Basic Configuration File Locations 391

System configuration files, by contrast, control the entire system. Some of
these provide defaults for users’ configurations, but others control the sys-
tem as a whole. This second class of configuration file is particularly critical
because if there is a problem with some of these files, the system may mis-
behave quite seriously, or possibly even fail to boot.

User Configuration Files

User configuration files are stored in the users’ home directories. These are
usually in the /home directory tree, in subdirectories named after the account
names. For instance, /home/theo is the likely home directory for a user
called theo. These directory locations may be changed, however. To see
how, refer to Chapter 4,“Users and Security,” which describes configuring
accounts and home directory locations.

Within the user’s home directory, configuration files are usually (but not
always) dot files. These are files whose names begin with dots (.). Most
Linux tools ignore such files unless instructed explicitly not to do so. (For
instance, typing ls alone won’t show these files, but ls -a will.) The result
is that dot files are hidden, much as are files on a Windows system with the
hidden bit set. This feature makes dot files unobtrusive, which is ideal for
configuration files that users don’t want appearing in every directory listing.

Most user accounts start with a default set of configuration files. The
most important of these include the following:

.bashrc This file is a script that’s run whenever a bash shell runs.
Because bash provides the most common Linux command prompt, this
file controls many aspects of a text-based login, such as default environ-
ment variables (described later in this chapter, in “Setting Environment
Variables”).

.kderc and .kde The .kderc file sets many global parameters for the
K Desktop Environment (KDE). The .kde directory holds configuration
files for specific KDE programs.

.gnome The .gnome directory is the GNU Network Object Model Envi-
ronment (GNOME) equivalent of the .kde directory; it holds configura-
tion files for many specific GNOME component programs.

.netscape This directory holds configuration files for the Netscape
Web browser.

http://www.sybex.com

392 Chapter 6 � Managing Files and Services

X configuration files Depending upon how you start X, you’ll probably
have an X configuration file called .xinitrc, .xsession, or .Xclients.
This file, like .bashrc, is actually a script. It’s often used to launch pro-
grams you regularly use.

Window manager files Window managers control window placement
and provide decorative borders and program-launch facilities. Most win-
dow managers have configuration files or directories named after them-
selves, such as .icewm or .fvwmrc.

In addition to these files, you’ll probably find many more dot files and
directories accumulating in users’ directories, particularly if your users run a
wide array of programs. Any user program can create a configuration file if
it wants to. As a result, you’ll see configuration files for mail programs, news
readers, word processors, text editors, and more. Most of these are named
after the programs that created them, such as .gedit for the gEdit editor.

System Configuration Files

Most system configuration files are stored in the /etc directory tree. Some
files reside directly in this directory, but some hide out in subdirectories.
Indeed, a trend in the last few years has been to move multiple configuration
files associated with a single program into subdirectories named for the pro-
gram, such as /etc/samba for Samba configuration files. These subdirectory
names are not always consistent from one distribution to another, though;
for instance, some distributions use /etc/samba.d or /etc/smb rather than
/etc/samba.

These configuration files actually fall into several different classes. Some
are startup scripts that control the system startup process. Some files control
the system once it’s booted, and others control specific servers.

System Startup Scripts

System startup scripts control the Linux startup process. This process is not
entirely consistent from one distribution to another. As a general rule, Linux
systems use SysV startup scripts (SysV is short for System V, an influential
version of Unix from years gone by), but many distributions use variants of
this process.

http://www.sybex.com

Basic Configuration File Locations 393

In Unix as a whole, two startup processes are common. One is the SysV
method used by Linux. The other is the Berkeley Standard Distribution (BSD)
startup process. The BSD process involves running fewer but larger startup
scripts than the SysV system. Some early Linux distributions used BSD
startup scripts, and the open source BSD OSs (FreeBSD, OpenBSD, and Net-
BSD) that compete with Linux use them as well. All the major Linux distribu-
tions in 2001 use SysV startup scripts.

The SysV startup process begins when the kernel runs the init program.
This program uses its configuration file, /etc/inittab, to begin the system
startup process. This file’s contents are described in more detail shortly, in
the section entitled “/etc/inittab.” For now, know that one of this file’s
earlier lines specifies what to do during system initialization (sysinit is the
keyword used for this). In many Linux systems (such as Red Hat and its
closest relatives), the sysinit process runs a script called /etc/rc.d/rc
.sysinit. In Debian and its derivatives, the system runs a script called
/etc/init.d/rcS.

In either case, this initialization script runs a number of other scripts
according to the system’s runlevel—a number from 0–6 that indicates how
the system is to boot. “Setting the Runlevel,” later in this chapter, includes
more extensive discussion of the runlevel. In most distributions, runlevel 3
corresponds to a normal text-only boot, and runlevel 5 is a normal boot that
also automatically starts X. In any event, startup scripts for specific servers
and system utilities reside in directories corresponding to particular run-
levels. For instance, in Red Hat and most of its derivatives, these files go in
/etc/rc.d/rc?.d, where ? is the runlevel number. In Debian and its deriv-
atives, the equivalent directories are /etc/rc?.d.

The scripts in each runlevel directory have filenames of the form S??name
or K??name, where name is a name that corresponds to a program and ?? is
a sequence number. Filenames that begin with S represent programs that are
to be started, and K indicates a program that’s to be killed. For instance, a
startup directory might contain the following scripts:

K35smb

S10network

S80postfix

http://www.sybex.com

394 Chapter 6 � Managing Files and Services

This collection of files means that the smb service (Samba) should be
stopped, while the network and postfix services should be started. The
scripts are executed in numerical order, so network is started before
postfix.

In reality, these startup scripts are usually symbolic links to the real
scripts, which are located in other directories, such as /etc/init.d or
/etc/rc.d/init.d. The scripts in these directories don’t have S or K pre-
fixes or sequence numbers because these are characteristics that are associ-
ated with specific runlevels.

The end result of this configuration is that you can control what services
run in any given runlevel by moving or renaming links in the appropriate
runlevel control directories. For instance, renaming K35smb to S35smb will
start the Samba server rather than kill it. There are also tools that may be
used to activate or deactivate servers in particular runlevels, as described
later in this chapter.

There are variants on this SysV startup script scheme. For instance, in
SuSE Linux, the startup files are controlled through /etc/rc.config rather
than by their S or K filename prefixes. Many Linux distributions support a
startup script that runs after most or all of the others, in which you may enter
any system-specific customizations you might need. This script is usually
called rc.local or boot.local, and it exists in /etc or a startup script sub-
directory such as /etc/rc.d. You can use this script to start servers that
don’t come with SysV startup scripts, or to set system-specific features such
as the keyboard repeat rate (set via the kbdrate program).

It’s important to remember that these files are scripts. This means that
they’re plain text files, but they contain commands that are executed by the
system as it boots. Most of the SysV startup scripts start or stop just one pro-
gram, or a closely related cluster of programs, such as the smbd and nmbd
programs that collectively are Samba. Some of these scripts, though, may
perform more complex operations. The network startup script, for instance,
is fairly complex because it must check for the presence of an unknown num-
ber of network interfaces and take actions for each of these—actions that
may vary from one interface to another.

Files Defining System Functions

Another class of configuration files consists of those that define how the sys-
tem functions once it’s booted. These files usually aren’t scripts. Instead,
they’re used by other programs to control their operation. These files are

http://www.sybex.com

Basic Configuration File Locations 395

located in the /etc directory tree, just like other system-wide Linux config-
uration files. Some of the more important examples are listed here:

lilo.conf This file controls the configuration of LILO, the most pop-
ular Linux boot loader. By editing this file and running the lilo program,
you can change what kernel your system boots, add new OSs to your boot
menu, or change important boot options. LILO configuration was dis-
cussed in Chapter 3, “Software Management.”

fstab This file determines what disk partitions and devices Linux
mounts automatically, and in what ways. For instance, you can specify
that a Windows partition on a dual-boot system be accessible as
/windows, /mnt/win, or just about anything else you’d like. The /etc/
fstab file isn’t restricted to controlling Windows partitions, though; it
includes entries for all Linux partitions. Its file format is discussed in more
detail shortly, in the section called “/etc/fstab.”

X11 The /etc/X11 directory houses several configuration files and sub-
directories related to the configuration of X. The most important of these
is XF86Config, which defines the screen resolution, color depth, mouse
type, and other critical XFree86 details. (Some distributions place this file
directly in /etc, though, not in /etc/X11.)

modules.conf or conf.modules These files contain information that
helps Linux determine what kernel modules to load, and when. These
modules contain drivers that don’t reside in the kernel file proper but that
may nonetheless be necessary. The format of these files is discussed
shortly, in “/etc/modules.conf.”

passwd, shadow, group, and gshadow These files contain information
on user accounts and groups, including usernames, group names, home
directory locations, passwords, and group membership. They’re
described in Chapter 4.

resolv.conf This file contains information on the locations of name
servers, which are computers that translate between numeric IP addresses
and hostnames for network interactions.

This is only a sampling of the system function control files. Many of the
files in /etc handle comparatively esoteric aspects of system operation or are
things you’re not likely to need to adjust. Other files exist on some distribu-
tions but not others. For instance, some distributions place the computer’s

http://www.sybex.com

396 Chapter 6 � Managing Files and Services

network hostname in a file called /etc/hostname or /etc/HOSTNAME, but
others don’t do this. In addition, many files in /etc control servers, rather
than general system operation.

Files Controlling Important Servers

Servers normally run in the background without human supervision, so
they’re configured through files stored in /etc. As an administrator, you can
adjust a server’s configuration file and restart it to change its behavior. Some
of the more important server configuration files include these:

inetd.conf or xinetd.conf These files control the network servers
that are run through the inetd or xinetd programs, respectively. These
programs can look for network requests for several different servers and
then launch the appropriate servers only when needed. Doing this saves
memory when a server is seldom used. Most distributions ship with either
inetd or xinetd, but it’s possible to use both. These files are described in
more detail in the “Starting and Stopping Services” section later in this
chapter.

sendmail.cf This file controls the sendmail mail server, which is used
on most Linux distributions. A few distributions use alternative mail serv-
ers, such as Exim (controlled through /etc/exim.conf) or Postfix (con-
trolled through files in /etc/postfix).

smb.conf This is the Samba configuration file, which handles file shar-
ing with Windows systems. This file is often located in a subdirectory of
/etc, such as /etc/samba or /etc/samba.d.

exports A Network Filesystem (NFS) server handles file sharing with
other Linux and Unix systems. Such a server is configured through the
/etc/exports file, which contains lists of directories that are to be
exported and information on what systems may access these exported
directories.

httpd.conf This file controls the Apache Web server. It’s normally
located in a subdirectory of /etc, such as /etc/httpd/conf.

Many other servers place their configuration files in /etc or a subdirec-
tory thereof. If you’ve just installed a server and want to configure it, check
in /etc for a file or subdirectory with a name that’s related to the server
you’ve installed. The name may be related to the server name (as in
sendmail.cf) or to the protocol it serves (as in httpd.conf), so check both.

http://www.sybex.com

Format of Common Configuration Files 397

It’s possible for server configuration files to be located elsewhere, and this
practice is not uncommon for servers that are compiled locally. Such config-
uration files frequently go in the server’s installation directory or in /usr/
local/etc. If you know where the documentation for the server is located,
you can check it—but this documentation sometimes refers to default loca-
tions, which may change when a server is compiled as an RPM or Debian
package.

Format of Common Configuration Files

Knowing where a configuration file is located is only the start of any
attempt to change a system’s configuration. To do any good, you must
understand something about the format of a configuration file’s contents.
Many chapters of this book discuss specific configuration file formats. This
section covers a few of the more important general-purpose configuration
files.

In all cases, you can edit the configuration files with any editor you like.
Chapter 7, “Managing Partitions and Processes,” includes an introduction
to the Vi editor, but you can use another editor, provided it’s installed and
working.

Don’t edit any configuration file unless you understand its function and the
file format. Changing some files, including those discussed here, can cause
your system to become unbootable if you make a mistake. In such cases, you
may need to boot from an emergency system and restore a backup of the orig-
inal file or reverse your edits.

In most cases, you can learn more about a configuration file by using the
man (short for manual) help system, which displays a man page about a file
or command. For instance, typing man fstab displays information about the
/etc/fstab configuration file.

Startup Scripts

The startup scripts described earlier are just that—scripts. As such, they can
be edited like other scripts, as described briefly later in this chapter. As a gen-
eral rule, it’s best not to edit SysV startup scripts unless you have a good idea

http://www.sybex.com

398 Chapter 6 � Managing Files and Services

of what you’re doing—these scripts typically include checks for various con-
ditions and launch the program in a way that the distribution developer
knew would work.

One exception to this rule is if you’ve installed a server that was designed
for another distribution. In such a case, the startup script may have been cus-
tomized for an incompatible startup system. You have three options in this
situation:

Edit the provided script. You may be able to tweak the provided startup
script to get it to work on your system.

Build a new script. You can often design a new startup script by mod-
eling it after the script used to start up another server. Remember to edit
the main script and change all the symbolic links to it in all the runlevel
directories.

Start the server in the rc.local script. You can start the server by
entering an appropriate startup command in the rc.local or
boot.local startup script. Not all distributions support this option,
though—in particular, Debian and its derivatives don’t include this feature.

Startup Methods That Work

In my experience, starting a server you build from source or install from an
incompatible distribution is usually handled best by creating an entry in
your system’s rc.local or boot.local startup script. Modifying scripts pro-
vided for an incompatible distribution seldom works unless you’re inti-
mately familiar with your distribution’s startup process because these
scripts tend to be riddled with distribution-specific assumptions. Building a
new script can be a good option, but it often fails because of server-specific
features in your model script or because your new server needs options that
might not be easily handled in the model script. Local startup scripts, by
contrast, are simple, and so they can usually support simple one-line calls
to new programs. The problem with this is that this method provides no
easy process control mechanisms—you can’t have the server automatically
stop and start when you switch runlevels. It’s also inappropriate if the new
server has to run before other servers that are launched through the usual
SysV scripts.

http://www.sybex.com

Format of Common Configuration Files 399

/etc/inittab

As described earlier, the /etc/inittab file controls the init process, which
is responsible for running startup scripts. This file consists of multiple lines,
which may be comments, indicated by a leading pound sign (#); or control
lines. (Comments are lines that the program that reads the file ignores.) Con-
trol lines have the following format:

id:runlevel:action:process

The meanings of each of these components is as follows:

id This is a 1–4 character identification string for the runlevel process.
Sometimes it must have a specific form, such as a number for login termi-
nals. The ln strings, where n is a number from 0–6, represent the action
to be taken when switching to a new runlevel.

runlevel The runlevel was briefly described earlier. At any given time,
the computer is in one runlevel, which determines what system programs
and processes it runs. For most entries, the runlevel variable identifies
the runlevels at which a process will run, specified without intervening
spaces—for instance, 2345 for runlevels 2–5.

action This field determines how init handles the process. The fol-
lowing are some common action values:

initdefault This is used to specify the default runlevel.

sysinit This indicates the process that’s to be run during system
boot. Normally, this process runs the SysV initialization scripts.

respawn The system starts the process whenever it quits. This is used
for login processes.

wait The system runs the process and waits for its termination. This
is used for running the SysV initialization scripts.

ctrlaltdel This identifies the process that init is to run when
somebody presses the Ctrl+Alt+Del key sequence. This normally
invokes a reboot process.

process The command to be executed for the given condition.

One of the more common reasons to edit /etc/inittab is to change the
system’s default runlevel. Doing this is described later in this chapter, in “Set-
ting the Runlevel.”

http://www.sybex.com

400 Chapter 6 � Managing Files and Services

/etc/inittab also contains lines that start various getty programs. A
getty is a program that displays a text-based login prompt on a text-mode
device. Most Linux distributions start six gettys on six virtual consoles,
which you can switch to by typing Alt+Fn, where n is the number of the
getty. (You must type Ctrl+Alt+Fn if you’re running X.) Linux supports
several different types of getty programs, such as the original getty,
mgetty, and mingetty. Each supports somewhat different features. For
instance, getty and mgetty support logins over serial ports, but
mingetty handles only logins from the console (the computer and mon-
itor attached directly to the computer). By adding new getty lines that
monitor serial ports, you can support logins from serial terminals or
remote logins from modems.

/etc/fstab

The /etc/fstab file controls how Linux provides access to disk parti-
tions and removable media devices. Linux supports a unified directory
structure in which every disk device (partition or removable disk) is
mounted at a particular point in the directory tree. For instance, you
might access a floppy disk at /mnt/floppy. The root of this tree is
accessed from /. Directories off of this root may be other partitions or
disks, or they may be ordinary directories. For instance, /etc should be
on the same partition as /, but many other directories, such as /home,
may correspond to separate partitions. /etc/fstab describes how these
filesystems are laid out. (fstab is an abbreviation of “filesystem table.”)

/etc/fstab consists of a series of lines, each of which contains six
fields that are separated by one or more spaces or tabs. A line that begins
with a pound sign (#) is a comment, and is ignored. Listing 6.1 shows a
sample /etc/fstab file.

Listing 6.1: Sample /etc/fstab File

#device mount point filesystem options dump fsck

/dev/hda1 / ext2 defaults 1 1

/dev/hdb7 /home reiserfs defaults 0 2

/dev/hdb5 /windows vfat uid=500,umask=0 0 0

/dev/hdc /mnt/cdrom iso9660 user,noauto 0 0

/dev/fd0 /mnt/floppy auto user,noauto 0 0

server:/home /other/home nfs user,exec 0 0

/dev/hda4 swap swap defaults 0 0

http://www.sybex.com

Format of Common Configuration Files 401

The meaning of each field in this file is as follows:

Device The first column specifies the mount device. These are usually
device filenames that reference hard disks, floppy drives, and so on. For
instance, in Listing 6.1, /dev/hda1 is the first partition on the first EIDE
hard disk. It’s also possible to list a network drive, as in server:/home,
which is the /home export on the computer called server.

Mount point The second column specifies the mount point; in the uni-
fied Linux filesystem, this is where the partition or disk will be mounted.
This should usually be an empty directory in another filesystem. The root
(/) filesystem is an exception. So is swap space, which is indicated by an
entry of swap. (The “Adding Swap Space” section in Chapter 8, “Hard-
ware Issues,” covers the swap partition in more detail.)

Filesystem type The filesystem type code is the same as the type code
used to mount a filesystem with the mount command. Common type
codes in Linux include ext2 (for Linux’s native ext2 filesystem), nfs (for
networked NFS exports), minix (for the old Minix filesystem, which is
sometimes used on floppy disks), iso9660 (for CD-ROMs), and vfat (for
Windows partitions and floppies). Listing 6.1 also shows reiserfs,
which is used for the new Reiser filesystem. A filesystem type code of auto
lets the kernel auto-detect the filesystem type, which can be a convenient
option for removable media devices. Auto-detection doesn’t work with all
filesystems, though.

Mount options Most filesystems support several mount options, which
modify how the kernel treats the filesystem. You may specify multiple
mount options, separated by commas. For instance, uid=500,umask=0
for /windows in Listing 6.1 sets the user ID (owner) of all files to 500, and
sets the umask to 0. (Chapter 4 includes a discussion of the meaning of the
user ID and umask.) defaults specifies that the default values are to be
used. user lets ordinary users mount and unmount filesystems, which can
be useful for removable media. (owner has a similar meaning, but it
requires that the user own the device file.) noauto (which has no relation-
ship to the filesystem type of auto) means that the filesystem won’t be
mounted at boot time. Again, this is useful for removable-media devices.
Type man mount to learn about mount options for specific filesystems.

http://www.sybex.com

402 Chapter 6 � Managing Files and Services

dump operation The next-to-last field contains a 1 if the dump utility
should back up a partition, or a 0 if it should not. If you never use the
dump backup program, this option is essentially meaningless.

fsck order At boot time, Linux uses the fsck program to check file-
system integrity. This column specifies the order in which this check
occurs. A 0 means that fsck should not check a filesystem. Higher num-
bers represent the check order. The root partition should have a value of 1,
and all others that should be checked should have a value of 2.

If you add a new hard disk or need to repartition the one you’ve got, you’ll
probably need to modify /etc/fstab. You might also need to edit it to alter
some of its options. For instance, setting the user ID or umask on Windows
partitions mounted in Linux may be necessary to let ordinary users write to
the partition. Chapter 7 covers filesystem handling in greater detail.

/etc/modules.conf

The Linux kernel contains drivers for hardware and filesystems, as well as
other features. Some of these drivers and features can be compiled into the
main kernel file or as modules, which are separate driver files. Linux permits
dynamic loading and unloading of modules, which allows you to reduce sys-
tem memory requirements by keeping unused modules unloaded until
they’re needed. For instance, you might leave a floppy driver unloaded most
of the time. This feature can also be useful when dealing with hardware you
can attach and detach while the computer is running, such as USB and PC
Card devices.

In order to help manage these drivers, Linux supports a kernel module
autoloader. This tool detects when a device is needed and attempts to load
the appropriate driver. For this to work, though, a configuration file must
keep track of these devices. For instance, there must be some way to link
eth1 (an Ethernet interface) to the 3c501 module, if that’s the driver for your
card. This is the task of the /etc/modules.conf file (which is called /etc/
conf.modules on some distributions).

It’s possible to load kernel modules manually, without using /etc/modules
.conf. Doing so requires manual intervention, though, and eliminates some
options possible with the file.

http://www.sybex.com

Format of Common Configuration Files 403

The section entitled “Managing Kernel Modules” in Chapter 8 covers
kernel modules in more detail. The modules.conf file contains information
about modules, such as modules that Linux should load when a particular
type of device is accessed and hardware configuration options like what
interrupt request (IRQ) to use with a hardware device.

modules.conf supports an unusually complex syntax, including condi-
tional statements (to do things if certain conditions are met), inclusion of sec-
ondary files, and more. Mostly, though, lines consist of single commands
that operate on module names, allowing you to specify certain operations.
For instance, take a look at the following:

alias snd-card-0 snd-card-interwave

options snd-card-interwave snd_irq=15

post-install snd-card-interwave alsactl restore

alias eth1 3c501

options 3c501 io=0x300 irq=5

This example demonstrates some of the most frequently used /etc/
modules.conf features:

� The alias commands tell the system what modules to load (snd-
card-interwave or 3c501) when a particular type of device is needed
(snd-card-0 or eth1).

� The options line specifies options to be passed to the modules.
Options are very specific to each module. For instance, notice that the
IRQ is set through the snd_irq option for snd-card-interwave, but
through the irq option for 3c501. You can pass multiple options on
one line, as illustrated by the 3c501 example.

� The post-install command tells Linux to run a program after load-
ing a module. In the preceding example, the alsactl restore com-
mand runs after the system loads the snd-card-interwave module.
There’s a similar pre-install command for running a command
before loading a module.

Fortunately, Linux generally handles loading appropriate modules with
little or no configuration of /etc/modules.conf. If you have problems with
a particular module, you may need to consult its documentation to deter-
mine precisely what commands to use in this file. Chapter 8 also contains
additional advice on module management.

http://www.sybex.com

404 Chapter 6 � Managing Files and Services

Like many other configuration files, /etc/modules.conf may include
comment lines that begin with a pound sign (#).

/etc/profile

/etc/profile contains environment variables (described shortly, in “Set-
ting Environment Variables”) and programs that should be run whenever
the bash shell is run. Because this is the default shell on most Linux systems,
/etc/profile is run whenever most users of the system log in. Environment
variables commonly set in /etc/profile include PATH (a colon-separated
list of directories to be searched for programs), PS1 (the default shell
prompt), MAIL (the location of the user’s incoming mail file), USER (the user’s
account name), and HOSTNAME (the computer’s network hostname). In addi-
tion, /etc/profile commonly includes a call to the umask program, which
sets the umask. This is a number that represents bits to be removed from file
permissions when a user creates a file, as described in Chapter 4. The exact
details of what /etc/profile does depend on the distribution and, of
course, any changes you make to it.

Setting an environment variable or running a program in /etc/profile
does not guarantee that this action will go unchanged. User configuration
files can set or change environment variables, run umask, or generally undo
whatever was done in /etc/profile. /etc/profile exists as a convenient
way for you to adjust important features such as the PATH environment vari-
able. For instance, if you add binaries to some unusual location, such as
/opt/wp8/wpbin, you might add this directory to PATH, as specified in /etc/
profile, in order to add it to all users’ PATH environment variables.

For users whose default shell is not bash, you’ll need to set default envi-
ronment variables in some other way. The /etc/csh.cshrc and /etc/
csh.login files serve a function similar to that of /etc/profile for users
of tcsh and some other shells. The details of the contents of these files differ,
though, so you shouldn’t simply copy information from one to the other.
Again, “Setting Environment Variables” includes information on commands
you can add to these files.

Additional Files

Some configuration files use formats that are easy to figure out because
they’re quite simple. Others are moderately complex but well documented.

http://www.sybex.com

Setting Environment Variables 405

Some configuration files, though, are quite cryptic. If you’re faced with an
unknown configuration file, by all means, examine it in a text editor, but be
cautious about modifying it. Many, but not all, configuration files have man
pages, so typing man followed by the file’s name (without the path to the file)
may produce help on the file. Other times, you can find help on the config-
uration file format in the associated program’s documentation.

Many of this book’s chapters cover the use of specific programs, and this
often involves editing configuration files. Some programs are complex
enough that entire books have been written about them, and in some cases
huge parts of these books are devoted to explaining the package’s configura-
tion file formats. This shouldn’t intimidate you, however; in most cases,
knowing just a few features is enough to get you started configuring a pro-
gram. Modeling your system after an existing one can also take you far down
the path to creating an appropriate configuration.

Setting Environment Variables

People exist in certain environments. These can be office buildings,
homes, streets, forests, airplanes, and so on. These environments provide us
with, among other things, certain information. For instance, we can tell by
reading a street sign that we’re at the intersection of State and Main streets,
or that there’s an old mill a short distance away. Just as we humans live in
an environment, so do the programs we run on computers. The features that
are salient to people, though, aren’t the same as the ones that are important
to computer programs. Computer programs must be concerned with issues
such as the amount of free disk space or the availability of memory. Linux
also provides programs with a set of supplementary information known as
environment variables. Like street signs, environment variables convey
information about the resources available to the program. Therefore, under-
standing how to set and use environment variables is important for both sys-
tem administrators and users.

http://www.sybex.com

406 Chapter 6 � Managing Files and Services

The Role of Environment Variables

Programs query environment variables to learn about the state of the com-
puter as a whole, or what resources are available. These variables contain
information such as the location of the user’s home directory, the computer’s
Internet hostname, and the name of the command shell that’s in use. Indi-
vidual programs may also use program-specific environment variables to tell
them where their configuration files are located, how to display information,
or how to use other program-specific options. As a general rule, though,
environment variables provide information that’s useful to multiple pro-
grams. Program-specific information is more often found in program con-
figuration files.

Where to Set Environment Variables

If you’re using the bash shell, you can set an environment variable from a
command prompt for a specific login by typing the variable name followed
by an equal sign (=) and the variable’s value, then typing export and the
variable name on the next line. For instance, you could type the following:

$ NNTPSERVER=news.abigisp.com

$ export NNTPSERVER

You can shorten this syntax to a single line by typing export at the start
of the first line:

$ export NNTPSERVER=news.abigisp.com

The former syntax is sometimes preferable when setting multiple environ-
ment variables because you can type each variable on a line and then use a
single export command to make them all available. This can make shorter
line lengths than you would get if you tried to export multiple variables
along with their values on a single line. For instance, you could type the
following:

$ NNTPSERVER=news.abigisp.com

$ YACLPATH=/usr/src/yacl

$ export NNTPSERVER,YACLPATH

http://www.sybex.com

Setting Environment Variables 407

This syntax is the same as that used for setting environment variables in
/etc/profile. This system-wide configuration file is called from a bash
shell script, which means it contains commands that could be typed at a com-
mand prompt.

When setting environment variables in a shell script such as /etc/profile,
you should ignore the command prompts ($) shown in these examples.

Users of the tcsh shell don’t use /etc/profile for setting environment
variables, and in fact, the syntax just described doesn’t work for this shell.
For tcsh, the appropriate command to set an environment variable is
setenv. It’s used much like export in its single-line form, but without an
equal sign:

$ setenv NNTPSERVER news.abigisp.com

Instead of using /etc/profile, tcsh uses the /etc/csh.cshrc and
/etc/csh.login files for its system-wide configuration. Therefore, if your
system has both bash and tcsh users, you’ll need to modify both files, using
the appropriate syntax for each file.

The preceding examples assigned values to environment variables. In
other contexts, though, the environment variable is preceded by a dollar sign
($). You can use this fact to refer to an environment variable when setting
another. For instance, in bash, the following command adds :/opt/bin to
the PATH environment variable:

$ export PATH=$PATH:/opt/bin

This syntax is somewhat more complicated for tcsh. In this shell, you
must add quotes around the new value and use curly braces around the PATH
variable reference:

$ setenv PATH "${PATH}:/opt/bin"

In addition to the system-wide files, individual users may set environment
variables by editing their local configuration files: .bashrc for bash, and
.tcshrc, .cshrc, or .login for tcsh (tcsh tries each of these files in turn
until it finds one that exists).

http://www.sybex.com

408 Chapter 6 � Managing Files and Services

The Meanings of Common Environment Variables

There are many common environment variables you may encounter on your
system. You can find out how environment variables are configured by typ-
ing env. This command is used to run a program with a changed set of envi-
ronment variables, but when it is typed alone, it returns all the environment
variables that are currently set. Variables you may see in this output include
the following:

USER This is your current username. It’s a variable that’s maintained by
the system.

PWD This is the present working directory. This environment variable is
maintained by the system. Programs may use it to search for files when
you don’t provide a complete pathname.

HOSTNAME This is the current TCP/IP hostname of the computer.

PATH This is an unusually important environment variable. It sets the
path for a session, which is a colon-delimited list of directories in which
Linux searches for executable programs when you type a program name.
For instance, if PATH is /bin:/usr/bin and you type ls, Linux looks for
an executable program called ls in /bin and /usr/bin. If the command
you type isn’t on the path, Linux responds with a command not found
error. The PATH variable is typically built up in several configuration files,
such as /etc/profile and the .bashrc file in the user’s home directory.

The path often includes the current directory indicator (.) so that programs in
the current directory can be run. This practice poses a security risk, though,
because a miscreant could create a program with the name of some other pro-
gram (such as ls) and trick another user into running it by simply leaving it in
a directory the victim frequents. Even the root user may be victimized in this
way. For this reason, it’s best to omit the current directory from the PATH vari-
able, especially for the superuser. If it’s really needed for ordinary users, put
it at the end of the path.

LD_LIBRARY_PATH A few programs use this environment variable to
indicate directories in which library files may be found. It works much
like PATH.

http://www.sybex.com

Starting and Stopping Services 409

PS1 This is the default prompt in bash. It generally includes variables of
its own, such as \u (for the username), \h (for the hostname), and \W (for
the current working directory). This value is frequently set in /etc/
profile, but it is often overridden by users.

NNTPSERVER Some Usenet news reader programs use this environment
variable to specify the name of the news server system. This value might
be set in /etc/profile or in the user’s configuration files.

TERM This variable is a name of the current terminal type. In order to
move a text-mode cursor and display text effects for programs like text-
mode editors, Linux has to know what commands the terminal supports.
The TERM environment variable contains this information. It’s normally
set automatically at login, but in some cases you may need to change it.

DISPLAY This variable identifies the display used by X. It’s usually :0.0,
which means the first (numbered from 0) display on the current computer.
When you use X in a networked environment, though, this value may be
preceded by the name of the computer at which you’re sitting, as in
machine4.threeroomco.com:0.0. This value is set automatically when
you log in, but you may change it if necessary. You can run multiple X ses-
sions on one computer, in which case each one gets a different DISPLAY
number—for instance, :0.0 for the first session and :1.0 for the second.

Any given system is likely to have several other environment variables set,
but these are fairly esoteric or relate to specific programs. If a program’s doc-
umentation says that it needs certain environment variables set, you can set
them system-wide in /etc/profile or some other suitable file, or you can
set them in user configuration files, as you deem appropriate.

Starting and Stopping Services

A typical Linux system can be thought of as a collection of running
programs. Even just after the computer has booted, when you see nothing
but a login prompt on the screen and haven’t touched the keyboard, the com-
puter is running several programs. Some of these programs handle routine
local services, such as the text-based login prompts. Others are servers that
make the computer available to outside systems. All of these services need to

http://www.sybex.com

410 Chapter 6 � Managing Files and Services

be started in some way, and Linux provides several different means to
accomplish this task.

Linux normally runs any given server using just one of the methods discussed
here, and most distributions provide a single default method of launching a
server. This is particularly important for the discussion of SysV startup scripts
and xinetd, because these methods both rely on the presence of configura-
tion files that won’t be present if the package maintainer intended that the
server be run in some other way.

Starting and Stopping via SysV Scripts

The “Startup Scripts” section earlier in this chapter discussed the SysV start-
up process in general. In brief, when Linux starts, it enters one of several run-
levels. Runlevel 0 shuts down the computer, runlevel 1 configures it to run
in a single-user maintenance mode, and runlevel 6 reboots the system. On
most Linux systems, runlevel 3 corresponds to a multiuser text-mode boot,
and runlevel 5 adds X to the mix (for a GUI login prompt). SuSE uses run-
levels 2 and 3 instead of 3 and 5, though, and Slackware uses 3 and 4 for
these functions. By default, Debian attempts to start X in all its runlevels. In
any event, a couple of runlevels are unused by default. The upcoming sec-
tion, “Setting the Runlevel,” covers temporarily or permanently switching
runlevels.

Temporarily Enabling or Disabling a Service

SysV startup scripts reside in particular directories—normally /etc/rc.d/
init.d or /etc/init.d. You may run one of these scripts, followed by an
option like start, stop, or restart, to affect the server’s run status. (Some
startup scripts support additional options, like status. Type the script name
without any parameters to see a list of its options.) For instance, the follow-
ing command starts the Samba server on a Mandrake 7.2 system:

/etc/rc.d/init.d/smb start

You’ll usually see some indication that the server is starting up. If the
script responds with a FAILED message, it typically means that something
about the configuration is incorrect, or the server may already be running.

http://www.sybex.com

Starting and Stopping Services 411

You should keep a few things in mind when manually starting or stopping a
service in this way:

� The name of the startup script is usually related to the package in ques-
tion, but it’s not fully standardized. For instance, some Samba servers
call their startup scripts smb, but others use samba. A few startup
scripts perform fairly complex operations and start several programs.
For instance, many distributions include a network or networking
script that initializes many network functions.

� SysV startup scripts are designed for specific distributions, and may
not work if you install a package on another distribution. For
instance, a Red Hat SysV startup script is unlikely to work properly on
a SuSE system.

� Startup scripts occasionally appear to work, when in fact the service
doesn’t operate correctly. You can often find clues to failure in the
/var/log/messages file (type tail /var/log/messages to see the
last few entries).

� One way to reinitialize a server so it rereads its configuration files is to
use the restart startup script command. Some startup scripts don’t
include a restart command, though. With these, you may need to
manually issue the stop command followed by the start command
when you change configuration options. Some servers provide com-
mands you can issue directly to have them reread their configuration
options without explicitly restarting them, though; consult the server’s
documentation for details.

Temporarily starting or stopping a service is useful when you need to
adjust a configuration, or when you first install a server. It’s almost always
possible to reconfigure a running Linux system without rebooting it by
reconfiguring and restarting its services.

Permanently Adding or Removing a Service

If you want to permanently change the mix of services your system runs, you
may need to adjust which SysV startup scripts the computer runs. As
described earlier, Linux determines which services to run by using the run-
level. In addition to the /etc/rc.d/init.d or /etc/init.d directory in
which the SysV startup scripts reside, Linux systems host several directories
that contain symbolic links to these scripts. These directories are typically

http://www.sybex.com

412 Chapter 6 � Managing Files and Services

named /etc/rc.d/rcn.d or /etc/rcn.d, where n is a runlevel number. For
instance, /etc/rc.d/rc3.d is the directory associated with runlevel 3. The
links in these directories use filenames of the form Knnservice or
Snnservice, where nn is a two-digit number and service is the name of a
service. When the computer enters a given runlevel, it executes the K* and S*
scripts in the associated directory. The system passes the start command to
the scripts that begin with S, and it sends the stop command to the scripts
that begin with K. Thus, the key to controlling the starting and stopping of
services is in the naming of the files in these SysV script directories—if you
rename a script that starts with S so that it starts with K, it will stop running
the next time the system enters the affected runlevel.

SuSE Linux uses a file called /etc/rc.config to veto startup via the normal
startup scripts. A number of variables in /etc/rc.config correspond to spe-
cific servers (such as START_HTTPD for Apache, the HTTP server), and the script
gives these variables yes or no values. The normal startup scripts check these
values and won’t start the server if the corresponding value is no. Thus, to
start a server via SysV scripts in SuSE, you must enable the script as described
here and edit its entry in /etc/rc.config. SuSE’s configuration tools, YaST
and YaST2, do both automatically.

The numbers that come after the S and K codes control the order in which
various services are started and stopped. The system executes these scripts
from the lowest-numbered to the highest-numbered. This factor can be quite
important. For instance, you’ll normally want to start servers like Samba or
Apache after basic networking is brought up.

Various tools exist to help you adjust what services run in various run-
levels. Not all distributions include all these tools, though. Here are some of
the tools for adjusting services:

chkconfig This is a strictly command-line utility. Pass it the --list
parameter to see a summary of services and whether or not they’re
enabled in each runlevel. You can add or delete a service in a given run-
level by using the --level parameter, as in chkconfig --level 5 smb
on, which enables Samba in runlevel 5. (Pass it off rather than on to dis-
able a service.)

http://www.sybex.com

Starting and Stopping Services 413

ntsysv This is a text-mode utility, but it presents a menu of services run
at the runlevel specified with the --level parameter. You can enable or
disable a service by moving the cursor to the runlevel and pressing the
space bar.

tksysv Figure 6.1 shows this GUI utility. It allows you to enable or dis-
able services in any runlevel from 2 through 5. Locate and select the ser-
vice in the given runlevel, then click Remove. This removes its start or stop
entry. Then click the service in the Available list and click Add. You’ll be
prompted to enter a runlevel and whether to start or stop it. You may also
need to enter a sequence number.

F I G U R E 6 . 1 The tksysv program provides a GUI interface to runlevel service
management.

Distribution-specific tools Many distributions’ general system adminis-
tration tools, such as linuxconf, YaST, and COAS, provide a means to
start and stop SysV services in specific runlevels. Details vary from one
distribution to another, so consult your distribution’s documentation to
learn more.

http://www.sybex.com

414 Chapter 6 � Managing Files and Services

Once you’ve modified the SysV startup script listings, that service will run
(or not run, if you’ve disabled it) the next time you restart the computer or
change runlevels, as described later, in “Setting the Runlevel.” Setting the
startup script runlevel information, though, does not change the run status
of a service. For that, you’ll need to manually enable or disable the service,
as described earlier.

One additional method for permanently disabling a service deserves men-
tion: removing it completely from the computer. You can use a package man-
agement system (as described in Chapter 3), or you can track down the
program’s binary files and delete them, to ensure that a service never runs.
This is certainly the best way to accomplish the task if the computer never
needs to run a program, because it saves on disk space and makes it
impossible to misconfigure the computer to run an unwanted server—at
least, short of reinstalling the server.

Editing inetd.conf

One of the problems with running servers through SysV startup scripts is
that the running servers constantly consume memory, even if they’re not
used much. This is one of the primary motivating factors behind super serv-
ers, which are servers that listen for network connections intended for any of
several other servers. When the super server detects such a connection, it
launches the appropriate conventional server. Prior to that time, the conven-
tional server was not running, and so it did not consume any memory. The
drawback to this arrangement is that it may take some time for the conven-
tional server to start up, particularly if it’s a large one like Samba or Apache.
This can result in delays in initiating connections. Nonetheless, this
approach is common for many smaller and infrequently used servers. Two
super servers are common on Linux: inetd, which is described here, and
xinetd, which is described in the next section.

http://www.sybex.com

Starting and Stopping Services 415

Be sure you edit the appropriate configuration file! Administrators used to
one tool are often confused when they work on a system that uses the other
super server. The administrator may edit the wrong configuration file and find
that changes have no effect. Ideally, a system won’t have a configuration file
for an uninstalled super server, but sometimes these do exist, particularly
when upgrading a distribution to a new version that changes the super server.

You control servers that launch via inetd through the /etc/inetd.conf
file. This file consists of a series of lines, one for each server. A typical line
resembles the following:

ftp stream tcp nowait root /usr/sbin/tcpd
�/usr/sbin/in.ftpd -l -a

Each line consists of several fields separated by one or more spaces. The
meanings of these fields are listed here:

Service name This is the name of the service as it appears in the /etc/
services file.

Socket type This may be any of several values, the most common of
which are stream, raw, and dgram.

Protocol This is the type of TCP/IP protocol used, usually tcp or udp.

Wait/Nowait For datagram socket types, this entry specifies whether
the server connects to its client and frees the socket (nowait) or processes
all its packets and then times out (wait). Servers that use other socket
types should specify nowait in this field.

User This is the username used to run the server. root and nobody are
common choices, but others are possible, as well.

Server name This is the filename of the server. In the preceding example,
the server is specified as /usr/sbin/tcpd, which is the TCP Wrappers
binary. This program provides some security checks, allowing you to
restrict access to a server based on the origin and other factors. Chapter 5,
“Networking,” discusses TCP Wrappers in more detail.

Parameters Everything after the server name consists of parameters that
can be passed to the server. If you use TCP Wrappers, you pass the name
of the true target server (such as /usr/sbin/in.ftpd) in this field, along
with its parameters.

http://www.sybex.com

416 Chapter 6 � Managing Files and Services

The pound sign (#) is a comment symbol for /etc/inetd.conf. There-
fore, if a server is running via inetd and you want to disable it, you can place
a pound sign at the start of the line. If you want to add a server to
inetd.conf, you’ll need to create an entry for it. Most servers that can be
run from inetd include sample entries in their documentation. Many distri-
butions ship with inetd.conf files that include entries for common servers,
as well, although many of them are commented out; remove the pound sign
at the start of the line to activate the server.

After modifying inetd.conf, you must restart the inetd super server
itself. This super server normally runs as a standard SysV server, so you can
restart it by typing something similar to the following:

/etc/rc.d/init.d/inetd restart

It’s generally wise to disable as many servers as possible in inetd.conf (or
the xinetd configuration files, if you use xinetd). As a general rule, if you
don’t understand what a server does, disable it. This will improve the security
of your system by eliminating potentially buggy or misconfigured servers
from the equation.

Editing xinetd.conf or xinetd.d Files

xinetd (pronounced “zi-net-dee”) is an extended super server. It provides
the functionality of inetd, plus security options that are similar to those of
TCP Wrappers. Mandrake began using xinetd with its version 7.1, and Red
Hat with its version 7.0. Other distributions may use it in the future. If you
like, you can replace inetd with xinetd on any distribution.

The /etc/xinetd.conf file controls xinetd. On both Red Hat and
Mandrake, though, this file contains only global default options and a direc-
tive to include files stored in /etc/xinetd.d. Each server that should run
via xinetd then installs a file in /etc/xinetd.d with its own configuration
options.

Whether the entry for a service goes in /etc/xinetd.conf or a file in
/etc/xinetd.d, it contains information similar to that in the inetd.conf
file. xinetd, though, spreads the information across multiple lines and labels
it more explicitly. Listing 6.2 shows an example that’s equivalent to the ear-
lier inetd.conf entry. This entry provides precisely the same information as

http://www.sybex.com

Starting and Stopping Services 417

the inetd.conf entry except that it doesn’t include a reference to /usr/
sbin/tcpd, the TCP Wrappers binary. Because xinetd includes similar
functionality, it’s generally not used with TCP Wrappers. Chapter 5 includes
information on xinetd security features.

Listing 6.2: Sample xinetd Configuration Entry

service ftp

{

 socket_type = stream

 protocol = tcp

 wait = no

 user = root

 server = /usr/sbin/in.ftpd

 server_args = -l -a

}

One additional xinetd.conf parameter is important: disable. If you
include the line disable = yes in a service definition, xinetd ignores the
entry. Some servers install startup files in /etc/xinetd.d that have this
option set by default; you must edit the file and change the entry to read
disable = no to enable the server. You can also disable a set of servers by
listing their names in the defaults section of the main xinetd.conf file on
a line called disabled, as in disabled = ftp shell.

As with inetd, after you make changes to xinetd’s configuration, you
must restart the super server. You do this by typing a command similar to the
following:

/etc/rc.d/init.d/xinetd restart

Custom Startup Files

Occasionally it’s desirable to start a server through some means other than
a SysV script or super server. This is most frequently the case when you’ve
compiled a server yourself or installed it from a package file intended for a
distribution other than the one you’re using, and when you don’t want to run
it through a super server for performance reasons. In such cases, the program
may not come with a SysV startup script, or it may not work correctly on
your system.

http://www.sybex.com

418 Chapter 6 � Managing Files and Services

Many Linux distributions include a startup script that runs after the other
SysV startup scripts. This script is generally called /etc/rc.d/rc.local,
/etc/rc.d/boot.local, or something similar. You can launch a server
from this script by typing the command you would use to launch the server
manually, as described in the server’s documentation. For instance, you
might include the following line to launch an FTP server:

/usr/sbin/in.ftpd -l -a

Some programs must have an ampersand (&) added to the end of the line
to have them execute in the background. If you fail to do this, subsequent
lines in the startup script may not run.

One thing to keep in mind when running a server via the custom startup
script is that this method provides no means to shut down a server, as you
can do by passing the stop parameter to a SysV startup script. If you want
to stop such a server, you’ll need to use the Linux kill or killall com-
mand, possibly after locating the server’s process ID number via ps. For
instance, take a look at the following:

ps ax | grep ftp

 6382 ? S 0:00 in.ftpd -l -a

kill 6382

ps is covered in Chapter 7, “Managing Partitions and Processes.” grep and the
pipe (|) are covered in Chapter 9, “Troubleshooting.”

Rather than provide a single custom local startup script, Debian and its
derivatives provide a directory, /etc/rc.boot, in which you can add your
own startup scripts. This approach allows you to create separate scripts for
each program you want to start up, or you can create a single script to do
them all, as you would with other distributions. Call your script whatever
you like within /etc/rc.boot; the /etc/init.d/rcS startup script runs all
the scripts in /etc/rc.boot, no matter what they’re called.

Setting the Runlevel

One way to change the services a system offers en masse is to change
the computer’s runlevel. As with individual services, you can change the run-
level either temporarily or permanently. Both can be useful. Temporary

http://www.sybex.com

Setting the Runlevel 419

changes are useful in testing changes to a system, and permanent changes are
useful in implementing changes on a permanent basis.

Understanding the Role of the Runlevel

As described earlier in this chapter, Linux enters a specific runlevel when it
boots in order to run some predetermined subset of the programs installed
on the computer. For instance, you might want to have two configurations
for a computer: one that provides all the computer’s usual array of network
servers, and another that provides a more limited set, which you use when
performing maintenance on the computer. By defining appropriate runlevels
and switching between them, you can easily enable or disable a large number
of servers.

On most Linux systems, the runlevel also controls whether or not the
computer provides a text-mode or GUI login prompt. The latter is the pref-
erable default state for most workstations, but the former is better for many
servers or in cases when the X configuration is suspect.

Using init or telinit to Change the Runlevel

The init program is critical to Linux’s boot process because it reads the
/etc/inittab file that controls the boot process and implements the set-
tings found in that file. Among other things, init sets the system’s initial
runlevel.

Once the computer has booted, you can use the telinit program to alter
the runlevel. (In practice, calling init directly also usually works because
telinit is usually just a symbolic link to init.) When using telinit, the
syntax is as follows:

telinit [-t time] runlevel

You can discover what runlevel your computer is in with the runlevel com-
mand. This command displays the previous and current runlevels as output.

In most cases, runlevel is the runlevel to which you want the system to
change. There are, however, a few special codes you can pass as well. Most
importantly, S or s brings the system into a single-user mode; and Q or q tells
the system to reexamine the /etc/inittab file and implement any changes
in that file.

http://www.sybex.com

420 Chapter 6 � Managing Files and Services

It’s possible to misconfigure X so that it doesn’t start. If you do this and your
system is set to start X automatically, with some distributions, one conse-
quence is that the system will try to start X, fail, try again, fail, and so on ad
infinitum. If the computer has network connections, one way to stop this cycle
is to log in remotely and change the runlevel to one that doesn’t start X. This
will stop the annoying screen flickering that results as X tries to start and fails.
You can then correct the problem from the remote login or from the console,
test X, and restore the default runlevel.

When switching runlevels, init must sometimes kill processes. It does so
politely at first by sending a SIGTERM signal, which is a way to ask a program
to manage its own shutdown. If that doesn’t work, though, init becomes
imperious and sends a SIGKILL signal, which is more likely to work but can
be more disruptive because the program may leave temporary files lying
about and be unable to save changes to open files. The -t time parameter
tells telinit how long to wait between sending these two signals to a pro-
cess. The default is five seconds, which is normally plenty of time.

One special case of runlevel change happens when you are shutting down
the computer. Runlevel 0 shuts down the computer and halts it—depending
upon kernel options and hardware capabilities, this may shut off power to
the computer, or it may simply place the computer in a state from which it’s
safe to turn off system power. Runlevel 6 reboots the computer. You can
enter these runlevels using telinit, but it’s better to use a separate com-
mand called shutdown to accomplish this task because it offers additional
options. The syntax for this command is as follows:

shutdown [-t sec] [-arkhcfF] time [warning-message]

The meanings of the parameters are as follows:

-t sec This is the delay, in seconds, between shutdown telling pro-
cesses to stop via SIGTERM and actually initiating the shutdown process.
The default is 5 seconds. This gives programs the chance to shut down
cleanly (closing open files, for instance).

-a The /etc/inittab file contains an invocation of shutdown that’s
called whenever the Ctrl+Alt+Del keystroke is pressed. This allows any-
body with physical access to the computer to restart it. If this is undesir-
able, add the -a parameter, and the system will check the /etc/
shutdown.allow file for a list of users authorized to shut down the

http://www.sybex.com

Setting the Runlevel 421

system. Only if one of those users is logged in at the console will
shutdown proceed.

-r This parameter causes a reboot after a shutdown. Essentially, it
invokes a change to runlevel 6.

-k This parameter “fakes” a shutdown—it sends a shutdown warning
message to users, but it doesn’t shut down the computer.

-h This parameter causes the system to halt after a shutdown. Essen-
tially, it invokes a change to runlevel 0.

-c If you initiate a shutdown but then change your mind, issuing
shutdown again with this parameter cancels it. This is most likely to be
useful when the shutdown command was scheduled for some time in the
future, rather than immediately.

-f This option causes the system to skip its disk check (fsck) when it
reboots.

-F This option forces a disk check (fsck) when it reboots.

time Shutdowns may be scheduled with this parameter, which can take
many different formats. now is a common value, which causes an imme-
diate shutdown. You can also specify a time in 24-hour hh:mm format, as
in 13:15 for a shutdown at 1:15 P.M. A time in the format +m causes a
shutdown in m minutes.

warning-message When many people use a system for remote logins,
it’s generally a good idea to give these users advance warning of a shut-
down. You can include a message explaining why the system is going
down or how long you expect it to be down.

On a single-user system, shutdown -h now and shutdown -r now are
perfectly reasonable uses of shutdown. When the system has many users, you
might be better off scheduling a shutdown for 5, 10, or more minutes in the
future and giving information on the expected downtime, as in the following:

shutdown -h +10 "adding new hard disk; up again in 30
�minutes"

http://www.sybex.com

422 Chapter 6 � Managing Files and Services

A few distributions include commands called halt and reboot that are equiv-
alent to shutdown -h now and shutdown -r now, respectively.

Permanently Changing the Runlevel

You can permanently change the computer’s runlevel by editing the /etc/
inittab file. This file contains a line like the following:

id:3:initdefault:

This example shows a system configured for runlevel 3. To change it,
you’d change the 3 to whatever value is appropriate. After making this
change, you can cause the system to switch immediately to the new runlevel
by running telinit, as described earlier. telinit Q will cause the system
to read your changes directly, or you can use the runlevel in place of Q.

Do not set the default runlevel to 0 or 6 since this will cause the system to
immediately shut down or reboot.

Basic GUI Use

As described in Chapter 2, “Installing Linux,” Linux’s GUI environ-
ment is not a monolithic one as is common on some other OSs. Instead, X is
a very modular system, allowing system administrators and even individual
users to radically alter the way the system works. Furthermore, different dis-
tributions customize their default environments, and offer different GUI
administration tools. Therefore, it’s difficult to provide detailed information
on “the” Linux GUI because one person’s GUI environment will be different
from the next one’s. Nonetheless, there are certain commonalities and gen-
eral principles, and this section covers these.

http://www.sybex.com

Basic GUI Use 423

Although Linux GUI system administration tools are becoming more com-
mon, they tend not to apply across distributions. Red Hat’s linuxconf is dif-
ferent from SuSE’s YaST2, for instance. For this reason, discussions of
“generic” Linux tend to emphasize text-based configuration methods.

Features Offered by Window Managers

Window managers provide both decorative and functional features atop the
“raw” windows provided by X. Understanding these features, and how they
differ between window managers, will help you to navigate a Linux system
and work in a variety of window managers, should the need arise. Figure 6.2
shows a typical window as displayed by the IceWM window manager
(http://icewm.sourceforge.net) using its Helix theme. This configura-
tion is visually similar to most other common Linux window managers,
although the details of coloration and patterning in the drag bar at the top
of the window often vary substantially, as do the details of widget availabil-
ity and placement.

F I G U R E 6 . 2 Window manager controls vary in appearance and location, but these are
typical.

Widgets Drag Bar Widgets

Border (Resizes Window) Resize Widget

http://www.sybex.com

424 Chapter 6 � Managing Files and Services

Window manager controls are frequently referred to as widgets. They’re
commonly found on either or both ends of the drag bar and sometimes else-
where as well. Features usually offered by a window manager that directly
relate to window manipulations include the following:

Window options Most window managers include a drop-down menu
accessed by clicking the widget in the upper-left corner. The exact con-
tents of this menu differ from one window manager to another, but typ-
ical options include the ability to hide, resize, move, maximize (grow to
fill the screen), and close a window. Some of these options, such as the
movement options, cause a new control to appear that will allow you to
perform the action.

Window movement Most window managers let you move the window
about the screen by clicking in the drag bar, keeping the mouse button
held down, and moving the mouse. Some also allow you to move a win-
dow by selecting an option from the window’s menu, as just described.

Resizing You can usually resize a window by clicking a resize widget in
the lower-right corner of the window. Many window managers allow
resizing in one direction by clicking the border of the window or by select-
ing a resize option from the main window option menu. Another common
resizing option maximizes the window. A few include a “roll up” option,
which eliminates all of the window but the drag bar. Minimizing the win-
dow makes it completely invisible; you must select it from a desktop menu
to retrieve it. Most window managers provide one-click widget shortcuts
for at least some of these options.

Closing Most window managers provide a widget that you can click or
double-click to close the window entirely. If you do this to the program’s
main window, this should cause the program running in the window to
terminate.

Some of these options may not be available on all windows, even when the
window manager supports the feature. For instance, some windows can’t be
resized. Programmers set the features that a window supports; window man-
agers provide the user interface to let you use these features.

Window managers also offer global features that affect the entire screen.
These are illustrated in Figure 6.3. These features include the following:

Control menu Window managers invariably provide some sort of menu
that’s used to launch programs and control overall window manager
function. In some cases (such as IceWM, as illustrated in Figure 6.3), this

http://www.sybex.com

Basic GUI Use 425

control menu can be accessed by clicking a button in a corner of the screen
(typically the lower-left corner). In other cases, the menu pops up when
you right-click anywhere on the screen that’s not occupied by a window
or other window manager element. Control menus can usually be custom-
ized through window manager configuration files.

F I G U R E 6 . 3 Window managers frequently provide access to global features in a bar on the
top or bottom of the screen.

Program launch features As just stated, you can usually launch pro-
grams through the control menu. Some window managers provide addi-
tional program launch features, such as the program launch buttons of
IceWM shown in Figure 6.3.

Pager A pager is a feature in which the window manager maintains mul-
tiple virtual desktops, each of which can host its own set of windows. This
feature can reduce desktop clutter, but it requires some sort of interface,
such as the six pager buttons shown in Figure 6.3. Click on a button to
bring up a new desktop.

Window selection When you have many windows open, it’s easy for
one to completely obscure another. Window selection buttons like those
shown in Figure 6.3 allow you to make a window fully visible even if it’s
completely obscured.

Information displays Many window managers provide clocks, system
activity meters, indicators of the presence of new e-mail, and other system
information displays.

Program
Launch Buttons

Pager
Buttons

Window Selection
Buttons

Clock

Control
Menu

http://www.sybex.com

426 Chapter 6 � Managing Files and Services

Desktop environments also provide many of these global features. The
desktop environment’s features generally override those of the window man-
ager when they’re in conflict. It’s important to remember that these features
vary from one window manager or desktop environment to another.

Features Offered by Desktop Environments

One of the roles filled by desktop environments is that of the global features
provided by many window managers, as just described. Desktop environ-
ments usually have program-launch facilities, pagers, system information
displays, and so on. These features can all be used just as in window man-
agers. Desktop environment control menus include ways to launch addi-
tional desktop environment tools, some of which may be run automatically
when you log in or start X. These tools include the following:

File managers A file manager allows you to copy files using your mouse,
launch the programs that created documents, and so on. They’re very con-
venient for users, and they can also be used to administer a Linux system,
although many system administrators prefer to use a text-based shell.
Many file managers, including those offered by the popular KDE and
GNOME packages, provide icons on the desktop that, when clicked or
double-clicked, open file manager windows on important directories,
such as the user’s home directory or the floppy disk mount point. File
managers also frequently include “trash cans” to which users may drag
files to be deleted. Such files aren’t actually deleted until some time later,
when the trash is “emptied.”

Desktop environment controls Traditionally, Unix systems have used
disparate programs and controls to adjust many aspects of a user’s GUI
environment, such as keyboard repeat rate, mouse tracking rate, desktop
background images, and so on. Desktop environments typically provide a
unified control utility, though, such as GNOME’s Control Center, shown
in Figure 6.4. From this program, you can adjust many aspects of the GUI
environment. Programs designed for the desktop environment will take
certain defaults (such as for fonts used in menus) from settings you adjust
in the control utility, further unifying the GUI experience. These settings
affect only one user’s defaults; the desktop environment stores these val-
ues in each user’s home directory, so one user’s preferences won’t annoy
another user who likes other settings.

http://www.sybex.com

Basic GUI Use 427

F I G U R E 6 . 4 Desktop environment control utilities let you adjust environment features on
an individualized basis.

Support utilities Desktop environments include support utilities, such
as calculators, text editors, mail programs, audio CD players, and even a
few simple games. Although you can use these programs from outside the
desktop environment, they are officially part of the environment, and can
be easily launched from the environment’s menus.

Overall, the best way to learn about a desktop environment’s capabilities
is to use it. Try investigating the programs available from the desktop envi-
ronment’s main menu. If you’re not sure what a program does, check to see
if it has a Help button or menu, or simply exit from it until you have time to
come back to it.

Unless you’re logged in as root or provide a root password if a program asks
for one, you can’t do serious damage to the Linux installation as a whole by
investigating programs in a desktop environment. There’s an outside chance
you could render an account unusable, though. If that happens, log in using
text mode (by pressing Ctrl+Alt+F1 and logging in) and delete the desktop
environment’s directory—.kde for KDE or .gnome for GNOME. The next time
the desktop environment starts up, it will restore default settings, so the
account should be usable again, although you’ll have lost your customizations.

http://www.sybex.com

428 Chapter 6 � Managing Files and Services

Launching an Xterm

One particularly important X program is known as the xterm. This is a pro-
gram that provides a text-based shell within X’s GUI environment. Most
window managers and desktop environments provide a very easy way to
launch an xterm window. For instance, the left program launch button in
Figure 6.3 starts an xterm. The icon for an xterm usually looks like a com-
puter terminal or monitor. Most desktop environments and window man-
agers also include one or more xterm options on their main menus.

In fact, there are several different programs that provide similar function-
ality. These include the original xterm; the similar rxvt program; and the
much flashier Konsole and GNOME Terminal of KDE and GNOME,
respectively. Throughout this book, I refer to xterm windows, but you can
use any xterm or xterm-like program you like. All xterms let you run text-
based programs under X. Most include a scroll bar so that you can view old
commands and long output listings. The more sophisticated versions include
additional features, like menus that allow you to quickly change color
schemes and font selections. (In the original xterm, these can be set by
options when launching the program. This requires modifying the window
manager or desktop environment’s xterm-launching command.)

Once an xterm is running, you can use it just like a text-mode login. You’ll
see a prompt for your shell, and then you can type commands at that prompt.
You can also cut-and-paste text between the xterm and other programs by
selecting the text and then clicking the middle mouse button in the destina-
tion program. (This procedure works between other X-based programs, as
well.) One exception to the rule of xterms working like text-mode logins is
that you don’t log out of an xterm by typing logout; you type exit instead.
There are also a few programs that can’t run in xterms—mainly programs
that create graphics displays using low-level calls to the graphics card, like
games and some graphics utilities. Many of these programs have X-based
equivalents, though, so you may be able to run one of these when in X.

GUI Administrative Tools

Most Linux distributions include some type of GUI administrative tools.
These provide point-and-click interfaces to a wide array of configuration
options, such as partition mount points, network configuration, network
server configuration, runlevels, user administration, and so on. Linux
distribution maintainers have not settled on a standard GUI administration

http://www.sybex.com

Basic GUI Use 429

tool. Some of the more common GUI administrative tools include the
following:

linuxconf Red Hat uses linuxconf as its GUI administrative tool, and
several distributions derived from Red Hat, such as Mandrake, Linux-
PPC, and Yellow Dog, use linuxconf as well. The tool operates in X
using GUI controls, in text mode or remote logins using text-based menus,
or via a Web browser. You can launch linuxconf by typing linuxconf
at an xterm or text-mode login, or by selecting it from a window manager
or desktop environment menu, if it’s on such a menu. To use linuxconf
from a Web browser, you must first configure linuxconf to start in that
way, typically by using linuxconf itself or by editing the /etc/
xinetd.d/linuxconf-web file as you would other xinetd-based serv-
ers. You would then direct a Web browser (potentially running on any
OS) to use linuxconf by entering the computer’s IP address or hostname
followed by :98, as in http://norbert.pangaea.edu:98.

YaST and YaST2 SuSE created Yet another Setup Tool (YaST) as a
configuration tool that uses text-based menus. YaST2 is the next-
generation, GUI-based configuration tool for SuSE systems. Like
linuxconf, these tools can be launched from menus on standard SuSE
desktop environments, or by typing their names (yast or yast2) in an
xterm or text-mode login.

COAS The Caldera Open Administration System (COAS) is Caldera’s
entry to the GUI administration tool sweepstakes. It can be launched from
menus on the standard Caldera desktop, or by typing coastool at an
xterm prompt.

SAS Stormix developed the Storm Administration System (SAS) for its
Storm Linux distribution. SAS supports both GUI and text-based menu
operation. It can be launched from menus on the standard Storm desktop,
or by typing sas at a command prompt.

Typically, GUI administrative tools organize administrative tasks into
groups, such as networking, user administration, filesystems, and so on.
Each of these groups has subgroups, which may in turn be further subdi-
vided. Eventually, you get to a configuration control for a specific feature,
where you can enter necessary configuration information in a window. Fig-
ure 6.5 illustrates this organization in Red Hat’s linuxconf, in which the
menu on the left lists the topic areas and the right portion of the window

http://www.sybex.com

430 Chapter 6 � Managing Files and Services

shows the ultimate data entry area. Some GUI administration tools (includ-
ing the version of linuxconf shipped with Mandrake) use a series of sepa-
rate windows for each topic area, rather than the menu on the left in Figure 6.5.

F I G U R E 6 . 5 GUI administration tools categorize administration tasks and provide point-
and-click interfaces to the underlying utilities.

GUI administrative tools are essentially very specialized editors; they make
changes to the underlying text-based configuration files. Therefore, you can
do anything with a text editor and a few commands that you can do with a GUI
configuration tool.

Basic Shell Scripting

You’ll do much of your work on a Linux system by typing commands
at a shell prompt. As you use Linux, though, you’re likely to find some of
these tasks to be quite repetitive. If you need to add a hundred new users to
the system, for instance, typing useradd a hundred times can be tedious.
Fortunately, Linux includes a way to cut through the tedium: shell scripts.
These are simple programs written in an interpreted computer language

http://www.sybex.com

Basic Shell Scripting 431

that’s embedded in the Linux shell you use to type commands. Most Linux
systems use the bash shell by default, so shell scripts are often written in the
bash shell scripting language; but the tcsh and other shell scripting lan-
guages are quite similar. In fact, it’s not uncommon to see shell scripts that
run in any common Linux shell.

Many Linux startup scripts, including SysV startup scripts, are in fact shell
scripts. Therefore, understanding shell scripting is necessary if you want to
modify a Linux startup script.

Like any programming task, shell scripting can be quite complex. Conse-
quently, this chapter barely scratches the surface of what can be accom-
plished through shell scripting. Consult a book on the topic, such as
Learning the Bash Shell by Cameron Newham and Bill Rosenblatt (O’Reilly,
1998), for more information.

Beginning a Shell Script

Shell scripts are plain text files, so you create them in text editors. A shell
script begins with a line that identifies the shell that’s used to run it, such as
the following:

#!/bin/sh

The first two characters are a special code that tells the Linux kernel that
this is a script and to use the rest of the line as a pathname to the program
that’s to interpret the script. Shell scripting languages use a pound sign (#) as
a comment character, so the script utility itself ignores this line, although the
kernel doesn’t. On most systems, /bin/sh is a symbolic link that points to
/bin/bash, but it could point to some other shell. Specifying the script as
using /bin/sh guarantees that an appropriate shell program will be present
on any Linux system that runs the script, but if the script uses any features
specific to a particular shell, you should specify that shell instead—for
instance, use /bin/bash or /bin/tcsh instead of /bin/sh.

When you’re done writing the shell script, you should modify it so that it’s
executable. You do this with the chmod command, as described in Chapter 4.
Specifically, you use the +x option to add execute permissions, probably in

http://www.sybex.com

432 Chapter 6 � Managing Files and Services

conjunction with a to add these permissions for all users. For instance, to
make a file called my-script executable, you’d issue the following command:

$ chmod a+x my-script

You’ll then be able to execute the script by typing its name, possibly
preceded by ./ to tell Linux to search in the current directory for the
script. If you fail to do this, you can still run the script by running the
shell program followed by the script name (as in bash my-script); but
it’s generally better to make the script executable. If the script is one you
run regularly, you may want to move it to a location on your path, such
as /usr/local/bin. When you do that, you won’t have to type the com-
plete path or move to the script’s directory to execute it; you can just type
my-script.

Using External Commands

One of the most basic features of shell scripts is the ability to run external
commands. Almost all the commands you type in a shell prompt are in
fact external commands—they’re programs located in /bin, /usr/bin,
and other directories on your path. You can run such programs by
including their names in the script. You can also specify parameters to such
programs in a script. For instance, suppose you want to start a script that
launches two xterms and the KMail mail reader program. (Listing 6.3 presents
a shell script that accomplishes this goal.) Aside from the first line that iden-
tifies it as a script, the script looks just like the commands you might type to
accomplish the task manually, aside from one fact: The script lists the com-
plete paths to each program. This is usually not strictly necessary, but listing
the complete path ensures that the script will find the programs even if the
PATH environment variable changes. Also, each program-launch line in List-
ing 6.3 ends in an ampersand (&). This character tells the shell to go on to the
next line without waiting for the first to finish. If you omit the ampersands
in Listing 6.3, the effect will be that the first xterm will open, but the second
won’t open until the first is closed. Likewise, KMail won’t start until the sec-
ond xterm is stopped.

Listing 6.3: A Simple Script That Launches Three Programs

#!/bin/bash

/usr/X11R6/bin/xterm &

/usr/X11R6/bin/xterm &

/usr/bin/kmail &

http://www.sybex.com

Basic Shell Scripting 433

Although launching several programs from one script can save time in
startup scripts and some other situations, scripts are more frequently used to
run a series of programs that manipulate data in some way. Such scripts typ-
ically do not include the ampersands at the ends of the commands, because
one command must run after another or may even rely upon output from the
first. A comprehensive list of such commands is impossible because you can
run any program you can install in Linux as a command—even another
script. A few commands that are commonly used in scripts include the
following:

Normal file manipulation commands The file manipulation commands
discussed in Chapter 7, such as ls, mv, cp, and rm, are often used in
scripts. You can use these commands to help automate repetitive file
maintenance tasks.

grep This command locates files that contain specific strings. In its most
basic form, you type grep pattern files to search for pattern within
the specified files. For instance, grep happy * searches for the string
happy within all files in the current directory.

find Where grep searches for patterns within the contents of files, find
does so based on filenames, ownership, and similar characteristics. find
also searches recursively by default, meaning that it searches all of the
subdirectories within any specified directory. To use find, you pass it one
or more directory names and an expression that includes a search crite-
rion. For instance, find /home -name "budget*" finds all files whose
names begin with budget in the /home directory and its subdirectories.

cut This command extracts text from fields in a file. It’s frequently used
to extract variable information from a file whose contents are highly pat-
terned. To use it, you pass it one or more options that control what it cuts
followed by one or more filenames. For instance, users’ home directories
appear in the sixth colon-delimited field of the /etc/passwd file. You
could therefore type cut -f 6 -d ":" /etc/passwd to extract this
information.

sed This program’s name stands for Stream Editor. It provides many of
the capabilities of a conventional text editor but via commands that can
be typed at a command prompt or entered in a script. For instance, if you
want to copy the file budget-01.txt to budget-02.txt but replace
every occurrence of the string 2001 with 2002, you could type sed
s/2001/2002/ budget-01.txt > budget-02.txt.

http://www.sybex.com

434 Chapter 6 � Managing Files and Services

echo Sometimes a script must provide a message to the user. echo is the
tool to accomplish this goal. You can pass various options to echo or just
a string to be shown to the user. For instance, echo "Press the Enter
key" causes a script to display the specified string.

Many of these commands are extremely complex; completely describing
them is beyond the scope of this chapter. You can consult these commands’
man pages for more information.

Even if you have a full grasp of how to use some key external commands,
simply executing commands you might type at a command prompt is of lim-
ited utility. Many administrative tasks require you to modify what you type
at a command, or even what commands you enter, depending upon infor-
mation from other commands. For this reason, scripts include additional fea-
tures to help you make your scripts useful.

Using Variables

Variables can help you expand the utility of scripts. A variable is a place-
holder in a script for a value that will be determined when the script runs.
Variables’ values can be passed as parameters to scripts or generated inter-
nally to the scripts.

Variables that are passed to the script are frequently called parameters.
They’re represented by a dollar sign ($) followed by a number from 0 up—
$0 stands for the name of the script, $1 is the first parameter to the script, $2
is the second parameter, and so on. To understand how this might be useful,
consider the task of adding a user. As described in Chapter 4, creating an
account for a new user typically involves running at least two commands—
useradd and passwd. You might also need to run additional site-specific
commands, such as commands to create unusual user-owned directories
aside from the user’s home directory. As an example of how a script with a
parameter variable can help in such situations, consider Listing 6.4. This
script creates an account and changes the account’s password (you’ll be
prompted to enter the password when you run the script). It creates a direc-
tory in the /shared directory tree corresponding to the account, and it sets
a symbolic link to that directory from the new user’s home directory. It also
adjusts ownership and permissions in a way that may be useful, depending
upon your system’s ownership and permissions policies.

http://www.sybex.com

Basic Shell Scripting 435

Listing 6.4: A Script to Reduce Account Creation Tedium

#!/bin/sh

useradd $1

passwd $1

mkdir /shared/$1

chown $1.users /shared/$1

chmod 775 /shared/$1

ln -s /shared/$1 /home/$1/shared

chown $1.users /home/$1/shared

If you use Listing 6.4, you need type only three things: the script name
with the desired username, and the password (twice). For instance, if the
script is called mkuser, you might use it like this:

mkuser ajones

Changing password for user ajones

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

Most of the scripts’ programs operate silently unless they encounter prob-
lems, so the interaction (including typing the passwords, which don’t echo to
the screen) is a result of just the passwd command. In effect, Listing 6.4’s
script replaces seven lines of commands with one. Every one of those lines
uses the username, so by using this script, you also reduce the chance of an
error.

Another type of variable is assigned within the script itself—for instance,
it can be set from the output of a command. These variables are also identi-
fied by leading dollar signs, but they’re typically given names that at least
begin with a letter, such as $ADDR or $NAME. (When assigning values to vari-
ables, the dollar sign is omitted, as illustrated shortly.) You can then use
these variables in conjunction with normal commands as if they were com-
mand parameters, but the value of the variable is passed to the command.

For instance, consider Listing 6.5, which implements simple firewall rules
using the ipchains utility. This script uses two variables. The first is $IP,
which is extracted from the output of ifconfig using grep and cut com-
mands. (The trailing backslash on the second line of the script indicates that
the following line is a continuation of the previous line.) The pipe operator

http://www.sybex.com

436 Chapter 6 � Managing Files and Services

(|) used in this assignment is discussed in Chapter 9. When assigning a value
to a variable from the output of a command, that command should be
enclosed in back-quote characters (`), which appear on the same key as the
tilde (~) on most keyboards. These are not ordinary single quotes, which
appear on the same key as the regular quote character (") on most key-
boards. The second variable, $IPCHAINS, simply points to the ipchains
program. It could as easily be omitted, with subsequent uses of $IPCHAINS
replaced by the full path to the program. Variables like this are sometimes
used to make it easier to modify the script in the future. For instance, if you
move the ipchains program, you need only modify one line of the script.
They can also be used in conjunction with conditionals to ensure that the
script works on more systems—for instance, if ipchains were called some-
thing else on some systems.

Listing 6.5: Script Demonstrating Assignment and Use of Variables

#!/bin/sh

IP=`ifconfig eth0 | grep inet | cut -f 2 -d ":" | \

 cut -f 1 -d " "`

IPCHAINS="/sbin/ipchains"

echo "Restricting access to $IP"

$IPCHAINS -A input -p tcp -s 0/0 -d $IP 25 -j REJECT

$IPCHAINS -A input -p tcp -s 0/0 -d $IP 80 -j REJECT

Listing 6.5 is a poor firewall. It blocks only two ports, and omits many other
features useful in a firewall. It is, however, an accessible demonstration of the
use of variables in a script.

Scripts like Listing 6.5, which obtain information from running one or
more commands, are useful in configuring features that rely on system-
specific information or information that varies with time. You might use a
similar approach to obtain the current hostname (using the hostname com-
mand), the current time (using date), the total time the computer’s been run-
ning (using uptime), free disk space (using df), and so on. When combined
with conditional expressions (described shortly), variables become even
more powerful because then your script can perform one action when one
condition is met, and another in some other case. For instance, a script that
installs software could check free disk space and abort the installation if
there’s not enough disk space available.

http://www.sybex.com

Basic Shell Scripting 437

Using Conditional Expressions

Scripting languages support several types of conditional expressions. These
allow a script to perform one of several different actions depending upon
some condition—typically the value of a variable. One common command
that uses conditional expressions is if, which allows the system to take one
of two actions depending upon whether or not some condition is true. if’s
conditional expression appears in brackets after the if keyword and can
take many forms. For instance, -f file is true if file exists and is a regular
file; -s file is true if file exists and has a size greater than 0; and string1
= string2 is true if the two strings have the same values.

To better understand the use of conditionals, consider the following code
fragment:

if [-s /tmp/tempstuff]

 then

 echo "/tmp/tempstuff found; aborting!"

 exit

fi

This fragment causes the script to exit if the file /tmp/tempstuff is
present. Such code might be useful if the script creates and then later deletes
this file, since its presence indicates that a previous run of the script didn’t
succeed.

Conditional expressions are sometimes used in loops, as well. Loops are
structures that tell the script to perform the same task repeatedly until some
condition is met (or until some condition is no longer met). For instance,
Listing 6.6 shows a loop that plays all the .wav audio files in a directory.

Listing 6.6: A Script That Executes a Command on Every Matching File in
a Directory

#!/bin/bash

for d in `ls *.wav` ;

 do play $d ;

done

The for loop as used here executes once for every item in the list gener-
ated by ls *.wav. Each of those items (filenames) is assigned in turn to the
$d variable and so is passed to the play command.

http://www.sybex.com

438 Chapter 6 � Managing Files and Services

Documenting System Configuration

One very important system administration task that’s easy to over-
look is that of documenting your configuration. Even a lightly used Linux
system is likely to collect dozens of changes to configuration files, program
installations, and other modifications over the course of its lifetime. It’s easy
to forget these changes, which can cause problems down the line. For
instance, if you alter a system startup script to launch a new server but then
replace or upgrade that server, a failure to modify that startup script can
cause error messages or result in the updated server not starting. Also, if the
system is seriously damaged or if you need to reproduce the system’s config-
uration on another computer, a good set of notes on the first system’s con-
figuration can be invaluable.

Maintaining an Administrator’s Log

Many administrators keep a written log of all system maintenance. By writ-
ten, I mean just that: recorded in a paper notebook. This format has an
advantage in that it’s not susceptible to many of the problems that can
plague an electronic notebook. For instance, if you keep a log on the com-
puter, that log will most probably be lost if your hard disk dies. A paper
notebook is also easily transported to another system, even one without net-
work connectivity, so that you can use your notes to reproduce a configura-
tion on another system.

What should you write in this computer diary? Important information to
record includes the following:

Initial configuration Record information on how the computer was
configured at system installation. This may include major hardware com-
ponents, disk partitioning information (including start and end points for
each partition—invaluable information should the partition table become
corrupt), the Linux distribution and version number, and major installa-
tion options (package sets, TCP/IP configuration options, and so on).

Package installations When you install a software package, as described
in Chapter 3, record this information. This is particularly important if you
compile a package yourself or install it from a tarball since these installa-
tion methods leave no record in a package management database, as RPM
and Debian package installations do.

http://www.sybex.com

Documenting System Configuration 439

Configuration file edits Whenever you edit a configuration file, summa-
rize your changes in the notebook. For small changes, you may want to
include precise descriptions of the change—for instance, give the exact
environment variable settings you add. For larger changes, you may want
to give an overview and leave the details to a backup file.

Filesystem changes Sometimes you must move programs around, or
resize your filesystems. When this happens, record what changes you
made. Again, when resizing partitions, record the precise sizes of the new
partitions.

Kernel recompilations If you recompile or upgrade your Linux kernel,
record the details of the changes, including the kernel version number, the
major features you added or omitted, and the name of the new kernel.

Hardware changes When adding, deleting, or reconfiguring hardware,
make note of those changes. Some of these will also be reflected in con-
figuration file changes. For instance, adding a hard disk will almost cer-
tainly entail changing the /etc/fstab file.

Correcting earlier entries If you make a change that invalidates infor-
mation in earlier entries, you may want to track them down and note the
change so that you don’t accidentally use the wrong information if you
ever need it in an emergency.

Ideally, the log book should be stored somewhere that’s readily available
whenever you administer the computer. A desk drawer next to the computer
may work well, for instance. The log won’t normally contain sensitive infor-
mation, but if it does, keep it locked away from prying eyes when it’s not
in use.

Do not record any passwords in the log book, and especially not the root
password. Only authorized administrators should know the root password,
and writing it or any other password down is an invitation to disaster. There’s
no need for any system administrator to know other users’ passwords
because root can do anything to other users’ accounts, or even assume other
users’ identities, as described in Chapter 9.

http://www.sybex.com

440 Chapter 6 � Managing Files and Services

Backing Up Important Configuration Files

One way to document your system’s configuration is to back up important
configuration files. The easiest way to do this is to back up the entire /etc
directory. This can be done with the tar command, described more fully in
Chapters 3 and 7:

mount /dev/fd0 /mnt/floppy

tar cvfz /mnt/floppy/etc.tgz /etc

These commands create a compressed backup of the entire /etc direc-
tory’s contents on a floppy disk mounted to /mnt/floppy. Some distribu-
tions, unfortunately, place more data in /etc than will fit on a single floppy
disk, even with compression, so you may need to use multiple floppies or
store the information on a higher-capacity disk like a Zip or LS-120 disk.

Of course, you should perform regular full backups of your computer,
which will store all your configuration files along with everything else. Keep-
ing a separate backup of /etc is most useful when you’ve made some exten-
sive change that’s causing problems; this way, you can recover a single file
from a smallish tarball on disk, which is usually much faster and safer than
recovering that file from a tape backup.

Backups of the /etc directory tree are not a substitute for a written adminis-
trator’s log. The administrator’s log includes information on what files you’ve
altered, which can help lead you directly to a change, rather than fumble
around in various files looking for a change. Likewise, a log isn’t a substitute
for configuration file backups; a log isn’t likely to contain the entire contents
of all the configuration files, any one of which might be necessary on short
notice in an emergency.

The /etc directory contains some data that should not be made readily avail-
able. In particular, the /etc/shadow file (or /etc/passwd on systems that don’t
use shadow passwords) contains encrypted passwords. Although these pass-
words are encrypted, weak passwords can be extracted via brute-force
attacks. Therefore, you should keep your /etc directory backups in a secure
location.

http://www.sybex.com

Summary 441

Summary

There are two basic classes of configuration files: user configuration
files and system configuration files. User configuration files are stored in
users’ home directories, and they allow users to customize the function of
various user-level programs. System configuration files reside in the /etc
directory tree and control various system-wide parameters.

Environment variables can be set on a system-wide basis to control certain
aspects of a user’s Linux experience, such as the default prompt. Users can
adjust their environment variables by typing appropriate commands or by
editing their personal startup files.

Starting and stopping specific services and setting the system’s runlevel
are how you control many aspects of a system’s overall “personality”—what
network servers the system runs, which set of locally defined services are run-
ning by default, and so on. Knowing how to adjust these features allows you
to customize your system, and can help you improve security by removing
unnecessary servers.

Although many administrative tasks can be done in text mode, many
users and even system administrators prefer to use a GUI environment.
Linux’s GUI environments have matured substantially since the mid-1990s,
and today they offer many of the comforts users more familiar with Win-
dows or MacOS have come to expect.

Many system administration tasks involve repetitive actions. For this rea-
son, most administrators learn to write at least basic shell scripts, which can
combine many commands in one, frequently using variables and conditional
expressions to improve the flexibility of the scripts.

When you edit configuration files or perform other system maintenance,
it’s important to document your changes. One useful technique for doing
this is to keep an administrator’s log book. Readily accessible backups of
important configuration files, such as the entire /etc directory tree, can also
help should you need to restore a configuration file to an earlier state.

http://www.sybex.com

442 Chapter 6 � Managing Files and Services

Exam Essentials

Describe the SysV startup procedure. The init process reads the /etc/
inittab file, which controls programs that run when changing from one
runlevel to another. Scripts in directories corresponding to each runlevel
start and stop services when the runlevel changes.

Know some of the most critical system configuration files. Important
system configuration files include/etc/inittab, which directs the boot
process; /etc/fstab, which determines how and where partitions are
mounted; /etc/modules.conf, which controls the loading of kernel
modules; and /etc/profile, which sets defaults for environment variables.

Summarize the purpose of environment variables. Environment vari-
ables provide information that should be invariant across programs, such
as the user’s name and the path to be searched for program files.

Explain the differences between SysV startup scripts and super servers for
running servers. SysV startup scripts start servers running on a com-
puter at startup or when changing runlevels so that the servers are always
running and can respond quickly to requests, but servers run in this way
consume RAM at all times. Super servers run the target servers only in
response to requests from clients, thus reducing the memory burden for
infrequently used servers but at the cost of slower responses to incoming
requests.

Describe the function of the runlevel. Sometimes you may want to run
a Linux system with a different set of services than you run at other times.
The runlevel lets you define several sets of services and switch quickly
between them.

Explain the purpose of GUI administrative tools. Traditional Unix or
Linux system administration involves using a large number of text-based
commands and editing a number of configuration files. GUI administra-
tion tools can ease a new administrator’s task by providing a common
user interface to these separate commands and files.

Describe how a shell script can be useful. A shell script combines sev-
eral commands, possibly including conditional expressions, variables,
and other programming features to make the script respond dynamically
to a system. Therefore, a shell script can reduce administrative effort by
performing a series of repetitive tasks at one command.

http://www.sybex.com

Key Terms 443

Commands in This Chapter

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

Command Description

telinit Changes the current runlevel.

man Displays help information on a command, configura-
tion file, or other system feature.

export Makes an environment variable available from the
bash shell.

setenv Sets an environment variable in tcsh and related
shells.

env Displays the current environment variables, or tem-
porarily changes them.

init Sets the initial runlevel of the computer.

telinit Changes the runlevel of the computer. (In reality, it’s
a symbolic link to init.)

shutdown Shuts down (halts) or restarts the computer.

xterm Provides a text-mode prompt when in X.

conditional expression module

dot file path

environment variable runlevel

getty shell script

loop startup script

http://www.sybex.com

444 Chapter 6 � Managing Files and Services

super server variable

System V widget

SysV startup script xterm

http://www.sybex.com

Review Questions 445

Review Questions

1. Which of the following describes most user configuration files?

A. They control which users may access a server.

B. Their filenames begin with dots (.).

C. They may not be edited by root.

D. They exist in the /etc directory tree.

2. Which of the following configuration files controls where Linux
mounts partitions and disks?

A. /etc/inittab

B. /etc/fstab

C. /etc/modules.conf

D. /etc/profile

3. Which of the following is a standard feature of Linux startup scripts?

A. They are stored in a binary format that must be edited with the
bedit program.

B. They are created from meta-configuration scripts using the m4
utility.

C. They are shell scripts that may be edited much like other shell
scripts.

D. They are standardized so that they may be transported across
distributions.

4. To alter a Linux system’s default runlevel, what would you do?

A. Issue the telinit x command, where x is the desired runlevel.

B. Edit /etc/modules.conf and enter the runlevel as an option to
the runlevel module.

C. Issue the telinit Q command to have the system query you for a
new runlevel.

D. Edit /etc/inittab and enter the correct runlevel in the
initdefault line.

http://www.sybex.com

446 Chapter 6 � Managing Files and Services

5. What is wrong with the following /etc/fstab file entry? (Choose all
that apply.)

/dev/hda8 nfs default 0 0

A. The entry is missing a mount point specification.

B. /etc/fstab fields should be separated by commas.

C. The default option may only be used with ext2 filesystems.

D. /dev/hda8 is a disk partition, but nfs indicates a network
filesystem.

6. Which of the following will add /usr/local/bigprog/bin to the
end of the PATH environment variable, if placed in /etc/profile?

A. export PATH=/usr/local/bigprog/bin

B. setenv PATH=$PATH:/usr/local/bigprog/bin

C. export PATH=$PATH:/usr/local/bigprog/bin

D. setenv PATH "${PATH}:/usr/local/bigprog/bin"

7. Who may set default environment variables for an ordinary user?

A. Either root or the user, with the user’s settings taking precedence

B. Either root or the user, with root’s settings taking precedence

C. root only

D. The user only

8. Where is the best location for the current directory indicator (.) to
reside in root’s PATH environment variable?

A. Before all other directories.

B. After all other directories.

C. Nowhere; it shouldn’t be in root’s path.

D. Wherever is convenient.

9. What types of information should you record in an administrator’s
log? (Choose all that apply.)

http://www.sybex.com

Review Questions 447

A. The exact contents of all configuration files

B. The locations of major utility programs, like e2fsck

C. Major options selected during system installation

D. Descriptions of changes to important configuration files

10. Which of the following methods is the best way to back up the /etc
directory?

A. Use tar to copy the contents to a floppy or other removable disk.

B. Print each file and keep the printed record in a binder or notebook.

C. Copy all the files to another system on the Internet.

D. Use diff to record the differences between the current files and
their original state.

11. A Linux system keeps its SysV startup scripts in the /etc/init.d
directory. Which of the following commands will temporarily stop the
ProFTPd server on that computer, if it’s started from these startup
scripts?

A. /etc/init.d/proftpd stop

B. sysvstop /etc/init.d/proftpd

C. sysvstop proftpd

D. /etc/init.d/proftpd stop5m

12. A new Linux system administrator edits /etc/inetd.conf to add a
server. After making this change, the administrator tests the new server,
but a remote system can’t access the new server. Why might this be?
(Choose all that apply.)

A. The administrator may have forgotten to restart inetd.

B. The system might be using xinetd rather than inetd.

C. The administrator may have forgotten to edit the /etc/rc.d/
init.d script for the new server.

D. The administrator may have forgotten to start the new server man-
ually for the first time.

http://www.sybex.com

448 Chapter 6 � Managing Files and Services

13. You’ve installed a server by compiling it from source code. The source
code included no SysV startup script, and you don’t want to run it
from a super server, so you start it in a local startup script (/etc/
rc.d/rc.local). You need to temporarily shut down the server.
How might you do this?

A. Type /etc/rc.d/rc.local stop.

B. Edit the startup script to remove the server and rerun the script.

C. Remove the server’s entry from /etc/inetd.conf and type
/etc/rc.d/init.d/inetd restart.

D. Find the server’s process ID number (pid) with ps and then type
kill pid.

14. Which of the following commands switches a running system into
runlevel 3?

A. telnet 3

B. runlevel 3

C. telinit 3

D. switch-runlevel 3

15. What does the following command, when typed by a system adminis-
trator at noon, accomplish?

shutdown -r 01:00 "Up again soon."

A. Reboots the computer at 1:00 P.M. (in 1 hour) and displays the
message Up again soon as a warning to users

B. Shuts down (halts) the computer at 1:00 P.M. (in 1 hour) and dis-
plays the message Up again soon as a warning to users

C. Shuts down (halts) the computer at 1:00 A.M. (in 13 hours) and
displays the message Up again soon as a warning to users

D. Reboots the computer at 1:00 A.M. (in 13 hours) and displays the
message Up again soon as a warning to users

http://www.sybex.com

Review Questions 449

16. Which of the following are common methods of resizing a window?
(Choose all that apply.)

A. Typing enlarge win-num at an xterm, where win-num is the win-
dow’s X ID number

B. Clicking the resize widget in the lower-right corner and dragging
to a new width and height

C. Clicking the maximize widget in the drag bar to have the window
fill the screen

D. Selecting a resize option from the window’s main menu widget and
dragging the resulting tool

17. Once you’ve started an xterm with default parameters, how can you
remove it from your screen? (Choose all that apply.)

A. By typing logout in the xterm window

B. By typing exit in the xterm window

C. By clicking a close widget in the window border, if one is present

D. By dragging the xterm window to the desktop environment’s
trash icon

18. After using a text editor to create a shell script, what step should you
take before trying to use the script?

A. Set one or more executable bits using chmod.

B. Copy the script to the /usr/bin/scripts directory.

C. Compile the script by typing bash scriptname, where
scriptname is the script’s name.

D. Run a virus checker on the script to be sure it contains no viruses.

19. Describe the effect of the following short script, cp1, if it’s called as
cp1 big.c big.cc:

#!/bin/sh

cp $2 $1

http://www.sybex.com

450 Chapter 6 � Managing Files and Services

A. It has the same effect as the cp command, copying the contents of
big.c to big.cc.

B. It compiles the C program big.c and calls the result big.cc.

C. It copies the contents of big.cc to big.c, eliminating the old
big.c.

D. It converts the C program big.c into a C++ program called
big.cc.

20. What is the purpose of conditional expressions in shell scripts?

A. They prevent scripts from executing if license conditions
aren’t met.

B. They display information on the script’s computer environment.

C. They allow the script to take different actions in response to vari-
able data.

D. They allow scripts to learn in a manner reminiscent of Pavlovian
conditioning.

http://www.sybex.com

Answers to Review Questions 451

Answers to Review Questions

1. B. Most user configuration files are “hidden” dot files that reside in
the user’s home directory. These seldom have any effect on server
operations. root may edit any normal file on the computer, including
user configuration files. System configuration files, not user configu-
ration files, reside in /etc.

2. B. /etc/inittab controls the boot process. /etc/modules.conf
contains information on kernel modules. /etc/profile sets default
environment variables for users of the bash shell.

3. C. Linux controls its startup process through shell scripts, which
makes the relevant files easy to edit once you understand shell script-
ing. These files are not stored in a binary format or created from meta-
configuration files. Standardization of startup scripts is poor across
distributions, so using a package that requires a startup script from
one distribution on another frequently requires you to edit or replace
the startup script.

4. D. /etc/inittab controls the default runlevel. Although telinit
can be used to temporarily change the runlevel, this change will not be
permanent. telinit Q tells the system to reread /etc/inittab, so it
could be used to implement a changed default after you’ve edited the
file, but it will have no effect before editing this file. /etc/modules
.conf has nothing to do with runlevels, and there is no standard
runlevel module.

5. A, D. A mount directory must be specified between the device entry
(/dev/hda8) and the filesystem type code (nfs). The nfs filesystem
type code may only be used with an NFS export specification of the
form server:/export, as the device specification. /etc/fstab fields
are separated by spaces or tabs, not commas (but commas are used
between individual options if several options are specified in the
options column). The default option may be used with any file-
system type.

http://www.sybex.com

452 Chapter 6 � Managing Files and Services

6. C. Option A sets the path to contain only the /usr/local/bigprog/
bin directory, rather than adding that directory to the existing path.
Options B and D use the tcsh syntax for setting the path, and option
B uses it incorrectly (/etc/profile is used for setting environment
variables in bash, not tcsh).

7. A. root may set environment variables in /etc/profile or other
system-wide configuration files, and users may set their own environ-
ment variables in .bashrc, other user-level configuration files, or by
typing them in manually. Because the user’s settings come later, they
override system defaults, if in conflict.

8. C. The current directory indicator is particularly dangerous in root’s
PATH environment variable because it can be used by unscrupulous
local users to trick root into running programs of the unscrupulous
user’s design.

9. C, D. The administrator’s log should contain information to help you
recover a nearly identical system should the need arise, or to help you
back out of configuration changes that don’t work. Options C and D
are useful to one or both of these goals. On the other hand, the exact
contents of all configuration files would be far too tedious to enter in
a paper log, and the locations of major utility programs are standard-
ized and easy to discover. (If you move a program from its standard
location, though, recording this fact may be in order.)

10. A. Floppies are reasonably quick and can usually hold all of the /etc
directory’s contents, when compressed. When floppies are too small,
Zip disks or similar media do well. Printouts are impractical when you
need to quickly recover an entire file. Some files in /etc are sensitive,
and so should not be transferred over the Internet. Also, an Internet
link could go down at an awkward time, preventing recovery of the
data. Although diff could produce a compact file of changes, keeping
this up-to-date could be difficult, and recovery after changes that were
not recorded through diff could be impossible.

http://www.sybex.com

Answers to Review Questions 453

11. A. There is no standard sysvstop command, so options B and C can’t
be correct. Option D uses a parameter (stop5m) that’s not standard,
and so it won’t stop the server. Option A stops the server, which can
be manually restarted later or which will restart automatically when
the system is rebooted, if it’s configured to do so.

12. A, B. After editing /etc/inetd.conf, inetd should be restarted, typ-
ically by typing /etc/rc.d/init.d/inetd restart or something
similar. An unused /etc/inetd.conf file can sometimes lure admin-
istrators used to configuring this file into editing it rather than config-
uring xinetd on systems that run this alternative super server.
Running or editing the target server’s startup script is unnecessary in
this scenario because the server is started from the super server; it’s not
run directly.

13. D. Killing the server with kill will stop it from running. Local startup
scripts don’t accept start and stop parameters like those used by
SysV startup scripts. Rerunning the startup script, even after editing it
to remove references to the target server, won’t kill running processes.
inetd is a super server, and since the server in question isn’t being run
from a super server, restarting inetd won’t kill the target server.

14. C. The telinit command changes runlevels. telnet is Linux’s Tel-
net client for initiating remote logins. runlevel displays the current
and previous runlevel, but doesn’t change the runlevel. There is no
switch-runlevel command.

15. D. The reboot time, when specified in hh:mm form, is given as a
24-hour clock time, so 01:00 corresponds to 1:00 A.M. The -r param-
eter specifies a reboot, not a halt. (-h specifies a halt.)

16. B, C, D. Most window managers provide many methods of resizing,
although some window managers don’t offer all of these options.
Although some programs provide command-line options to set initial
window size, there is no enlarge command to resize windows from
the command line.

http://www.sybex.com

454 Chapter 6 � Managing Files and Services

17. B, C. Xterm sessions can be closed by typing exit, by clicking a close
widget maintained by the window manager, or sometimes by selecting
a menu option in the xterm. (This last option is most common in
advanced xterm-like programs like those provided with GNOME and
KDE.) Xterm sessions are not “login sessions,” which means that typ-
ing logout won’t work. Desktop environment trash icons are used for
deleting files, not closing programs.

18. A. Scripts, like binary programs, normally have at least one executable
bit set, although they can be run in certain ways without this feature.
/usr/bin/scripts isn’t a standard directory, and scripts can reside
in any directory. Scripts are interpreted programs, which means they
don’t need to be compiled. Typing bash scriptname will run the
script. Viruses are extremely rare in Linux, and because you just cre-
ated the script, the only ways it could possibly contain a virus would
be if your system was already infected or if you wrote it as a virus.

19. C. The cp command is the only one called in the script, and that com-
mand copies files. Because the script passes the arguments ($1 and $2)
to cp in reverse order, their effect is reversed—where cp copies its first
argument to the second name, the cp1 script copies the second argu-
ment to the name of the first. cp has nothing to do with compiling C
or C++ programs, so neither does the script.

20. C. Conditional expressions return a “true” or “false” response, allow-
ing the script to execute one set of instructions or another, or to ter-
minate or continue a loop.

http://www.sybex.com

Chapter

7

Managing Partitions and
Processes

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

�

4.5 Manage and navigate the Linux hierarchy (e.g.,

/etc

,

/usr

,

/bin

,

/var

).

�

4.6 Manage and navigate the standard Linux file system (e.g.,

mv

,

 mkdir

,

ls

,

rm

).

�

4.8 Mount and manage filesystems and devices (e.g.,

/mnt

,

/dev

,

du

,

df

,

mount

,

umount

).

�

4.16 Create, edit, and save files using

vi

.

�

5.1 Create and manage local storage devices and file systems

(e.g.,

fsck

,

fdisk

,

mkfs

).

�

5.2 Verify user and

root

 cron jobs and understand the function

of cron.

�

5.3 Identify core dumps and remove or forward as appropriate.

�

5.6 Differentiate core services from non-critical services (e.g.,

ps

, PID, PPID,

init

, timer).

�

5.7 Identify, execute, and kill processes (

ps

,

kill

,

killall

).

�

5.10 Perform and verify backups and restores.

http://www.sybex.com

M

ost computers’ actions are tied very closely to their disk
partitions and the files they contain. Web servers must be able to deliver Web
files stored on disk, workstations must be able to run applications and store
data on disk, and so on. Therefore, it’s important that you be able to manage
these files and the filesystems that contain them when you work with a Linux
computer. Much of this chapter is devoted to this topic, starting with parti-
tion management and moving on to the Linux filesystem layout, backups,
and commands to manipulate and edit files. This chapter concludes with a
look at processes—essentially, running programs. This topic includes how to
manage these processes so that they don’t run out of control and what to do
when a program crashes.

The term filesystem has two meanings. First, it may refer to an organized col-
lection of files, stored in some specific set of directories. For instance, as
described shortly, there are certain filesystem standards for Linux that specify
in what directories certain types of files reside. Second, “filesystem” may
refer to the low-level data structures used to organize files on a hard disk par-
tition or removable disk. There are several different filesystems of this second
variety, such as ext2fs, ReiserFS, and FAT. This chapter covers both types of
filesystems; which meaning is meant is usually clear from the context. When
it isn’t, I clarify by using terms such as “directory structure” for the first type

or “low-level filesystems” for the second variety.

http://www.sybex.com

Partition Management and Maintenance

457

Partition Management and Maintenance

L

inux systems store their data on disk partitions. These are contiguous
sections of a hard disk that hold a particular type of data. Most partitions
hold filesystems, which in this context means low-level data structures that
control the placement of files within the partition. Chapter 2, “Installing
Linux,” introduced these concepts, but this chapter covers some of the
details of managing partitions and the filesystems that they contain.

Using

fdisk

 to Create Partitions

Linux’s native tool for partition creation is known as

fdisk

, which stands
for “fixed disk.” This utility is named after a DOS tool, which I refer to in
this book in uppercase letters (

FDISK

) to differentiate it from Linux’s

fdisk

;
although the tools perform similar tasks, they’re very different in operation.
Most other OSs include their own disk partitioning software, as well.

Linux on non-

x

86 systems may not use a tool called

fdisk

. For instance,
PowerPC versions of Linux use a tool called

pdisk

. Some important opera-
tional details differ between platforms, so if you’re using a non-

x

86 system,

consult the documentation for your distribution and its disk-partitioning tool.

Linux’s

fdisk

 is a text-based tool that requires you to type one-letter
commands. You can obtain a list of commands by typing

?

 or

m

 at the

fdisk

prompt. The most important

fdisk

 commands are as follows:

d

Delete a partition.

n

Create a new partition.

p

Display (print) the partition layout.

q

Quit without saving changes.

t

Change a partition’s type code.

w

Write (save) changes and quit.

To start

fdisk

, type its name followed by the Linux device filename asso-
ciated with your disk device, such as

/dev/sda

 or

/dev/hdb

, as in

fdisk
/dev/hdb

. When you first start

fdisk

, the program displays its prompt. It’s

http://www.sybex.com

458

Chapter 7 �

Managing Partitions and Processes

often helpful to type p at this prompt to see the current partition layout, as
shown in Figure 7.1. This will help you verify that you’re operating on the
correct disk, if you have more than one hard disk. It will also show you
the device IDs of the existing disk partitions.

F I G U R E 7 . 1 As a text-based program, fdisk can be run in text mode or in an xterm, as
shown here.

The x86 partitioning scheme uses three partition types. The main parti-
tion table on the disk has room for only four partitions. These partitions are
referred to as the primary partitions, and Linux numbers them from 1 to 4,
although any of these numbers may be missing. For instance, note that the
disk depicted in Figure 7.1 has no partition number 1 or 2; its partitions
begin with number 3, as shown in the numbers in the Device column. One
primary partition may be set aside to be used as a placeholder for additional
partitions. This special primary partition is known as an extended partition.
fdisk identifies these in the System column of its output, as shown in
Figure 7.1. The partitions that are contained within an extended partition
are known as logical partitions, and are numbered from 5 up. Extended par-
tition numbers always begin with 5, then go on to 6, and so on. If you add
or delete a logical partition, the numbers adjust automatically. For instance,
in Figure 7.1, if partition 7 were deleted, partition 8 would become the new
partition 7.

http://www.sybex.com

Partition Management and Maintenance 459

You can use the commands outlined above to alter a disk’s partition lay-
out, but be aware that your changes are potentially destructive. Deleting par-
titions will make their data inaccessible. Some commands require you to
enter additional information, such as partition numbers or sizes for new par-
titions. For instance, the following sequence illustrates the commands asso-
ciated with adding a new partition:

Command (m for help): n

Command action

 l logical (5 or over)

 p primary partition (1-4)

l

First cylinder (519-784, default 519): 519

Last cylinder or +size or +sizeM or +sizeK (519-784,
default 784): +2G

You can enter the partition size in terms of cylinder numbers or as a size
in bytes, kilobytes, megabytes, or gigabytes (which isn’t mentioned in the
prompt but does work). When you’ve made your changes, type w to write
them to disk and exit. If you make a mistake, type q immediately; doing this
will exit from fdisk without committing changes to disk.

Creating New Filesystems

Just creating partitions isn’t enough to make them useful in Linux. To make
them useful, you must create a filesystem on the partition. (A task that’s also
sometimes called “formatting” a partition.) Linux uses the mkfs program to
accomplish this task. This tool has the following syntax:

mkfs [-V] [-t fstype] [options] device [blocks]

mkfs is actually just a front-end to tools that do the real work for specific file-
systems, such as mke2fs (also known as mkfs.ext2). You can call these tools
directly if you prefer, although their syntax may vary from that of mkfs.

The meanings of the mkfs parameters are as follows:

-V This option causes mkfs to generate verbose output, displaying addi-
tional information on the filesystem-creation process.

http://www.sybex.com

460 Chapter 7 � Managing Partitions and Processes

-t fstype You specify the filesystem type with this option. Common
values for fstype include ext2 (for ext2fs), msdos (for FAT), and minix
(for Minix).

options You can pass filesystem-specific options to the utility. Most
underlying filesystem creation tools support -c (to perform a low-level
disk check to be sure the hardware is sound) and -v (to perform a verbose
creation).

device This is the name of the device on which you want to create the
filesystem, such as /dev/sda5 or /dev/fd0. You should not normally
specify an entire hard disk here (such as /dev/sda or /dev/hdb). One
exception might be if it’s a removable disk, but even these are often
partitioned.

blocks This is the size of the filesystem in blocks (usually 1024 bytes in
size). You don’t normally need to specify this value, since mkfs can deter-
mine the filesystem size from the size of the partition.

Depending upon the size and speed of the disk device, the filesystem cre-
ation process is likely to take anywhere from a second or less to a minute or
two. If you specify a filesystem check (which is often a good idea), this pro-
cess can take several minutes, or possibly over an hour. Once it’s done, you
should be able to mount the filesystem and use it to store files.

The filesystem creation process is inherently destructive. If you accidentally
create a filesystem in error, it will be impossible to recover files from the old
filesystem unless you’re very knowledgeable about filesystem data struc-
tures, or you can pay somebody with such knowledge. Recovery costs are apt
to be very high.

As noted earlier, mkfs is just a front-end to other utilities. These are some-
times called directly instead. For instance, the usual method of formatting a
ReiserFS partition is to use the mkreiserfs utility.

Checking a Filesystem for Errors

Creating partitions and filesystems are tasks you’re likely to perform every
once in a while—say, when adding a new hard disk or making major changes
to an installation. Another task is much more common, though: checking a

http://www.sybex.com

Partition Management and Maintenance 461

filesystem for errors. Bugs, power failures, and mechanical problems can all
cause the data structures on a filesystem to become corrupt. The results are
sometimes subtle, but if they are left unchecked, they can cause severe data
loss. For this reason, Linux includes tools to verify a filesystem’s integrity,
and to correct any problems that might exist. The main tool you’ll use for
this purpose is called fsck. Like mkfs, fsck is actually a front-end to other
tools, such as e2fsck (aka fsck.ext2). The syntax for fsck is as follows:

fsck [-sACVRTNP] [-t fstype] [--] [fsck-options]
�filesystems

The following list contains the meanings of the more common parameters
to this command:

-A This option causes fsck to check all the filesystems marked to be
checked in /etc/fstab. This option is normally used in system startup
scripts.

-C This option displays a text-mode progress indicator of the check pro-
cess. Most filesystems don’t support this feature, but ext2fs does.

-V This option produces verbose output of the check process.

-N This option tells fsck to display what it would normally do, without
actually doing it.

-t fstype Normally, fsck determines the filesystem type automati-
cally. You can force the type with this flag, though. If used in conjunction
with -A, this causes the system to check only the specified filesystem types,
even if others are marked to be checked. If fstype is prefixed with no,
then all filesystems except the specified type are checked.

-- fsck-options Filesystem check programs for specific filesystems
often have their own options. fsck passes options it doesn’t understand,
or those that follow a double dash (--), to the underlying check program.
Common options include -a or -p (perform an automatic check), -r (per-
form an interactive check), and -f (force a full filesystem check even if it
appears to be clean).

filesystems This is the name of the filesystem or filesystems being
checked, such as /dev/sda6.

Normally, you run fsck with only the filesystem name, as in fsck /dev/
sda6. You can add options as needed, however. Check the fsck man page
for less common options.

http://www.sybex.com

462 Chapter 7 � Managing Partitions and Processes

Run fsck only on filesystems that are not currently mounted, or that are
mounted in read-only mode. Changes written to disk during normal read/
write operations can confuse fsck and result in filesystem corruption.

Linux runs fsck automatically at startup on partitions that are marked
for this in /etc/fstab, as discussed in Chapter 6, “Managing Files and Ser-
vices.” The normal behavior of e2fsck causes it to perform just a quick cur-
sory examination of a partition if it’s been unmounted cleanly. The result is
that the Linux boot process isn’t delayed because of a filesystem check unless
the system wasn’t shut down properly. There are a couple of exceptions to
this rule, though: e2fsck forces a check if the disk has gone longer than a
certain amount of time without checks (normally six months), or if the file-
system has been mounted more than a certain number of times since the last
check (normally 20). Therefore, you will occasionally see automatic file-
system checks of ext2fs partitions even if the system was shut down correctly.

A new generation of filesystems, exemplified by ext3fs, ReiserFS, JFS, and
XFS, does away with filesystem checks at system startup even if the system
was not shut down correctly. These journaling filesystems keep a log of
pending operations on the disk so that in the event of a power failure or sys-
tem crash, the log can be checked and its operations replayed or undone to
keep the filesystem in good shape. This action is automatic when mounting
such a filesystem. Nonetheless, these filesystems still require check programs
to correct problems introduced by undetected write failures, bugs, hardware
problems, and the like. If you encounter odd behavior with a journaling file-
system, you might consider unmounting it and performing a filesystem
check—but be sure to read the documentation first. In mid-2001, Linux’s
journaling filesystems were still largely experimental, and the support utili-
ties (including filesystem check programs) were under active development
and were potentially buggy.

Partition Control

One of a system administrator’s tasks is to manage disk partitions.
“Planning Disk Partitioning” in Chapter 1, “Planning the Implementation,”
introduced some of the concerns involved in designing an initial partition

http://www.sybex.com

Partition Control 463

layout, but you may need to alter these decisions after installation. You may
also need to mount and unmount removable media devices, such as floppies
and CD-ROMs.

Identifying Partitions

Linux identifies partitions using device files whose names are based on those
for the low-level hardware devices. Specifically, Linux numbers its parti-
tions: 1–4 for primary and extended partitions, and 5 and up for logical par-
titions within an extended partition. To access a particular partition, append
its number to the device filename for a particular hard disk. For instance, if
the hard disk is /dev/sda (the first SCSI hard disk), you’d use /dev/sda5 to
access the first logical partition on that disk.

Removable media sometimes use partitions, but sometimes don’t. You might
access a removable SCSI disk through /dev/sda, /dev/sda1, /dev/sda4, or
some other partition number. Zip disks come prepartitioned with a single par-
tition: number 4. Magneto-optical discs and CD-ROMs are seldom partitioned.

Of course, you must first know the base name for the disk device. Two
types of disk devices are common in Linux: EIDE and SCSI. Each type of
device has its own identification rules. For EIDE, the device filenames all
begin with /dev/hd, and continue with a letter to identify the specific device.
EIDE devices can be classified according to two factors: The EIDE interface
or chain (each chain has one physical connector on the motherboard or EIDE
controller) and whether the drive is configured as a master or slave drive.
Most x86 motherboards support two chains, and each chain supports one
master and one slave drive. Linux labels these starting with a for the master
on the primary chain, then b for the slave on the primary chain, c for the
master on the secondary chain, and d for the slave on the secondary chain.
If you add another chain, the letters continue to e and onward. Thus, almost
all EIDE-based systems will have a /dev/hda, and additional drives may
take other identifiers. A system might have /dev/hda and /dev/hdc, but no
/dev/hdb, for instance. CD-ROM, Zip, and other removable-media devices
use the same identification scheme.

SCSI works somewhat differently. With SCSI, the first physical disk is
always /dev/sda, the second is always /dev/sdb, and so on. This is true no
matter what the SCSI IDs of the specific drives, or if the drives are used from

http://www.sybex.com

464 Chapter 7 � Managing Partitions and Processes

the same host adapter. Most removable-media disks (like Zip or magneto-
optical disks) use these same identifiers, but CD-ROM drives are an excep-
tion. The first SCSI CD-ROM drive is called /dev/scd0, the second is /dev/
scd1, and so on.

Most systems create a link so that you can use /dev/cdrom to access your CD-
ROM drive, no matter what it’s called.

Linux also supports floppy disks, of course. On a one-floppy system,
you’ll most frequently use /dev/fd0 as the device filename. Higher numbers
(/dev/fd1 and above) refer to additional floppy drives. There are also device
filenames that refer to a floppy of a specific capacity, such as /dev/
fd0H1440 for a 1440KB floppy.

If you don’t remember what Linux called your partitions at system instal-
lation, you can use the fdisk program to find out. Pass it the -l parameter
(that’s a lowercase L, not a number 1) and the name of a disk device (such
as /dev/hdb or /dev/sda) to obtain a listing of the partitions on that
disk, thus:

fdisk -l /dev/hdb

Disk /dev/hdb: 255 heads, 63 sectors, 1216 cylinders

Units = cylinders of 16065 * 512 bytes

 Device Boot Start End Blocks Id System

/dev/hdb1 257 1216 7711200 5 Extended

/dev/hdb2 1 192 1542208+ fb Unknown

/dev/hdb3 193 256 514080 17 Hidden HPFS/
�NTFS

/dev/hdb5 257 516 2088418+ 6 FAT16

/dev/hdb6 * 517 668 1220908+ 7 HPFS/NTFS

/dev/hdb7 669 1216 4401778+ 83 Linux

This output shows the device name associated with the partition, the start
and end cylinder numbers, the number of 1024-byte blocks in the partition,
the partition’s hexadecimal (base 16) ID code, and the partition or OS type
associated with that code.

http://www.sybex.com

Partition Control 465

Linux ignores the partition ID code except during installation and to identify
extended partitions, but some other OSs use it to determine which partitions
they should try to mount. Therefore, it’s important that you set any Linux par-
tition’s ID code to 0x83. (Linux swap partitions use 0x82.)

Mounting and Unmounting Partitions

Linux provides the mount and umount commands to mount and unmount
partitions, respectively. (Yes, umount is spelled correctly; it’s missing the first
n.) In practice, using these commands is usually not too difficult, but they
support a large number of options.

Syntax and Parameters for mount

The syntax for mount is as follows:

mount [-alrsvw] [-t fstype] [-o options] [device]
�[mountpoint]

The following is a list of the most common parameters for mount:

-a This parameter causes mount to mount all the files listed in the /etc/
fstab file, which specifies the most-used partitions and devices. Chapter 6
includes a discussion of this file’s format.

-r This parameter causes Linux to mount the filesystem read-only, even
if it’s normally a read/write filesystem.

-v As with many commands, -v produces verbose output—comments
on operations as they occur.

-w This parameter causes Linux to attempt to mount the filesystem for
both read and write operations. This is the default for most filesystems,
but some experimental drivers default to read-only operation.

-t fstype Use this parameter to specify the filesystem type (fstype).
Common filesystem types are ext2 (for ext2fs), vfat (for FAT with
VFAT long filenames), msdos (for FAT using only short DOS filenames),
iso9660 (for CD-ROM filesystems), and nfs (for NFS network exports).
Linux supports many others, though. If this parameter is omitted, Linux
will attempt to auto-detect the filesystem type.

http://www.sybex.com

466 Chapter 7 � Managing Partitions and Processes

-o options You can add many options using this parameter. Many of
these are filesystem-specific.

device The device is the device filename associated with the partition
or disk device, such as /dev/hda4, /dev/fd0, or /dev/cdrom. This
parameter is usually required, but it may be omitted under some circum-
stances, as described shortly.

mountpoint This is the directory to which the device’s contents should
be attached. As with device, it’s usually required, but it may be omitted
under some circumstances.

The preceding list of mount parameters isn’t comprehensive; consult the
mount man page for some of the more obscure options. The most common
use of mount uses few parameters, because Linux generally does a good job
of detecting the filesystem type, and the default parameters work reasonably
well. For instance, consider this example:

mount /dev/sdb7 /mnt/shared

This command mounts the contents of /dev/sdb7 on /mnt/shared,
auto-detecting the filesystem type and using the default options. Ordinarily,
only root may issue a mount command; however, if /etc/fstab specifies
the user or owner option, an ordinary user may mount a filesystem using a
simplified syntax in which only the device or mount point is specified, but
not both. For instance, a user might type mount /mnt/cdrom to mount a
CD-ROM drive, if /etc/fstab specifies /mnt/cdrom as its mount point and
uses the user or owner option.

Many Linux distributions ship with auto-mounter support, which causes the
OS to automatically mount removable media when they’re inserted. In GUI
environments, a file browser may also open on the inserted disk. The user will
need to unmount the filesystem by using umount, as described shortly, or by
selecting an option in the desktop environment.

Options for mount

When you do need to use special parameters, it’s usually to add filesystem-
specific options. Table 7.1 summarizes the most important filesystem
options. Some of these are meaningful only in the /etc/fstab file.

http://www.sybex.com

Partition Control 467

T A B L E 7 . 1 Important Filesystem Options for the mount Command

Option

Supported

Filesystems Description

defaults All Uses the default options for this filesystem. It’s
used primarily in the /etc/fstab file to ensure that
there’s an options column in the file.

loop All Uses the loopback device for this mount. Allows
you to mount a file as if it were a disk partition. For
instance, mount -t vfat -o loop image.img
/mnt/image mounts the file image.img as if it were
a disk.

auto or noauto All Mounts or does not mount the filesystem at boot
time or when root issues the mount -a command.
Default is auto, but noauto is appropriate for
removable media. Used in /etc/fstab.

user or nouser All Allows or disallows ordinary users to mount the
filesystem. Default is nouser, but user is often
appropriate for removable media. Used in /etc/
fstab. When included in this file, user allows
users to type mount /mountpoint, where
/mountpoint is the assigned mount point, to
mount a disk.

owner All Similar to user, except that the user must own the
device file. Some distributions, such as Red Hat,
assign ownership of some device files (such as
/dev/fd0, for the floppy disk) to the console user,
so this can be a helpful option.

remount All Changes one or more mount options without
explicitly unmounting a partition. To use this
option, you issue a mount command on an already-
mounted filesystem, but with remount along with
any options you want to change. Can be used to
enable or disable write access to a partition, for
example.

http://www.sybex.com

468 Chapter 7 � Managing Partitions and Processes

ro All Specifies a read-only mount of the filesystem. This
is the default for filesystems that include no write
access and for some with particularly unreliable
write support.

rw All read/write
filesystems

Specifies a read/write mount of the filesystem.
This is the default for most read/write filesystems.

uid=value Most filesystems
that don’t support
Unix-style
permissions, such
as vfat, hpfs, ntfs,
and hfs

Sets the owner of all files. For instance, uid=500
sets the owner to whoever has Linux user ID 500.
(Check Linux user IDs in the /etc/passwd file.)

gid=value Most filesystems
that don’t support
Unix-style
permissions, such
as vfat, hpfs, ntfs,
and hfs

Works like uid=value, but sets the group of all files
on the filesystem. You can find group IDs in the
/etc/group file.

umask=value Most filesystems
that don’t support
Unix-style permis-
sions, such as vfat,
hpfs, ntfs, and hfs

Sets the umask for the permissions on files. value
is interpreted in binary as bits to be removed from
permissions on files. For instance, umask=027
yields permissions of 750, or –rwxr-x---. Used in
conjunction with uid=value and gid=value, this
option lets you control who can access files on
FAT, HPFS, and many other foreign filesystems.

conv=code Most filesystems
used on Microsoft
and Apple OSs:
msdos, umsdos, vfat,
hpfs, ntfs, hfs

If code is b or binary, Linux doesn’t modify the
files’ contents. If code is t or text, Linux auto-
converts files between Linux-style and DOS- or
Macintosh-style end-of-line characters. If code is a
or auto, Linux applies the conversion unless the
file is a known binary file format. It’s usually best
to leave this at its default value of binary because
file conversions can cause serious problems for
some applications and file types.

T A B L E 7 . 1 Important Filesystem Options for the mount Command (continued)

Option

Supported

Filesystems Description

http://www.sybex.com

Partition Control 469

Some filesystems support additional options that aren’t discussed here.
The mount man page covers some of these, but you may need to look to the
filesystem’s documentation for some filesystems and options. This documen-
tation may appear in /usr/src/linux/Documentation/filesystems or
/usr/src/linux/fs/fsname, where fsname is the name of the filesystem.

Using umount

umount is a simpler command than mount. The basic umount syntax is as
follows:

umount [-anrv] [-t fstype] [device | mountpoint]

Most of these parameters have similar meanings to their meanings in
mount; but there are some differences that deserve mention:

-a Rather than unmount partitions listed in /etc/fstab, this option
causes the system to attempt to unmount all the partitions listed in /etc/
mtab. On a normally running system, this operation is likely to succeed
only partly because it won’t be able to unmount some key filesystems,
such as the root partition.

-r This option tells umount that if it can’t unmount a filesystem, it
should attempt to remount it in read-only mode.

-t fstype This option tells the system to unmount only partitions of
the specified type. You can list multiple filesystem types by separating
them with commas.

device and mountpoint You need to specify only the device or only
the mount point, not both.

norock iso9660 Disables Rock Ridge extensions for ISO-9660
CD-ROMs.

nojoliet iso9660 Disables Joliet extensions for ISO-9660 CD-ROMs.

T A B L E 7 . 1 Important Filesystem Options for the mount Command (continued)

Option

Supported

Filesystems Description

http://www.sybex.com

470 Chapter 7 � Managing Partitions and Processes

As with mount, normal users cannot ordinarily use umount. The exception
is if the partition or device is listed in /etc/fstab and specifies the user or
owner option, in which case normal users can unmount the device. (In the
case of owner, the user issuing the command must also own the device file,
as with mount.) This is most useful for removable-media devices.

Be cautious when removing floppy disks. Linux caches accesses to floppies,
which means that data may not be written to the disk until some time after a
write command. Because of this, it’s possible to corrupt a floppy by ejecting
the disk, even when the drive isn’t active. You must always issue a umount
command before ejecting a floppy disk. This isn’t an issue for most non-
floppy removable media because Linux can lock their eject mechanisms, pre-
venting this sort of problem. Another way to write the cache to disk is to use
the sync command, but because this command does not fully unmount a file-
system, it’s not really a substitute for umount.

Using df

If you need information on disk space used on an entire partition, the df
command does the job. This command summarizes total, used, and available
disk space. df supports many options, the most important of which are
listed here:

-h or --human-readable Normally, df provides output in 1024-byte
blocks. This option makes it provide listings in labeled units of kilobytes
(k), megabytes (M), or gigabytes (G) instead.

-i or --inodes By default, df displays disk space used, but this option
causes df to display information on the consumption of inodes. These are
data structures used on Linux filesystems that hold file information. Some
filesystems, such as ext2fs, have a fixed number of inodes when format-
ted. Others, such as FAT and ReiserFS, don’t, so this information is spu-
rious or meaningless with these filesystems.

-l or --local This option causes df to ignore network filesystems.

-T or --print-type This option causes df to display the filesystem
type code along with other information.

http://www.sybex.com

Understanding the Linux Filesystem Hierarchy 471

You can type df alone or in combination with options to obtain informa-
tion on your system’s mounted partitions. If you want information on just
one partition, you can add either the device on which it resides or any file or
directory on the filesystem to restrict df’s output to that one partition. In
action, df works like this:

df -hT

Filesystem Type Size Used Avail Use% Mounted on

/dev/hda9 ext2 2.0G 1.8G 96M 95% /

/dev/hdb5 vfat 2.0G 1.4G 564M 72% /mnt/windows

speaker:/home nfs 4.5G 2.2G 2.3G 49% /mnt/speaker/
�home

/dev/hdb7 reiserfs 4.2G 1.9G 2.3G 45% /home

df is extremely useful in discovering how much free space is available on
a disk and how well distributed across partitions your files are.

Linux’s ext2 filesystem normally reserves about 5 percent of its available
space for root. The intent is that if users come close to filling the disk, there’ll
be enough space for the system administrator to log in and perform basic
maintenance to correct problems. If a critical filesystem were to fill com-
pletely, root might not be able to log in.

Understanding the Linux Filesystem
Hierarchy

Linux’s placement of files is derived from thirty years of Unix history.
Given that fact, the structure is remarkably simple and coherent, but it’s easy
for a new administrator to become confused. Some directories seem, on the
surface, to fulfill similar or even identical roles, but in fact there are subtle
but important differences. This section describes the Linux directory layout
standards, presents an overview of what goes where, and explains the use of
the du utility, which is useful in learning where your disk space is being used.

http://www.sybex.com

472 Chapter 7 � Managing Partitions and Processes

The FSSTND and FHS

Although Linux draws heavily on Unix, Unix’s long history has led to
numerous splits and variants, starting with the Berkeley Standard Distribu-
tion (BSD), which was originally a set of patches and extensions to AT&T’s
original Unix code. As a result of these schisms within the Unix community,
early Linux distributions didn’t always follow patterns that were identical to
each other. The result was a great deal of confusion. This problem was quite
severe early in Linux’s history, and it threatened to split the Linux commu-
nity into factions. Various measures were taken to combat this problem, one
of which was the development of the Filesystem Standard (FSSTND), which
was first released in early 1994. The FSSTND standardized several specific
features, including these:

� Standardizing the programs that reside in /bin and /usr/bin. Differ-
ences on this score caused problems when scripts referred to files in
one location or the other.

� Specifying that executable files should not reside in /etc, as had pre-
viously been common.

� Removing changeable files from the /usr directory tree, allowing it to
be mounted read-only, a useful security measure.

There have been three major versions of FSSTND: 1.0, 1.1, and 1.2.
FSSTND began to reign in some of the chaos in the Linux world in 1994. By
1995, however, FSSTND’s limitations were themselves becoming apparent.
Thus, a new standard was developed—the Filesystem Hierarchy Standard
(FHS). This new standard is based on FSSTND but extends it substantially.
The FHS was created in conjunction with developers of some non-Linux
Unix-like OSs, for instance. For this reason, the FHS is more than a Linux
standard; it may be used to define the layout of files on other Unix-like OSs.

One important distinction made by the FHS is the one between shareable
files and unshareable files. Shareable files may be reasonably shared between
computers, such as user data files and even program binary files. (Of course,
you don’t need to share such files, but you may do so.) If files are shared,
they’re normally shared through the NFS server, discussed briefly in Chapter 5,
“Networking.” Unshareable files contain system-specific information, such
as configuration files. For instance, you’re not likely to want to share a
server’s configuration file between computers.

A second important distinction used in the FHS is the one between static
files and variable files. The former don’t normally change, except through

http://www.sybex.com

Understanding the Linux Filesystem Hierarchy 473

direct intervention by the system administrator. Most program executables
are good examples of static files. Variable files may be changed by users,
automated scripts, servers, or the like. For instance, users’ home directories
and mail queues are composed of variable files. The FHS tries to isolate each
directory into one cell of this 2 × 2 (shareable/unshareable × static/variable)
matrix. For instance, /home is shareable and variable, /usr is shareable and
static, and /etc is unshareable and static. Some directories are mixed, but in
these cases, the FHS tries to specify the status of particular subdirectories.
For instance, /var is variable, and it contains some shareable and some
unshareable subdirectories.

Like the FSSTND, the FHS comes in numbered versions. Version 2.2 was
released in May 2001. (Distributions available at the time of this writing fol-
lowed FHS 2.1, but its major features aren’t different from those of the new
FHS 2.2.) The URL for FHS’s official Web page is http://www.pathname
.com/fhs.

Important Directories and Their Contents

The FHS defines some directories very precisely, but details for others are left
unresolved. For instance, as described in Chapter 4, “Users and Security,”
users’ files normally go in the /home directory, but you may have reason to
call this something else or to use two separate directories for users’ files.
Overall, there are several common directories that are defined by the FHS or
used by convention, including these:

/ Every Linux filesystem traces its roots to a single directory, known as
/ (pronounced, and often referred to, as the root filesystem or root direc-
tory). All other directories branch off of this filesystem. Linux doesn’t use
drive letters; instead, every partition or removable disk is mounted at a
mount point within another partition (/ or something else). Certain crit-
ical subdirectories, such as /etc and /sbin, must reside on the root par-
tition, but others can optionally be on separate partitions. Do not confuse
the root directory with the /root directory, discussed shortly.

/boot The /boot directory contains static and unshareable files related
to the initial booting of the computer. Higher-level startup and configu-
ration files reside in another directory, /etc. Some systems impose par-
ticular limits on /boot. For instance, older x86 BIOSes and older versions
of LILO may require that /boot reside below the 1024th cylinder of the
hard disk. These requirements sometimes, but not always, necessitate that
the /boot directory be a separate partition.

http://www.sybex.com

474 Chapter 7 � Managing Partitions and Processes

/bin This directory contains certain critical executable files, such as ls,
cp, and mount. These commands are accessible to all users and constitute
the most important commands that ordinary users might issue. You won’t
normally find commands for big application programs in /bin (although
the Vi editor, discussed later in this chapter, is located here). /bin con-
tains static files. Although in some sense the /bin files are shareable,
because they’re so important to the basic operation of a computer, the
directory is almost never shared—any potential clients must have their
own local /bin directories.

/sbin This directory is very similar to /bin, but it contains programs
that are normally run only by the system administrator—tools like fdisk
and e2fsck. Therefore, it’s static and theoretically shareable, but in prac-
tice, it makes no sense to share it.

/lib This directory is similar to /bin and /sbin, but it contains pro-
gram libraries, which are made up of code that’s shared across many pro-
grams and stored in separate files to save disk space and RAM. The /lib/
modules subdirectory contains kernel modules—drivers that can be
loaded and unloaded as required. Like /bin and /sbin, /lib is static and
theoretically shareable, although it’s not shared in practice.

/usr This directory hosts the bulk of a Linux computer’s programs. Its
contents are shareable and static, so it can be mounted read-only and may
be shared with other Linux systems. For these reasons, many administra-
tors split /usr off into a separate partition, although this isn’t required.
Some subdirectories of /usr are similar to their namesakes in the root
directory (such as /usr/bin and /usr/lib), but they contain programs
and libraries that aren’t absolutely critical to the basic functioning of the
computer.

/usr/local This directory contains subdirectories that mirror the
organization of /usr, such as /usr/local/bin and /usr/local/lib.
/usr/local hosts files that a specific system administrator installs
locally—for instance, packages that are compiled on the target computer
itself. The idea is to have an area that’s safe from automatic software
upgrades when the OS as a whole is upgraded. Immediately after install-
ing Linux, /usr/local should be empty except for some “stub” sub-
directories. Some system administrators split this off into its own parti-
tion to protect it from OS reinstallation procedures that might erase the
parent partition.

http://www.sybex.com

Understanding the Linux Filesystem Hierarchy 475

/usr/X11R6 This directory houses files related to the X Window System
(X for short), Linux’s GUI environment. Like /usr/local, this directory
contains subdirectories similar to those in /usr itself, like /usr/X11R6/
bin and /usr/X11R6/lib.

/opt This directory is similar to /usr/local in many ways, but it is
intended for ready-made packages that don’t ship with the OS, like com-
mercial word processors or games. Typically, these programs reside in
subdirectories in /opt named after themselves, such as /opt/applix.
/opt is static and shareable. Some system administrators break it into a
separate partition or make it a symbolic link to a subdirectory of /usr/
local and make that a separate partition.

/home This directory contains users’ data, and it is shareable and vari-
able. /home is considered optional in FHS. In practice, it’s a matter of the
name being optional. For instance, if you add a new disk to support addi-
tional users, you might leave the existing /home directory intact and cre-
ate a new /home2 directory to house the new users. /home often resides on
its own partition.

/root This is the home directory for the root user. Because the root
account is so critical and system-specific, this directory isn’t really share-
able, but it is variable.

/var This directory contains transient files of various types—system log
files, print spool files, mail and news files, and so on. As such, the direc-
tory’s contents are variable. Some subdirectories are shareable, but others
are not. Many system administrators—particularly on systems that see a
lot of activity in /var, like major Usenet news or mail servers—put /var
in its own partition.

/tmp Many programs need to create temporary (hence variable) files,
and the usual place to do so is in /tmp. Most distributions include routines
that clean out this directory periodically, and sometimes wipe the direc-
tory clean at bootup. /tmp is seldom shared. Some administrators create
a separate /tmp partition to prevent runaway processes from causing
problems on the root filesystem when processes create too-large tempo-
rary files.

/mnt Linux mounts removable-media devices within its normal direc-
tory structure, and /mnt is provided for this purpose. Some distributions
create subdirectories within /mnt, such as /mnt/floppy and /mnt/

http://www.sybex.com

476 Chapter 7 � Managing Partitions and Processes

cdrom, to function as mount points. Others use /mnt directly or even use
separate mount points off of /, such as /floppy and /cdrom. The FHS
mentions only /mnt; it doesn’t specify how it’s to be used. Specific media
mounted in /mnt may be either static or variable. As a general rule, these
directories are shareable.

/media This directory is an optional addition to the 2.2 version of FHS.
It’s like /mnt, but FHS 2.2 specifies that it should contain subdirectories
for specific media types, such as /media/floppy and /media/cdrom.

/dev Because Linux treats most hardware devices as if they were files,
the OS must have a location in its filesystem where these device files
reside. /dev is that place. It contains a large number of files that function
as hardware interfaces. If a user has sufficient privileges, that user may
access the device hardware by reading from and writing to the associated
device file.

/proc This is an unusual directory because it doesn’t correspond to a
regular directory or partition. Instead, it’s a virtual filesystem that’s cre-
ated dynamically by Linux to provide access to certain types of hardware
information that’s not accessible via /dev. For instance, if you type cat
/proc/cpuinfo, the system responds by displaying information on your
CPU—its model name, speed, and so on. /proc isn’t officially part of the
FHS, but it exists on all major Linux distributions.

Knowledge of these directories and their purposes is invaluable in prop-
erly administering a Linux system. For instance, understanding the purpose
of directories like /bin, /sbin, /usr/bin, /usr/local/bin, and others will
help you when it comes time to install a new program. Placing a program in
the wrong location can cause problems at a later date. For example, if you
put a binary file in /bin when it should go in /usr/local/bin, that pro-
gram may later be overwritten or deleted during a system upgrade, when
leaving it intact would have been more appropriate.

Using du

Sometimes, you must estimate the amount of space that’s being consumed by
some set of files or directories. For instance, if you’re running out of space in
/usr, you might want to move some subdirectory to a new partition on
another physical hard disk. To match the data moved to the target partition,

http://www.sybex.com

Understanding the Linux Filesystem Hierarchy 477

though, you must know how much space the files in various partitions con-
sume. You can do this with the du command, which displays disk usage
information. Its basic syntax is as follows:

du [options] [files]

The program accepts a large number of options, the most important of
which are the following:

-c or --total This option creates a summary of the total space used.
It’s most useful when you provide a list of several files or directories rather
than just a single directory.

-h or --human-readable du normally provides a number of blocks as
output, which are usually 1KB in size. If you use this option, though, the
software converts to kilobytes, megabytes, or gigabytes, as appropriate.

-S or --separate-dirs If you specify this option, du doesn’t add sub-
directory totals into the parent directory. For instance, if you use du on
a directory that contains two 5KB files and a subdirectory that contains
500KB of files, it reports the 500KB subdirectory as having 500KB, and
the main directory as having 5KB. If you omit this option, du reports the
main directory as holding 505KB.

-s or --summarize This option causes du to omit reporting on the indi-
vidual subdirectories. Instead, it provides just a total for each main file
or directory. This is useful if the directory you’ve targeted has many
subdirectories.

--max-depth=N This option tells the program to show the sizes of direc-
tories that are nested no more than N deep within the specified directories.
(du counts files that are nested more deeply, but it doesn’t report the direc-
tory sizes except in summary.) Using this option can constrain the size of
a report to a manageable level. --max-depth=0 is equivalent to
--summarize.

-x or --one-file-system Normally, du scans the contents of sub-
directories even if those subdirectories are separate partitions mounted in
the main directory. Using this option causes the program to ignore
mounted partitions. For instance, if /usr/local is a separate partition
and you type du -x /usr, the report won’t include the contents of /usr/
local.

http://www.sybex.com

478 Chapter 7 � Managing Partitions and Processes

du supports some additional parameters that affect its reports. Consult
the du man page for details. Consider the preceding example of wanting to
move some files from /usr to another partition. You want to put roughly
150MB of files on a new partition, removing them from /usr. Therefore,
you issue the following command and obtain the following output:

$ du /usr -h --max-depth=1

449M /usr/share

149M /usr/X11R6

109M /usr/bin

4.0k /usr/etc

1.2M /usr/games

12M /usr/include

313M /usr/lib

92M /usr/local

12M /usr/sbin

281M /usr/src

16k /usr/libexec

260k /usr/i586-mandrake-linux

3.5M /usr/i486-linux-libc5

8.3M /usr/i386-glibc20-linux

2.3M /usr/doc

200k /usr/man

1.4G /usr

This result reveals that /usr as a whole holds 1.4GB of data, and the sub-
directory that’s closest to 150MB in size is /usr/X11R6, at 149MB. This direc-
tory is therefore a good choice for moving to the new partition.

Most files consume more disk space than is indicated by their file sizes.
This is because Linux allocates disk space in chunks of hundreds or thou-
sands of bytes (typically 1024 bytes or multiples thereof, depending upon the
low-level filesystem). The result is wasted disk space at the end of each file,
similar to the empty space on the last page of most chapters of a book. du
takes this into consideration when it reports disk usage. When you move files
to a new partition, though, the new partition might waste more or less space
than the old one. The precise amount of change depends on the filesystems
and the particular files in question. Therefore, it’s best to consider du’s out-
put to be a rough estimate, especially when moving files from one low-level
filesystem to another.

http://www.sybex.com

Backing Up and Restoring a Computer 479

Backing Up and Restoring a Computer

Many things can go wrong on a computer that might cause it to lose
data. Hard disks can fail, you might accidentally enter some extremely
destructive command, a cracker might break into your system, or a user
might accidentally delete a file, to name just a few possibilities. To protect
against such problems, it’s important that you maintain good backups of the
computer. To do this, you need to select appropriate backup hardware,
choose a backup program, and implement backups on a regular schedule.
You should also have a plan in place to recover some or all of your data
should the need arise.

Common Backup Hardware

Just about any device that can store computer data and read it back can be
used as a backup medium. The best backup devices are inexpensive, fast,
high in capacity, and reliable. They don’t usually need to be random access
devices, though. Random access devices are capable of quickly accessing any
piece of data. Hard disks, floppy disks, and CD-ROMs are all random access
devices. These devices contrast with sequential access devices, which must
read through all intervening data before accessing the sought-after compo-
nent. Tapes are the most common sequential-access devices. Table 7.2 sum-
marizes critical information about the most common types of backup device.
For some, such as tape, there are higher-capacity (and more expensive)
devices for network backups.

T A B L E 7 . 2 Vital Statistics for Common Backup Devices

Device Cost of Drive

Cost of

Media

Uncompressed

Capacity Speed Access Type

Tape $200–$1500 $1–4/GB 10–60GB 1–15 MBps Sequential

Hard disks $100 (for removable
mounting kit)

$5/GB 30–70GB 15–30 MBps Random

http://www.sybex.com

480 Chapter 7 � Managing Partitions and Processes

Numbers are approximate as of mid-2001. Prices on all storage media have historically fallen rapidly, and capacities have risen. Costs
are likely to be lower, and capacities higher, in the future.

The types of devices that appear in Table 7.2 are those most often used for
backing up Linux systems. The pros and cons of using specific devices are as
follows:

Tapes Tape drives are probably the most popular choice for backing up
entire computers. Their sequential-access nature is a hindrance for some
applications, but it isn’t a problem for routine backups. The biggest prob-
lem with tapes is that they’re less reliable than some backup media,
although reliability varies substantially from one type of tape to another,
and the best are reasonably reliable.

Hard disks It’s possible to use hard disks for backup purposes. If your
computer is equipped with a kit that allows a drive to be quickly removed
from a computer, you can swap hard disks in and out, and move them off-
site for storage, if desired. Without such a kit, however, hard drives are
susceptible to theft or damage along with the computer they’re meant to
back up.

Removable disks Removable disks range from 40MB PocketZip drives
to Orb, magneto-optical, and other disks that exceed 2GB in capacity.
(Although floppies can in theory be used for backup, their limited capac-
ity and slow speed means they aren’t practical for anything but backing
up small data files.) The high cost per gigabyte and low capacities of these
drives makes them suitable for personal backup of data files, but not of
entire systems.

Removable
disks

$100–$500 $25–200/GB 40MB–2.5GB 1–12 MBps Random

Optical $100–$4000 $1–7/GB 650MB–5.2GB 1–6 MBps Random

T A B L E 7 . 2 Vital Statistics for Common Backup Devices (continued)

Device Cost of Drive

Cost of

Media

Uncompressed

Capacity Speed Access Type

http://www.sybex.com

Backing Up and Restoring a Computer 481

Optical Optical media include CD recordable (CD-R), CD rewritable
(CD-RW), and various recordable DVD (DVD-R, DVD-RAM, and so on)
technologies. Linux doesn’t treat these as removable hard disks; you must
use special software like cdrecord to record to them. They’re extremely
reliable and therefore well-suited to long-term archival storage (most esti-
mates suggest that CD-Rs, for instance, will last 10–100 years). Some of
them are large enough to back up entire systems, especially if the comput-
ers are small, but for really large jobs, the higher capacity of tapes is
desirable.

As a general rule, the best backup devices for entire computers and net-
works are tapes. The low cost and high capacity of tapes makes them well
suited to performing multiple backups of entire computers. It’s sometimes
desirable to supplement tape backups with optical backups (typically to
650MB CD-R or CD-RW drives, although recordable DVD media are
becoming increasingly affordable and common). CD-R backups are partic-
ularly helpful for small client systems, on which an entire installation may fit
in 650MB, especially when compression is applied. Because a CD-R can be
read in an ordinary CD-ROM drive, it’s possible to use a networked backup
server to create backups of clients’ basic installations and, in an emergency
situation, recover the data using an emergency Linux boot floppy, the CD-R,
and the computer’s ordinary hardware. A tape backup would require dedi-
cated tape hardware on each client, an easily transportable tape drive, or net-
work connections to restore the basic boot system.

If you restrict computers’ main installation partitions to about 1–1.3GB, those
entire partitions will most likely fit, when compressed, on standard 650MB
CD-Rs. This can simplify backup and recovery efforts.

It’s generally wise to keep multiple backups and to store some of them
away from the computers they’re meant to protect. Such off-site storage pro-
tects your data in case of fire, vandalism, or other major physical traumas.
Keeping several backups makes it more likely you’ll be able to recover
something, even if it’s an older backup, should your most recent backup
medium fail.

If you decide to use a tape drive, your choices aren’t over. There are sev-
eral competing tape formats in common use in 2001. These include Travan,
which dominates the low end of the spectrum; digital audio tape (DAT),

http://www.sybex.com

482 Chapter 7 � Managing Partitions and Processes

which is generally considered a step up; digital linear tape (DLT), which is
well respected for use on servers and networks; 8mm, which is similar to
DAT but has higher capacities; and Advanced Intelligent Tape (AIT), which
is a high-end tape medium. Each of these competes at least partially with
some of the others. Travan drives tend to be quite inexpensive (typically
$200-$500), but the media are pricey. The other formats feature more costly
drives ($500-$1500 for a single drive), but the media cost less. Maximum
capacities vary, ranging from under 1GB for obsolete forms of Travan to
10GB for top-of-the-line Travan to 60GB for the largest 8mm drives. Over-
all, Travan is a good solution for low-end workstations; DAT is best used on
high-end workstations, small servers, and small networks; and the other for-
mats are all good for high-end workstations, servers, and networks.

Tape drives come in several different interfaces, the most common of
which today are SCSI and EIDE (aka ATAPI). Some very old drives used
floppy interfaces, but such devices are quite small and slow by today’s stan-
dards. Some old external drives used parallel-port interfaces, and a few new
external drives use USB interfaces. In theory, USB drives may be useable in
Linux as if they were SCSI devices.

Tape devices are accessed through device files. For SCSI, appropriate file-
names are /dev/st0 and /dev/nst0, or variants with higher numbers if you
have more than one tape drive. For EIDE/ATAPI, the filenames are /dev/
ht0 and /dev/nht0, or higher numbers if you have more than one tape
drive. In each case, the filenames that lack the n are rewinding tape devices—
after every operation, the tape rewinds to the beginning. The filenames that
include an n, by contrast, are non-rewinding tape devices—after an opera-
tion, the tape remains at its current position. Rewinding devices are conve-
nient for most backup operations, but non-rewinding devices are useful if
you want to store more than one backup on a tape. Precisely how you use
each type is discussed later.

Common Backup Programs

Linux supports several backup programs. Some are tools designed to back
up individual files, directories, or computers. Others build on these simpler
tools to provide network backup facilities. Basic backup programs include
tar (described in Chapter 3, “Software Management”), dump, and cpio.
ARKEIA (http://www.arkeia.com) and BRU (http://www.estinc.com)
are two commercial backup packages that provide explicit network support

http://www.sybex.com

Backing Up and Restoring a Computer 483

and GUI front ends. AMANDA (http://www.amanda.org) is a network-
capable scripting package that helps tar or dump perform a backup of an
entire network.

A Survey of Backup Software for Linux

Although it’s got its problems, tar is generally considered the lowest com-
mon denominator backup program. Tapes created with tar can be read on
non-Linux systems—something that’s often not true of dump archives, whose
format is tied to specific filesystems. For this reason, dump must explicitly
support whatever filesystem you intend to back up. In mid-2001, dump sup-
ports Linux’s ext2fs, but versions that support the new journaling file-
systems, such as ReiserFS and XFS, are not yet available.

On the down side, tar has a compression problem: As discussed in Chap-
ter 3, tar doesn’t compress data itself. To do this, tar relies on an external
program, such as gzip or bzip2. These programs compress an entire tar
archive. The problem with this approach is that if an error occurs while
restoring the compressed archive, all the data from that error onward will be
lost. This makes compressed tar archives a risky format for backup. Fortu-
nately, most tape drives support compression in their hardware, and these
use more robust compression algorithms. Therefore, if your tape drive sup-
ports compression, you should not compress a tar backup. Let the tape
drive do that job, and if there’s a read error at restore, you’ll probably lose
just one or two files. If your tape drive doesn’t include built-in compression
features, you should either not compress your backups or use another utility,
most of which don’t suffer from this problem.

Backing Up Using Optical Media

Optical media, such as CD-R, require special backup procedures. Typically,
these drives cannot be addressed directly, in the way that tape drives can
be. Instead, you use special programs like cdrecord to copy files to the
media. Normally, cdrecord accepts input from a program like mkisofs,
which creates an ISO-9660 filesystem—the type of filesystem that’s most
often found on CD-ROMs.

http://www.sybex.com

484 Chapter 7 � Managing Partitions and Processes

Using tar to Back Up a Computer

Chapter 3 provides a summary of tar’s features. In brief, you combine one
tar command, such as --create (c) or --extract (x), with one or more tar
qualifiers, such as --file (f) or --verbose (v). The command determines
the basic action that tar takes, such as recording or recovering a backup.
The qualifiers modify precisely how tar performs these actions, such as
specifying a file (such as /dev/st0, a SCSI tape device). Chapter 3’s
Tables 3.7 and 3.8 summarize the most useful of tar’s commands and qual-
ifiers, but you can consult the tar man page for more obscure options.

To back up a computer, a command like the following will do the job:

tar --create --verbose --one-file-system --same-
�permissions --file /dev/st0 /home / /boot /var

This command lists directories in a particular order. Because tape is a sequential-
access medium, the system will restore items in the order in which they were
backed up. Therefore, for the fastest partial restores, list the filesystems that
you most expect to have to restore first. In this example, /home is listed first
because users sometimes delete files accidentally. Backing up /home first,
therefore, results in quicker restoration of such files.

One option for backing up to CD-R is to use mkisofs and then cdrecord to
copy files to the CD-R. If you copy files “raw” in this way, though, you’ll lose
some information, such as write permission bits. You’ll have better luck if
you create a tar file on disk, much as you would when you back up to tape.
You would then use mkisofs to place that tarball in an ISO-9660 filesystem,
and then you would burn the ISO-9660 image file to CD-R. The result will be
a CD-R that you can mount and that will contain a tarball you can read with tar.

A somewhat more direct option is to create a tarball and burn it directly to
CD-R using cdrecord, thus bypassing mkisofs. Such a CD-R won’t be
mountable in the usual way, but you can access the tarball directly by using
the CD-ROM device file. On restoration, this works much like a tape restore,
except that you specify the CD-ROM device filename (such as /dev/cdrom)
instead of the tape device filename (such as /dev/st0).

http://www.sybex.com

Backing Up and Restoring a Computer 485

This command can be stated more succinctly by using one-character
abbreviations for the commands and qualifiers, thus:

tar cvlpf /dev/st0 /home / /boot /var

Most of the tar options are unremarkable, but one deserves special com-
ment: --one-file-system. This qualifier tells tar not to back up files on
any filesystem that’s mounted in the target directory unless it’s explicitly
listed as a target. Ordinarily, tar backs up such directories; for instance, if
you were to back up /usr, and if /usr/local were mounted from another
partition, tar would back up /usr/local. Using --one-file-system pre-
vents this from happening. This is important in a backup because some file-
systems probably shouldn’t be backed up, such as network exports, removable
media, and the /proc filesystem. /proc is a virtual filesystem—it’s not tied
to a disk partition; instead, it provides an interface to information on the
hardware. Backing it up wastes tape, and restoring it can cause problems
because the restore can alter system settings. Because of the use of --one-
file-system, it’s necessary to explicitly list the mount points of all the par-
titions you want to back up, including /.

After creating a backup, you may want to use the tar --diff (aka
--compare, or d) command to verify the backup you’ve just written against
the files on disk. Alternatively, you can include the --verify (W) qualifier to
have this done automatically. Verifying your backup doesn’t guarantee it
will be readable when you need it, but it should at least catch major errors
caused by severely degraded tapes. On the other hand, the verification will
almost certainly return a few spurious errors because of files whose contents
have legitimately changed between being written and being compared. This
may be true of log files, for instance.

Using mt to Control a Tape Drive

In tar terminology, each backup is a file. This file is likely to contain many
files from the original system, but like an RPM or Debian package file, the
tar file is a single entity. Sometimes a tar file is far smaller than the tape on
which it’s placed. If you want to store more than one tar file on a tape, you
can do so by using the non-rewinding tape device filename. For instance, the

http://www.sybex.com

486 Chapter 7 � Managing Partitions and Processes

following commands accomplish the same goal as the preceding one, but in
a somewhat different manner, and with subtly different results:

tar cvlpf /dev/nst0 /home

tar cvlpf /dev/nst0 /

tar cvlpf /dev/nst0 /boot

tar cvlpf /dev/nst0 /var

After issuing these commands, the tape will contain four tar files, one for
each of the four directories. In order to access each file after writing them,
you need to use a special utility called mt. This program moves forward and
backward among tape files and otherwise controls tape features. Its syntax
is as follows:

mt -f device operation [count] [arguments]

device is the tape device filename. mt supports many operations, includ-
ing the following:

fsf Moves forward count files.

bsf Moves backward count files.

eod or seod Moves to the end of data on the tape.

rewind Rewinds the tape.

offline or rewoffl Rewinds and unloads the tape. (Unloading is
meaningless on some drives but ejects the tape on others.)

retension Rewinds the tape, winds it to the end, and then rewinds it
again. This action improves reliability with some types of tape, particu-
larly if the tape has been sitting unused for several months.

erase Erases the tape. (This command usually doesn’t actually erase the
data; it just marks the tape as being empty.)

status Displays information on the tape drive.

load Loads a tape into the drive. Unnecessary with many drives.

compression Enables or disables compression by passing an argument
of 1 or 0, respectively.

datcompression Also enables and disables compression.

http://www.sybex.com

Backing Up and Restoring a Computer 487

The compression and datcompression operations aren’t identical; sometimes
a tape drive works with one but not the other.

For instance, suppose you created a backup on a SCSI tape, but now you
want to create another backup on the same tape without eliminating the first
backup. You could issue the following commands to accomplish this task:

mt -f /dev/nst0 rewind

mt -f /dev/nst0 fsf 1

tar cvlpf /dev/nst0 /directory/to/back/up

mt -f /dev/nst0 offline

These commands rewind the tape, space past the first file, create a new
backup, and then unload the tape. Such commands are particularly useful
when performing incremental backups, as described shortly.

Planning a Backup Schedule

It’s important that you back up a computer regularly, but precisely how reg-
ularly is a matter that varies from one system to another. If a computer’s con-
tents almost never change (as might be true of a dedicated router or a
workstation whose user files reside on a file server), backups once a month
or less might be in order. For critical file servers, once a day is not too often.
You’ll have to decide for yourself just how frequently your systems require
backup. Take into consideration factors such as how often the data change,
the importance of the data, the cost of recovering the data without a current
backup, and the cost of making a backup. Costs may be measured in money,
your own time, users’ lost productivity, and perhaps lost sales.

Even the most zealous backup advocate must admit that creating a full
backup of a big system on a regular basis can be a tedious chore. A backup
can easily take several hours, depending upon backup size and hardware
speed. For this reason, most backup packages, including tar, support incre-
mental backups. You can create these using the --listed-incremental
file qualifier to tar, as shown in this example:

tar cvplf /dev/st0 --listed-incremental /root/inc /
�/home

http://www.sybex.com

488 Chapter 7 � Managing Partitions and Processes

This command stores a list of the files that have been backed up (along
with identifying information to help tar determine when the files have
changed) in /root/inc. The next time the same command is issued, tar will
not back up files that have already been backed up; it will only back up new
files. Thus, you can create a schedule in which you do a full backup of the
entire computer only occasionally—say, once a week or once a month.
You’d do this by deleting the increment file and running a backup as usual.
On intervening weeks or days, you can perform an incremental backup, in
which only new and changed files are backed up. These incremental backups
will take comparatively little time.

You can use incremental backups in conjunction with mt to store multiple
incremental backups on one tape. Typically, you’ll have two tapes for a
backup set: one for a full backup and one for intervening incremental back-
ups. Suppose you do a full backup on Monday. On Tuesday, you’d insert the
incremental tape and perform the first incremental backup. On Wednesday,
you’d insert this tape and type mt -f /dev/nst0 fsf 1 to skip past Tues-
day’s incremental backup, and then perform another incremental backup.
On Thursday, you’d type mt -f /dev/nst0 fsf 2, and so on.

There are a couple of drawbacks to performing incremental backups. One
is that they complicate restoration. Suppose you do a full backup on Monday
and incremental backups every other day. If a system fails on Friday, you’ll
need to restore the full backup and several incremental backups. Second,
after restoring an incremental backup, your system will contain files that
you’d deleted since the full backup. If files have short life spans on a com-
puter, this can result in a lot of “dead” files being restored when the time
comes to do so.

Despite these problems, incremental backups can be an extremely useful
tool for helping make backups manageable. They can also reduce wear and
tear on tapes and tape drives, and they can minimize the time it takes to
restore files if you know that the files you need to restore were backed up on
an incremental tape.

Preparing for Disaster: Backup Recovery

Creating backups is advisable, but doing this isn’t enough. You must also
have some way to restore backups in case of disaster. There are two aspects
to this task: partial restores and emergency recovery.

http://www.sybex.com

Backing Up and Restoring a Computer 489

Partial restores involve recovering just a few noncritical files. For
instance, users might come to you and ask you to restore files from their
home directories. You can do so fairly easily by using the --extract (x) tar
command, thus:

cd /

tar xvlpf /dev/st0 home/username/filename

This sequence involves changing to the root directory and issuing a relative
path to the file or directory that must be restored. This is required because tar
normally strips away the leading / in files it backs up, so the files are recorded
in the archive as relative filenames. If you try to restore a file with an absolute
filename, it won’t work.

You’ll need to know the exact name of the file or directory you want to
restore in order to do this. If you don’t know the exact filename, you may
need to use the --list (t) command to examine the entire contents of the
tape, or at least everything until you see the file you want to restore.

If you use incremental backups, you can use the incremental file list to locate
the filename you want to restore.

A much more serious problem is that of recovering a system that’s badly
damaged. If your hard disk has crashed or your system has been invaded by
crackers, you must restore the entire system from scratch, without the ben-
efit of your normal installation. You can take any of several approaches to
this problem, including the following:

Distribution’s installation disk Most Linux distributions’ installation
disks have some sort of emergency recovery system. These may come as
separate boot floppy images or as options to type during the boot process.
In any event, these images are typically small but functional Linux systems
with a handful of vital tools, such as fdisk, mkfs, Vi, and tar. Check
your distribution’s documentation or boot its boot media and study its
options to learn more.

http://www.sybex.com

490 Chapter 7 � Managing Partitions and Processes

Emergency system on removable disk You can create your own emer-
gency system on a removable disk. If you’ve got a moderately high capac-
ity removable disk, like a Zip or LS-120 disk, you can create a moderately
comfortable Linux system on this disk. The ZipSlack distribution (a vari-
ant of Slackware, http://www.slackware.com) is particularly handy for
this purpose because it’s designed to fit on a 100MB Zip disk. You can
use this even if your regular installation is of another version of Linux.

Emergency recovery partition If you plan ahead, you might create a
small emergency installation of your preferred distribution alongside the
regular installation. You should not mount this system in /etc/fstab.
This system can be useful for recovering from some problems, like soft-
ware filesystem corruption, but it’s not useful for others, like a total hard
disk failure.

Partial reinstallation You can reinstall a minimal Linux system, and
then use it to recover your original installation. This approach is much
like the emergency recovery partition approach, but it takes more time at
disaster recovery. On the other hand, it will work even if your hard disk
is completely destroyed.

Whatever approach you choose to use, you should test it before you need
it. Learn at least the basics of the tools available in any system you plan to
use. If you use unusual backup tools (such as commercial backup software),
be sure to copy those tools to your emergency system or have them available
on a separate floppy disk. If you’ll need to recover clients via network links,
test those setups as well.

You may not be able to completely test your emergency restore tools. Ide-
ally, you should boot the tools, restore a system, and test that the system
works. This may be possible if you have spare hardware on which to exper-
iment, but if you lack this luxury, you may have to make do with performing
a test restore of a few files and testing an emergency boot procedure—say,
using LOADLIN (a DOS-based boot loader that can boot a Linux system when
LILO isn’t installed or working). Note that a freshly restored system will not
be bootable; you’ll need a kernel on a DOS boot floppy and LOADLIN, or
some other emergency boot system, to boot the first time. You can then rein-
stall LILO to restore the system’s ability to boot from the hard disk.

http://www.sybex.com

File Manipulation Commands 491

File Manipulation Commands

Mounting, unmounting, and finding information about partitions is
useful and even necessary, but to actually do anything on a Linux system,
you must be able to manipulate individual files and directories. Linux pro-
vides traditional Unix commands to accomplish this task.

Navigating the Linux Filesystem

Moving about the Linux filesystem involves a few commands. It’s also help-
ful to understand some features of common Linux shells that can help in this
navigation. Some of these commands and features are similar to ones used in
DOS and Windows. (This is no accident; DOS was partly modeled on Unix,
and so it copied some Unix features that are now part of Linux.)

The ls Command

In order to manipulate files, it’s helpful to know what they are. This is the job
of the ls command, whose name is short for “list.” ls displays the names of
files in a directory. Its syntax is simple:

ls [options] [files]

The command supports a huge number of options; consult the ls man
page for details. The most useful options include the following:

-a or --all Normally, ls omits files whose names begin with a dot (.).
These dot files are often configuration files that aren’t usually of interest.
Adding this parameter displays dot files.

--color This option produces a color-coded listing that differentiates
directories, symbolic links, and so on by displaying them in different col-
ors. This works at the Linux console, in xterm windows in X, and from
some types of remote logins, but some remote login programs don’t sup-
port color displays.

-d or --directory Normally, if you type a directory name as one of
the files, ls displays the contents of that directory. The same thing hap-
pens if a directory name matches a wildcard (discussed shortly). Adding
this parameter changes this behavior to list only the directory name,
which is sometimes preferable.

http://www.sybex.com

492 Chapter 7 � Managing Partitions and Processes

-l ls normally displays filenames only. This parameter (a lowercase L,
not a digit 1) produces a long listing that includes information such as the
file’s permission string (discussed in Chapter 4), owner, group, size, and
creation date.

-p or --file-type This option appends an indicator code to the end of
each name so you know what type of file it is. (Chapter 4 discusses file
types.) The meanings are as follows:

-R or --recursive This option causes ls to display directory contents
recursively. That is, if the target directory contains a subdirectory, ls dis-
plays both the files in the target directory and the files in its subdirectory.
The result can be a huge listing of a directory with many subdirectories.

Both the options list and the files list are optional. If you omit the
files list, ls displays the contents of the current directory. You may instead
give one or more file or directory names, in which case ls displays informa-
tion on those files or directories, for instance:

$ ls -p /usr /bin/ls

/bin/ls

/usr:

X11R6/ games/ include/ man/ src/

bin/ i386-glibc20-linux/ lib/ merge@ tmp@

doc/ i486-linux-libc5/ libexec/ sbin/

etc/ i586-mandrake-linux/ local/ share/

This output shows both the /bin/ls program file and the contents of the
/usr directory. The latter consists mainly of subdirectories, but it includes a
couple of symbolic links, as well.

/ directory

@ symbolic link

= socket

| pipe

http://www.sybex.com

File Manipulation Commands 493

Using Wildcards

You can use wildcards with ls (and with many other commands, as well). A
wildcard is a symbol or set of symbols that stand in for other characters.
Three classes of wildcards are common in Linux:

? A question mark (?) stands in for a single character. For instance,
b??k matches book, balk, buck, or any other four-letter filename that
begins with b and ends with k.

* An asterisk (*) matches any character or set of characters, including
no character. For instance, b*k matches book, balk, and buck, just as
does b??k. b*k also matches bk, bbk, and backtrack.

Bracketed values Characters enclosed in square brackets ([]) normally
match any character in the set. For instance, b[ao][lo]k matches balk
and book, but not buck. It’s also possible to specify a range of values; for
instance, b[a-z]ck matches any back, buck, and other four-letter file-
names of this form whose second character is a lowercase letter. This dif-
fers from b?ck—because Linux treats filenames in a case-sensitive way,
b[a-z]ck doesn’t match bAck, although b?ck does.

Wildcards are actually implemented in the shell and passed to the com-
mand you call. For instance, if you type ls b??k, and that wildcard matches
the three files balk, book, and buck, the result is precisely as if you’d typed
ls balk book buck.

The way wildcards are expanded can lead to some undesirable conse-
quences. For instance, suppose you want to copy a couple of files (specified
via a wildcard) to another directory, but you forget to give the destination
directory. The cp command (discussed shortly) will interpret the command as
a request to copy one of the files over the other.

Finding and Changing the Current Directory

Linux command shells implement the concept of a current directory. This is
a directory that’s displayed by default if ls or some other command doesn’t
specify a directory. You can discover what your current directory is by typ-
ing pwd. This command’s name stands for “present working directory,” and
it can be very useful if you don’t know in what directory you’re currently
operating.

http://www.sybex.com

494 Chapter 7 � Managing Partitions and Processes

You may specify either an absolute directory name or a relative directory
name when giving a filename or directory name. The former indicates the
directory name relative to the root directory. An absolute directory name
uses a leading slash, as in /usr/local or /home. Relative directory names
are specified relative to the current directory. They lack the leading slash.
Relative directory names sometimes begin with a double dot (..). This is a
code that stands for a directory’s parent. For instance, if your current direc-
tory is /usr/local, .. refers to /usr. Similarly, a single dot (.) as a directory
name refers to the current directory. As an example, if your current directory is
/usr/local, both /usr/X11R6 and ../X11R6 refer to /usr/X11R6.

Another important shortcut character is the tilde (~). This character is a
stand-in for the user’s home directory. For instance, ~/document.wpd refers
to the document.wpd file within the user’s home directory. This might be
/home/sally/document.wpd for the user sally, for instance.

To change to another directory, use the cd command. Unlike most com-
mands, cd is built into the shell (bash, tcsh, or what have you). Its name
stands for “change directory,” and it alters the current directory to whatever
you specify. Type the command followed by your target directory, thus:

$ cd somedir

You may use either absolute or relative directory names with the cd
command—or with other commands that take filenames or directory names
as input.

Manipulating Files

A few file manipulation commands are extremely important to everyday file
operations. These commands allow you to copy, move, rename, and delete
files. (Chapter 4 discusses some additional commands related to Linux’s file
ownership and permissions models.)

cp

The cp command copies a file. Its basic syntax is as follows:

cp [options] source destination

The source is normally one or more files, and the destination may be
a file (when the source is a single file) or a directory (when the source is one

http://www.sybex.com

File Manipulation Commands 495

or more files). When copying to a directory, cp preserves the original file-
name; otherwise it gives the new file the filename indicated by destination.
The command supports a large number of options; consult its man page for
more information. Following are some of the more useful options:

-f or --force This option forces the system to overwrite any existing
files without prompting.

-i or --interactive This option causes cp to ask you before over-
writing any existing files.

-p or --preserve Normally, a copied file is owned by the user who
issues the cp command and uses that account’s default permissions. This
option preserves ownership and permissions, if possible.

-R or --recursive If you use this option and specify a directory as the
source, the entire directory, including its subdirectories, will be copied.

-u or --update This option tells cp to copy the file only if the original
is newer than the target, or if the target doesn’t exist.

As an example, the following command copies the /etc/fstab configu-
ration file to a backup location in /root, but only if the original /etc/fstab
is newer than the existing backup:

cp -u /etc/fstab /root/fstab-backup

mv

The mv command (short for “move”) is commonly used both to move files
and directories from one location to another and to rename them. Linux
doesn’t distinguish between these two types of operations, although many
users do. The syntax of mv is similar to that of cp:

mv [options] source destination

The command takes many of the same options as does cp. From the ear-
lier list, --preserve and --recursive don’t apply to mv, but the others do.

To move one or more files or directories, specify the files as the source
and specify a directory or (optionally for a single file move) a filename for the
destination. Here is an example:

$ mv document.wpd important/purchases/

This command copies the document.wpd file into the important/
purchases subdirectory. If the copy occurs on one low-level filesystem,

http://www.sybex.com

496 Chapter 7 � Managing Partitions and Processes

Linux does the job by rewriting directory entries; the file’s data don’t need to
be read and rewritten. This makes mv fast. When the target directory is on
another partition or disk, though, Linux must read the original file, rewrite
it to the new location, and delete the original. This slows down mv. Also, mv
can move entire directories within a filesystem, but not between filesystems.

The preceding example used a trailing slash (/) on the destination directory.
This practice can help avoid problems caused by typos. For instance, if the
destination directory were mistyped as important/purchase (missing the
final s), mv would move document.wpd into the important directory under the
filename purchase. Adding the trailing slash makes it explicit that you intend
to move the file into a subdirectory. If it doesn’t exist, mv complains, so you’re
not left with mysterious misnamed files. You can also use the Tab key to avoid
problems. When you hit Tab in many Linux shells, such as bash, the shell tries
to complete the filename automatically, reducing the risk of a typo.

Renaming a file with mv works much like moving a file, except that the
source and destination filenames are in the same directory, as shown here:

$ mv document.wpd washer-order.wpd

This renames document.wpd to washer-order.wpd in the same direc-
tory. These two forms can be combined, as well:

$ mv document.wpd important/purchases/washer-order.wpd

This command simultaneously moves and renames the file.

rm

To delete a file, use the rm command, whose name is short for “remove.” Its
syntax is simple:

rm [options] files

rm accepts many of the same options as cp or mv. Of those discussed with
cp, --preserve and --update are inapplicable to rm, but the others all
apply to it. With rm, -r is synonymous with -R.

http://www.sybex.com

File Manipulation Commands 497

By default, Linux doesn’t provide any sort of “trash can” functionality for its
rm command; once you’ve deleted a file with rm, it’s gone and cannot be
recovered without retrieving it from a backup or performing low-level disk
maintenance. Therefore, you should be cautious when using rm, particularly
when logged on as root. This is particularly true when using the -R option—
rm -R / will destroy an entire Linux installation! Many Linux GUI file manag-
ers do implement trash can functionality so that you can easily recover files
moved to the trash (assuming you haven’t emptied the trash), so you may
want to use a file manager for removing files.

Manipulating Directories

Files normally reside in directories. Even normal users frequently create,
delete, and otherwise manipulate directories. Some of the preceding com-
mands can be used with directories—you can move or rename directories
with mv, for instance. rm won’t delete a directory unless used in conjunc-
tion with the -R parameter. Linux provides additional commands to manip-
ulate directories.

mkdir

The mkdir command creates a directory. This command’s official syntax is
as follows:

mkdir [options] directory-names

In most cases, mkdir is used without options, but a few are supported,
including the following:

-m or --mode=mode This option causes the new directory to have the
specified permission mode, expressed as an octal number. (Chapter 4 dis-
cusses permission modes.)

-p or --parents Normally, if you specify the creation of a directory
within another directory that doesn’t exist, mkdir responds with a No
such file or directory error and doesn’t create the directory. If you
include this option, though, mkdir creates the necessary parent directory.

http://www.sybex.com

498 Chapter 7 � Managing Partitions and Processes

rmdir

rmdir is the opposite of mkdir; it destroys a directory. Its syntax is much like
that of mkdir:

rmdir [options] directory-names

Like mkdir, rmdir supports few options, the most important of which are
as follows:

--ignore-fail-on-non-empty Normally, if a directory contains files
or other directories, rmdir won’t delete it and returns an error message.
With this option, rmdir still won’t delete the directory, but it doesn’t
return an error message.

-p or --parents This option causes rmdir to delete empty directories
within the target directory.

When deleting an entire directory tree filled with files, rm -R is a better choice
than rmdir because rm -R deletes files within the specified directory, but
rmdir doesn’t.

Editing Files with Vi

Vi was the first full-screen text editor written for Unix. It’s designed to
be small and simple. Vi is small enough to fit on tiny floppy-based emergency
boot systems. For this reason alone, Vi is worth learning; you may need to
use it in an emergency recovery situation. Vi is, however, a bit strange, par-
ticularly if you’re used to GUI text editors.

Most Linux distributions actually ship with a variant of Vi known as Vim, or “Vi
Improved.” As the name implies, Vim supports more features than does the
original Vi. The discussion presented here applies to both Vi and Vim. Most
distributions that ship with Vim allow you to launch it by typing vi, as if it were
the original Vi.

http://www.sybex.com

Editing Files with Vi 499

Vi Modes

At any given moment, Vi is running in one of three modes:

Command mode This mode accepts commands, which are usually
entered as single letters. For instance, i and a both enter edit mode,
although in somewhat different ways, as described shortly; and o opens a
line below the current one.

Ex mode To manipulate files (including saving your current file and
running outside programs), you use ex mode. You enter ex mode from
command mode by typing a colon (:), typically directly followed by the
name of the ex mode command you want to use. After running the ex
mode command, Vi returns automatically to command mode.

Edit mode You enter text in edit mode. Most keystrokes result in text
appearing on the screen. One important exception is the Esc key, which
exits from edit mode back to command mode.

If you’re not sure what mode Vi is in, press the Esc key. This will return you to
command mode, from which you can reenter edit mode, if necessary.

Basic Text Editing Procedures

As a method of learning Vi, consider the task of editing /etc/lilo.conf to
add a new kernel. Listing 7.1 shows the original lilo.conf file used in this
example. If you want to follow along, enter it using a text editor with which
you’re already familiar, and save it to a file on your disk.

Listing 7.1: Sample /etc/lilo.conf File

boot=/dev/sda

map=/boot/map

install=/boot/boot.b

prompt

default=linux

timeout=50

image=/boot/vmlinuz

 label=linux

 root=/dev/sda6

 read-only

http://www.sybex.com

500 Chapter 7 � Managing Partitions and Processes

Don’t try editing your real /etc/lilo.conf file as a learning exercise; a mis-
take could render your system unbootable the next time you type lilo. You
might put your test lilo.conf file in your home directory for this exercise.

The first step to using Vi is to launch it and have it load the file. In this
example, type vi lilo.conf while in the directory holding the file. The
result should resemble Figure 7.2, which shows Vi running in an xterm win-
dow. The tildes (~) down the left side of the display indicate the end of the
file. The bottom line shows the status of the last command—an implicit file
load command because you specified a filename when launching the program.

F I G U R E 7 . 2 The last line of a Vi display is a status line that shows messages from the
program.

Adding a new entry to lilo.conf involves duplicating the lines beginning
with the image= line and modifying the duplicates, as described in Chapter 3.
Therefore, the first editing task is to duplicate these four lines. To do this, fol-
low these steps:

1. Move the cursor to the beginning of the image= line by using the down
arrow key; you should see the cursor resting on the i.

2. You must now “yank” four lines of text. This term is used much as
“copy” is used in most text editors—you copy the text to a buffer from

http://www.sybex.com

Editing Files with Vi 501

which you can later paste it back into the file. To yank text, you use
the yy command, preceded by the number of lines you want to yank.
Thus, type 4yy (do not press the Enter key, though). Vi responds with
the message 4 lines yanked on its bottom status line. The dd com-
mand works much like yy, but it deletes the lines as well as copying
them to a buffer.

3. Move the cursor to the last line of the file by using the arrow keys.

4. Type p (again, without pressing the Enter key). Vi pastes the contents
of the buffer starting on the line after the cursor. The file should now
have two identical image= stanzas. The cursor should be resting at the
start of the second one. If you want to paste the text into the document
starting on the line before the cursor, use an uppercase P command.

Now that you’ve duplicated the necessary lines, you must modify one
copy to point to your new kernel. To do so, follow these steps:

1. Move the cursor to the v in vmlinuz on the second image= line.
You’re about to begin customizing this second stanza.

2. Up until now, you’ve operated Vi in command mode. There are sev-
eral commands that you can use to enter edit mode. At this point, the
most appropriate is R, which enters edit mode so that it is configured
for text replacement rather than insertion. If you prefer insert mode,
you could use i or a (the latter advances the cursor one space, which
is sometimes useful at the end of a line). For the purposes of these
instructions, type R to enter edit mode. You should see -- REPLACE --
appear in the status line.

3. Type the name of a new Linux kernel. For the purposes of this example,
let’s say you’ve called it bzImage-2.4.3, so that’s what you’d type.
This entry should replace vmlinuz.

4. Use the arrow keys to move the cursor to the start of linux on the next
line. You must replace this label so that your new entry has its own
label.

5. Type a new label, such as mykernel. This label should replace the
existing linux label.

6. Exit from edit mode by pressing the Esc key.

7. Save the file and quit by typing :wq. This is actually an ex mode com-
mand, as described shortly.

http://www.sybex.com

502 Chapter 7 � Managing Partitions and Processes

There are many additional commands you might want to use in some sit-
uations. Here are some of the highlights:

Case changes Suppose you need to change the case of a word in a file.
Instead of entering edit mode and retyping the word, you can use the tilde
(~) key in command mode to change the case. Position the cursor on the
first character you want to change and press ~ repeatedly until the task
is done.

Undo To undo any change, type u in command mode.

Searches To search forward for text in a file, type / in command mode,
followed immediately by the text you want to locate. Typing ? will search
backward rather than forward.

Global replacement To replace all occurrences of one string by another,
type :%s/original/replacement, where original is the original string
and replacement is its replacement. Change % to a starting line number,
comma, and ending line number to perform this change on just a small
range of lines.

There’s a great deal more depth to Vi than is presented here; the editor is
quite capable, and some Linux users are very attached to it. There have been
entire books written about Vi. Consult one of these, or a Vi Web page like
http://www.vim.org, for more information.

Saving Changes

To save changes to a file, type :w from command mode. This enters ex mode
and runs the w ex-mode command, which writes the file using whatever file-
name you specified when you launched Vi. Related commands include these:

:e This command edits a new file. For instance, :e /etc/inittab
loads /etc/inittab for editing. Vi won’t load a new file unless the exist-
ing one has been saved since its last change or unless you follow :e with
an exclamation mark (!).

:r This command includes the contents of an old file in an existing one.

:q Use this command to quit from the program. As with :e, this com-
mand won’t work unless changes have been saved or you append an
exclamation mark to the command.

http://www.sybex.com

Managing Cron Jobs 503

You can combine ex commands such as these to perform multiple actions
in sequence. For instance, typing :wq writes changes and then quits from Vi.

Managing Cron Jobs

Some system maintenance tasks should be performed at regular inter-
vals and are highly automated. For instance, the /tmp directory (which holds
temporary files created by many users) tends to collect useless data files.
Linux provides a means of scheduling tasks to run at specified times to
handle such issues. This tool is the cron program, which runs what are
known as cron jobs.

The Role of Cron

Cron is a daemon, which means that it runs continuously, looking for events
that cause it to spring into action. Unlike most daemons, which are network
servers, cron responds to temporal events. Specifically, it “wakes up” once a
minute, examines configuration files in the /var/spool/cron and /etc/
cron.d directories and the /etc/crontab file, and executes commands
specified by these configuration files if the time matches the time listed in the
files.

There are two types of cron jobs: system cron jobs and user cron jobs. Sys-
tem cron jobs are run as root and perform system-wide maintenance tasks.
By default, most Linux distributions include system cron jobs that clean out
old files from /tmp, perform log rotation (renaming log files and deleting old
ones so that they don’t grow to fill the disk), and so on. You can add to this
repertoire, as described shortly. Ordinary users can create user cron jobs,
which might run some user program on a regular basis. You can also create
a user cron job as root, which might be handy if you need to perform some
task at a time not allowed by the system cron jobs, which are scheduled
rather rigidly.

One of the critical points to remember about cron jobs is that they run
unsupervised. Therefore, you shouldn’t call any program in a cron job if that
program requires user input. For instance, you wouldn’t run a text editor in
a cron job. You might, though, run a script that automatically manipulates
text files, such as log files.

http://www.sybex.com

504 Chapter 7 � Managing Partitions and Processes

Creating System Cron Jobs

The /etc/crontab file controls system cron jobs. This file normally begins
with several lines that set environment variables, such as PATH and MAILTO
(the former sets the path, and the latter is the address to which programs’
output is mailed). The file then contains several lines that resemble the
following:

02 4 * * * root run-parts /etc/cron.daily

This line begins with five fields that specify the time. The fields are, in
order, the minute (0-59), the hour (0-23), the day of the month (1-31), the
month (1-12), and the day of the week (0-7; both 0 and 7 correspond to Sun-
day). For the month and day of the week values, you can use the first three
letters of the name rather than a number, if you like.

In all cases, you can specify multiple values in several ways:

� An asterisk (*) matches all possible values.

� A list separated by commas (such as 0,6,12,18) matches any of the
specified values.

� Two values separated by a dash (-) indicate a range, inclusive of the
end points. For instance, 9-17 in the hour field specifies a time of from
9:00 A.M. to 5:00 P.M.

� A slash, when used in conjunction with some other multivalue option,
specifies stepped values—a range in which some members are skipped.
For instance, */10 in the minute field indicates a job that’s run every
10 minutes.

After the first five fields, /etc/crontab entries continue with the account
name to be used when executing the program (root in the preceding example)
and the command to be run (run-parts /etc/cron.daily in this example).
The default /etc/crontab entries generally use run-parts, cronloop, or a
similar utility that runs any executable scripts within a directory. Thus, the
preceding example runs all the scripts in /etc/cron.daily at 4:02 A.M.
every day. Most distributions include monthly, daily, weekly, and hourly
system cron jobs, each corresponding to scripts in a directory called /etc/
cron.interval, where interval is a word associated with the run fre-
quency. Others place these scripts in /etc/cron.d/interval directories.

http://www.sybex.com

Managing Cron Jobs 505

The exact times chosen for system cron jobs to execute vary from one distri-
bution to another. Normally, though, daily and longer-interval cron jobs run
early in the morning—between midnight and 6:00 A.M. Check your /etc/
crontab file to determine when your system cron jobs run.

To create a new system cron job, you may create a script to perform the
task you want performed (as described in Chapter 6), and copy that script to
the appropriate /etc/cron.interval directory. The next time the run time
rolls around, cron will run the script.

Before submitting a script as a cron job, test it thoroughly. This is particularly
important if the cron job will run when you’re not around. You don’t want a
bug in your cron job script to cause problems by filling the hard disk with use-
less files or producing thousands of e-mail messages when you’re not present
to quickly correct the problem.

If you need to run a cron job at a time or interval that’s not supported by
the standard /etc/crontab, you can either modify that file to change or
add the cron job run time, or create a user cron job, as described shortly. If
you choose to modify the system cron job facility, model your changes after
an existing entry, changing the times and script storage directory as required.

System cron job storage directories should be owned by root, and only root
should be able to write to them. If ordinary users can write to a system cron
directory, unscrupulous users could write scripts to give themselves super-
user privileges and place them in the system cron directory. The next time
cron runs those scripts, the users will have full administrative access to the
system.

Creating User Cron Jobs

To create a user cron job, you use the crontab utility, not to be confused
with the /etc/crontab configuration file. The syntax for crontab is as
follows:

crontab [-u user] [-l | -e | -r] [file]

http://www.sybex.com

506 Chapter 7 � Managing Partitions and Processes

If given without the -u user parameter, crontab modifies the cron job
associated with the current user. (User cron jobs are often called crontabs,
but with the word already used in reference to the system-wide configuration
file and the utility itself, this usage can be confusing.) The crontab utility can
become confused by the use of su to change the current user identity, though,
so if you use this command, it’s safest to also use -u user, even when you
are modifying your own cron job.

If you want to work directly on a cron job, use one of the -l, -e, or -r
options. -l causes crontab to display the current cron job. -r removes the
current cron job. -e opens an editor so that you can edit the current cron job.
(Vi is the default editor, but you can change this by setting the VISUAL or
EDITOR environment variables, as described in Chapter 6.)

Alternatively, you can create a cron job configuration file and pass the
filename to crontab using the file parameter. For instance, crontab -u
tbaker my-cron causes crontab to use my-cron for tbaker’s cron jobs.

Whether you create the cron job and submit it via the file parameter or
edit it via -e, the format of the cron file is similar to that described earlier.
You can set environment variables by using the form VARIABLE=value, or
you can specify a command preceded by five numbers or wildcards to indi-
cate when the job is to run. In a user cron job, however, you do not specify
the username used to execute the job, as you do with system cron jobs. That
information is derived from the owner of the cron job. Listing 7.2 shows a
sample cron job file. This file runs two programs at different intervals: The
fetchmail program runs every thirty minutes (on the hour and half hour),
and clean-adouble runs on Mondays at 2:00 A.M. Both programs are spec-
ified via complete paths, but you could include a PATH environment variable
and omit the complete path specifications.

Listing 7.2: A Sample User Cron Job File

SHELL=/bin/bash

MAILTO=tbaker

HOME=/home/tbaker

0,30 * * * * /usr/bin/fetchmail -s

0 2 * * mon /usr/local/bin/clean-adouble $HOME

http://www.sybex.com

Handling Core Dumps 507

Handling Core Dumps

Unfortunately, few programs are perfect. One particularly important
class of imperfections causes a program to crash—to abruptly stop working
and exit. Some types of crashes on Linux cause the system to create a special
file called core. These files are often referred to as core dumps, and under-
standing what they’re for and how to take advantage of them can help you
track down problem programs and the users who run them. You can then
replace the software or, if you know enough about programming, you can
use the core dump to help fix the software. If you lack this knowledge or
don’t have the time or inclination to follow through on it, you may want to
delete core dumps because they can clutter your computer, and in extreme
cases, they may consume enough disk space to be a problem. If your users
engage in programming, you may want to leave their own core dumps alone
because they may use them even if you don’t.

Understanding Core Dumps

A core dump is so called because it is a recording (dump) of the memory a
program was using at the time it crashed. (In very early computer history,
what we now call RAM was called core memory because it was built from
magnetized rings known as cores.) The reasoning behind producing a core
dump is that a programmer should be able to study a crashed program to dis-
cover why it crashed. Because a crashed program is no longer active in mem-
ory, though, this task is difficult or impossible without a core dump. With a
core dump, a programmer can use the core file to study the program’s state
when it crashed. If the program included appropriate debugging code, a pro-
grammer can even trace through the steps that led to the crash, thus making
it relatively easy to locate the source of the problem.

Because core dumps are recordings of a program’s state in memory at the
time of a crash, they vary in size. A short program that operates on little data
will produce a small core file, but a large program that works on large data
sets will produce a large core file. In any event, these files normally appear
in the directory from which the program was run.

Not all program crashes create core dumps. One common reason for this
is that the user ran the program in a directory to which the user did not have
write access. Another reason is that the shell may have limited the size of
core files. In bash, this can be done with the ulimit command, by passing

http://www.sybex.com

508 Chapter 7 � Managing Partitions and Processes

it the -c parameter and the maximum core size in kilobytes. For instance,
ulimit -c 60 ensures that no core file greater than 60KB will be created.
If a core file would be larger than this amount, it will be truncated to this
size or smaller. Such truncated core files are unlikely to be very useful. Typ-
ing ulimit -c 0 stops the creation of core files altogether. (This command
is sometimes found in bash configuration files.) On the opposite end of the
scale, typing ulimit -c unlimited allows the system to create core files
of any size.

Locating and Deleting Unneeded Core Files

You can locate all core files on a system by typing the following command:

find / -name core

This command will, however, return some files that aren’t core files in the
sense just described. For instance, /dev/core is a device file and /proc/
sys/net/core is a directory. There’s also a core directory in the Linux ker-
nel source code. None of these is a core file in the sense of a holding area for
a crashed program’s memory. If you issue the preceding find command as
an ordinary user, you’ll get some Permission denied error messages
because you are not allowed to read certain directories. As a result, you
won’t find core files in those directories.

Once you’ve found core files on a system, the question arises of what to
do with them. As discussed shortly, a core file can be useful, but it is most
useful to programmers with access to the source code for the program that
created the core file. One of the advantages of Linux, of course, is that you
have source code to most of the programs you run, so if you have the skill
and inclination, you can use a core file to help debug a problem.

To be most useful, the program that created the core file must have been
compiled with debugging code enabled. Such code is often not included in
programs that are released as part of a Linux distribution, so if you want to
debug such a program that’s creating core dumps, you may need to recom-
pile it with debugging code enabled.

http://www.sybex.com

Handling Core Dumps 509

It’s not always obvious just what created the core file, and therefore
whether it’s useful or not. There are some clues you may want to examine,
though:

Owner A core file is owned by the person who executed the program.
This information may be useful in tracking down the source of core files
in certain directories and in determining whether or not to delete the files.
For instance, if you know that smccoy is writing programs on the system
and you find core files owned by smccoy, you might not want to delete
them immediately, or at least you might want to ask smccoy what to do
with them. It’s possible that the user needs these core files, or they could
just be rubbish that’s cluttering the system.

Creation date Like all files, core files have creation dates. To use the
core file, you normally examine it to trace the actions that caused a crash.
This is best done when the crash is fresh in your mind. Therefore, the
older a core file, the less likely it is to be useful.

Creating program Although core files all have the same filename, it’s
possible to determine what program created the file. You can do this by
typing gdb -c core. This will launch gdb, the GNU debugger, which will
examine the core file and report, among other things, the name of the
program that generated the file. You’ll then need to type quit to exit from
gdb. At the very least, this information should help you decide whether a
core file represents, say, a crash of a program under development or a
crash of a standard tool on the computer.

With this information in hand, you can decide what to do with the core
file. You might decide to move it to a user’s directory and send an e-mail to
that user about that fact; replace a buggy utility that’s crashing; attempt fur-
ther debugging yourself; delete the core file; send the file to the program’s
author (after checking that the author wants it); or something else. Note that
this is a judgment call; an appropriate action for one system may not be
appropriate for another. The use to which a system is put, the expertise of its
users, and your own expertise are important factors in deciding what to do
with a core file.

You may be tempted to automate the process of searching for and deleting
core files. I don’t recommend automatically deleting all core files on a com-
puter because there are, as noted earlier, several files and directories named
core that are not core dumps. Deleting one of these files by mistake can
cause problems. If a system’s users write programs and use core files for

http://www.sybex.com

510 Chapter 7 � Managing Partitions and Processes

debugging, deleting them might earn you these users’ ire. Even moving the
files can cause problems if the move makes these files inaccessible. You
might, however, include the find command noted earlier in a system cron
job. If you do this, assuming the MAILTO environment variable is set cor-
rectly, the result will be a report of all the core files on the system every time
the job runs. A weekly or monthly report such as this will alert you to the
presence of any core files you might want to manually inspect.

Managing Processes

Even programs that don’t crash outright occasionally misbehave in
other ways. For instance, a program might stop responding, or it may consume
an inordinate amount of CPU time. In these cases, it’s important that you
know how to exercise superuser control over these programs so that you can
rein in their appetites or terminate them outright. The first step to doing this,
though, is knowing how to find out what programs are running on the com-
puter, so that’s where this section begins.

Before proceeding, though, it’s important that you understand a bit of ter-
minology. In Linux, a process is more or less synonymous with a running
program. Because Linux is a multiuser, multitasking OS, it’s possible for one
program to be running as more than one process at a time, however. For
instance, suppose that tbaker and smccoy both use Vi to edit text files. The
computer will have two Vi processes running at once. Indeed, a single user
can do this. It’s also possible for a single program to create (or spawn) sub-
processes. For instance, Vi can launch a spell checker program. In fact, this
is what happens when you launch a program from a shell—the shell spawns
the program you’re launching. When one process spawns another, the orig-
inal process is known as the parent process, and the spawned subprocess is
known as the child process. This parent/child relationship produces a tree-
like hierarchy that ultimately leads back to init, the first process (described
in Chapter 6). Figure 7.3 shows a simplified example. In Figure 7.3, init
spawns the login processes, which in turn spawn bash processes, which
spawn additional processes. (It’s actually slightly more complex than this.
init doesn’t directly spawn login; instead, it does this by using another
process, such as getty.) This can continue for an arbitrary number of layers,
although many programs aren’t able to spawn others.

http://www.sybex.com

Managing Processes 511

F I G U R E 7 . 3 Linux processes have parents, leading back to init, the first program the Linux
kernel runs.

Examining Process Lists with ps

One of the most important tools in process management is ps. This program
displays processes’ status (hence the name, ps). It sports many useful
options, and it’s useful in monitoring what’s happening on a system. This
can be particularly critical when the computer isn’t working as it should be—
for instance, if it’s unusually slow.

Useful ps Options

The official syntax for ps is fairly simple:

ps [options]

This simplicity of form hides considerable complexity because ps sup-
ports three different types of options, as well as many options within each
type. The three types of options are as follows:

Unix98 options These single-character options may be grouped
together and are preceded by a single dash (-).

BSD options These single-character options may be grouped together
and must not be preceded by a dash.

GNU long options These multicharacter options are not grouped
together. They’re preceded by two dashes (--).

Options that may be grouped together may be clustered without spaces
between them. For instance, rather than typing ps -a -f, you can type ps

http://www.sybex.com

512 Chapter 7 � Managing Partitions and Processes

-af. The reason for so much complexity is that the ps utility has historically
varied a lot from one Unix OS to another. The version of ps that ships with
major Linux distributions attempts to implement most features from all
these different ps versions, so it supports many different personalities.
In fact, you can change some of its default behaviors by setting the
PS_PERSONALITY environment variable to posix, old, linux, bsd, sun,
digital, or various others. The rest of this section describes the default ps
behavior on most Linux systems.

Some of the more useful ps options include the following:

-A, -e, or x By default, ps displays only processes that were run from its
own terminal (xterm, text-mode login, or remote login). The -A and -e
options cause it to display all the processes on the system, and x displays
all processes owned by the user who gives the command. x also increases
the amount of information that’s displayed about each process.

-u user, U user, or --User user You can display processes
owned by a given user with these options. user may be a username or
a user ID.

-f, -l, j, l, u, and v These options all expand the information pro-
vided in the ps output. Most ps output formats include one line per
process, but ps can display enough information that it’s impossible to
fit it all on one line. Therefore, these options provide various mixes of
information.

-H, f, or --forest These options group processes and use indenta-
tion to show the hierarchy of relationships between processes. This is
very useful if you’re trying to trace the parentage of a process.

-w or w ps output can be more than 80 columns wide. Normally, ps
truncates its output so it will fit on your screen or xterm. These
options tell ps not to do this, which can be useful if you direct the out-
put to a file, as in ps w > ps.txt. You can then examine the output
file in a text editor that supports wide lines.

You can combine these ps options in many ways to produce the out-
put you want. You’ll probably need to experiment to learn which
options produce the desired results because each of these options mod-
ifies the output in some way. Even those that would seem to influence
just the selection of processes to list sometimes modify the information
that’s provided about each process.

http://www.sybex.com

Managing Processes 513

Interpreting ps Output

Listings 7.3 and 7.4 show a couple of examples of ps in action. Listing 7.3
shows ps -u rodsmith --forest, and Listing 7.4 shows ps u U
rodsmith.

Listing 7.3: Output of ps -u rodsmith --forest

$ ps -u rodsmith --forest

 PID TTY TIME CMD

 2451 pts/3 00:00:00 bash

 2551 pts/3 00:00:00 ps

 2496 ? 00:00:00 kvt

 2498 pts/1 00:00:00 bash

 2505 pts/1 00:00:00 _ nedit

 2506 ? 00:00:00 _ csh

 2544 ? 00:00:00 _ xeyes

19221 ? 00:00:01 dfm

Listing 7.4: Output of ps u U rodsmith

$ ps u U rodsmith

USER PID %CPU %MEM VSZ RSS TTY STAT START
TIME COMMAND

rodsmith 19221 0.0 1.5 4484 1984 ? S May07
�0:01 dfm

rodsmith 2451 0.0 0.8 1856 1048 pts/3 S 16:13
�0:00 -bash

rodsmith 2496 0.2 3.2 6232 4124 ? S 16:17
�0:00 /opt/kd

rodsmith 2498 0.0 0.8 1860 1044 pts/1 S 16:17
�0:00 bash

rodsmith 2505 0.1 2.6 4784 3332 pts/1 S 16:17
�0:00 nedit

rodsmith 2506 0.0 0.7 2124 1012 ? S 16:17
�0:00 /bin/cs

rodsmith 2544 0.0 1.0 2576 1360 ? S 16:17
�0:00 xeyes

rodsmith 2556 0.0 0.7 2588 916 pts/3 R 16:18
�0:00 ps u U

http://www.sybex.com

514 Chapter 7 � Managing Partitions and Processes

The output produced by ps normally begins with a heading line, which
displays the meaning of each column. Important information that might be
displayed (and labeled) includes the following:

Username The name of the user who runs the programs. Listings 7.3
and 7.4 restricted this output to one user to limit the size of the listings.

Process ID The process ID (PID) is a number that’s associated with the
process. This item is particularly important because you need it to modify
or kill the process, as described later in this chapter.

Parent process ID The parent process ID (PPID) identifies the process’s
parent.

TTY The teletype (TTY) is a code used to identify a terminal. As illus-
trated by Listings 7.3 and 7.4, not all processes have TTY numbers—X
programs and daemons, for instance, do not. Text-mode programs do
have these numbers, though, which point to a console, xterm, or remote
login session.

CPU time The TIME and %CPU headings are two measures of CPU time
used. The first indicates the total amount of CPU time consumed, and the
second represents the percentage of CPU time the process is using when ps
executes. Both can help you spot runaway processes—those that are con-
suming too much CPU time. Unfortunately, just what constitutes “too
much” varies from one program to another, so it’s impossible to give a
simple rule to help you spot a runaway process.

CPU priority As described shortly, in “Restricting Processes’ CPU Use,”
it’s possible to give different processes different priorities for CPU time.
The NI column lists these priority codes. The default value is 0. Positive
values represent reduced priority, while negative values represent
increased priority.

Memory use Various headings indicate memory use—for instance, RSS
is resident set size (the memory used by the program and its data) and
%MEM is the percentage of memory the program is using. Some output for-
mats also include a SHARE column, which is memory that’s shared with
other processes (such as shared libraries). As with CPU use measures,
these can help point you to the sources of difficulties, but because legiti-
mate memory needs of programs vary so much, it’s impossible to give a
simple criterion for when a problem exists.

http://www.sybex.com

Managing Processes 515

Command The final column in most listings is the command used to
launch the process. This is truncated in Listing 7.4 because this format
lists the complete command, but so much other information appears that
the complete command won’t usually fit on one line. (This is where the
wide-column options can come in handy.)

As you can see, there’s a lot of information that can be gleaned from a ps
listing—or perhaps that should be the plural listings, because no one format
includes all of the available information. For the most part, the PID, user-
name, and command are the most important pieces of information. In some
cases, though, you may need specific other components. If your system’s
memory or CPU use has skyrocketed, for instance, you’ll want to pay atten-
tion to the memory or CPU use columns.

It’s often necessary to find specific processes. You might want to find the PID
associated with a particular command in order to kill it, for instance. This
information can be gleaned by piping the ps output through grep, as in ps ax
| grep bash to find all the instances of bash. (Both grep and pipes are covered
in more detail in Chapter 9.)

Although you may need a wide screen or xterm to view the output, you
may find ps -A --forest to be a helpful command in learning about your
system. Processes that don’t fall off of others are started directly by init or
have had their parents killed, and so they have been “adopted” by init.
Most of these processes are fairly important—they’re servers, login tools,
and so on. Processes that hang off of several others in this tree view, such as
xeyes and nedit in Listing 7.3, are mostly user programs launched from shells.

top: A Dynamic ps Variant

If you want to know how much CPU time various processes are consuming
relative to one another, or if you simply want to quickly discover which pro-
cesses are consuming the most CPU time, a tool called top is the one for the
job. top is a text-mode program, but of course it can be run in an xterm, as
shown in Figure 7.4, and there are also GUI variants, like gtop. By default,
top sorts its entries by CPU use, and it updates its display every few seconds.
This makes it a very good tool for spotting runaway processes on an other-
wise lightly loaded system—those processes almost always appear in the first
position or two, and they consume an inordinate amount of CPU time. By
looking at Figure 7.4, you might think that setiathome is such a process,
but in fact, it’s legitimately consuming a lot of CPU time. You’ll need to be
familiar with the purposes and normal habits of programs running on your

http://www.sybex.com

516 Chapter 7 � Managing Partitions and Processes

system in order to make such determinations; the legitimate needs of differ-
ent programs vary so much that it’s impossible to give a simple rule for judg-
ing when a process is consuming too much CPU time.

F I G U R E 7 . 4 top shows system summary information and information on the most CPU-
intensive processes on a computer.

Like many Linux commands, top accepts several options. The following
is a list of the most useful of these options:

d delay This specifies the delay between updates, which is normally
five seconds.

p pid If you want to monitor specific processes, you can list them using
this option. You’ll need the PIDs, which you can obtain with ps, as
described earlier. You can specify up to 20 PIDs by using this option mul-
tiple times, once for each PID.

n iter You can tell top to display a certain number of updates (iter)
and then quit. (Normally, top continues updating until you exit from the
program.)

b This specifies batch mode, in which top doesn’t use the normal screen
update commands. You might use this to log CPU use of targeted pro-
grams to a file, for instance.

You can do more with top than watch it update its display. When it’s run-
ning, you can enter any of several single-letter commands, some of which
prompt you for additional information. These commands include the
following:

h or ? These keystrokes display help information

http://www.sybex.com

Managing Processes 517

k You can kill a process with this command. top will ask for a PID num-
ber, and if it’s able to kill it, it will do so. (The upcoming section “Killing
Processes” describes other ways to kill processes.)

q This option quits from top.

r You can change a process’s priority with this command. You’ll have
to enter the PID number and a new priority value—a positive value will
decrease its priority and a negative value will increase its priority, assum-
ing it has the default 0 priority to begin with. Only root may increase a
process’s priority. The renice command (discussed shortly, in “Restrict-
ing Processes’ CPU Use”) is another way to accomplish this task.

s This command changes the display’s update rate, which you’ll be
asked to enter (in seconds).

P This sets the display to sort by CPU usage, which is the default.

M You can change the display to sort by memory usage with this command.

There are more commands available in top (both command-line options
and interactive commands) than can be summarized here; consult the top
man page for more information.

One of the pieces of information provided by top is the load average,
which is a measure of the demand for CPU time by applications. In Fig-
ure 7.4, you’ll see three load average estimates on the top line; these corre-
spond to the current load average and two previous measures. A system on
which no programs are demanding CPU time will have a load average of 0.
A system with one program running CPU-intensive tasks will have a load
average of 1. Higher load averages reflect programs competing for available
CPU time. You can also find the current load average via the uptime com-
mand, which displays the load average along with information on how long
the computer has been running. The load average can be very useful in
detecting runaway processes. For instance, if a system normally has a load
average of 0.5, but it suddenly gets stuck at a load average of 2.5, there may
be a couple of CPU-hogging processes that have hung—that is, become unre-
sponsive. Hung processes sometimes needlessly consume a lot of CPU time.
You can use top to locate these processes and, if necessary, kill them.

Restricting Processes’ CPU Use

There may be times when you’ll want to prioritize your programs’ CPU use.
For instance, you might be running a program that’s very CPU-intensive but

http://www.sybex.com

518 Chapter 7 � Managing Partitions and Processes

that will take a long time to finish its work, and you don’t want that program
to interfere with others that are of a more interactive nature. Alternatively,
on a heavily loaded computer, you might have a job that’s more important
than others that are running, so you might want to give it a priority boost.
In either case, the usual method of accomplishing this goal is through the
nice and renice commands. You can use nice to launch a program with
a specified priority, or use renice to alter the priority of a running program.

You can give a priority to nice in any of three ways: by specifying the pri-
ority preceded by a dash (this works well for positive priorities, but makes
them look like negative priorities); by specifying the priority after a -n
parameter; or by specifying the priority after the --adjustment= parameter.
In all cases, these parameters are followed by the name of the program you
want to run. For instance, the following three commands are all equivalent:

$ nice -12 number-crunch data.txt

$ nice -n 12 number-crunch data.txt

$ nice --adjustment=12 number-crunch data.txt

All three of these commands run the number-crunch program at priority 12,
and pass it the data.txt file. If you omit the adjustment value, nice uses 10
as a default. The range of possible values is –20 to 19, with negative values
having the highest priority. Only root may launch a program with increased
priority (that is, give a negative priority value), but any user may use nice to
launch a program with low priority. The default priority for a program run
without nice is 0.

If you’ve found that a running process is consuming too much CPU time
or is being swamped by other programs and so should be given more CPU
time, you can use the renice program to alter its priority without disrupting
the program’s operation. The syntax for renice is as follows:

renice priority [[-p] pids] [[-g] pgrps] [[-u] users]

You must specify the priority, which takes the same values as with
nice. In addition, you must specify one or more PIDs (pids), one or more
group IDs (pgrps), or one or more usernames (users). In the latter two
cases, renice changes the priority of all programs that match the specified
criterion—but only root may use renice in this way. Also, only root may
increase a process’s priority. If you give a numeric value without a -p, -g, or
-u option, renice assumes the value is a PID. You may mix and match these

http://www.sybex.com

Managing Processes 519

methods of specification. For instance, you might enter the following
command:

renice 7 16580 -u pdavison tbaker

This command sets the priority to 7 for PID 16580 and for all processes
owned by pdavison and tbaker.

Killing Processes

Sometimes reducing a process’s priority isn’t a strong enough action. A pro-
gram may have become totally unresponsive, or you might want to terminate
a process that shouldn’t be running at all. In these cases, the kill command
is the tool to use. This program sends a signal (a method that Linux uses to
communicate with processes) to a process. The signal is usually sent by the
kernel, the user, or the program itself to terminate the process. Linux sup-
ports many numbered signals, each of which is associated with a specific
name. You can see them all by typing kill -l. If you don’t use -l, the syn-
tax for kill is as follows:

kill -s signal pid

The -s signal parameter sends the specified signal to the process. You
can specify the signal using either a number (such as 9) or a name (such as
SIGKILL). The signals you’re most likely to use are 1 (SIGHUP, which causes
many daemons to reread their configuration files), 9 (SIGKILL, which causes
the process to exit without performing routine shutdown tasks), and 15
(SIGTERM, which causes the process to exit but allows it to close open files
and so on). If you don’t specify a signal, the default is 15 (SIGTERM). You can
also use the shortened form -signal. If you do this and use a signal name,
you should omit the SIG portion of the name—for instance, use KILL rather
than SIGKILL. pid is, of course, the PID for the process you want to kill. You
can obtain this number from ps or top.

The kill program will only kill processes owned by the user who runs kill.
The exception is if that user is root; the superuser may kill any user’s processes.

A variant on kill is killall. This command kills a process based on its
name, rather than its PID number. For instance, killall vi kills all the run-
ning processes called vi. You may specify a signal in the shortened form

http://www.sybex.com

520 Chapter 7 � Managing Partitions and Processes

(-signal). As with kill, the default is 15 (SIGTERM). One potentially
important option to killall is -i, which causes it to ask for confirmation
before sending the signal to each process. You might use it like this:

$ killall -i vi

Kill vi(13211) ? (y/n) y

Kill vi(13217) ? (y/n) n

In this example, there were two instances of the Vi editor running, but
only one should have been killed. As a general rule, if you run killall as
root, you should use the -i parameter; if you don’t, it’s all too likely that
you’ll kill processes that you should not, particularly if the computer is being
used by many people at once.

Some versions of Unix provide a killall command that works very differ-
ently from Linux’s killall. This alternate killall kills all the processes
started by the user who runs the command. This is a potentially much more
destructive command, so if you ever find yourself on a non-Linux system, do
not use killall until you’ve discovered what that system’s killall does, say
by reading the killall man page.

Summary

Linux uses a unified filesystem, which means it doesn’t use drive letters
as Windows does. Instead, partitions are mounted within a single directory
structure, starting at the root (/) partition. You can create filesystems on par-
titions or removable disks, mount them, store files on them, and back them
up individually or across partitions. The organization of these directories
and filesystems is described in the FHS, which defines where files should
reside in a Linux system. Manipulating individual files can be extremely
important on a Linux system, and Linux includes many tools to help you do
this, ranging from commands for copying and moving files to editors like Vi
for manipulating the contents of files.

Certain files are associated with particular types of running programs. For
instance, control files manage cron jobs, which are processes that run at reg-
ularly scheduled times. Core dumps are another type of file that’s associated
with running processes, but these are processes gone bad—programs that
have crashed leave core dumps as a clue to what caused them to crash. You

http://www.sybex.com

Exam Essentials 521

may want to delete these, examine them, or send them to the individual
whose program crashed as a debugging aid.

Even when a program doesn’t crash, it might cause other problems, such
as consuming too much memory or CPU time. You may need to identify such
problem processes and take action to ensure that they don’t bring your sys-
tem to its knees.

Exam Essentials

Explain the operation of the mount command. In its basic form, mount
takes a device filename and directory and ties the two together so that files
on the device may be accessed in the specified directory. A number of
parameters and options can modify its function or how it treats the file-
system that it mounts.

Summarize backup hardware options. Backup hardware includes
tapes, dedicated hard disks, removable disks, and optical media. Tapes
are the most common type of backup hardware, but each of the others has
its place for particular backup types.

Describe how you can learn how much disk space a system is using.
The du command reports on the disk space used by a single directory or
a group of directories. The df command summarizes the disk space con-
sumed on entire disk partitions.

Summarize Vi’s three editing modes. You enter text using the edit mode,
which allows for text entry and deletion. The command and ex modes are
used to perform more complex commands or run outside programs to
operate on the text entered or changed in edit mode.

Create a new filesystem on a disk or partition. The mkfs program cre-
ates new filesystems on removable media drives or hard disk partitions.
This program is actually a front-end to programs that do the actual work,
such as mke2fs (aka mkfs.ext2) for ext2fs.

Check a filesystem for errors. The fsck program checks a filesystem’s
internal consistency. Like mkfs, it’s a front end to filesystem-specific pro-
grams, such as e2fsck (aka fsck.ext2) for ext2fs.

http://www.sybex.com

522 Chapter 7 � Managing Partitions and Processes

Create a cron job. You create a system cron job by placing a script in an
appropriate directory, such as /etc/cron.daily. You can create a user
cron job by using the crontab command, which allows you to edit a
script or pass one to the utility for appropriate handling.

Limit the CPU time used by a process. You can launch a program with
nice, or use renice to alter its priority in obtaining CPU time. If a pro-
cess is truly out of control, you can terminate it with the kill command.

Commands in This Chapter

Command Description

du Displays disk usage information for a file, directory, or
set of files or directories

mount Mounts a partition or device to a specified location in
the Linux directory tree

umount Removes a partition or device from its location in the
Linux directory tree

df Displays disk usage information for one or all mounted
partitions or devices

ls Displays the contents of a directory, or information on
a file

pwd Displays the present working directory

cd Changes the present working directory

cp Copies one or more files or directories

mv Moves or renames one or more files or directories

http://www.sybex.com

Key Terms 523

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

rm Deletes one or more files or directories

mkdir Creates a directory

rmdir Deletes a directory

fdisk Modifies partitions on an x86 computer

mkfs Creates a filesystem

crontab Creates a user cron job

ulimit Limits the size of core files

gdb Debugs programs; dissects core files

ps Displays process status information

top Dynamic variant of ps; shows most CPU-hungry pro-
grams and updates the display periodically

nice Runs a program with a specified priority

renice Changes a running program’s priority

kill Terminates a process based on its PID

killall Terminates a process based on its name

absolute directory name core dump

child process crash

Command Description

http://www.sybex.com

524 Chapter 7 � Managing Partitions and Processes

cron job rewinding tape device

device file root directory

Filesystem Hierarchy Standard (FHS) root filesystem

Filesystem Standard (FSSTND) sequential access

hung shareable files

incremental backup signal

load average spawn

log rotation static files

mounted system cron job

non-rewinding tape device unshareable files

parent process user cron job

process variable files

random access virtual filesystem

relative directory name wildcard

http://www.sybex.com

Review Questions 525

Review Questions

1. You’ve installed a commercial spreadsheet program, called Wonder-
Calc, on a workstation. In which of the following directories are you
most likely to find the program executable file?

A. /usr/sbin

B. /etc/X11

C. /bin

D. /opt/wcalc/bin

2. Under which of the following circumstances is it most important to
create a large partition to hold /var?

A. The computer hosts several user accounts, and many of these users
create large data files.

B. The computer functions exclusively as a print server for a seldom-
used printer.

C. The computer is a workstation used to run X programs on another
system.

D. The computer operates as a mail server for hundreds of users.

3. Typing fdisk -l /dev/hda produces a listing of four partitions:
/dev/hda1, /dev/hda2, /dev/hda5, and /dev/hda6. Which of the
following is true?

A. The disk contains two primary partitions and two extended
partitions.

B. Either /dev/hda1 or /dev/hda2 is an extended partition.

C. The partition table is corrupt; there should be a /dev/hda3 and a
/dev/hda4 before /dev/hda5.

D. If you add a /dev/hda3 with fdisk, /dev/hda5 will become
/dev/hda6, and /dev/hda6 will become /dev/hda7.

http://www.sybex.com

526 Chapter 7 � Managing Partitions and Processes

4. Which of the following pieces of information can df not report?

A. How long the filesystem has been mounted

B. The number of inodes used on an ext2fs partition

C. The filesystem type of a partition

D. The percentage of available disk space used on a partition

5. Which of the following commands backs up the /home directory to an
EIDE/ATAPI tape drive?

A. tar cvlpf /home /dev/st0

B. tar cvlpf /home /dev/ht0

C. tar cvf /dev/st0 /home

D. tar cvf /dev/ht0 /home

6. What is wrong with the following commands, which are intended to
record an incremental backup on a tape that already holds one incre-
mental backup?

mt -f /dev/st0 fsf 1

tar cvlpf /dev/st0 --listed-incremental /root/inc
�/home

A. The mt command should terminate in 2, rather than 1, to skip to
the second position on the tape.

B. When backing up /home, the incremental file must reside in /home,
not in /root.

C. The device filename should be a non-rewinding name (such as
/dev/nst0), not a rewinding name (/dev/st0).

D. The incremental backup must include the root (/) directory; it can-
not include only /home.

7. You want to discover the sizes of several dot files in a directory. Which
of the following commands might you use to do this?

http://www.sybex.com

Review Questions 527

A. ls -la

B. ls -p

C. ls -R

D. ls -d

8. You want to move a file from your hard disk to a floppy disk. Which
of the following is true?

A. You’ll have to use the --preserve option to mv to keep ownership
and permissions set correctly.

B. The mv command will adjust filesystem pointers without physically
rewriting data if the floppy uses the same filesystem type as the
hard disk partition.

C. You must use the same filesystem type on both media to preserve
ownership and permissions.

D. mv will delete the file on the hard disk after copying it to the floppy.

9. You type mkdir one/two/three and receive an error message that
reads, in part, No such file or directory. What can you do to
overcome this problem? (Choose all that apply.)

A. Add the --parents parameter to the mkdir command.

B. Issue three separate mkdir commands: mkdir one, then mkdir
one/two, then mkdir one/two/three.

C. Type touch /bin/mkdir to be sure the mkdir program file exists.

D. Type rmdir one to clear away the interfering base of the desired
new directory tree.

10. Which mode in Vi would you use to type text?

A. Ex mode

B. Command mode

C. Type mode

D. Edit mode

http://www.sybex.com

528 Chapter 7 � Managing Partitions and Processes

11. How would you remove two lines of text from a file using Vi?

A. In command mode, position the cursor on the first line and
type 2dd.

B. In command mode, position the cursor on the last line and
type 2yy.

C. In edit mode, position the cursor at the start of the first line, hold
the shift key down while pressing the down arrow key twice, and
hit the Delete key on the keyboard.

D. In edit mode, position the cursor at the start of the first line and
press Ctrl+K twice.

12. You run Linux’s fdisk and modify your partition layout. Before exit-
ing from the program, though, you realize that you’ve been working
on the wrong disk. What can you do to correct this problem?

A. Nothing; the damage is done, so you’ll have to recover data from
a backup.

B. Type w to exit from fdisk without saving changes to disk.

C. Type q to exit from fdisk without saving changes to disk.

D. Type u repeatedly to undo the operations you’ve made in error.

13. What does the following command accomplish?

mkfs -V -t ext2 /dev/sda4

A. It sets the partition table type code for /dev/sda4 to ext2.

B. It converts a FAT partition into an ext2fs partition without dam-
aging the partition’s existing files.

C. It creates a new ext2 filesystem on /dev/sda4, overwriting any
existing filesystem and data.

D. Nothing; the -V option isn’t valid, and so it causes mkfs to abort
its operation.

http://www.sybex.com

Review Questions 529

14. Which of the following tasks is likely to be handled by a cron job?
(Choose all that apply.)

A. Starting an important server when the computer boots

B. Finding and deleting old temporary files

C. Scripting supervised account creation

D. Monitoring the status of servers and e-mailing a report to the
superuser

15. Which of the following lines, if used in a user cron job, will run /usr/
local/bin/cleanup twice a day?

A. 15 7,19 * * * tbaker /usr/local/bin/cleanup

B. 15 7,19 * * * /usr/local/bin/cleanup

C. 15 */2 * * * tbaker /usr/local/bin/cleanup

D. 15 */2 * * * /usr/local/bin/cleanup

16. Which of the following bash commands prevents programs run from
the bash shell from creating core dumps?

A. core -limit 0

B. climit -0

C. dump --none

D. ulimit -c 0

17. What is the safest way to automate the processing of core files?

A. Create a cron job that searches for and deletes all files called core.

B. Create a cron job that searches for all files called core and e-mails
a report to you on its findings.

C. Create a cron job that searches for files called core and deletes
those not on an exception list.

D. Create a cron job that searches for files called core and moves
them to a special directory in which you can study them.

http://www.sybex.com

530 Chapter 7 � Managing Partitions and Processes

18. What process lies at the root of the Linux process hierarchy?

A. The BIOS

B. LILO

C. init

D. ps

19. A workstation ordinarily runs with a load average of 0.25. Suddenly,
its load average is 1.25. Which of the following might you suspect,
given this information? (Choose all that apply.)

A. The workstation’s user may be running more programs or more
CPU-intensive programs than usual.

B. A process may have hung—locked itself in a loop consuming CPU
time but doing no useful work.

C. A process may have begun consuming an inordinate amount of
memory.

D. The CPU may be malfunctioning and require replacement.

20. Which of the following commands is most likely to stop a runaway
process with PID 2939?

A. kill -s SIGHUP 2939

B. kill -s SIGTERM 2939

C. kill -s SIGKILL 2939

D. kill -s SIGDIE 2939

http://www.sybex.com

Answers to Review Questions 531

Answers to Review Questions

1. D. The /opt directory tree exists to hold programs that aren’t a stan-
dard part of a Linux distribution, such as commercial programs.
These programs should install in their own directories under /opt;
these directories usually have bin subdirectories of their own,
although this isn’t required. /usr/sbin holds programs that are nor-
mally run only by the system administrator, and /bin holds critical
basic binary files. Neither is an appropriate place for a spreadsheet
program. /etc/X11 holds X-related configuration files.

2. D. Most mail servers store mail files in /var, so creating a large and
separate /var partition can help isolate that disk activity from other
partitions, improving safety in case of a disk error. Of the remaining
uses, only option B is likely to generate more than normal accesses to
/var (to store printer queue files), and because the print server is sel-
dom used, this is less likely to require a large separate /var partition
than is a heavily used mail server.

3. B. Logical partitions are numbered from 5 and up, and they reside
inside an extended partition with a number between 1 and 4. There-
fore, one of the first two partitions must be an extended partition that
houses partitions 5 and 6. Because logical partitions are numbered
starting at 5, their numbers won’t change if /dev/hda3 is subse-
quently added. The disk holds one primary, one extended, and two
logical partitions.

4. A. A default use of df reports the percentage of disk space used. The
number of inodes and filesystem types can both be obtained by passing
parameters to df. This utility does not report how long a filesystem
has been mounted.

5. D. The device filename for an EIDE/ATAPI tape drive is /dev/ht0;
/dev/st0 refers to a SCSI tape drive. The tar filename must follow
the --file (f) qualifier; the first two options try to back up the con-
tents of the tape device to the /home file.

http://www.sybex.com

532 Chapter 7 � Managing Partitions and Processes

6. C. The /dev/st0 device (and /dev/ht0, for that matter) rewinds
after every operation. Therefore, the first command as given will wind
past the first incremental backup, and then immediately rewind. The
second command will therefore overwrite the first incremental
backup.

7. A. The -l parameter produces a long listing, including file sizes. The
-a parameter produces a listing of all files in a directory, including the
dot files. Combining the two produces the desired information (along
with information on other files).

8. D. When moving from one partition or disk to another, mv must nec-
essarily read and copy the file, then delete the original if that copy was
successful. If both filesystems support ownership and permissions,
they’ll be preserved; mv doesn’t need an explicit --preserve option to
do this, and this preservation isn’t reliant upon having exactly the
same filesystem types. Although mv doesn’t physically rewrite data
when moving within a single low-level filesystem, this approach can-
not work when copying to a separate low-level filesystem (such as
from a hard disk to a floppy disk); if the data isn’t written to the new
location, it won’t be accessible should the disk be inserted in another
computer.

9. A, B. If you try to create a directory inside a directory that doesn’t
exist, mkdir responds with a No such file or directory error. The
--parents parameter tells mkdir to automatically create all necessary
parent directories in such situations. You can also manually do this by
creating each necessary directory separately. (It’s possible that mkdir
one wouldn’t be necessary in this example, if the directory one already
exists, but no harm will come from trying to create a directory that
already exists, although mkdir will return a File exists error.)

10. D. Edit mode is used for entering text. Ex mode is used for file oper-
ations (including loading, saving, and running external programs).
Command mode is used for entering commands of various sorts.
There is no “type mode” in Vi.

http://www.sybex.com

Answers to Review Questions 533

11. A. dd is the command-mode command to delete lines. Preceding this
command by a number deletes that number of lines. yy works simi-
larly, but it copies (“yanks”) text rather than deleting it. Option C
works in many more modern text editors, but not in Vi. Option D works
in Emacs and similar text editors, but not in Vi.

12. C. Linux’s fdisk doesn’t write changes to disk until you exit from the
program by typing w. Typing q exits without writing those changes, so
typing q in this situation will avert disaster. Typing w would be pre-
cisely the wrong thing to do. Typing u would do nothing useful since
it’s not an undo command.

13. C. mkfs creates a new filesystem, overwriting any existing data and
therefore making existing files inaccessible. This command does not
set the partition type code in the partition table. The -V option is valid;
it causes mkfs to be more verbose in reporting its
activities.

14. B, D. Cron is a good tool for performing tasks that can be done in an
unsupervised manner, like deleting old temporary files or checking to
see that servers are running correctly. Tasks that require interaction,
like creating accounts, are not good candidates for cron jobs, which
must execute unsupervised. Although a cron job could restart a
crashed server, it’s not normally used to start a server when the system
boots; that’s done through SysV startup scripts or a super server.

15. B. User cron jobs don’t include a username specification (tbaker in
options A and C). The */2 specification for the hour in options C and
D causes the job to execute every other hour; the 7,19 specification in
options A and B causes it to execute twice a day, on the 7th and 19th
hours (in conjunction with the 15 minute specification, that means at
7:15 A.M. and 7:15 P.M.).

16. D. ulimit is a bash command that can be used to set a limit on the size
of core dumps. Specifying -c 0 sets a limit of 0KB, so no core files will
be created.

http://www.sybex.com

534 Chapter 7 � Managing Partitions and Processes

17. B. Some files may be called core but not be core dumps. Therefore,
any script that automatically deletes or moves files called core can
potentially do damage. Furthermore, automatic movement or deletion
can cause problems for users who may rely upon core files to debug
programs they’re writing. An exception list can mitigate these prob-
lems but not eliminate them.

18. C. Although the BIOS and (often) LILO are critical to booting the
computer, neither is a running process once Linux is fully booted, and
neither ever was, strictly speaking, a Linux process. During the boot
process, Linux starts init, from which all other processes are
descended. Although ps allows you to examine the status of running
processes, it holds no privileged position in the process hierarchy; it’s
just another process.

19. A, B. Sudden jumps in load average indicate that programs are mak-
ing heavier demands on the CPU than is normal. This may be because
of legitimate factors like users running more or more demanding pro-
grams, or it could mean that a program has locked itself into an unpro-
ductive loop. Memory use isn’t reflected in the load average. A
malfunctioning CPU is likely to manifest itself in system crashes, not
a change in the load average.

20. C. Many servers use SIGHUP as a code to reread their configuration
files; this signal doesn’t normally terminate the process. SIGTERM is a
polite way to stop a process; it lets the process control its own shut-
down, including closing open files. SIGKILL is a more forceful method
of termination; it’s more likely to work than SIGTERM, but open files
won’t be saved. There is no SIGDIE signal.

http://www.sybex.com

Chapter

8
Hardware Issues

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 3.7 Identify when swap space needs to be increased.

� 3.8 Add and configure printers.

� 3.9 Install and configure add-in hardware (e.g., monitors,

modems, network interfaces, scanners).

� 3.13 Load, remove, and edit list modules (e.g., insmod, rmmod,

Ismod, modprobe).

� 4.15 Manage print spools and queues.

� 7.6 Remove and replace hardware and accessories (e.g., cables

and components) based on symptoms of a problem by

identifying basic procedures for adding and removing field

replaceable components.

� 7.7 Remove and replace hardware and accessories (e.g., cables

and components) based on symptoms of a problem by

identifying common symptoms and problems associated with

each component and how to troubleshoot and isolate the

problems.

� 7.9 Identify proper procedures for diagnosing and

troubleshooting ATA devices.

� 7.10 Identify proper procedures for diagnosing and

troubleshooting SCSI devices.

� 7.11 Identify proper procedures for diagnosing and

troubleshooting peripheral devices.

� 7.12 Identify proper procedures for diagnosing and

troubleshooting core system hardware.

� 7.13 Identify and maintain mobile system hardware (e.g.,

PCMCIA, APM).

http://www.sybex.com

Most Linux distributions can detect and configure them-
selves to properly use your software at system installation. In fact, distribu-
tions increasingly include the facility to do this even after installation,
through tools like Red Hat’s Kudzu and Mandrake’s HardDrake. Some-
times, though, you need to manually configure new hardware or tweak an
automatic configuration. This chapter covers this matter, with particular
emphasis devoted to a few hardware issues that deserve extra attention:
swap space, printing, and portable computing. Another area that deserves
special attention is configuring the X Window System; this topic is covered
in Chapter 4, “Users and Security.” Whatever the hardware, troubleshoot-
ing that hardware can sometimes be a tricky task, so this chapter covers that
topic, as well.

Adding Swap Space

Linux allows you to run programs that consume more memory than
you have RAM in your system. It does this through the use of swap space,
which is disk space that Linux treats as an extension of RAM. When your
RAM fills with programs and their data, Linux moves some of this informa-
tion to its swap space, freeing actual RAM for other uses. This feature, which
is common on modern operating systems, is very convenient when your users
run an unusually large number of programs. If relied on too much, though,
performance suffers because disk accesses are far slower than are RAM
accesses. It’s also important that you have adequate swap space on your sys-
tem. If the computer runs out of swap space, programs may begin to behave
erratically.

http://www.sybex.com

Adding Swap Space 537

Evaluating Swap Space Use

An invaluable tool in checking your system’s memory use is free. This pro-
gram displays information on your computer’s total memory use. Its syntax
is as follows:

free [-b | -k | -m] [-o] [-s delay] [-t] [-V]

The following is a list of the options to this command:

-b | -k | -m These options specify output values to be displayed in
bytes, kilobytes, or megabytes, respectively. If you don’t include any of
these parameters, free uses kilobytes by default.

-o By default, free presents a correction for memory used by disk
caches and buffers, as described shortly. Adding this parameter omits this
correction.

-s delay This option causes free to display a memory-use report
every delay seconds. The default is to show a single report and then quit.

-t This option adds a line to the output that includes totals (RAM plus
swap space).

-V This option causes free to display its version number and then quit.

Listing 8.1 shows a sample output from free on a system with 128MB of
RAM. (The total memory reported is less than 128MB because of memory
consumed by the kernel and inefficiencies in the x86 architecture.)

Listing 8.1: Sample Output from free

$ free

 total used free shared buffers cached

Mem: 127592 125320 2272 149524 2736 77068

-/+ buffers/cache: 45516 82076

Swap: 136512 12292 124220

The Mem line shows the total RAM used by programs, data, buffers, and
caches. Unless you need information on memory used by buffers or caches,
this line isn’t very useful. The next line, -/+ buffers/cache, shows the total
RAM use without considering buffers and caches. This line can be very infor-
mative in evaluating your system’s overall RAM requirements, and hence in
determining when it makes sense to add RAM. Specifically, if the used col-
umn routinely shows values that approach your total installed RAM (or

http://www.sybex.com

538 Chapter 8 � Hardware Issues

alternatively, if the free column routinely approaches 0), then it’s time to
add RAM. This information isn’t terribly helpful in planning your swap
space use, though.

The final row shows swap space use. In the case of Listing 8.1, 136,512KB
of swap space is available. Of that, 12,292KB is in use, leaving 124,220KB
free. Given the small amount of swap space used (about 9 percent), it seems
that the system depicted in Listing 8.1 has plenty of swap space.

A single run of free, however, provides just a snapshot of a dynamic sys-
tem. You can use the -s option to get a running look at memory use, but this
requires either sitting around to watch the data as it rolls past on your screen,
or using the redirection operator (>) to send the output into a file that you
can study later, as in free -s 600 > freemem.txt. (Chapter 9, “Trouble-
shooting,” covers redirection operators in more detail.) Alternatively, you
can periodically use free, particularly at times when the system seems slow.
If the available swap space shrinks to small values, you may want to boost
available swap space, as described in the next two sections.

When to Add Swap, When to Add RAM

Swap space exists because hard disks are less expensive than RAM, on a
per-megabyte basis. With the price of both falling, however, it’s often wise
to forego expanding your swap space in favor of adding extra RAM. RAM is
faster than swap space, so all other things being equal, RAM is better.

A general rule of thumb derived from the days of Unix mainframes far less
powerful than today’s x86 boxes is that swap space should be 1.5–2 times
as large as physical RAM. For instance, a system with 256MB of RAM
should have 384–512MB of swap space. With 2.2.x kernels, it’s often more
helpful to look at this as a maximum for swap space. If your swap space use
regularly exceeds 1.5–2 times your RAM size, your overall system perfor-
mance will very likely be severely degraded. Adding RAM to such a system
will almost certainly improve its performance. It won’t hurt to have extra
swap space, though, aside from the fact that this reduces the disk space
available for programs and data files. The 2.4.x kernels have changed how
swap space is managed, so 2.4.x kernels use more swap space than 2.2.x
kernels do when they are running the same programs. For this reason, you
should ensure that a system using a 2.4.x kernel has at least twice as much
swap space as physical RAM.

http://www.sybex.com

Adding Swap Space 539

Adding a Swap File

One method of adding swap space is to create a swap file. This is an ordinary
disk file that’s configured to be used by Linux as swap space. To add a swap
file, follow these steps:

1. Create an empty file of the appropriate size. You can do this by copy-
ing bytes from /dev/zero (a device file that returns bytes containing
the value 0) using the dd utility. dd takes parameters of bs (block size,
in bytes) and count (the number of blocks to copy); the total file size
is the product of these two values. You specify the input file with if
and the output file with of. For instance, the following command cre-
ates a file called /swap.swp that’s 134,217,728 bytes (128MB) in size:

dd if=/dev/zero of=/swap.swp bs=1024 count=131072

Swap space can reside on most Linux filesystem types. Swap space may not
reside on Network Filesystem (NFS) mounts, though. If you try creating a
swap file and the swapon command in step 3 doesn’t work, this could be the
problem. The Linux ext2 and VFAT filesystem drivers can both support swap
space, as can the new Reiser filesystem. These are the filesystems you’re
most likely to want to use for this purpose.

2. Use the mkswap command to initialize the swap file for use. This com-
mand writes data structures to the file to allow Linux to swap memory
to disk, but mkswap does not activate the swap file. For instance, the
following command does this job:

mkswap /swap.swp

3. Use the swapon command to begin using the newly initialized swap
space:

swapon /swap.swp

If you use free before and after performing these steps, you should see the
total swap space count increase, reflecting the addition of the new swap
space. If you want to make your use of this swap file permanent, you must
add an entry to /etc/fstab (described in Chapter 6, “Managing Files and
Services”). This entry should resemble the following:

/swap.swp swap swap defaults 0 0

http://www.sybex.com

540 Chapter 8 � Hardware Issues

One key point is to list the complete path to the swap file in the first col-
umn, including the leading /. Once this entry is added, the system will use the
swap file after you reboot.

To deactivate use of swap space, use the swapoff command, thus:

swapoff /swap.swp

This command may take some time to execute if the swap file has been
used much because the system takes time to read data from the disk for stor-
age in memory or in other swap areas. The swapon and swapoff commands
are actually the same program on most systems; this program does different
things depending upon the name you use to call it.

Adding swap space in the form of a swap file can be a convenient way to
add swap space quickly; however, this approach does have certain problems.
Most importantly, if you create a large swap file on a partition that’s already
been heavily used, it’s likely that the swap file will be fragmented—that is,
that the file’s contents will be spread across multiple groups of sectors on the
disk. Fragmentation of disk files slows performance, and this can be a major
problem in a swap file. The ability to quickly add a temporary swap file
makes this method appealing in many cases, though. Indeed, the difficulty of
repartitioning, as described shortly, makes adjusting swap partitions a task
you may not want to undertake unless you’re already planning to perform
other system maintenance.

Adding a Swap Partition

Traditionally, Unix and Linux have used swap partitions for swap space.
These are entire disk partitions devoted to swap space. In fact, some distri-
butions won’t install unless you create at least one swap partition. Therefore,
chances are good you already have such a partition configured.

If you want to install multiple Linux distributions on one computer, they may
share a single swap partition.

What if your existing swap partition is too small, though? The easiest
approach in this case is usually to create a supplementary swap file, as
described earlier. If you like, though, you can create a new swap partition.
This approach works best if you’re adding a hard disk or want to repartition

http://www.sybex.com

Adding Swap Space 541

the disk for some other reason. In this case, you’ll be adjusting your partition
layout anyway, so you might as well take the opportunity to add new swap
space. The basic procedure for doing this is as follows:

1. Clear space for the swap partition. This can be done by deleting exist-
ing partitions or by using a previously unused hard disk.

2. Create a new partition and give it a type code of 0x82 (“Linux swap”).
Many OSs (but not Linux) use type codes to help them identify their
partitions. Type codes 0x82 and 0x83 stand for Linux swap and file-
system partitions, respectively. The main reason to use these codes is
to keep other OSs from damaging the Linux partitions.

3. When you’re done partitioning or repartitioning, use mkswap to pre-
pare the swap partition to be swap space. This operation works just
like using mkswap on a file, except that you apply it to a partition, thus:

mkswap /dev/sdc6

4. Once the swap space has been prepared for use, you can add it man-
ually using the swapon command described above, but you’ll need to
specify the swap partition’s device rather than a swap file. For
instance, you might use the following to access a swap partition on
/dev/sdc6:

swapon /dev/sdc6

5. To use the swap partition permanently, add an entry for it to /etc/
fstab, as described earlier in reference to swap files.

This procedure glosses over several critically important details concerning
partition management. For one thing, when you modify an existing disk’s
partitions, you may need to adjust the device filenames for Linux filesystems
in /etc/fstab. You’ll have to do this either from an emergency boot or
before you make the changes to the disk. It is at least as important, if you
delete any existing partitions, to back up their contents before you delete the
partition, even if you intend to re-create the partition with a smaller size.
You may also need to reinstall the LILO boot loader if you modify your boot
partition. In any event, this procedure will require the use of a disk partition-
ing tool such as Linux’s fdisk (described in Chapter 7, “Managing Parti-
tions and Processes.”).

http://www.sybex.com

542 Chapter 8 � Hardware Issues

When you are resizing existing partitions, dynamic partition resizing tools
can be very helpful. One of these that ships with some Linux distributions is
resize2fs, which resizes an ext2 filesystem. This particular tool is a bit
tedious to use, however, and it requires fdisk to complete the process. The
experimental advanced journaling filesystems, such as ReiserFS, also at least
theoretically support partition-resizing tools, but in mid-2001 they’re still a
bit less reliable, if they work at all.

Another option for ext2fs partitions is to use the commercial Partition-
Magic from PowerQuest (http://www.powerquest.com). This program
comes in DOS and Windows versions, including a DOS boot floppy so that
you can run it from a floppy disk on a Linux-only system. PartitionMagic is
particularly useful because it provides a GUI point-and-click interface,
shown in Figure 8.1. You might still have to adjust your /etc/fstab entries
and reinstall LILO, and backing up your data before performing such an
operation is always wise. Nonetheless, dynamic partition resizers can greatly
simplify reconfiguring swap files.

F I G U R E 8 . 1 The PartitionMagic partition resizer can resize Linux ext2 and swap partitions.

You may also occasionally want to shrink a swap partition. This action is
most likely when you find that you’ve accidentally created a ludicrously
large swap partition. You may use dynamic partition resizers to adjust the
size of your partitions in this case, or you can delete the swap partition and

http://www.sybex.com

Basic Printing 543

create two or more in its place: a smaller swap partition and one or more par-
titions to be used for data storage. You can use these additional data parti-
tions for any purpose to which you ordinarily put data partitions.

Basic Printing

Printing in Linux is a cooperative effort of several different tools. A
system administrator must be familiar with what each of the tools in this col-
lection does, as well as how they interact. As with many other programs that
are part of Linux, there are several different versions of some of these tools,
which can lead to confusion or incompatibilities if you’re not aware of how
the system as a whole functions.

The Linux Printing Architecture

Linux printing is built around the concept of a print queue. This is a sort of
holding area where files wait to be printed. A single computer can support
many distinct print queues. These frequently correspond to different physi-
cal printers, but it’s also possible to configure several queues to print in dif-
ferent ways to the same printer. For instance, you might use one queue to
print single-sided and another queue for double-sided printing on a printer
that supports duplexing.

Users submit print jobs by using a program called lpr. Users can call this
program directly, or they may let another program call it. In either case, lpr
sends the print job into a specified queue. This queue corresponds to a direc-
tory on the hard disk, typically in a subdirectory of the /var/spool/lpd
directory. This directory is named after the lpd program, which is at the core
of Linux’s printing system. This program is a daemon (its name stands for
“line printer daemon”), which means that it runs in the background watch-
ing for certain events that will trigger it to spring into action. lpd accepts
print jobs from lpr or from remote computers, monitors print queues, and
serves as a sort of “traffic cop,” directing print jobs in an orderly fashion
from print queues to printers. To do all of this, lpd relies upon the /etc/
printcap configuration file, which is described in more detail shortly.

One important and unusual characteristic of Linux printing is that it’s
highly network-oriented. As just noted, lpd can accept print jobs that orig-
inate from remote systems as well as from local ones. In fact, even local print

http://www.sybex.com

544 Chapter 8 � Hardware Issues

jobs are submitted via network protocols, although they don’t normally use
network hardware, so even a computer with no network connections can
print. In addition to being a server for print jobs, lpd can function as a client,
passing print jobs on to other computers that run the same protocols.

One of the deficiencies of the Linux printing system is that it’s essentially
unidirectional—print jobs originate in an application, which blindly pro-
duces PostScript (as described shortly) without knowing anything about the
printer to which it’s printing. The print queue takes this output and sends it
on to the printer, which must deal with it as best it can. There’s no way for
a Linux application to directly query a printer concerning its capabilities,
such as whether it supports multiple paper trays or wide forms.

One confusing aspect of Linux printing is that Linux supports several
competing printing systems. The two most popular are the original Berkeley
Standard Distribution (BSD) printing system and the newer LPRng package.
Both work according to the outline just presented, but they differ in some
details, some of which are discussed in the upcoming sections. An alternative
to both of these is the new Common Unix Printing System (CUPS), which
works in a similar manner in broad outline, but more of its details differ. For
instance, CUPS doesn’t use lpd or /etc/printcap; instead, it uses cupsd
and various files in /etc/cups for configuration. CUPS supports advanced
features designed to give applications more information on the printers to
which they print, but in 2001, it’s a less popular printing system than BSD
or LPRng.

Using PostScript and Ghostscript

If you’ve configured printers under Windows, MacOS, OS/2, or certain
other OSs, you’re probably familiar with the concept of a printer driver. In
these OSs, the printer driver stands between the application and the printer
queue. In Linux, the printer driver is part of Ghostscript (http://www.cs
.wisc.edu/~ghost), which exists as part of the printer queue, albeit a late
part. This relationship can be confusing at times, particularly because not all
applications or printers need Ghostscript.

PostScript: The De Facto Linux Printer Language

Laser printers as we know them today began to become popular in the
1980s. The first laser printers were very expensive devices, and many of them
supported what was at that time a new and powerful printer language: Post-
Script. PostScript printers became quite popular as accessories for the Unix

http://www.sybex.com

Basic Printing 545

systems of the day. Unix print queues were not designed with Windows-style
printer drivers in mind, so Unix programs that took advantage of laser printer
features were typically written to produce PostScript output directly. As a
result, PostScript developed into the de facto printing standard for Unix and,
by inheritance, Linux. Where programs on Windows systems were built to
interface with the Windows printer driver, similar programs on Linux
generate PostScript and send the result to the Linux printer queue.

A few programs violate this standard. Most commonly, many programs
can produce raw text output. Such output seldom poses a major problem for
modern printers, although some PostScript-only models choke on raw text.
Some other programs can produce either PostScript or Printer Control Lan-
guage (PCL) output for Hewlett-Packard laser printers or their many imita-
tors. A very few programs can generate output that’s directly accepted by
other types of printers.

The problem with PostScript as a standard is that it’s uncommon on the
low- and mid-priced printers with which Linux is often paired. Therefore, to
print to such printers using traditional Unix programs that generate Post-
Script output, you need a translator, and a way to fit that translator into the
print queue. This is where Ghostscript fits into the picture.

Ghostscript: A PostScript Translator

When it uses a traditional PostScript printer, a computer sends a PostScript
file directly to the printer. PostScript is a programming language, albeit one
that’s oriented towards the goal of producing a printed page as output. As a
result, a PostScript printer needs a fair amount of RAM and CPU power. In
fact, in the 1980s it wasn’t uncommon for PostScript printers to have more
RAM and faster CPUs than the computers to which they were connected.
Today, though, printers frequently have little RAM and anemic CPUs—par-
ticularly on inexpensive inkjet models.

Ghostscript is a PostScript interpreter that runs on a computer, offloading
some of the need for RAM and CPU power. It takes PostScript input, parses
it, and produces output in any of dozens of different bitmap formats, includ-
ing formats that can be accepted by many non-PostScript printers. This
makes Ghostscript a way to turn many inexpensive printers into Linux-
compatible PostScript printers at very low cost. (Ghostscript is available as
open source software, with a more advanced variant available for free, but
it is not freely redistributable in any commercial package. Because all Linux
distributions are available on CD-ROMs sold for a price, they therefore ship
with the older GNU Ghostscript, which works well enough for most users.)

http://www.sybex.com

546 Chapter 8 � Hardware Issues

One of Ghostscript’s drawbacks is that it produces large output files. A
PostScript file that produces a page filled with text may be just a few kilo-
bytes in size. If this page is to be printed on a 600 dots per inch (dpi) printer
using Ghostscript, the resulting output file could be as large as 4MB—
assuming it’s black and white. If the page includes color, the size could be
much larger. In some sense, this is unimportant because these big files will
only be stored on your hard disk for brief periods of time. They do still have
to get from the computer to the printer, though, and this process can be slow.
Also, some printers (particularly laser printers) may require memory expan-
sion to operate reliably under Linux.

Choosing an Appropriate Printer for Linux

If you want a speedy printer for Linux, choose a model with built-in Post-
Script. This is particularly true for textual and line-art output, which suffers
the most in terms of size expansion going from PostScript to bitmap. In my
experience, Ghostscript-driven printers work well enough for 600dpi black-
and-white printers with speeds of up to about 6 pages per minute (ppm). If
the printer’s speed is greater than that, the parallel or USB port may not be
able to deliver the necessary performance, although you may be able to
tweak it to get somewhat better speed.

Color inkjet printers are generally limited more by the speed of the print
head than by the speed of the data coming over their ports. Few such print-
ers directly support PostScript, either. Some models come with Windows-
based PostScript engines that are conceptually similar to Ghostscript, but
such software is useless under Linux. There are a few PostScript inkjets on
the market, as well as color PostScript printers that use other printing
technologies.

For information on what printers are supported by Ghostscript, check the
Ghostscript Web page or the GNU/Linux Printing Web page (http://
www.linuxprinting.org/printer_list.cgi).

http://www.sybex.com

Basic Printing 547

Squeezing Ghostscript into the Queue

Printing to a non-PostScript printer in Linux requires fitting Ghostscript into
the print queue. This is generally done through the use of a smart filter. This
is a program that’s called as part of the printing process. The smart filter
examines the file that’s being printed, determines its type, and passes the file
through one or more additional programs before lpd sends it on to the
printer. The smart filter can be configured to call Ghostscript with whatever
parameters are appropriate to produce output for the queue’s printer.

The smart filter is specified with the if field in /etc/printcap, as
described shortly. There are several smart filter packages available for Linux,
including rhs-printfilters (used in Red Hat and some of its derivatives),
APSFilter (used in several other distributions), and magicfilter.

Configuration of the smart filter can be tricky, but most distributions
include setup tools that help immensely. The upcoming section, “Using a
GUI Configuration Tool,” describes the use of one such tool. I highly rec-
ommend that you use such programs when configuring your system to print.

The end result of a typical Linux printer queue configuration is the ability
to treat any supported printer as if it were a PostScript printer. Applications
that produce PostScript output can print directly to the queue. The smart fil-
ter detects that the output is PostScript and runs it through Ghostscript. The
smart filter can also detect other file types, such as plain text and various
graphics files, and it can send them through appropriate programs instead of
or in addition to Ghostscript, in order to create a reasonable printout.

If you have a printer that can process PostScript itself, the smart filter is
usually still involved, but it doesn’t pass PostScript through Ghostscript. In
this case, the smart filter passes PostScript directly to the printer, but it still
sends other file types through whatever processing is necessary to turn them
into PostScript.

BSD and LPRng Configuration and Use

Fortunately, basic printer configuration for both the original BSD printing
tools and LPRng is similar. You can configure everything by hand by directly
editing configuration files, but certain critical details—namely, how your
smart filter is set up—differ from one distribution to another, and they can
be tedious to track down. Therefore, direct file editing is best reserved for
cases where you can forego the smart filter or if you’re willing to track down
the documentation for whatever smart filter your system uses. In most cases,

http://www.sybex.com

548 Chapter 8 � Hardware Issues

it’s easier to use a GUI configuration tool to do the initial printer configura-
tion, and then you can tweak that configuration by hand, if necessary. Either
way, the daemon runs in the background and accepts print jobs submitted
via lpr.

Configuring the /etc/printcap File

The /etc/printcap file is at the heart of both the BSD and LPRng printing
systems. Listing 8.2 illustrates the format of /etc/printcap by showing an
entry for a single printer. You can define multiple printers in /etc/
printcap, though; just be sure to use different names.

Listing 8.2: A Sample /etc/printcap File

lp|hp4000:\

 :lp=/dev/lp0:\

 :br#57600:\

 :rm=:\

 :rp=:\

 :sd=/var/spool/lpd/lp:\

 :mx#0:\

 :sh:\

 :if=/var/spool/lpd/lp/printfilter:

Technically, each printer definition is one line long. /etc/printcap
entries, however, traditionally make heavy use of the common Linux con-
vention of using a backslash (\) to signal a line continuation. (Note that
every line in Listing 8.2 except the last one ends in a backslash.) This makes
the printer definitions easier to read. Each component within the /etc/
printcap entry is separated from the others by colons (:). Common com-
ponents of a print queue definition include the following:

Printer name Each printer definition begins with one or more names for
the printer. If the printer has multiple names, they’re separated from each
other by vertical bars (|). Traditionally, the default printer is called lp.
Listing 8.2’s example expands on this by adding the name hp4000. Users
may print using either name with the same results.

lp This entry defines the device filename for the printer. In the case of
Listing 8.2, the printer device is /dev/lp0, which corresponds to the first
parallel port. Many modern printers support USB interfaces, which use

http://www.sybex.com

Basic Printing 549

the /dev/usb/lpn devices, where n is a number from 0 up. A few printers
use the old RS-232 serial ports, which may be accessed as /dev/ttySn.
This entry may be omitted if the printer is shared from another computer.

br br stands for baud rate; it defines the communications rate for
RS-232 serial printers. This option is normally omitted for parallel-port,
USB, and network printers. It doesn’t do any harm to leave it in, however,
as in Listing 8.2.

rm If you’re defining a printer queue for a printer that’s connected to
another computer or that’s connected directly to the network, you specify
its machine name with the rm option. Like br, it can be omitted if not used.

rp This option is used in conjunction with rm, but it specifies the name
of the print queue on the remote system. For instance, your local epson
queue might print to a queue called inkjet on a remote system. Your
local users will use the name epson, and your lpd will pass the job on to
the remote system’s lpd, which will print to the remote inkjet queue.
This option may be omitted if the printer is local, but leaving it blank in
this case (as in Listing 8.2) does no harm.

sd sd stands for spool directory. This is the location of the print queue
on your hard disk. By convention, this is a subdirectory of the /var/
spool/lpd directory, named after the print queue’s primary name. If you
create print queues by hand, you’ll need to create this directory. It should
normally have fairly restrictive permissions (such as rwx------ and own-
ership by root; see Chapter 4) so that people can’t read or delete each
other’s print jobs.

mx The mx option sets the maximum size of a print job, in bytes. You can
use this option to restrict abuses, but be aware that the print job size in
bytes and its size in pages are poorly correlated. If it is set to 0, there’s no
limit on job size. This option uses a pound sign (#) rather than an equal
sign (=) to set its value.

sh The sh option takes no value. It stands for suppress header, and if it’s
present, Linux does not print a header page with information on the user
who printed the job. This configuration makes sense for workstations,
but on multiuser systems and print servers, omitting the sh option and
using the resultant headers can help you organize printouts from multiple
users.

http://www.sybex.com

550 Chapter 8 � Hardware Issues

if This option sets the input filter filename, which is part of the smart
filter associated with the queue. This is frequently a script located within
the spool directory. The script sets various options (such as the name of the
Ghostscript driver to be used) and calls the smart filter files located else-
where on the disk.

/etc/printcap is a very complex file that supports many options. You
can learn about more of them from the file’s man page (type man printcap).
The preceding options cover what you’re likely to do with the queue, how-
ever, aside from smart filter configuration.

After reconfiguring your print queues, you may need to restart your
printer daemon. On most systems, you can do this by passing the restart
parameter to the LPRng or BSD printing startup script (startup scripts are
described in Chapter 6). The following is an example of how this might
be done:

/etc/rc.d/init.d/lpd restart

The exact name and location of this file will vary from one distribution to
another. You should use this command only when your system isn’t actively
printing.

Using a GUI Configuration Tool

Much of the challenge of printing in Linux doesn’t come from the /etc/
printcap file; it comes from telling the system about your printer—that is,
smart filter and Ghostscript configuration. GNU Ghostscript comes stan-
dard with all major Linux distributions, and it is probably adequate for your
system. In a few cases, though, you may need to upgrade to the more recent
Aladdin Ghostscript or obtain a version with some unusual drivers compiled
into it. The GNU/Linux Printing Web page (http://www.linuxprinting
.org/printer_list.cgi) can be an extremely useful resource in tracking
down appropriate drivers.

In most cases, the easiest way to configure a print queue with a smart filter
for a specific non-PostScript printer is to use a GUI printer configuration
tool. Most major Linux distributions come with these. For instance,
Caldera’s COAS, SuSE’s YaST and YaST2, and the printtool that comes
with Red Hat and some of its derivatives all help step you through the printer
setup process. The details of these systems differ, but they must perform the

http://www.sybex.com

Basic Printing 551

same tasks, so they’re similar in outline. As an example of these, consider the
use of printtool. To use this program, follow these steps:

1. Type printtool as root from an xterm or similar X-based command
prompt window. The result is the main printtool window, shown in
Figure 8.2. (Figure 8.2 shows three queues preconfigured, but the first
time you launch this program, the queue list will probably be empty.)

F I G U R E 8 . 2 The main printtool window shows you the available print queues and allows
you to perform tests of these queues.

2. Click Add to add a printer. printtool displays a small dialog box
asking what type of printer you want to add. Options include a local
printer, a remote Unix (lpd) queue, a Windows print queue, a Net-
Ware print queue, and direct to port (bypassing lpd). This example
follows the first option. Remote printer configuration is similar, but
you enter different identifying information for the printer, such as the
remote host and print queue names.

3. If you opted to create a local print queue, the system shows the infor-
mation on the printer hardware that it has detected. In my experience,
printtool fails to detect working hardware rather frequently, so
don’t be alarmed if you don’t see a device that you know is working.

4. After you dismiss the dialog box informing you of available printer
devices, printtool displays the Edit Local Printer Entry dialog box
shown in Figure 8.3. This dialog box allows you to enter critical /etc/
printcap information, such as the printer names, spool directory
name, and printer device filename. Once you’ve entered this informa-
tion, though, do not click OK.

http://www.sybex.com

552 Chapter 8 � Hardware Issues

F I G U R E 8 . 3 The Edit Local Printer Entry dialog box provides an uninspired but usable
default name for your queue.

5. Click Select in the Edit Local Printer Entry dialog box. This brings up
the Configure Filter dialog box (Figure 8.4). It’s here that you select the
Ghostscript driver to be used by the queue, along with other options:

a. The Printer Type field on the left of the Configure Filter dialog
box shows a list of printer types. Note that this list does not
include most printer models because most printers use command
sets pioneered by other models. For instance, if you’ve got any
printer that’s compatible with the HP LaserJet 4/5/6 series, you
should select that printer, as shown in Figure 8.4. There’s a single
entry in this list for all PostScript printers, so if your printer under-
stands PostScript, select PostScript Printer from this list.

F I G U R E 8 . 4 The Configure Filter dialog box lets you specify a printer driver and other
printing options for a print queue.

http://www.sybex.com

Basic Printing 553

b. The Resolution and Paper Size fields let you set the printer’s res-
olution and paper size, as you might imagine. Some drivers don’t
use these options, however; instead, they push these features into
the Color Depth/Uniprint Mode field, which allows you to set
options related to the Uniprint Ghostscript driver. (This driver is
used by many inkjet printers.)

c. The Printing Options area lets you set a few miscellaneous
options. The Send EOF after Job to Eject Page option is necessary
on a few printers that don’t otherwise print or eject the last page.
Some printers, when fed Linux-style text files, print each line hor-
izontally after the preceding one. Fix Stair-Stepping Text fixes this
effect. Fast Text Printing (Non–PS Printers Only) sends text files
to the printer as text, rather than converting to PostScript first.
This speeds up plain text printing on many non-PostScript print-
ers. The Pages per Output Page option lets you set up a queue that
compresses multiple pages into a single page to save paper. If your
outputs are off-center, you can adjust the margins using the Mar-
gins fields. Finally, Extra GS Options lets you send additional
options to Ghostscript.

6. After setting all the options you require in Configure Filter, click OK
in it and in the Edit Local Printer Entry dialog box. You’ll see your
new queue appear in the main printtool window (Figure 8.2).

7. Select lpd � Restart lpd to restart the printer daemon and have it rec-
ognize the new print queues.

8. There are three tests you can run from the printtool window (from
the Tests menu):

Print ASCII Test Page This option prints a plain text test page to the
printer. You should see a page filled with information. If you see just
a couple of lines, you may need to go back and adjust the stair-
stepping option (step 5c).

Print PostScript Test Page This option works like the preceding one,
but it prints a PostScript test page. This gives your printer’s PostScript
interpreter a basic workout, or it tests your Ghostscript configuration.
If you get pages of gibberish, chances are you selected the wrong
printer in step 5a.

http://www.sybex.com

554 Chapter 8 � Hardware Issues

Print ASCII Directly to Port If you have problems performing both
of the preceding tests, try this one. If it doesn’t work, either, there’s
probably something wrong with your hardware configuration. You
may have specified the wrong device (step 4), or you may need to load
a kernel module, as described in “Managing Kernel Modules” later in
this chapter. If this test works, then the problem lies in some other
aspect of your configuration, such as your selection of a printer model
(step 5a).

9. When the printer is working as expected, select PrintTool � Quit to
exit from the utility.

You can create several print queues, even if you have just one printer. For
instance, you might create one queue that prints normally, and another that
prints two input pages per output page (step 5c). Your users can then use this
option by choosing a different print queue, as described shortly—for
instance, you might call one okidata and the other okidata2up. Similarly,
you can create separate queues for different printer resolutions. You can
even create one queue that prints with the normal print filters and another
that doesn’t use a filter—that is, a raw queue. A raw print queue can be use-
ful if you have programs that can print directly to the printer type you use.
For instance, WordPerfect 8.0 (but not WordPerfect 9.0) and The GIMP
include drivers for many specific printer models, and so they can do without
Ghostscript in many cases. To create a raw queue, omit all of step 5, or edit
/etc/printcap afterward and remove the filename referenced on the
if line.

Printing Files with lpr

Once you’ve configured the system to print, you probably want to do so. As
mentioned earlier, Linux uses the lpr program to submit print jobs. This
program accepts many options, the most useful of which are as follows:

-Pqueuename This option allows you to specify a print queue. This is
useful if you have several printers or if you’ve defined several queues for
one printer, as just described.

http://www.sybex.com

Basic Printing 555

In the original BSD version of lpr, there should be no space between the -P
and the queuename. LPRng is more flexible in this respect; you can insert a
space or omit it, as you see fit.

-r Normally, lpr sends a copy of the file you print into the queue, leav-
ing the original unharmed. With this option, lpr deletes the original file
after printing it.

-h This option suppresses the banner for a single print job.

-J jobname Print jobs have names to help identify them, both while
they’re in the queue and once printed (if the queue is configured to print
banner pages). The name is normally the name of the first file in the print
job, but you can change it by including the -J option.

-m username This option causes lpd to send e-mail to username when
the print job is complete.

Suppose you have a file called report.txt that you want to print to the
printer attached to the lexmark queue. This queue is often quite busy, so you
want the system to send e-mail to ljones when it’s done so that you know
when to pick up the printout. You could use the following command to
accomplish this task:

$ lpr -Plexmark -m ljones report.txt

The lpr command is accessible to ordinary users as well as to root, so
anybody may print using this command. It’s also called from many programs
that need to print directly, such as graphics programs and word processors.
These programs typically give you some way to adjust the print command so
that you can enter parameters such as the printer name. For instance, Fig-
ure 8.5 shows Netscape’s Print dialog box. Note that the Print Command
text entry field includes a complete lpr command, but without the filename.
Some other programs hide the lpr command in a configuration tool and
provide a selectable list of printers in their main Print dialog boxes. Consult
the program’s documentation if you’re not sure how it works.

http://www.sybex.com

556 Chapter 8 � Hardware Issues

F I G U R E 8 . 5 Most Linux programs that can print do so by using lpr, and they generally let
you edit the exact command used to print.

Monitoring and Controlling the Print Queue

There are several utilities that can be used to examine and manipulate a
Linux print queue. These utilities are lpq, lprm, and lpc. All of these com-
mands can take the -P parameter to specify that they operate on a specific
print queue.

lpq

lpq displays information on the print queue—how many files it contains,
how large they are, who their owners are, and so on. By entering the user’s
name as an argument, you can also use this command to check on any print
jobs owned by a particular user. To use lpq to examine a queue, you might
use a command like the following:

$ lpq -Plexmark

Printer: lexmark@speaker

 Queue: 1 printable job

 Server: pid 14817 active

 Unspooler: pid 14822 active

http://www.sybex.com

Basic Printing 557

 Status: printing 'rodsmith@speaker+787', file 1
'Insight.ps', size 672386, format 'l' at 14:57:10

 Rank Owner/ID Class Job Files Size
�Time

active rodsmith@speaker+787 A 787 Insight.ps 672386
�14:56:22

This example shows the output of LPRng’s lpq. Systems that use the original
BSD printing system display less information, but the most important infor-
mation (such as the job number, job owner, job filename, and job size) is
present in both cases.

Of particular interest is the job number—787 in the case of this example.
You can use this number to delete a job from the queue or reorder it so that
it prints before other jobs. Any user may use the lpq command.

lprm

The lprm command removes one or more jobs from the print queue. There
are several different ways to issue this command:

� If it’s issued with a number, that number is understood to be the job
ID (as shown in lpq’s output) that’s to be deleted.

� If root runs lprm and passes a username to the program, it removes
all the jobs belonging to that user.

� If a user runs the BSD lprm and passes a dash (-) to the program, it
removes all the jobs belonging to the user. LPRng uses all instead of
a dash for this purpose.

� If root runs the BSD lprm and passes a dash (-) to the program, it
removes all print jobs belonging to all users. Again, LPRng uses all
for this purpose.

This program may be run by root or by an ordinary user, but as just
noted, its capabilities vary depending upon who runs it. Ordinary users may
remove only their own jobs from the queue, but root may remove anybody’s
print jobs.

http://www.sybex.com

558 Chapter 8 � Hardware Issues

lpc

lpc starts, stops, and reorders jobs within print queues. lpc takes com-
mands, some of which require additional parameters. You can pass the
printer name with -P, as with other printer utilities, or you can pass this
information without the -P parameter. In the latter case, the print queue
name appears immediately after the command. The following are the most
useful lpc commands:

abort Stops printing the current job and any other jobs in the queue but
leaves those jobs intact. Subsequently issuing the start command will
resume printing.

disable Sets the queue to reject further print jobs but does not halt
printing of jobs currently in the queue.

down Stops printing to the queue and sets the queue to reject further
print jobs.

enable Enables the queue so that it begins accepting print jobs again.
This is the opposite of disable.

exit If lpc is started in interactive mode (described shortly), this com-
mand will exit from this mode.

start Begins printing and starts an lpd process for the queue.

stop Stops lpd so further printing is disabled after the current job
completes.

topq jobid Moves the job whose ID is jobid to the start of the queue
(after the currently printing document). Use this to reprioritize your print
queue.

up Enables the specified print queue; the opposite of down.

You can run lpc in interactive mode, in which you issue one command
after another, or you can have it execute a single command and then exit by
specifying the command on the same command line you use to launch lpc.
As an example, suppose you want to adjust the printing of job 945 on the
brother queue (identified through a previous lpq command) so that it’s
next to print. You could issue the following command to do this:

lpc topq brother 945

http://www.sybex.com

Adding New Hardware 559

Although ordinary users may run lpc, for the most part, they can’t do
anything with it. Typical lpc operations require superuser privileges.

Adding New Hardware

Printers are an important class of hardware, but they’re unusual in
Linux for a variety of reasons. The location of printer drivers (in Ghost-
script), the external nature of printers, and the presence of printer queues are
all features that are unusual for hardware. Most hardware is configured in
other ways.

When a computer runs Windows, adding hardware is, if not a trivial
undertaking, something for which explicit support is almost always avail-
able. x86 hardware manufacturers ensure that their products have Win-
dows 9x/Me and, increasingly, Windows 2000 drivers available. (The
exceptions relate to highly specialized products.) Manufacturers also include
explicit installation instructions with their products. In Linux, on the other
hand, matters aren’t so simple. Drivers for any given piece of hardware may
or may not be available. When Linux drivers exist, they often do not come
with the hardware product, so you may need to look to a third-party supplier
to get your device working. Documentation on using hardware in Linux is
quite variable in quality. This book cannot provide a complete guide to
Linux hardware because such a guide would take an entire book. (My Linux
Hardware Handbook [Sams Publishing, 2000] is such a guide.)This section
provides some general guidelines to help you locate, install, and use drivers.

Locating Hardware Drivers

The Linux kernel serves as the interface between most hardware and soft-
ware. Therefore, most hardware drivers either come as part of the kernel or
are added to the kernel in one way or another. Because of the open source
nature of Linux kernel development, most kernel drivers eventually find
their way into the official Linux kernel source tree. There are exceptions to
this rule, though. Some hardware—most notably printers, scanners, and
video cards—are driven partly or wholly through non-kernel software. All
told, there are several possible sources of hardware drivers for Linux:

Main kernel tree As just noted, the standard Linux kernel includes driv-
ers for many devices, and for most classes of hardware, the kernel is the

http://www.sybex.com

560 Chapter 8 � Hardware Issues

first place to check. Most distributions compile most of these drivers,
either directly into the kernel or as modules. It’s possible you’ll need to
upgrade or recompile your kernel to get access to drivers for certain
devices, though.

New kernel drivers As new devices reach the market, Linux developers
write drivers for them. Initially, many of these projects aren’t part of the
official kernel tree. They may also be integrated into the unstable devel-
opment kernel before the stable release kernel. (See Chapter 3, “Software
Management,” for a discussion of kernel versions.) Unfortunately, track-
ing down such new drivers can be tricky. Doing a Web search on the
device name and “Linux” will often turn up pointers to the driver. You
can also try a development kernel, but these are likely to be unstable.

Hardware manufacturers An increasing number of hardware manufac-
turers provide Linux drivers for their products. These are sometimes
nothing more than the standard kernel drivers, but a few manufacturers
make their own drivers available.

Ghostscript Printers under Linux rely on drivers in the Ghostscript
package, described earlier in this chapter. http://www.linuxprinting
.org/printer_list.cgi hosts information on drivers and compatibil-
ity of specific printers with Linux.

Software modems Most external modems are compatible with standard
Linux serial port drivers. Most internal modems sold today, however, are
software modems. These devices require special driver support, which is
spotty under Linux. The LinModems Web site, http://www.linmodems
.org, has information on driver developments for such modems.

USB devices Starting with the 2.2.18 and 2.4.x kernels, Linux includes
good USB support. (Some distributions patched this support into earlier
kernels, as well.) Supported USB devices include keyboards, mice, CDC-
ACM modems, many scanners, printers, Zip drives, and more. Develop-
ment for USB devices is still ongoing. Also, some devices, such as printers
and scanners, require drivers in secondary packages, such as Ghostscript,
in order to work. The Linux USB Project home page, http://www
.linux-usb.org, has additional information on drivers for USB devices.

X servers XFree86 is the main X server for Linux. The XFree86 Web
site (http://www.xfree86.org) can be an important resource when you

http://www.sybex.com

Adding New Hardware 561

want to find information on Linux support for video cards. In a few cases,
XFree86 won’t have a driver, but one of two commercial X servers—
Accelerated X (http://www.xig.com) or Metro-X (http://www
.metrolink.com)—may have support for the card.

Linux can use any video card in text mode, and almost any card in basic video
modes like 640 × 480 VGA. Support in XFree86 or another X server is only
required if you intend to run X at higher resolutions. This is a virtual require-
ment for most workstations, but some servers can get by without this support.

Sound drivers The Linux kernel includes support for many sound cards,
but this support is weak for some. Two alternative projects with improved
support for at least some sound cards exist. One is the open source
Advanced Linux Sound Architecture (ALSA; http://www.alsa-
project.org) project. The other is the commercial Open Sound System
(OSS; http://www.4front-tech.com) project. The standard 2.4.x and
earlier kernel drivers are actually derived from a stripped-down version of
the OSS drivers, but the ALSA drivers may be integrated into a 2.5.x or
later kernel series.

Scanners Scanners in Linux require non-kernel drivers. These are pro-
vided by the open source Scanner Access Now Easy (SANE; http://
www.mostang.com/sane) project. The commercial OCR Shop (http://www
.vividata.com/ocrshop.html) package works without SANE.

In addition to drivers, some types of hardware require special user-level
software. For instance, CD-R and CD-RW drives need special CD-R burning
software, such as X-CD-Roast (http://www.xcdroast.org), and digital
cameras need a package like gPhoto (http://www.gphoto.org). Such soft-
ware uses low-level Linux drivers (such as SCSI or USB drivers in the kernel)
to access the hardware, but the software provides the means to make the
hardware work, possibly including drivers for specific devices. In fact,
printer support works the same way; Ghostscript relies on low-level parallel,
RS-232 serial, USB, or network drivers to get its output to the printer. Print-
ers are more common and fundamental to a computer’s function, however,
so I’ve classified Ghostscript as a main Linux driver.

http://www.sybex.com

562 Chapter 8 � Hardware Issues

Configuring Hardware in Linux

Hardware configuration can range from trivially easy to extremely complex,
depending upon the hardware—both its general type and the specific model
you’re using. There are several classes of task you must perform. Some hard-
ware requires you to perform all these tasks, but other hardware allows you
to omit one or more.

Proper Procedures for Replacing Hardware

The most basic task in adding or replacing hardware is in physically install-
ing the device. There are three general classes of hardware, each of which
requires different procedures: external devices, internal cabled devices (like
hard disks and CD-ROM drives), and internal expansion cards. A few
devices straddle the lines in some way.

External devices are plugged into the computer through an external port,
such as an RS-232 serial port, a parallel port, a SCSI port, or a USB port.
Many, but not all, of these devices also require power from a wall outlet, so
the device itself has at least two cables. External connectors are usually
shaped in such a way that they can only be plugged in one way, so it’s impos-
sible to plug the device in backward. Most devices should only be attached
when the computer’s and the device’s power are turned off. USB devices,
however, can be safely attached and detached when the power is turned on.

Internal cabled devices typically attach to the motherboard or an expan-
sion card. They usually require connecting at least two cables: a power cable
and a data cable. Power cables are keyed to prevent accidental backward
insertion, as are some data cables. Some data cables, though, lack this key-
ing. If you must use such a cable, check for a colored stripe along one edge,
and insert it to match up with the “pin 1” markings on both the device and
the motherboard or card. You should always power off a computer before
attaching internal cabled devices.

Internal cabled devices are usually mounted to the computer’s case using
screws. Details vary from one computer to another. Sometimes you may
need to partially disassemble a system to reach the screws, which can be a
nuisance. For instance, I’ve seen mini-tower systems that require you to par-
tially remove the motherboard to reach screws for 3.5-inch hard disks. If
you’ve removed screws but you can’t remove a drive, look for other areas
(even hidden ones) where additional screws might be.

http://www.sybex.com

Adding New Hardware 563

Internal expansion cards plug into slots on the motherboard, as shown in
Figure 8.6. Note that because of size and placement differences, it’s impos-
sible to insert the wrong type of card into a slot—for instance, a PCI card
won’t fit in an ISA slot. (If you run out of one type, you may be able to find
a device in the slot type that’s available to you, or you may have to remove
one card to make room for another. Sometimes you can resort to using
another type of device, like a USB-to-Ethernet adapter rather than an in-
computer Ethernet card.) To insert a card, you must power off the computer.
Failing to do so is virtually certain to result in damage to the card or the com-
puter. After the power is off, align the card so that its connector matches that
of the slot, and apply some force to push it into the expansion slot. You
should then use a screw to secure the top of the card to the computer’s case.
Some components, like RAM and even the CPU, are installed in slots or
sockets similar to those used by expansion cards. Their installation proce-
dures are similar, but these devices don’t attach in a way that makes them
accessible from outside the computer.

F I G U R E 8 . 6 Expansion slots come in several different and incompatible varieties.

You’ve probably had the experience of walking across a carpeted room
and receiving an electrostatic shock when you touch a door knob. This phe-
nomenon is known as an electrostatic discharge (ESD). The same thing can
happen when you work on computer hardware, but such an event can actu-
ally damage the computer or component. For this reason, it’s important that

AGP slot

PCI slots

ISA slots

http://www.sybex.com

564 Chapter 8 � Hardware Issues

you ground yourself when working on computer hardware—either a com-
plete computer or individual components. The best way to do this is with an
ESD wrist strap. This is a strap that resembles a bracelet or hospital ID tag,
but it connects to a wall electrical outlet’s ground prong. The result is that
your body is electrically grounded, so any static you might build up is dis-
charged, literally into the ground, before it can do any harm to a computer.
If you lack an ESD strap, you should at least not move around on carpet
wearing rubber-soled shoes when working on a computer (such movement
is likely to build up electrostatic charges), and you should frequently ground
yourself in other ways, such as by touching a radiator or water tap. If you fail
to take such actions, you may destroy a computer or a component just by
touching it, particularly if you’re working in a dry environment.

Protecting the computer is important, but still more important is protect-
ing yourself. You’ll be safest if you unplug a computer from the wall before
working on it. Modern computers don’t shut off all power when they’re
turned off, so even if you’ve shut down a system, it will still have a few live
circuits, which might give you a jolt if you accidentally touch one. A few
computers have toggle switches on their backs that can cut all power, and
using such a switch can have nearly the same safety effect as unplugging the
computer. (When switched off but plugged in, a computer with such a switch
is also a useful ground source—you can ground yourself by touching the
power supply rather than a radiator or water tap.)

Determining Available Resources

Many devices require the use of particular types of limited hardware
resources. These include an interrupt request (IRQ), which allows hardware
to signal the CPU when an important hardware event occurs; a direct mem-
ory access (DMA) channel, which allows for data transfer; and an input/
output (I/O) port, which is another means of data transfer. As a general rule,
each device requires one of these (or a range, in the case of I/O ports), and
it’s not possible to share resources. Some hardware, though, can share
resources with other devices. This is particularly true of Peripheral Compo-
nent Interconnect (PCI) boards.

You can discover what resources a Linux computer is currently using
from three pseudo-files in the /proc filesystem: /proc/interrupt, /proc/
dma, and /proc/ioports. You can use the cat command to view the con-
tents of any of these pseudo-files. Some GUI environments also allow you to
view this information (for instance, the KDE Control Center shown in
Figure 8.7).

http://www.sybex.com

Adding New Hardware 565

F I G U R E 8 . 7 GUI tools can be convenient for obtaining hardware information, but the
same information is available from the /proc filesystem.

When you are planning to add hardware, you should look for gaps in the
available resources. For instance, in Figure 8.7, IRQs 6–8 are unused, and so
they might (at least theoretically) be used by some new device. One key point
to remember when you are checking on your available resources, however,
is that Linux doesn’t list resources used by devices for which drivers are not
currently loaded. For instance, the floppy drive uses IRQ 6, but because the
floppy drive wasn’t in use on the system when Figure 8.7 was captured, IRQ 6
shows up as being free, when in fact it’s not.

Figure 8.7 also shows an instance of a shared IRQ: IRQ 10 is used by both
USB and Ethernet drivers. This works because on this system, both devices
are PCI components capable of sharing an interrupt.

When you add SCSI devices, USB devices, printers, scanners, and many
newer PCI devices, there’s little reason to check on available resources. (This
assumes the basic port, such as a SCSI adapter or USB port, already has
resources assigned.) These peripherals either use a device that’s already
installed, and so they don’t consume additional resources, or they’re auto-
matically configured by the system and can probably share resources. If you
encounter problems with such devices, you might want to check your avail-
able resources to see if there might be a conflict.

Setting Jumpers

Many older hardware devices (particularly old ISA cards) are configured
through jumpers (Figure 8.8). These are metallic pins on the hardware device

http://www.sybex.com

566 Chapter 8 � Hardware Issues

that are covered by caps made of metal with plastic insulation. The result of
covering jumper pins is that an electrical contact is made between them,
which can adjust how the hardware operates. Today, most add-in cards
don’t use jumpers, but many motherboards still use them for setting the CPU
speed or other low-level options.

F I G U R E 8 . 8 Jumpers allow you to adjust key aspects of hardware operation, particularly
on older hardware.

In order to set a jumper, you’ll need to locate the hardware’s documenta-
tion. (Some devices include this on the card itself.) Jumpers generally control
features like the IRQ and DMA channel used by a device. They can also
enable or disable features, if a device has several. For instance, an RS-232
card might support two RS-232 ports, one of which may be disabled by set-
ting a jumper.

ISA PnP Configuration

In the mid-1990s, the plug-and-play (PnP) specification for ISA cards
became popular. This specification allows for jumperless configuration of
many features of ISA hardware. There are two main ways to handle ISA PnP
configuration in Linux: through the isapnp program and through a kernel
ISA PnP configuration option.

isapnp is a program that can read configuration information from a file
to set options on ISA PnP devices. To create a configuration file, it’s best to
start with the pnpdump program. This program creates a file that can be mod-
ified into an isapnp configuration file. The following is an example of this:

pnpdump > isapnp.conf

The resulting isapnp.conf file contains sets of configuration options
that are commented out by preceding their lines with pound signs (#). When
you locate a configuration you’d like to set, uncomment the options in
parentheses corresponding to the hardware settings you want to use, as well

http://www.sybex.com

Adding New Hardware 567

as the (ACT Y) line after these options. You’ll probably uncomment a total
of 2–6 lines per card.

Many distributions start isapnp when they boot. For others, you may
include a call to the utility in a startup script such as /etc/rc.d/rc.local.
You can also run the program manually when you are testing drivers. Be sure
to include the name of the configuration file. Here is an example:

isapnp /etc/isapnp.conf

The 2.4.x kernels include ISA PnP support that doesn’t require the sepa-
rate isapnp utility. In these kernels, ISA PnP devices are auto-detected and
configured by the kernel. Alternatively, you may be able to force specific
options in the /etc/modules.conf file (described in Chapter 6). If you pre-
fer, you can omit the kernel’s ISA PnP support and use the isapnp tools with
2.4.x kernels.

There’s no need to use ISA PnP support for PCI devices. These devices are
auto-configured by the kernel or BIOS, although /etc/modules.conf
options may be able to force particular configurations.

Loading Appropriate Drivers

The Linux kernel can load drivers in either of two ways: It may include the
drivers in the main kernel file, or it may load drivers from modules. Drivers
that aren’t directly associated with the kernel, such as Ghostscript or SANE
drivers, may be built into the application itself or may be loaded separately,
as well. Ghostscript always uses drivers built into the main application,
which means that if you want to add an unusual driver, you must locate a
Ghostscript binary that includes it, or recompile Ghostscript yourself. (The
latter is a very tedious process.) SANE normally uses modular drivers.

To add a driver to the kernel itself, you will recompile the kernel; you
must tell the system to include the driver in the kernel rather than build it as
a module. The upcoming section, “Managing Kernel Modules,” covers load-
ing kernel modules. Configuring a printer queue to use specific Ghostscript
drivers was described earlier, in “BSD and LPRng Configuration and Use.”

Setting Driver Options

It’s sometimes necessary to set some options related to the hardware in a
driver. For instance, you may need to tell a driver what hardware settings
you used for a device, or you might tell the driver that you’ve installed two

http://www.sybex.com

568 Chapter 8 � Hardware Issues

identical devices (such as two Ethernet cards). The Linux kernel refers to
these as driver options, and there are two ways to set them:

Kernel options When a driver is compiled into the kernel proper, you
pass driver options to the kernel itself. In most cases, this is done by using
the append option in /etc/lilo.conf. For instance, you might use the
following line to tell the kernel to use IRQ 10 and I/O port 6200 for the
Ethernet device (eth0):

append="ether=10,0x6200,eth0"

Module options If a driver is loaded as a module rather than as part of
the kernel file proper, you enter the module options in the /etc/
modules.conf file, as described later in this chapter and in Chapter 6.

In either case, the options that a driver accepts are highly specific to the
driver in question. Sometimes the same information (such as an IRQ num-
ber) may be passed to different modules in different ways. Therefore, it’s nec-
essary to consult the documentation for a particular driver to use it properly.

Making Hardware Accessible to Users

As a general rule, Linux makes hardware accessible through device file
entries in the /dev directory tree. Table 8.1 summarizes common device file-
names and their uses. These files all have ownership and permission like
other Linux files, as described in Chapter 4’s “File Permissions” section.
These permissions control who may access particular files and therefore the
hardware.

T A B L E 8 . 1 Common Linux Device Filenames and Their Uses

Device Filename

Major

Numbers Function

/dev/fd* 2 Floppy disk access.

/dev/hdxy 3, 22, 33,
and 34

EIDE hard disk access. x is a letter from a onward repre-
senting a disk drive; y is an optional number from 0 up
representing a partition. Also used for EIDE CD-ROMs.

http://www.sybex.com

Adding New Hardware 569

Unless otherwise noted, x is a number from 0 up representing the device number. This variable may sometimes be omitted.

Table 8.1 specifies a “major number” for each device type. In Linux,
every device file is associated with two numbers: a major number and a
minor number. Together, these numbers determine the device class and the
specific device. For instance, /dev/ttyS0 uses major number 4 and minor
number 64; /dev/ttyS1 uses minor number 65; /dev/ttyS2 uses minor num-
ber 66; and so on. If necessary, you can use the mknod command to create a
device file for new hardware. This command requires the major and minor
number to create a device file. Creating a device file with mknod is almost

/dev/sdxy 8, 65–71 SCSI hard disk access. x is a letter from a onward repre-
senting a disk drive; y is an optional number from 0 up
representing a partition.

/dev/scdx 11 SCSI CD-ROM drives.

/dev/htx and /dev/nhtx 37 EIDE tape backup devices.

/dev/stx and /dev/nstx 9 SCSI tape backup devices.

/dev/sgx 21 “Generic” SCSI devices. x is a letter from a onward.

/dev/ttySx 4 RS-232 serial ports.

/dev/lpx 6 Parallel ports.

/dev/usb/* variable USB devices.

/dev/dspx 14 Digital audio (sound cards).

/dev/sequencerx 14 MIDI audio playback (sound cards).

/dev/mixerx 14 Audio mixer (controls sound card volume).

/dev/psaux 10 PS/2-style mouse (note x is not a variable; there’s only
one /dev/psaux device).

T A B L E 8 . 1 Common Linux Device Filenames and Their Uses (continued)

Device Filename

Major

Numbers Function

http://www.sybex.com

570 Chapter 8 � Hardware Issues

never necessary because Linux distributions invariably ship with device files
for all common hardware. You’re most likely to need to create special device
files if you’re using a very new and experimental hardware driver. In such a
case, you’ll need to consult your driver’s documentation for complete
instructions.

Sometimes, users must have direct access to device files in the /dev direc-
tory tree. For instance, this is required if users should be able to make out-
going calls on a modem (typically a serial port device), to play or record
sounds on a sound card, or to play audio CDs on a CD-ROM drive. Some
distributions, such as Red Hat, include code in their login procedures to
change the ownership of such files to the user who logs in at the console. This
approach generally works well for workstations. Other distributions don’t
use this approach; instead, you as an administrator must adjust the permis-
sions to give users access to a device. For instance, you might create an audio
group, assign sound-related device files to this group, and give them
rw-rw---- permissions. Any user who’s a member of the audio group can
then use the sound card. Some distributions include groups designed for this
purpose.

Other device files are accessed in different ways, typically through the ker-
nel. For instance, disk devices are accessed through filesystem drivers. There-
fore, it’s usually not necessary to give ordinary users direct access to disk
device files. (Floppies are sometimes an exception, particularly if you want
users to be able to format blank floppies or use certain floppy utility pack-
ages.) In fact, giving ordinary users direct access to such device files can be
an invitation to disaster. With direct read access to a disk device, an ordinary
user can read any file on the disk, for instance—a major security hole. Write
access is worse still. Even access to serial ports—necessary for some pur-
poses—can be a problem if users begin making unauthorized long-distance
calls.

Some devices aren’t accessed through files in the /dev directory tree.
Notable among these are networking devices, such as Ethernet cards. Most
programs can’t directly touch networking hardware; their access must be fil-
tered through the network protocol stack, which buffers all network com-
munications. Basic network configuration is covered in Chapter 5,
“Networking.”

http://www.sybex.com

Managing Kernel Modules 571

Managing Kernel Modules

Linux kernel modules are equivalent to driver files in many other OSs.
Kernel modules are very dynamic, though; they can be loaded and unloaded
on demand, without restarting the computer. Also, some kernel modules
depend on others. For instance, the SCSI system consists of a driver that
handles the SCSI host adapter (and is very specific to particular models), and
additional modules that handle SCSI hard disks, SCSI tape devices, and so
on. These latter modules rely upon the former ones. Understanding these
module dependencies and loading all the modules needed to use a device is
critically important to effective use of hardware in Linux.

Kernel Module Configuration Files

Linux kernel module configuration is handled through two files:

/etc/modules.conf This file (called /etc/conf.modules on some
distributions) contains information on the modules to be used for partic-
ular tasks, as well as instructions on how the kernel should automatically
load and unload modules. Its format is outlined in Chapter 6.

/lib/modules/x.y.z/modules.dep This file, which is located in a
directory named after the kernel version in use (x.y.z), contains infor-
mation on module dependencies—each line of this file lists a module
along with the names of modules upon which the first one relies.

You may need to adjust /etc/modules.conf to have Linux automati-
cally load modules when needed, as outlined in Chapter 6. Linux maintains
the modules.dep file semiautomatically. This file is normally generated
whenever you install kernel modules, but if you manually change your con-
figuration, you should type depmod -a to update the file.

depmod can be used for other purposes, as well. Most importantly, depmod -e
reviews your kernel modules to ensure that they’re internally consistent. If
you type this command and receive back a message that there are “unre-
solved symbols,” it means that some modules are missing or were compiled
for a different kernel than the one you’re using. This problem can prevent
modules from loading, but it may be unimportant if it involves modules you
never use. If it’s preventing your modules from loading, you may need to
completely recompile your kernel from scratch to ensure that all the modules
are synchronized with one another.

http://www.sybex.com

572 Chapter 8 � Hardware Issues

Inserting and Removing Kernel Modules

If your kernel was compiled with kernel module loader support, the kernel
has the ability to load modules as it sees the need for them. For instance, if
your system has USB support compiled as modules, any attempt to access a
USB device causes the kernel to look for and load the appropriate kernel
modules. Typically, these modules are then automatically unloaded when
the device is no longer in use. This arrangement is certainly very convenient,
but it sometimes doesn’t work correctly, particularly with new or unusual
modules, or if /etc/modules.conf doesn’t include appropriate aliases to
help the system determine which modules are needed for particular devices
(say, to load the driver for an Adaptec SCSI card rather than a Symbios SCSI
card). For this reason, there are three programs used to manually load and
remove kernel modules. (In fact, the kernel uses these tools itself when auto-
loading modules.) You may include these commands in startup scripts or
enter them manually as you see fit. The latter is often helpful when testing
new hardware.

Automatically unloading modules can cause performance degradation in a
few cases, such as if a device must respond quickly to some event or if the
device is used frequently.

insmod

The first of these kernel-handling commands is insmod. This program inserts
a single module into the kernel. This command takes a module name as a
parameter, and it may accept several options, as well. The more important
insmod options are as follows:

-f Forces insmod to load the module even if it was compiled for a dif-
ferent version of the kernel. This is most useful when you are dealing with
commercial binary-only modules.

-k Sets the auto-clean flag on the module. This causes the system to
automatically remove the module after it’s fallen into disuse.

-p Tests to see whether the module could be loaded, without actually
doing so.

-s Outputs all messages to the system log, rather than to the console.

http://www.sybex.com

Managing Kernel Modules 573

For instance, you might use the following command to load the ltmodem
module for the Lucent software modems that are used on many laptop
computers:

insmod -f ltmodem

Modules usually have the same module name and filename, except that
module filenames generally include a trailing .o. Therefore, the ltmodem mod-
ule is called ltmodem.o on the hard disk. These modules are stored in sub-
directories of /lib/modules/x.y.z, where x.y.z is the kernel version
number (sometimes with a distribution build number added).

modprobe

insmod is a useful tool, but it’s limited because it loads one module. In cases
where a module depends on many others, using insmod requires you to
determine what modules depend upon others and manually insert all of the
depended-upon modules before the one you want to use. This can be a
tedious process. Therefore, the modprobe program exists to do that work for
you. modprobe uses the contents of modules.dep to determine what mod-
ules must be loaded in order to use a target module. Like insmod, modprobe
supports many options; the most important of these are described here:

-c or --showconfig Displays the current module configuration. This
includes paths to module files, a summary of /etc/module.conf infor-
mation, and more.

-k or --autoclean Sets the auto-clean flag, just like the -k option to
insmod.

-n or --show Doesn’t perform the module insertion, but summarizes
what actions would occur.

-s or --syslog Outputs all error messages to the system log, rather
than to the console.

-r or --remove Removes stacks of modules. If no module is named,
this option forces an auto-clean of the stack.

For instance, to insert the module snd-card-interwave and all the
modules upon which it depends with the auto-clean flag set, you’d type
the following:

modprobe -k snd-card-interwave

http://www.sybex.com

574 Chapter 8 � Hardware Issues

rmmod

To remove modules, you can use the --remove option to modprobe, or you
can use the rmmod command. This command supports three options:

-a Removes all unused modules that have their auto-clean options set.

-r Removes a stack of modules, not just a single module.

-s Outputs all messages to the system logger, rather than to the console.

In practice, these commands are most useful when you’re trying new driv-
ers or new hardware and want to manually configure things. This is partic-
ularly helpful when you are debugging. When you’ve found a working
configuration, you can generally get it working correctly using the kernel
auto-loader by setting appropriate aliases in /etc/modules.conf. In some
cases, you may find it easier to force matters by installing the modules using
these commands in a startup file. Manually inserting the modules also keeps
the kernel from wasting time doing the task repeatedly. Although the time
spent loading modules is small, this can be a factor if your system performs
some other very time-critical task, such as real-time data collection.

lsmod

If you want to know what modules are loaded at any given time, you can use
the lsmod command. This command lists the loaded modules, their sizes,
and the names of the modules that depend upon them. Here is an example:

$ lsmod

Module Size Used by

dc2xx 2512 0 (unused)

ip_masq_ftp 2320 0 (unused)

lp 5276 0

parport_pc 7316 2

parport 7236 2 [lp parport_pc]

via-rhine 8996 1

This output reveals that the dc2xx and ip_masq_ftp modules have gone
unused for a while; but since these modules did not have their auto-clean
flags set, they haven’t been removed. The parport module lists the lp and
parport_pc modules as depending upon it, so you won’t be able to remove
parport without first unloading lp and parport_pc.

http://www.sybex.com

Diagnosing Hardware Problems 575

Diagnosing Hardware Problems

Sometimes, hardware you add doesn’t work as you expect it to. There
are many possible causes of such problems, ranging from defective hardware
to errors when you load kernel modules. Diagnosing such problems is as
much an art as a science, but this section provides some pointers to help you
diagnose some common hardware problems.

Core System Problems

The motherboard (aka the mainboard), CPU, and RAM are the most critical
hardware components on any computer. If these components act up, nothing
else is likely to work reliably. Problems in RAM and the CPU are likely to
affect many or even all programs. Motherboard problems might do the
same, or they might be isolated to specific hardware devices on the mother-
board, such as a USB or keyboard port.

Your first chance to spot core system problems comes during the system
boot process. At this time, x86 BIOSes engage in a power-on self-test
(POST). This is a test of certain critical components, such as the RAM, the
presence of a keyboard and video card, and so on. Most computers beep if
they fail the POST. In fact, most BIOSes produce a different number of beeps
depending upon the exact nature of the problem. Unfortunately, these beep
codes aren’t standardized, so you’ll have to check with your motherboard or
BIOS manufacturer to learn what the codes mean for your particular system.
If a system fails its POST, a good starting point is to reconnect all the devices
that are connected to the computer, especially the keyboard, CPU, RAM,
and all expansion cards. Sometimes a POST failure is accompanied by an on-
screen indication of the problem. For instance, most systems display a
progress indicator when they perform their memory tests. If that indicator
stops partway through, there’s a good chance that the BIOS has found defec-
tive RAM.

Other core system problems don’t make themselves felt until Linux has
begun booting, or even later. Defective CPUs and RAM often manifest in the
form of kernel oopses, for instance. The Linux kernel includes code that dis-
plays a summary of low-level problems on the screen (and logs it, if the sys-
tem still works well enough to do this). This summary includes the word
oops, and it’s usually the result of a hardware problem or a kernel bug. If
you’re running a release kernel, a kernel oops is almost always the result of

http://www.sybex.com

576 Chapter 8 � Hardware Issues

a hardware problem, such as defective RAM, an overheating CPU, or a
defective hard disk.

If a problem occurs only in warm weather or after the computer’s been running
for a while after starting, you may need to get a better heat sink or fan for your
CPU or improve the computer’s internal case ventilation. The Lm_sensors
package (http://www.netroedge.com/~lm78) is a good way to monitor your
CPU’s temperature, assuming your motherboard includes temperature mon-
itoring features, as most Pentium II, Athlon, or better motherboards do.

EIDE/ATA Problems

Most x86 computers use hard disks and CD-ROM drives that attach via the
Enhanced Integrated Device Electronics (EIDE) port, which also goes by the
name Advanced Technology Attachment (ATA) or ATA Packet Interface
(ATAPI). Problems with these devices can be quite serious because they can
prevent Linux from booting or can cause data corruption.

One class of problem with these devices relates to what numbers Linux
uses to access a particular sector on a disk. There are several different incom-
patible disk geometries for large disks, and if Linux attempts to use one
method when another was used to define partitions, Linux may fail to boot
or cause data corruption if the OS does boot. In many cases, these problems
result in an inability of the Linux Loader (LILO) to boot Linux, as described
in Chapter 9.

Another common type of EIDE problem relates to bugs in EIDE control-
lers. The Linux kernel source configuration procedures give you many
options to enable workarounds and fixes for buggy EIDE controllers. Most
Linux distributions ship with all of these fixes enabled, so if you’re using a
common controller, you shouldn’t have any problems. If your computer has
a particularly new controller or if you’ve recompiled your kernel and not
enabled a fix, you may experience bizarre filesystem errors. You might find
that files you’ve written are corrupt or that your filesystem may have
errors that appear in routine fsck runs. In extreme cases, your computer
might crash. You can overcome such problems by recompiling the kernel
with appropriate bug workarounds enabled. Sometimes these problems
occur because you’re using a controller that’s very new but that has bugs. In

http://www.sybex.com

Diagnosing Hardware Problems 577

such cases, you may need to replace the controller or upgrade your Linux
kernel to a newer version.

Some Linux users experience very slow disk transfer speeds. These can be
caused by several different factors. For instance, although Linux’s basic
EIDE drivers work with almost all EIDE controllers, you must use special-
ized drivers to obtain the best possible performance from your drive. You
can use the hdparm utility both to test disk speed and to set various options
that can improve the performance of a hard disk. hdparm supports a large
number of options, so you should read its man page for details. The more
common options include the following:

-d [0|1] x86 EIDE devices can be run in either Programmed Input/
Output (PIO) mode or in Direct Memory Access (DMA) mode. In the
former, the CPU directly supervises all data transfers, whereas in the lat-
ter, the CPU steps back and lets the controller transfer data directly to and
from memory. Therefore, DMA mode produces lower CPU loads for disk
accesses. Using -d1 enables DMA mode. This option is generally used in
conjunction with -X (described shortly). This option doesn’t work on all
systems; Linux requires explicit support for the DMA mode of a specific
EIDE chipset if you’re to use this feature.

-p mode This parameter sets the PIO mode, which in most cases varies
from 0–5. Higher PIO modes correspond to better performance.

-S timeout This option sets an energy-saving option: the time a drive
will wait without any accesses before it enters a low-power state. It takes
a few seconds for a drive to recover from such a state, so many desktops
leave timeout at 0, which disables this feature. On laptop computers,
though, you may want to set timeout to something else. Values between
1 and 240 are multiples of 5 seconds (for instance, 10 means a 50-second
delay); 241–251 mean 1–11 units of 30 minutes; 252 is a 21-minute time-
out; 253 is a drive-specific timeout; and 255 is a 21-minute and 15-second
timeout.

-T This parameter performs a test of cached disk reads. In effect, this is
a measure of memory and other non-disk system performance because the
disk isn’t accessed.

-t This parameter performs a test of uncached disk reads. You can use
it to see if your hard disk is performing as you expect it to. (New hard
disks in 2001 should return values of well over 10MBps, and usually over
20MBps; anything less than this indicates either an old hard disk or a sub-
optimal disk configuration.)

http://www.sybex.com

578 Chapter 8 � Hardware Issues

-v This option displays assorted disk settings.

-X transfermode This option sets the DMA transfer mode used by a
disk. Example values of transfermode include 34 (for DMA mode 2) and
66 (for UltraDMA mode 2).

Many ������
 parameters can cause serious filesystem corruption if used inappropriately. Precisely what’s appropriate varies from one system to another. For instance, using

"G99

 may be fine on one system, but it could

cause filesystem damage on another. You can use the "� parameter to test a disk’s performance, and then you can try experimenting with

������
 settings

only if your disk performance is poor.Suppose that you suspect your hard disk is performing poorly. You could test it as follows:

;�

����������������

��������6�������(��������������������9#�,@����!010#���������>�

�

 10<��,@���

Indeed, this test reveals a rather anemic disk performance by modern stan-dards. You might be able to improve matters by enabling DMA mode trans-fers, using an appropriate transfer mode, and then retesting, thus:

;�

�����������*?2��������

����������������(����O�������!�����

���������2�����������<#���(���B�����,4�����0�

�(����O�������>��!�����

;�

����������������

���������6�������(��������������������9#�,@�����#1#$���������>�

�

!#12.�,@���

http://www.sybex.com

Diagnosing Hardware Problems 579

In most cases, such dangerous experiments won’t be required, because
most systems auto-configure themselves in a way that produces optimal (or
at least reasonable) performance. It’s best to perform such experiments only
if an initial test with hdparm -t reveals poor performance. If you’re still not
satisfied, examine your Linux driver availability for your EIDE controller
and the capacity of the controller to handle the hard disk. (A speedy modern
hard disk can outstrip a controller that’s a few years old.)

You can check the specifications for your hard disk to determine how well it
should be performing. Look at the internal data transfer rate, which should be
buried on a specifications sheet for your drive. By real-world standards, this
value will be optimistic. hdparm should probably return a value of about 75–90
percent of the theoretical maximum.

SCSI Problems

There’s an old joke that configuring a Small Computer Systems Interface
(SCSI) chain is nine parts science and one part voodoo. In reality, this isn’t
true, but SCSI configuration can be tricky once you get beyond two or three
SCSI devices. Common sources of problems include the following:

Termination Both ends of a SCSI chain must be terminated with a spe-
cial resistor pack. Most SCSI devices have these built in, and adding or
removing termination is a matter of setting a jumper or switch. To com-
plicate matters, though, there are several different types of termination,
and different varieties of SCSI require different termination types. Using
the wrong sort of terminator can produce data transfer errors and unre-
liable operation. Terminating devices that don’t fall on either end of the
chain can also cause unreliable operation. Remember that the SCSI host
adapter itself is a SCSI device. If it’s at the end of a chain, it should be ter-
minated, but if it’s in the middle of a chain, it should not be. Most host
adapters include BIOS utilities that let you enable or disable termination.

SCSI IDs SCSI devices are identified by ID numbers—0–7 for 8-bit
(Narrow) SCSI, 0–15 for 16-bit (Wide) SCSI. If two devices share a single
number, chances are that only one will show up, or one device may appear
to occupy all the SCSI IDs. In either case, performance is likely to be slow
and unreliable.

http://www.sybex.com

580 Chapter 8 � Hardware Issues

Cable lengths Maximum SCSI cable lengths range from 1.5 to 12
meters, depending upon the SCSI variety. Exceeding cable length limits
typically results in data transfer errors, and hence filesystem corruption.

Cable quality Cheap SCSI cables can cause data errors, just as can
incorrect termination or cables that are too long. Unfortunately, good
SCSI cables can be quite pricey—$50 or more is not uncommon.

Forked chains Many modern SCSI host adapters include three connec-
tors—typically one external connector and two internal connectors (for
both Wide and Narrow internal devices). SCSI chains, however, should be
one-dimensional—each device should be connected to the next one on the
chain, with the SCSI host adapter itself counting as a SCSI device. There-
fore, you should not use more than two connectors on a SCSI host
adapter. Failing to heed this advice will produce data errors, much like
other problems.

Most SCSI problems can be traced to one of these issues, and especially to
termination and cabling problems. Because of this, useful troubleshooting
techniques involve simplifying the SCSI chain. For instance, suppose you’ve
got a chain with two SCSI hard disks, a CD-ROM drive, and a tape drive. If
you only need one hard disk to boot, you should try removing all of the other
devices to make as short a chain as possible. If that works, swap in a longer
cable and start adding devices back to the chain. By doing this, you may find
that the problem is related to the length of the cable or to a particular device.

Linux doesn’t include a driver that works with all SCSI host adapters,
unlike the situation for EIDE controllers. Therefore, your kernel must
include support for your particular model SCSI host adapter. Most distribu-
tions ship with support for most SCSI host adapters, but you may find your-
self unsupported if you’ve got a particularly exotic host adapter. In such a
situation, you’ll need to locate drivers or switch host adapters.

You can use the hdparm utility, described earlier, to test the performance
of your SCSI drives. hdparm can not be used, however, to adjust SCSI drive
performance. In Linux, SCSI drives operate at maximum performance at all
times; there are no configurable transfer modes or any way to switch
between PIO and DMA modes. (All good SCSI host adapters use DMA mode
exclusively, but some very cheap ones use PIO mode only.)

http://www.sybex.com

Diagnosing Hardware Problems 581

Problems with Peripherals

In a computer context, a peripheral is a device that connects to and is con-
trolled by a computer. Devices like keyboards, mice, monitors, and scanners
are clear examples. Many devices that reside inside the computer’s case are
also peripherals, however. These include hard drives, CD-ROM drives, and
tape backup devices. Most of these internal peripherals could be attached
externally, given appropriate hardware.

Because the realm of peripherals is so broad, diagnosing problems with
them also covers a lot of territory. As a general rule, though, peripheral prob-
lems can be broken down into three general classes: problems with the
peripheral device itself, problems with the cables connecting the peripheral
to the computer, and problems with the computer interface for the peripheral.

Peripheral Device Problems

One of the first steps you should take when diagnosing problems with
peripheral devices is to determine whether the problem is related to drivers
for the device or to the device itself. The upcoming section, “Identifying Sup-
ported and Unsupported Hardware,” should help you decide whether the
device should work in Linux. Printers, scanners, cameras, and more exotic
external devices are particularly likely to require special drivers that might or
might not exist in Linux. Keyboards, mice, monitors, external RS-232
modems, and EIDE and SCSI devices are almost always supported in Linux.

One useful test to perform is to try the device under another OS. Because
most peripherals come with Windows drivers, installing those drivers and
trying the device in Windows should give you some clue to help you decide
whether the source of the problem is defective hardware or drivers. If you
dual-boot a computer into Windows and the device doesn’t work, you can’t
be sure that the problem is in the device, though; it could be in the cable or
computer interface to the device. If you move the peripheral to another com-
puter and it does work, the problem could also be in the cable or interface on
the Linux computer.

Coincidences happen, so you can’t conclude much with certainty by moving
a device to another computer or OS. For instance, if you move a malfunction-
ing device to another computer and it still doesn’t work, it could be that the
software configuration on both computers is in error.

http://www.sybex.com

582 Chapter 8 � Hardware Issues

Peripheral Cable Problems

Cable problems are usually fairly easy to test—you can replace a cable with-
out too much difficulty in most cases. SCSI cables, though, can be quite
expensive, so you may be reluctant to buy a new cable just for test purposes.
A few devices, such as mice and most keyboards, come with built-in cables.
Fortunately, this latter class of device is usually quite inexpensive, so if a
problem develops in a cable, you can probably replace the entire affected
device.

Most peripheral cables cannot be attached to the computer backward.
Unfortunately, some particularly cheap ribbon cables (used for SCSI, EIDE,
and floppy devices inside the computer) lack the notch that serves to prevent
backward installation. If you have such a cable, look for a colored stripe
along one edge of the cable, and look for pin numbers printed on the con-
nectors on the devices to which the cable attaches. Align the cable so that the
colored stripe is associated with pin 1 on both ends, and it should work. If
a cable is installed backward, the device will simply not work.

Floppy drive cables are unusual in that they include a twist—a section of
cable that’s cut and twisted to change the mapping of pins. You should
attach your first floppy drive after this twist. If you attach your first drive
before the twist, your drive identifiers will be confused. On a single-floppy
system, your only floppy drive will be identified as /dev/fd1 rather than
/dev/fd0. Also, floppy cables normally include two types of connectors for
the floppy drives. One form attaches to old 5.25-inch drives, and the other
connects to 3.5-inch drives. You can’t connect the drive to the wrong type of
connector, but you should be aware of this difference so that you’re not con-
fused by it, or by the presence of five connectors on a typical floppy cable
(one for the motherboard, two for the first floppy drive, and two for the sec-
ond floppy drive). At most, three of these connectors will be used.

Peripheral Interface Problems

There are a handful of interfaces used for most peripherals. In addition to the
EIDE and SCSI interfaces discussed earlier in this chapter, common inter-
faces include the following:

Floppy x86 computers include a floppy interface that can control up to
two floppy drives. These interfaces are very mature, so the Linux drivers
seldom cause problems. One configuration detail to which you may need
to attend is enabling the port in your computer’s BIOS setup screen. If this

http://www.sybex.com

Diagnosing Hardware Problems 583

is not enabled, Linux might not detect the floppy. If the BIOS configura-
tion is correct and Linux can’t use the floppy, it may be that the floppy
controller is defective. As a device that’s built into a motherboard, it can
be difficult to replace a floppy controller, but old 486 and earlier systems
often used floppy controllers on separate cards, so if you can find such an
antique you may be able to make use of it.

Monitor The monitor port is part of the video card. Software problems
with it usually relate to XFree86 (discussed in Chapter 2, “Installing
Linux”). If the hardware is defective, there’s a good chance that you won’t
even be able to see your BIOS startup messages.

Keyboard x86 computers have a keyboard port that uses either a large
8-pin DIN connector or a small mini-DIN connector. These are electri-
cally compatible, so you can use an adapter if you have an incompatible
keyboard. As with the floppy port, the keyboard port is highly standard-
ized. In fact, there isn’t even a kernel configuration option for it; the driver
is always included in the kernel. A bad keyboard connector may turn up
in the BIOS POST, but that isn’t guaranteed. If the keyboard doesn’t
work in Linux, try booting a DOS floppy or using the BIOS setup utility
to see if the keyboard works in a non-Linux environment.

PS/2 mouse Most x86 computers sold since the mid-1990s have used
mice that connect through the PS/2 port. (The USB port is increasingly
taking over this role, though.) These mice are standardized, although
there are variants for features like scroll wheels. The Linux drivers for
PS/2 mice are mature and seldom pose problems, but they do need to be
included in your kernel or compiled as modules. (All major distributions
include these drivers in their standard kernels or module sets.) The PS/2
port can be disabled in the BIOS, so if you’re having problems, you may
want to check this detail. If a PS/2 port is physically bad, you may want
to replace the mouse with a model that interfaces via the RS-232 serial or
USB port.

Parallel The parallel port is most commonly used for printers, but it can
also handle some scanners, cameras, and external removable-media
drives. Linux’s parallel port support is mature, but it requires two drivers:
one for the low-level parallel port hardware and one for the device being
driven. These drivers are included in all major Linux distributions’ stan-
dard driver sets. Like many other motherboard-based ports, most BIOSes
allow you to disable the parallel port, so you may want to check this detail
if you’re having problems. If necessary, you can buy an ISA or PCI add-on
parallel port to replace one that’s gone bad on a motherboard.

http://www.sybex.com

584 Chapter 8 � Hardware Issues

RS-232 serial Most x86 systems include two RS-232 serial ports, but
some have just one. These ports are used to connect to older mice, exter-
nal modems, and various other devices. These ports are highly standard-
ized, and the Linux drivers for them are mature and reliable. Driver
problems are therefore unlikely. You may want to check the BIOS if you
can’t seem to get an RS-232 serial device to work.

USB The Universal Serial Bus (USB) port is a high-speed serial port
that’s much more flexible than the old RS-232 serial port. Some comput-
ers use USB keyboards and mice, and many other devices can connect in
this way. If you’re using a kernel numbered 2.2.17 or earlier, its USB sup-
port is very limited. For better USB support, upgrade to 2.2.18 or a 2.4.x
or later kernel. Linux requires support for both the underlying USB hard-
ware (which comes in two varieties, Open Host Controller Interface
[OHCI] and Universal Host Controller Interface [UHCI]) and for each
USB peripheral. Linux distributions sold in 2001 include such support,
but not all USB devices are supported. Many motherboards include the
option to disable USB support, so be sure it’s enabled in the BIOS.

IEEE-1394 The latest high-speed external interface is IEEE-1394, aka
FireWire. This interface is much faster than USB, and it is considered both
an alternative and a successor to SCSI for some purposes. Although rare
in 2001, IEEE-1394 is likely to grow in importance. Linux’s IEEE-1394
support is limited, but it is likely to expand in the future. Check http://
linux1394.sourceforge.net for more information. IEEE-1394 inter-
faces are rare on motherboards in 2001, so you may need to buy an
appropriate PCI card to handle these devices.

Network Network ports are handled by Linux’s network drivers and a
network stack, as discussed in Chapter 5. Network interface card drivers
are far from standardized, but Linux includes support for the vast major-
ity of Ethernet cards and many cards of other types. If you have a partic-
ularly new card, you may need to replace it to get a model with Linux
support. Identifying defective hardware may require booting into another
OS or moving the card to another computer.

Most of these interfaces, as noted, are highly standardized, so Linux driv-
ers shouldn’t be incompatible with your hardware. Network, IEEE-1394,
and to some extent USB interfaces are not so standardized, though, and so
they sometimes cause problems. There’s also the potential for driver incom-
patibility with many expansion card devices, like SCSI host adapters, sound
cards, and video capture boards.

http://www.sybex.com

Using Linux with a Laptop 585

Identifying Supported and Unsupported Hardware

Over the years, Linux has acquired an extensive collection of drivers for a
wide variety of hardware. Nonetheless, Linux doesn’t support every device.
Figuring out which devices are supported and which aren’t can be a chal-
lenge at times because Linux drivers are usually written for a device’s chipset,
not for a specific device by brand and model number. For instance, it’s not
obvious that the Linux Tulip driver works with the Linksys LNE100TX.

To identify what hardware is supported and what isn’t, you may want to
consult the hardware compatibility lists maintained by various distributions.
For instance, http://hardware.redhat.com and http://www.suse.com/
us/support/hardware are good resources. The Linux Hardware Compat-
ibility HOWTO (http://www.linuxdoc.org/HOWTO/Hardware-HOWTO)
can also be an excellent resource.

Hardware compatibility varies very little from one distribution to another. The
only differences result from one distribution including a non-standard driver
that another doesn’t include, or from peculiarities of configuration that result
in conflicts between devices. Therefore, if a device is listed as supported in
one distribution, that device will almost certainly work in any other distribution.

You should also check with the hardware’s manufacturer if you can’t find
drivers or aren’t sure which drivers to use. Some manufacturers include
Linux drivers (usually just the standard kernel drivers) or links to informa-
tion about Linux compatibility with their products on their Web pages.

Manufacturers sometimes change their products’ design without changing
their names. Therefore, the presence of a product on a compatibility data-
base, or even compatibility information on the manufacturer’s Web site, may
not mean that the device will work. Pay careful attention to details like a
board’s revision number when you are searching for compatibility information.

Using Linux with a Laptop

Laptop computers (also known as notebook computers) present cer-
tain challenges for Linux, beyond the usual driver issues. Some of these

http://www.sybex.com

586 Chapter 8 � Hardware Issues

challenges derive from the fact that Linux, as a Unix clone, was designed for
systems that would not have to deal with power management or swapping
out PC Cards. The most frustrating laptop problems, however, frequently
deal with installation. These problems mostly boil down to the difficulty of
getting Linux’s XFree86 configuration to work with the finicky liquid crystal
displays (LCDs) used on laptops.

Special Laptop Installation Issues

Laptops are essentially miniaturized desktop computers. A laptop includes a
motherboard, a CPU, RAM, a keyboard, a mouse (usually in the form of a
touch pad or TrackPoint), a hard disk, a CD-ROM drive, a floppy drive, and
a display. From a software point of view, these devices all work like their
counterparts on a desktop computer. There are some limitations that are
more common on laptops, though. These include the following:

Modem Most modern laptops include built-in modems. Unfortunately,
most of these on x86 laptops are software modems that require special
drivers. Such drivers are rare in Linux. You can check http://www
.linmodems.org for information on these devices. In most cases, you’ll
have to install the modem drivers after you install Linux. If your built-in
modem doesn’t have Linux drivers at all, you can use a separate PC Card
or external RS-232 or USB modem. If you buy a PC Card or USB modem,
be sure you get one that’s supported by Linux.

Networking All modern Macintosh and some high-end x86 laptops
include built-in Ethernet support. Before buying the laptop, be sure Linux
includes drivers for the Ethernet chipset. If your computer doesn’t have
Ethernet support and you need to use it on a network, you can buy a PC
Card or USB Ethernet adapter. (PC Card adapters are preferable.) If the
card is inserted when you install Linux, it may be detected by the installer
and can be configured as described in Chapter 2. Once the card is config-
ured, most distributions will automatically detect whether or not the PC
Card Ethernet adapter is inserted at system boot time, and then they will
configure networking appropriately.

Display The single biggest problem with running Linux on laptops
relates to the display. Specifically, the LCDs used on laptops tend to
accept only a very narrow range of horizontal and vertical refresh rates.
(These are discussed in Chapter 2.) Therefore, it may be difficult or

http://www.sybex.com

Using Linux with a Laptop 587

impossible to get a GUI installer running, and when it comes time to con-
figure X, you may or may not be able to find a working configuration.
Even if a system works, it may not work at the optimum resolution.
Because LCDs are built from a fixed number of discrete pixels, they work
best at a single resolution (usually 800 × 600 or 1024 × 768 for laptops).
Running in a lower resolution usually produces a chunky display.
Another factor is that, because laptops’ display circuitry is not removable,
whatever video chipset a laptop uses must have Linux support if you
expect to use the laptop with X.

Before you buy a laptop or attempt to install Linux on one, check the Linux on
Laptops Web page (http://www.linux-laptop.net). This Web site includes
links to many user-maintained sites concerning running Linux on specific lap-
top models. You can obtain useful tips and configuration procedures, and you
might even pick up some working XF86Config files, from these pages. The
main Linux on Laptops site also includes links to information on useful laptop
utility programs and other information.

If you have trouble installing Linux on a laptop, you might do well to try
another distribution, or try using a distribution’s text-mode installation rou-
tine, if it has one. Sometimes video or other problems simply prevent a dis-
tribution from installing. For instance, I’ve tried installing various versions
of five distributions on my own laptop. One installed fine using its GUI
installation tools. Two didn’t have GUI installation routines, and installed
fine using text-mode tools. One distribution didn’t install at all in an older
version, but a newer version worked in text mode only (the GUI installer
failed). The fifth distribution wouldn’t install at all.

Understanding Power Management

Laptop computers are often run on battery power. Most laptop batteries can
run for only a couple of hours. Therefore, modern laptops include various
power management tools that can dramatically reduce the computer’s need
for power, thus extending battery life. The 2.4.x Linux kernels include two
sets of power management tools: Advanced Power Management (APM) and
Advanced Configuration and Power Interface (ACPI). Both require under-
lying support in the computer’s BIOS. As of the early 2.4.x kernels, APM is

http://www.sybex.com

588 Chapter 8 � Hardware Issues

mature, but ACPI is new and experimental. For this reason, it’s often best to
use APM, even if your hardware supports ACPI. Most Linux distributions’
kernels include APM support.

Although primarily intended for laptops, power management tools can be
used on desktop systems, as well. In fact, this is how Linux powers off a com-
puter when it shuts down.

To use APM features effectively, you need some way to tell the computer
when to enter power-conserving states. This task is accomplished with the
apmd package (http://www.worldvisions.ca/~apenwarr/apmd), which
ships with most Linux distributions and may be installed automatically. The
main apmd program is a daemon, so it should be started when the computer
boots. Once running, it monitors the system’s battery status and, if the bat-
tery’s charge gets too low, apmd kicks the system into a suspend mode in
which most functions are shut down and only the system’s RAM is main-
tained. apmd will also suspend the hard disk if it’s gone unused for a long
enough time. (You can use the hdparm utility, described earlier, to control
hard disk power management more directly.)

If you want to manually control APM features, you can do so with the apm
utility. Typing this command manually presents basic power management
information, such as how much battery power is left. The -s and -S param-
eters cause the system to go into suspend and standby modes, respectively.
Suspend mode shuts off power to most devices, leaving only the CPU and
memory operating, and those at minimum power. Standby mode leaves
more devices powered up, so the system can recover more quickly; but
there’s less power savings in this mode. A fully charged laptop can usually
last several hours in standby mode and a day or more in suspend mode.
Many laptops include a key sequence that will force the system into suspend
or standby mode. In most cases, apmd will detect such a keystroke and honor
the request. Consult your laptop’s documentation for details.

Using PC Card Devices

Because laptops don’t have ISA or PCI slots, manufacturers developed a
standard for expansion cards that allows you to easily insert and remove
many of the types of devices that would go in an ISA or PCI slot on a desktop
computer. This standard was originally named after the industry group that

http://www.sybex.com

Using Linux with a Laptop 589

developed the standard, the Personal Computer Memory Card International
Association (PCMCIA). To reduce the number of acronyms, though, this
standard has since been renamed PC Card. Many Linux utilities still use the
old name.

There are PC Card adapters for desktop systems, so PC Card utilities some-
times find use on these systems. PC Card devices are much more common on
laptops, though.

There are several different varieties of PC Card hardware. There are three
different sizes of PC Cards: Type I, Type II, and Type III, with each type
being thicker than the preceding one. Type I cards are often used for memory
expansion. Type II cards are the most common type, and they are used for
Ethernet cards, modems, and the like. Type III cards are rare, and they are
used for hard disks or other devices with internal moving components. Elec-
tronic standards include PCMCIA 1.0, PCMCIA 2.0, PCMCIA 2.1, and PC
Card, with the last of these being the most advanced. You can learn more
about all of these at the PC Card Web site, http://www.pc-card.com.

Unlike support for most hardware, PC Card support doesn’t come with
the Linux kernel. Instead, you must acquire and install an auxiliary driver
package. This package is hosted at http://pcmcia-cs.sourceforge.net.
Fortunately, most Linux distributions include these PC Card drivers, so
there’s no need to go looking for them unless you need support for a partic-
ularly new device or you upgrade your kernel by manually compiling it yourself.

PC Cards are designed to be inserted and removed at will. Unfortunately,
Linux’s driver model doesn’t work well with such hot swapping. Therefore,
the PC Card driver set includes a feature known as Card Services, which
helps you smoothly install and remove drivers from the kernel and also helps
the kernel cope with potential problems. (For instance, automatically start-
ing or stopping network services when an Ethernet PC Card is installed or
removed.) Card Services are controlled through configuration files in /etc/
pcmcia. There are scripts in this directory for different types of services, such
as network and ide. If your distribution’s maintainers paid proper attention
to PC Card devices, these scripts should require no modifications to work
correctly. In some cases, though, you’ll need to edit these scripts to have
them do the right thing. Details of doing this are very distribution- and
device-specific. The “Basic Shell Scripting” section of Chapter 6 may help
you understand these scripts if you need to modify them.

http://www.sybex.com

590 Chapter 8 � Hardware Issues

Summary

Configuring hardware in Linux requires a wide range of skills. Some
configurations, like setting up swap space, creating and managing printer
queues, and managing kernel modules, are handled differently in Linux than
in other OSs. Printer configuration is particularly unusual in Linux because
it relies upon the presence of either a PostScript printer or Ghostscript, a
PostScript interpreter that runs under Linux.

When you add new hardware, you must locate Linux drivers for the
devices. These may come in the form of kernel modules, or they may reside
in non-kernel packages, such as Ghostscript. You physically install the hard-
ware much as you would in any other OS, though, and you should take pre-
cautions for both your and the hardware’s safety.

Sometimes, problems arise with new hardware. Common problems
include defective or overheated motherboards, CPUs, and RAM; misconfig-
ured or defective EIDE devices; and misconfigured or defective SCSI devices.
Other devices can also cause problems, especially if the hardware is exotic or
uses a new design. One particularly tricky type of hardware is a laptop com-
puter. Laptop displays, power management, and PC Card devices all pose
challenges, but not insurmountable ones.

Exam Essentials

Identify when swap space needs to be increased. The output of the
free command shows how much memory Linux is using—both RAM
and swap space. When the amount of used swap space approaches avail-
able swap space, it’s necessary to increase swap space or RAM.

Describe the role of Ghostscript in Linux printing. Ghostscript serves
as an on-computer PostScript interpreter for non-PostScript printers,
allowing programs that expect to print to PostScript printers to be used
with less expensive printers.

Describe the role of lpd in Linux printing. The line printer daemon
(lpd) accepts local and remote print jobs, maintains the local print queue,
calls smart filters, and passes data to the printer port in an orderly fashion.

http://www.sybex.com

Exam Essentials 591

Contrast drivers in the kernel to driver modules. The Linux kernel is
responsible for all drivers. Drivers stored in the Linux kernel are always
loaded and increase the size of the kernel file, but driver modules may
be loaded and removed dynamically, reducing the memory load at the
cost of configuration complexity.

Identify some possible sources for Linux drivers. Linux drivers may be
obtained as part of the Linux kernel, from hardware manufacturers, from
third-party development efforts, and from Web sites devoted to particular
types of hardware.

Summarize how laptop installation and use differs from desktop installa-
tion and use. Installing Linux on a laptop requires careful attention to
the laptops’s non-replaceable hardware, and especially to the display,
which can be finicky. Using the system may require using PC Card devices
and power management, both of which are unused or less important on
desktop systems.

http://www.sybex.com

592 Chapter 8 � Hardware Issues

Commands in This Chapter

Command Description

free Displays information on total RAM and swap space use

mkswap Initializes a file or partition for use as swap space

swapon Activates use of swap space

swapoff Deactivates use of swap space

lpr Submits a print job to a print queue

lpq Displays information on jobs in a print queue

lprm Deletes jobs from a print queue

lpc Monitors and controls a print queue

pnpdump Creates a prototype isapnp configuration file based on
installed hardware

isapnp Configures ISA PnP devices

depmod Locates module dependencies

insmod Inserts a single module into the kernel

modprobe Inserts a module and all the modules upon which it
depends (a module stack)

rmmod Removes a module or a stack of modules from the
kernel

hdparm Sets disk driver parameters and tests disk performance

apm Controls APM features in Linux

http://www.sybex.com

Key Terms 593

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

Advanced Configuration and
Power Interface (ACPI)

peripheral

Advanced Power
Management (APM)

Personal Computer Memory Card
International Association
(PCMCIA)

baud rate plug-and-play (PnP)

Card Services PostScript

daemon power-on self-test (POST)

electrostatic discharge (ESD) print queue

FireWire Printer Control Language (PCL)

fragmented printer driver

IEEE-1394 smart filter

jumper software modem

kernel module spool directory

laptop computer swap file

liquid crystal display (LCD) swap partition

notebook computer swap space

PC Card

http://www.sybex.com

594 Chapter 8 � Hardware Issues

Review Questions

1. Where may a swap file be located?

A. Only on the root (/) Linux filesystem

B. On local read/write Linux filesystems

C. On NFS or ext2 filesystems

D. On any partition with more than 512MB of free disk space

2. In which of the following situations would it be most reasonable to
create a new swap partition?

A. Your heavily used server is nearly out of swap space and needs no
routine maintenance.

B. A workstation user has been using memory-hungry programs that
exceed memory capacity and needs a quick fix.

C. You’re adding a new hard disk to a multiuser system and expect
several new users in the next month or so.

D. A system has been experiencing slow performance because of
excessive swapping.

3. Which of the following is generally true of Linux programs that print?

A. They send data directly to the printer port.

B. They produce PostScript output for printing.

C. They include extensive collections of printer drivers.

D. They can only print with the help of add-on commercial programs.

http://www.sybex.com

Review Questions 595

4. Which of the following describes the function of a smart filter?

A. It detects the type of a file and passes it through programs to make
it printable on a given model of printer.

B. It detects information in print jobs that might be confidential, as a
measure against industrial espionage.

C. It sends e-mail to the person who submitted the print job, obviat-
ing the need to wait around the printer for a printout.

D. It detects and deletes prank print jobs that are likely to have been
created by miscreants trying to waste your paper and ink.

5. Which of the following is an advantage of GUI printer configuration
tools over manual configuration?

A. GUI tools allow you to enter options not possible with text-based
tools.

B. GUI tools include the ability to detect ink cartridge capacity in
inkjets.

C. GUI tools let you configure non-PostScript printers to accept Post-
Script output.

D. GUI tools hide the details of smart filter configuration, which vary
across distributions.

6. What information about print jobs does the lpq command display?
(Choose all that apply.)

A. The name of the application that submitted the job

B. A numerical job ID that can be used to manipulate the job

C. The amount of ink or toner left in the printer

D. The username of the person who submitted the job

http://www.sybex.com

596 Chapter 8 � Hardware Issues

7. Which devices require drivers that are not part of the standard Linux
2.4.x kernels? (Choose all that apply.)

A. CDC-ACM USB modems

B. Scanners

C. Non-PostScript printers

D. Most Ethernet cards

8. In what ways may you set driver options in Linux? (Choose all that
apply.)

A. By passing the option with the insmod command

B. By using the append option in lilo.conf

C. By using the option command in modules.dep

D. By using the option command in modules.conf

9. What is the purpose of the /lib/modules/x.y.z/modules.dep file?

A. To tell the kernel what module to load to access a particular class
of device

B. To tell modprobe what modules to load in conjunction with a
selected module

C. To indicate which drivers should be compiled as modules when
rebuilding the kernel

D. To keep track of which modules are loaded at any given moment

10. What information does lsmod provide?

A. The date a module was compiled

B. A list of currently installed modules

C. The IRQs used by installed modules

D. The number of minutes until a module is automatically uninstalled

http://www.sybex.com

Review Questions 597

11. What is the purpose of the POST?

A. To shut off power after a system shutdown

B. To perform basic hardware tests at power up

C. To hand off control from LILO to the kernel

D. To test a printer’s PostScript capabilities

12. Why should you be cautious when using hdparm?

A. hdparm can set hardware options that are not supported by some
hardware, thus causing data corruption.

B. Because hdparm modifies partition tables, an error can result in
loss of one or more partitions and all their data.

C. By changing hardware device file mappings, you can become con-
fused about which drive is /dev/hda and which is /dev/hdb.

D. hdparm can cause Linux to treat an ext2fs partition as if it were
FAT, resulting in serious data corruption.

13. A SCSI chain on a single-channel SCSI card is behaving unreliably so
you examine it. You find that devices are attached to all three connec-
tors on the SCSI host adapter, for a total of five devices. The device at
the end of each cable is terminated, the cables are of high quality, and
no two devices share a SCSI ID number. Which of the following is the
most likely cause of the problems?

A. None of the devices should be terminated.

B. Only one of the devices should be terminated.

C. Only two of the host adapter’s connectors should be used.

D. There should be only four devices attached to the host adapter.

http://www.sybex.com

598 Chapter 8 � Hardware Issues

14. You’re having problems with a digital camera under Linux. You move
the camera (including its cable) to another computer that runs Win-
dows, but the camera doesn’t work under Windows, either, even when
you install the Windows software that came with the camera. What
can you conclude?

A. The problem is almost certainly related to the Linux drivers or
camera software.

B. The problem is very likely related to the cable or the camera
hardware.

C. The problem probably resides in the computer’s interface
hardware.

D. The problem is definitely not related to the camera’s hardware.

15. Which of the following devices are highly standardized in x86 systems
and so have mature Linux drivers that don’t vary from one model to
another? (Choose all that apply.)

A. Parallel ports

B. Floppy ports

C. SCSI host adapters

D. Ethernet adapters

16. You’ve purchased a new PCI sound card for a computer, but when
you open the computer, you find it has only three PCI slots, and
they’re all used by other devices. The computer has two free ISA slots.
What options do you have if you need to add sound support for this
computer? (Choose all that apply.)

A. Insert the PCI card into an ISA slot.

B. Purchase an ISA sound card for the computer.

C. Purchase a PCI-to-ISA adapter so you can use the PCI card in an
ISA slot.

D. Remove a PCI card that’s less important than the sound card, to
make room for the latter.

http://www.sybex.com

Review Questions 599

17. Why is it best to unplug a computer from the wall or surge protector
when performing work on it?

A. If a computer is plugged in, you’re more likely to damage it with an
electrostatic discharge.

B. Modern computers have live circuits even when turned off. The
current in these circuits can injure you.

C. Unplugging the computer reduces the chance that an electrostatic
charge will build up in the system, thus damaging it.

D. External surge protectors can damage equipment if that equipment
is powered off.

18. What solution might you attempt if a computer routinely generates
kernel oopses on warm days but not on cool days?

A. Replace a 4500rpm hard disk with a 7200rpm model.

B. Upgrade the heat sink and fan on the CPU.

C. Upgrade to a more recent kernel.

D. Nothing; kernel oopses are normal.

19. Which components continue to receive power when a laptop com-
puter has entered suspend mode? (Choose all that apply.)

A. The CPU

B. The hard disk

C. The display

D. RAM

http://www.sybex.com

600 Chapter 8 � Hardware Issues

20. Which of the following is a challenge of PC Card devices, from a Linux
point of view?

A. PC Card devices draw more power than Linux can support, lead-
ing to unreliable operation if APM support isn’t enabled.

B. Linux wasn’t designed to expect most devices to appear and dis-
appear randomly, as they do when a user inserts or removes a PC
card device.

C. Supporting PC Card devices requires adding a new type of device
hierarchy, which conflicts with existing device types.

D. The only way to support PC Card devices is to treat them like flop-
pies, which makes using communication devices difficult.

http://www.sybex.com

Answers to Review Questions 601

Answers to Review Questions

1. B. A swap file may be located on local read/write filesystems. This
includes, but is not limited to, the root filesystem. Swap space may not
exist on NFS mounts (which are very slow compared to local disk par-
titions in any event). The amount of free disk space on the partition is
irrelevant, so long as it’s sufficient to support the swap file size.

2. C. It’s easy to create a swap partition when adding a new disk, and in
option C, the new user load might increase the need for memory and
swap space, so adding a new swap partition is prudent. In options A
and B, adding a swap partition would require downtime while jug-
gling the partitions, and so it would disrupt use of the systems. Adding
a swap file makes more sense in those cases. In option D, adding swap
space won’t speed performance much (unless it’s on a faster disk than
the current swap space); a memory upgrade is in order to reduce reli-
ance on swap space.

3. B. PostScript is the de facto printing standard for Unix and Linux pro-
grams. Linux programs generally do not send data directly to the
printer port; on a multitasking, multiuser system, this would produce
chaos because of competing print jobs. Although a few programs
include printer driver collections, most forego this in favor of gener-
ating PostScript. Printing utilities come standard with Linux; add-on
commercial utilities aren’t required.

4. A. The smart filter makes a print queue “smart” in that it can accept
different file types (plain text, PostScript, graphics, etc.) and print
them all correctly. It does not detect confidential information or prank
print jobs. The lpr program can be given a parameter to e-mail a user
when the job finishes, but the smart filter doesn’t do this.

5. D. Linux distributions ship with different smart filter configurations,
each of which can be tedious to configure in different ways. Although
GUI tools also differ, they’re somewhat easier to figure out and have
similar options to one another. GUI tools are not more flexible than
text-based tools; after all, the GUI tools simply manipulate the under-
lying textual configuration files. Both GUI and text-based configura-
tions can invoke smart filters to print PostScript on non-PostScript
printers.

http://www.sybex.com

602 Chapter 8 � Hardware Issues

6. B, D. The job ID and job owner are both displayed by lpq. Unless the
application embeds its own name in the filename, that information
won’t be present. Most printers lack Linux utilities to query ink or
toner status; certainly lpq can’t do this.

7. B, C. Scanners and non-PostScript printers both require non-kernel
drivers (as part of SANE and Ghostscript, respectively). Drivers for
CDC-ACM USB modems and most Ethernet cards come standard
with the 2.4.x kernels, although USB support is new with the 2.2.18
and 2.4.x kernels.

8. B, D. The append option in /etc/lilo.conf sends an option to a
driver built into the kernel at boot time. The option command is part
of the /etc/modules.conf file’s feature set, not of the /lib/
modules/x.y.z/modules.dep file’s feature set. insmod has no mech-
anism for passing options to drivers, aside from options set in
modules.conf.

9. B. modules.dep contains module dependency information—which
other modules each one requires in order to operate. modprobe uses
this information to load prerequisite modules whenever requested to
load one module.

10. B. lsmod shows a list of currently installed modules, their sizes, and
the modules that depend upon them. It does not provide information
on compilation dates, IRQs, or an estimate of time before the module
is removed. (You can obtain IRQ use information from the /proc/
interrupts pseudo-file, though.)

11. B. POST stands for “power-on self-test.” It’s a BIOS routine that
checks for basic functionality of core system components, such as
RAM integrity and the presence of a keyboard. Most computers pro-
vide an encoded beep if the POST fails.

12. A. hdparm manipulates low-level options in EIDE hard disk control-
lers, such as the use of DMA or PIO modes. If a controller is buggy or
doesn’t support a specified mode, the result can be data corruption or
lost access to hard disks. The utility has nothing to do with partition
tables, device file mappings, or filesystems per se.

http://www.sybex.com

Answers to Review Questions 603

13. C. SCSI chains must be one-dimensional—each after the other along a
straight line. By using all three connectors on a SCSI host adapter, the
configuration described creates a Y-shaped fork in the SCSI chain,
which is very likely to cause data transfer errors. The device at each
end of the SCSI chain should be terminated.

14. B. Because the cable and camera are the only constants in both tests,
they’re the most likely source of the problem. This isn’t absolutely cer-
tain, though; software or interface hardware problems could exist on
both test systems, thus misleading you in your diagnosis.

15. A, B. Both parallel and floppy ports are standardized on x86 hard-
ware. SCSI host adapters and Ethernet adapters both come in many
incompatible varieties. Linux includes drivers for most models of both
types of device, but you must match the driver to the chipset used on
each device.

16. B, D. Expansion slots are a limited resource that you must budget. If
you run out of space, you must compromise by using another connec-
tion type or prioritizing the devices you have installed. It’s impossible
to insert a PCI card in an ISA slot or vice-versa. There are no adapters
to make such uses possible.

17. B. Modern computers use a motherboard-mediated power circuit, and
so they carry some current even when plugged in. You can get an elec-
trical shock from certain circuits if you accidentally touch them even
when the power’s off.

18. B. Temperature-related problems can often be overcome by improv-
ing ventilation within the computer. Because kernel oopses are often
caused by overheating CPUs, upgrading the heat sink and fan can
often improve matters. Although kernel oopses can sometimes be
caused by kernel bugs, the temperature-sensitive nature of the prob-
lem suggests that option C won’t have any effect. Kernel oopses defi-
nitely are not normal. Hard disks that spin faster are likely to generate
more heat than those that spin slower, so option A will most likely
have no positive effect on the problem, and may make it worse.

http://www.sybex.com

604 Chapter 8 � Hardware Issues

19. A, D. Suspend mode is a low-power mode intended to save battery
power on a laptop. It therefore shuts down components that don’t
need to be active when the system is not being actively used, such as
the display, hard disk, and CD-ROM drive. The CPU and RAM con-
tinue to receive power, albeit at minimal levels, to maintain the work-
ing configuration.

20. B. Linux expects most devices, like Ethernet cards and hard disks, to
remain available until Linux unloads the driver. PC Cards can be
physically ejected by the user. This requires an extra software layer
(Card Services) that helps the kernel adjust to the sudden loss of a
device or its reappearance.

http://www.sybex.com

Chapter

9
Troubleshooting

THE FOLLOWING COMPTIA OBJECTIVES ARE
COVERED IN THIS CHAPTER:

� 6.1 Identify and locate the problem by determining whether the

problem is hardware, operating system, application software,

configuration or the user.

� 6.2 Describe troubleshooting best practices (i.e., methodology).

� 6.3 Examine and edit configuration files based on symptoms of

a problem using system utilities.

� 6.4 Examine, start, and stop processes based on the signs and

symptoms of a problem.

� 6.5 Use system status tools to examine system resources and

statuses (e.g., fsck, setserial).

� 6.6 Use system boot disk(s) and root disk on workstation and

server to diagnose and rescue file system.

� 6.7 Inspect and determine cause of errors from system log files.

� 6.8 Use disk utilities to solve file system problems (e.g., mount,

umount).

� 6.9 Resolve problems based on user feedback (e.g., rights,

unable to login to the system, unable to print, unable to receive

or transmit mail).

� 6.10 Recognize common errors (e.g., package dependencies,

library errors, version conflicts).

� 6.11 Take appropriate action on boot errors (e.g., LILO,

bootstrap).

� 6.12 Identify backup and restore errors.

� 6.13 Identify application failure on server (e.g., Web page,

telnet, ftp, pop3, snmp).

http://www.sybex.com

� 6.14 Identify and use troubleshooting commands (e.g.,

locate, find, grep, |, <, >, >>, cat, tail).

� 6.15 Locate troubleshooting resources and update as

allowable (e.g., Web, man pages, howtos, infopages,

LUGs).

� 6.16 Use network utilities to identify network and

connectivity problems (e.g., ping, route, traceroute,

netstat, lsof).

http://www.sybex.com

In the best of all possible worlds, everything works correctly all of
the time. Unfortunately, we don’t live in the best of all possible worlds; in our
world, problems occasionally occur. Therefore, it’s necessary that you
understand something of how to troubleshoot a Linux system. This task
begins with diagnosis: You must be able to localize the problem as belonging
to any of several broad classes, then identify and diagnose it more precisely.
After you’ve done this, you can move on to solving the problem. You can
often do this by adjusting common configuration files that have been mis-
configured. Other problems require working around buggy software or
locating missing software. No matter what the problem and the solution, it’s
important that you understand various commands that can help you along
the way.

Localizing the Problem

Usually, the first troubleshooting step you must take is to localize the
problem—that is, to narrow down the general field in which the problem
occurs. Likely problem areas include hardware, kernel, application software,
configuration, and those that are user-created. Sometimes you won’t be able
to narrow the field to just one of these areas, but eliminating just one or two
can be a huge help. You can generally narrow the field using the general
symptoms of a problem, as described in this section.

http://www.sybex.com

608 Chapter 9 � Troubleshooting

Symptoms of Hardware Problems

Hardware problems can affect just about any aspect of system operation—
the boot process, network operations, disk input/output, overall system reli-
ability, and so on. Chapter 8, “Hardware Issues,” discusses hardware prob-
lems in more detail, so you should consult it when you need to perform
detailed hardware troubleshooting and problem-solving tasks.

Hardware problems can manifest themselves in either consistent or incon-
sistent forms. A consistent problem is one that’s easily reproduced; for
instance, if you can’t bring up a network interface using the procedures
described in Chapter 5, “Networking.” An inconsistent problem is one that
doesn’t always occur, even when all conditions are identical; for instance, if
the network interface comes up sometimes, but not other times. Although
other problem classes can sometimes produce inconsistent problems, hard-
ware malfunctions are more likely to produce these problems.

Before you declare that a problem is inconsistent and therefore begin
focusing on hardware issues, you should be sure that the problem truly is
inconsistent. Consistent problems sometimes appear to be inconsistent
because some critical environmental condition has changed, such as the user-
name used to issue a command or whether some program other than the one
that’s malfunctioning is running. Consider again the example of the network
interface that won’t come up—the interface might come up only after load-
ing the appropriate kernel module. If you don’t realize this but perform tests
with and without that kernel module loaded, you might mistakenly believe
the problem to be inconsistent.

A physical manifestation is another symptom of a hardware problem. For
instance, you might hear different sounds coming from the computer than
you typically do. A hard disk that doesn’t spin up won’t create a normal disk
sound—it may be silent, or it may produce some other noise as the motors
strain against some problem. Some software problems can create such symp-
toms as well, though, particularly when the software is supposed to cause
hardware actions. A problem with tape backup software might prevent the
tape drive from operating, for instance.

One type of physical manifestation that can be important in modern com-
puters is heat. CPUs, hard disks, and other computer components all gener-
ate heat, and this heat can be damaging if it’s not dissipated. The Lm_sensors
package (http://www.netroedge.com/~lm78) can help you detect heat
problems, particularly with your CPU. This program monitors the temper-
ature that is reported by sensors that exist on most modern motherboards so

http://www.sybex.com

Localizing the Problem 609

that you can see if the temperature has risen too high, and if it’s correlated
with a problem.

One particularly reliable sign of a hardware problem is the kernel oops,
which indicates a processing error in the kernel. In some cases, kernel oopses
translate into crashed programs, but in extreme cases they can crash the
computer as a whole. Kernel oopses generate an error message containing
the word oops, which is displayed on the text-mode console and (if it doesn’t
crash the system) logged in /var/log/messages or some other log file. Ker-
nel oopses are almost always caused by either a kernel bug or a hardware
problem (usually in the CPU or RAM, but sometimes in other components,
like a hard disk controller). If you’re running an experimental kernel, or even
an old kernel in a stable series, you might try replacing your kernel with the
latest stable kernel to see if that fixes the problem. If it doesn’t, chances are
good that the cause is in your hardware.

If a system had been functioning correctly but spontaneously develops
system-wide problems or problems with a specific hardware device, the most
likely explanations are a hardware problem or a configuration problem.
Software, including the kernel, doesn’t usually go bad spontaneously,
although an upgrade might end up installing a version that contains a new
bug. (One exception is known as software rot, which is rare and is usually
caused by a filesystem error that causes corruption in a program or critical
data file.)

Symptoms of Kernel Problems

One of the primary duties of the Linux kernel is to function as an interface
between the hardware and the bulk of the software you run on the computer.
Because of this, the kernel has unusually privileged access to the system’s
hardware. A bug in the kernel can manifest itself in ways that can be difficult
to distinguish from hardware problems, such as system crashes, kernel
oopses, unreliable operation of hardware, or an inability to use hardware.

Kernel bugs are less likely than are hardware problems to appear incon-
sistently, but such a manifestation is possible. (In truth, the bug would be
consistent, but it would cause different symptoms depending upon some
low-level factor you can’t observe, like the value in a particular hardware
register.) Kernel bugs are also less likely to produce physical symptoms, like
changes in a computer’s sound.

http://www.sybex.com

610 Chapter 9 � Troubleshooting

Fortunately, Linux kernel bugs are very rare, at least if you’re using a
stable release (one with an even second number, like 2.2.18 or 2.4.3). These stable
kernels have been extensively tested and seldom cause problems. If you need
to use a development kernel (one with an odd second number) to gain access
to a particularly new driver or feature, you may run into kernel problems,
however. Solving these problems may require upgrading to a more recent
development kernel or downgrading to an older one.

Symptoms of Application Software Problems

Application software doesn’t run with the sort of low-level access to the
hardware that the kernel possesses, so problems with such programs are typ-
ically much less serious. These problems are usually restricted to just one
program, as opposed to hardware and kernel problems, which often mani-
fest themselves in many different programs. Typical application problems
include the following:

Programs that fail to start Programs sometimes don’t start at all. This
can be caused by a bug in the program or an unmet dependency, as dis-
cussed in more detail in the upcoming section, “Package Dependencies
and Conflicts.”

Program crashes A program may start, but then crash. As with a failure
to start, this can be related to a bug in the program or a failed dependency.
Hardware and kernel problems also sometimes manifest themselves in
this way.

Programs that consume too many system resources Sometimes a pro-
gram runs out of control and begins consuming an inordinate amount of
system resources—typically too much CPU time, RAM, or disk space.
This is usually caused by poor design or a bug in the program. If the pro-
gram has stopped responding but is still consuming resources, it may have
hung, in which case, you may need to kill it. These conditions are dis-
cussed in the upcoming section, “Stopping, Starting, or Restarting Pro-
cesses,” and in Chapter 7, “Managing Partitions and Processes.”

Programs that misbehave in program-specific ways Programs often
malfunction in ways that are very program-specific. They may produce
bad displays, corrupt data, and so on. Such problems can sometimes be
caused by configuration errors, as well.

http://www.sybex.com

Localizing the Problem 611

If an application develops problems even though you’ve not upgraded it or
changed its configuration files, it may be a symptom of a break-in. Crackers
sometimes replace critical applications, and such replacements may behave
in a visibly different way than the originals. Software rot is another possible
cause of such problems.

Application problems are often best dealt with by replacing the software,
either with a newer (or sometimes an older) version of the software, or with
a competing package. You might want to check troubleshooting resources
(as discussed soon, in “Using Troubleshooting Resources”) to locate infor-
mation on the specific problem you’re experiencing and learn whether newer
or older versions of the package suffer from the same problem.

Symptoms of Configuration Problems

Both individual programs and Linux as a whole use configuration files,
which may be set up incorrectly or in ways that are inappropriate for your
system or your goals. When this is the case, the program or computer will
misbehave in ways that may be difficult to distinguish from application
problems, or sometimes even from kernel or hardware problems. Programs
may crash, hardware may become unavailable, and in extreme cases, the
computer may not boot or may crash some time after booting. (Configura-
tion problems that cause the system to crash once booted are extremely rare,
though.)

System configuration problems typically affect some subsystem, such as
the ability to access a partition, start networking, use X, or print. Previous
chapters of this book cover the relevant subsystems and contain information
on proper configuration, and so they may help you determine what’s going
wrong in these cases. The upcoming section, “Configuration File Problems,”
also provides pointers.

User applications also utilize configuration files, and so they too can be
affected by this class of problem. These files may be either system-wide (typ-
ically stored in /etc) or stored in individual users’ home directories. If just
one user has problems with a program, there’s a good chance that the user’s
configuration file is the culprit. If all users have a problem, it’s more likely
associated with a system-wide configuration file or an application problem
(a bug).

http://www.sybex.com

612 Chapter 9 � Troubleshooting

Symptoms of User Problems

Some problems aren’t really with the computer; they’re with the user—or
more precisely, with user expectations. If a user expects a Linux system to
function exactly like a Windows system, that user may come to you with
“problem reports” that merely reflect the differences between the two sys-
tems. For instance, a user who ejects a floppy disk without first unmounting
it may find that files on that floppy disk are corrupt or missing. This isn’t a
bug in Linux; it’s a difference between how Linux and Windows handle
disks.

If you are inexperienced with Linux, it can be difficult to separate user
problems from other problem types. The best approach is to learn more
about how Linux works, particularly in whatever area seems to be causing
the problem. This book serves as a good starting point, and if you’ve read
chapters in sequence, by now you should have a good idea of Linux’s basic
operating model.

Some user problems really are problems, but they fall into the category of
configuration problems—a user may have misconfigured an application,
which will then misbehave. The usual solution is to reconfigure the applica-
tion, either by using GUI tools in the application or by editing the program’s
configuration file with a text editor. In extreme cases, you may need to delete
the user’s configuration file, which should restore the program to its
default configuration, which the user will then have to adjust to restore any
customizations.

Problem Identification

Ideally, you’ll be able to use the preceding advice to localize a problem
to just one or two areas, at least as a first approximation. Once you’ve done
this, you can use log files, tools, and the symptoms of the problem the users
report (or you experience) to help further identify the nature of the problem.

Sometimes, the nature of problem solving may require you to revise your
original assessment of the problem. Initially, you might believe that a prob-
lem is related to the kernel, but later you may decide that it’s a hardware issue,
for instance. Even the most experienced diagnosticians occasionally make
such mistakes.

http://www.sybex.com

Problem Identification 613

Using Log Files to Identify Problems

The “Monitoring Log Files” section of Chapter 4, “Users and Security,”
introduced log files. In brief, Linux maintains various mechanisms that are
used to record important information on the activity of the kernel and var-
ious servers and system utilities in log files. Most of these log files reside in
the /var/log directory, and the most important log files on most systems are
/var/log/messages, /var/log/secure, and /var/log/syslog. Chapter 4
describes how to locate both system log files and the log files for specific serv-
ers, for those servers that maintain their own logs.

You can use log files to monitor system loads (for instance, to determine
how many pages a Web server has served), to check for intrusion attempts,
to verify the correct functioning of a system, and to note errors generated by
certain types of programs. To one extent or another, all of these functions
can be used to identify problems. Here are a few examples of information
that can be useful when you are troubleshooting:

Verifying heavy loads If a server is running sluggishly, log files may con-
tain clues in the form of a large number of entries from the server. If a
server has experienced a massive increase in the number of clients it han-
dles or the size of the files it transfers, you may need to increase the
server’s capacity to restore good performance. Most non-server programs
don’t log their activities, though, so you probably won’t be able to diag-
nose similar load problems caused by increasing workstation demands in
this way. You’ll likely have an idea that workstation load has increased in
a more direct way, though, because the workstation users should know
that they’re running more or more resource-intensive programs.

Sometimes the logging action itself can contribute substantially to a server’s
CPU and disk input/output requirements. If a server is behaving sluggishly, try
reducing its logging level (so that it records less information).

Intrusion detection Some system problems are related to the presence of
an intruder. Crackers frequently modify your system files or utilities, thus
affecting your system’s performance or reliability. Their actions are some-
times reflected in log files. Even the absence of entries can sometimes be
a clue—crackers often delete log files, or at least remove entries for a

http://www.sybex.com

614 Chapter 9 � Troubleshooting

period. You might not notice such log file discrepancies unless you exam-
ine the log files soon after a break-in occurs, however.

Normal system functioning If a system is misbehaving, the presence of
and information in routine log file entries can sometimes help you pin
down the problem, or at least eliminate possibilities. For instance, sup-
pose your system is working as a DHCP server for your network, dishing
out IP addresses to other systems, as described in Chapter 5. If your clients
aren’t receiving IP addresses, you can check the log file on the server. If
that file indicates that the DHCP server has received requests and given
leases in response, you can focus your problem-solving efforts on the clients.

Missing entries If you know that a program should be logging informa-
tion, but you can’t locate it, this may be evidence that the program is mis-
configured or is not starting properly. In some cases, missing entries may
indicate problems outside of the computer you’re examining. For instance,
suppose you configure Samba to log access attempts. If you can’t access
the Samba server from another system, you can check for Samba log file
entries. If those entries aren’t present, it could mean that Samba isn’t run-
ning, that it’s misconfigured, or that some network problem (such as a
misconfigured router or firewall) is blocking access.

Error messages The most direct evidence of a problem in a log file is
usually an error message. A log file entry might indicate an authentication
failure, for instance, which should help you focus your troubleshooting
efforts. (The user might or might not receive as informative a message as
is recorded in the log file.) To improve this capacity, you can configure
many servers and utilities to log more information than usual; consult the
program’s documentation for details.

Log files are most useful when you are diagnosing software problems with
the kernel, servers, user login tools, and miscellaneous other low-level utili-
ties. Information routinely recorded in log files includes kernel startup mes-
sages, kernel module operations, user logins, cron actions, filesystem
mounting and unmounting, and actions performed by many servers. This
information can reflect hardware, kernel, application, configuration, and
even user problems.

http://www.sybex.com

Problem Identification 615

Using dmesg for System Diagnosis

The dmesg command can be particularly useful for diagnosing certain
types of hardware and kernel problems. This command displays the con-
tents of the kernel ring buffer, which is a data structure that contains recent
kernel messages. Many of these messages are logged to log files, but
dmesg displays just the kernel messages. Immediately after you start the
computer, you will see the messages in the kernel ring buffer scroll past on
the screen at high speed as the computer boots. These messages contain
potentially important information on your system’s hardware and drivers—
most of the information that drivers write to the kernel ring buffer concerns
whether they are loading successfully, and what devices they’re controlling
(such as hard disks handled by EIDE or SCSI controllers).

For instance, suppose your computer has two network cards, but only one
works. When you examine the output of dmesg just after booting (say, by
typing dmesg | less), it should reveal information on the working card, and
possibly on the one that’s not working, as well. If there’s no entry for the
missing card, then chances are Linux hasn’t detected the card because the
driver is missing. If there is an entry for the card, then chances are some
other aspect of network configuration is incorrect. You can search for spe-
cific information by using grep, as in dmesg | grep eth0 to find lines that
refer to eth0. This is most effective if you know that the entries for which
you’re looking contain certain strings.

The output of dmesg immediately after booting is so important that some
distributions send the output of the command to a special log file (such as
/var/log/boot.messages). If your distribution doesn’t do this, you can do it
yourself by putting a line like dmesg > /var/log/boot.messages in your
/etc/rc.d/rc.local, /etc/rc.d/boot.local, or other late startup script. As
the system operates normally, the kernel ring buffer will accumulate addi-
tional messages, which will eventually displace the boot messages, so stor-
ing them at bootup can be important.

http://www.sybex.com

616 Chapter 9 � Troubleshooting

Using System Status Tools to Identify
Problems

Linux includes many configuration and information utilities that can
help you diagnose a problem. Typically, these utilities return information on
the current configuration, or they allow you to change that configuration.
These tools are useful to the extent that you understand how the underlying
system should be configured, but they don’t normally return information
that explicitly states that some feature is misconfigured. Examples of these
tools include the following:

setserial This program displays or sets options for the RS-232 serial
ports (typically /dev/ttyS0 and /dev/ttyS1). If you type setserial
-a /dev/device, the utility displays an extended report, including the
type of hardware, the port’s speed, and the hardware resources used by
the ports.

ifconfig This command, discussed in Chapter 5, is used to obtain
information on or configure a network interface. You can use it to learn
whether the device has an IP address, what interrupt request (IRQ) it uses,
and so on.

route This command, also discussed in Chapter 5, displays or sets
information on the computer’s routing table, which it uses to send infor-
mation to particular IP addresses. This information can be very important
in diagnosing many network problems.

df If you suspect your hard disk is filling up, you can use this command,
which is discussed in Chapter 7, to display the disk space that’s used and
available on all your partitions.

fsck Filesystem corruption can be a very serious problem, and Linux
includes a tool to diagnose and correct it: fsck. This tool examines a par-
tition and, optionally, fixes it. It’s discussed in Chapter 7 and in the
upcoming section, “Filesystem Problems.”

lpq Printing problems can have several causes, and lpq will help you to
eliminate some possibilities. This command, discussed in Chapter 8, dis-
plays all the jobs that are waiting to be printed. If a job you submit dis-
appears after it has entered the queue, then chances are the printer is
losing the job. If the job remains queued, then Linux can’t find the printer
to send the job on its way.

http://www.sybex.com

Evaluating User Complaints 617

top This tool, discussed in Chapter 7, displays information about pro-
cesses running on the computer. It’s particularly helpful in spotting CPU-
hogging processes because top displays processes sorted by the amount of
CPU time they consume; the CPU hogs float to the top of the display.

These and other diagnostic tools are discussed throughout this chapter
and earlier in the book. As a general rule, any tool that returns information
on the system’s status can be a useful diagnostic tool.

The /proc filesystem is another useful source of diagnostic information. This
directory contains files and subdirectories that host information on the com-
puter’s configuration. Writing to certain files can change how the computer
operates, and reading from files (using commands like cat or less) allows
you to examine the system’s configuration. Relevant /proc filesystem files
have been discussed throughout this book.

Evaluating User Complaints

The symptoms of a problem, as experienced by users, can be an impor-
tant source of diagnostic information. If you’re trying to interpret others’
problem reports, the challenge is often in extracting the true symptoms from
inexperienced users’ interpretations of them. Users may be imprecise or omit
information that’s actually critical to understanding a problem, such as the
exact error message reported by a program. It’s often helpful to investigate
the problem yourself, to try to reproduce it and learn more about it.

If you have administrative privileges on a system, you can temporarily take on
a user’s identity by using su. First, log in as root or use su to acquire root priv-
ileges. Then, type su - username, where username is the username of the user
who reports the problem. When you do this, you’ll acquire that user’s identity
without having to provide a password. (Only root has this privilege.) You can
then investigate the problem using the targeted user’s configuration files,
which are sometimes necessary for reproducing the problem.

http://www.sybex.com

618 Chapter 9 � Troubleshooting

As noted earlier, some user problems are caused by lack of understanding.
For instance, if a user who’s used to DOS types DIR at a Linux command
prompt, Linux responds with a command not found error message. You’ll
have to educate your users about the Linux way of doing things, or you will
need to customize your environment to conform to the users’ expectations.
For instance, you could create a script called dir or DIR that calls ls (or ls
-l), so that users get something akin to the output they expect when typing
these commands.

Some common problems users report include the following:

Login problems Users sometimes forget their passwords, or type them
incorrectly. Remind users that their Linux passwords are case-sensitive.
You might want to check if the password has expired, as described in
Chapter 4. If it has, you can reenable it, ideally just for a day or two so
that the user can change the password. If necessary, you can use passwd
to give the user a new password.

File permission problems The Linux file permission system can some-
times be difficult for new users to understand. This isn’t normally much
of a problem if users work primarily in their own directories, but it can
become an issue if users must collaborate on shared files. You’ll have to
educate users on the important Linux ownership and permission features,
as described in Chapter 4, if this is the case.

Removable media problems Linux handles removable media very dif-
ferently than does Windows, and this fact often causes consternation for
new users. Many distributions configure their desktop environments to
make Linux appear more like Windows, but Linux must still mount the
removable media, unmount them when it’s done, and so on. Be sure to
point out any media unmounting tools provided by the desktop environ-
ment, or teach users to use the umount command. (You may also need to
modify /etc/fstab to allow users to mount and unmount removable
media.) The floppy disk is particularly likely to cause problems because
users can eject a floppy on an x86 system without first unmounting it, and
this can result in filesystem corruption. Linux can lock other media so that
they can’t be ejected, which is more likely to produce an immediate com-
plaint or query but less likely to produce filesystem corruption on the
media.

http://www.sybex.com

Evaluating User Complaints 619

Printing problems If you’ve configured printing correctly, as described
in Chapter 8, your users should be able to print, as well. Some users will
experience problems, though, particularly when faced with text-based
programs or commands that don’t list printer destinations, such as the XV
printing dialog box shown in Figure 9.1. You’ll have to educate users
about your system’s printer names and how to list them. Be sure to note
that there should not be a space between -P and the printer name if you
use the BSD printing system.

F I G U R E 9 . 1 Some Linux printing dialog boxes require the user to know the printer’s name,
which can be intimidating.

E-mail problems As with printing, e-mail should work for all users if
you configure it correctly, as described in Chapter 5. This is particularly
true if you use a local mail queue and run an SMTP mail server. If each
user has a remote POP or IMAP account, you may need to instruct all
your users in how to configure their mail clients to read mail.

Program errors Just about any user program may crash, corrupt data,
or otherwise misbehave. Sometimes this will force you to replace the pro-
gram, or advise users to try alternatives. You’ll have to troubleshoot each
of these on a case-by-case basis, though.

Shutdown problems Like most OSs released since the mid-1990s, Linux
should be shut down using an explicit shutdown command. As described
in Chapter 6, “Managing Files and Services,” this command is shutdown,
and it can normally only be run by root. Many distributions, however,
include a shutdown option on their GUI login screens so that ordinary
users can shut down the system. If workstation users should be able to do
this, they must be told to use this option, rather than simply hitting the
power switch on the computer. Shutting down improperly usually results

http://www.sybex.com

620 Chapter 9 � Troubleshooting

in a lengthy startup process, and it can result in serious filesystem corrup-
tion and data loss. If your users say they routinely see such symptoms, it’s
likely that they’re not shutting down their systems correctly, or that
there’s a problem in the shutdown process.

Diagnosing Software Problems

There are several specific classes of software problems that deserve
explicit discussion because they’re more common than others, unusually
serious, or particularly tricky to diagnose and fix. Some of these problems
are very specific, such as filesystem problems and backup and restore diffi-
culties. Others are more general, such as configuration file and server
problems.

Filesystem Problems

Linux stores data on hard disks with the help of one or more filesystems,
which are essentially complex data structures that provide a way for Linux
to remember where on the disk a given file exists. In some sense, a filesystem
is like a table of contents or an index in a book; it relates a filename to a spe-
cific location on the disk, just like the table of contents or index allows you
to find information within a book. Unlike a book, though, most filesystems
are dynamic structures, and in the process of handling data, they sometimes
acquire errors. Linux provides the fsck program to locate, and optionally
correct, these errors. This command is described in more detail in Chapter 7,
so you should consult that chapter if you experience problems with your disk.

You should be alert to the recurrence of problems, should fsck report any.
fsck often reports and corrects errors after a system crash or improper shut-
down, but these errors are much rarer on routine runs of fsck (for instance,
when fsck is forced because a disk has been mounted the specified maximum
number of times). If you begin to see errors on a routine basis, it could be a
symptom of a more serious problem, such as a driver bug, disk controller
problem, or a disk that’s starting to go bad.

http://www.sybex.com

Diagnosing Software Problems 621

A few filesystem problems can be corrected by remounting the filesystem.
This is particularly likely for DOS and Windows FAT filesystems. Because
DOS and Windows 9x/Me don’t support Linux-style ownership and permis-
sions, the FAT filesystem that they use doesn’t support these characteristics.
As a result, Linux fakes these features when mounting FAT filesystems. By
default, Linux gives ownership of all files to the user who issues the mount
command, and it gives only the owner write access to the partition. This can
be a problem if you mount the partition automatically via /etc/fstab
because this results in ownership by root with no other users able to write
to the partition. You can overcome this problem by using the umask=value,
uid=UID, and gid=GID options to mount, as described in Chapter 7. You can
include these parameters in /etc/fstab to use them automatically when
you reboot, and if you need to apply them immediately, you can unmount
the partition and then remount it with these options.

If you try to unmount a filesystem but get a device is busy error, this
means that some process has an open file on the device. It may not be obvi-
ous what process this is, particularly if the computer in question hosts many
users. One tool that can be very helpful in this situation is lsof, which lists
all open files. You can pipe the output of lsof through grep, searching on
the name of the mount point directory. For instance, the following command
locates open files on /mnt/floppy:

$ lsof | grep "/mnt/floppy"

less 27343 rodsmith 8r REG 2,0 2215 174253 /mnt/
�floppy/readme.txt

The first column lists the command (less in this case), the second column
lists the process ID (PID), the third column shows the username, subsequent
columns list additional information, and the final column shows the name of
the file that’s open (/mnt/floppy/readme.txt in this case). Once you’ve
located the processes that are preventing you from unmounting the file-
system, you may be able to shut them down manually or close whatever files
are open in the target directory. In a worst-case scenario, you can use kill
to terminate these processes, but this could cause problems for whoever is
using these programs.

Shells frequently prevent you from unmounting a filesystem. If you’ve used
cd to move into the mounted filesystem, you won’t be able to unmount it.
Rather than exiting from the shell, you can use cd to move into another
directory.

http://www.sybex.com

622 Chapter 9 � Troubleshooting

Configuration File Problems

Many problems in Linux can be traced to entries in configuration files. These
files control many aspects of how a Linux system behaves, so an incorrect or
non-optimal setting can cause problems that are major or minor, as well as
blatant or subtle. There are at least as many potential problems as there are
configuration files—some files control more than one aspect of a Linux sys-
tem’s operation. Chapter 6 covers many of Linux’s configuration files in
broad strokes, and other chapters cover some of them in greater detail. Some
of the files that more commonly cause problems include the following:

/etc/lilo.conf Unlike most configuration files, this one isn’t read at
every system startup; instead, it controls the operation of the lilo utility,
which writes Linux’s boot loader, as described in Chapter 3, “Software
Management.” LILO problems turn up at boot time, as discussed in
“Handling LILO Boot Errors,” later in this chapter.

/etc/inittab This file controls the initial startup of the computer. The
most common problem that’s related to this file is if the system fails to
start X, or starts it when you don’t want it started. Other problems might
include difficulties with text-mode local or remote logins and very serious
system startup failures that aren’t kernel-related. Chapter 6 discusses this
file in detail.

/etc/modules.conf This file controls the automatic loading of kernel
modules. If you can’t use a hardware device without manually loading
appropriate kernel modules, edit this file to work around the problem.
Chapter 6 discusses this file’s format.

/etc/fstab Linux automatically mounts partitions according to spec-
ifications in this file. You can also configure certain filesystems to be
mountable by users by editing this file. Therefore, if a partition isn’t
mounting correctly, editing this file may correct the problem. Chapters 6
and 7 discuss /etc/fstab and its options.

/etc/passwd This file stores user account information. (An auxiliary
file, /etc/shadow, stores passwords on most Linux systems.) You can
correct many user account problems by editing these files, but text-mode
and GUI utilities provide interfaces to these files that are easier to use and
less error-prone. Chapter 4 discusses these issues in more detail.

http://www.sybex.com

Diagnosing Software Problems 623

/etc/hosts There are several different ways to translate between IP
addresses and hostnames, one of which is via entries in this file. Normally,
this file’s contents are largely irrelevant, but in a few cases, the system’s
boot process or even the launching of certain programs may be delayed if
IP addresses and hostnames aren’t properly mapped. The solution is to
create entries in this file for localhost (with an IP address of 127.0.0.1)
and your network hostname (with its associated IP address). Place the IP
address first on the line, followed by the hostname.

/etc/printcap On distributions that use the BSD or LPRng printing
systems (which is most Linux distributions in 2001), the /etc/printcap
file controls printer definitions. This is the first place to look if printing
doesn’t work at all, although you may eventually need to look elsewhere.
Chapter 8 covers printer configuration in more detail.

/etc/X11/XF86Config This file (which sometimes resides in /etc
rather than /etc/X11, and is sometimes called XF86Config-4) controls
XFree86 configuration. If X won’t start or you’re dissatisfied with your
resolution, color depth, or refresh rate, this is the first place to look. (If X
doesn’t start when the computer boots, but it does start when you log in
and type startx, look to /etc/inittab instead.) Chapter 2, “Installing
Linux,” discusses X configuration in more detail.

If X starts but you have problems with your desktop environment, adjusting
XF86Config won’t do any good. Desktop environment and window manager
configuration can be adjusted on a system-wide or user-by-user basis, as dis-
cussed in Chapter 2.

Crontab files The cron utility, discussed in Chapter 7, uses several dif-
ferent configuration files, such as /etc/crontab, files referred to by
/etc/crontab, and files for individual users in /var/spool/cron. If
something strange is happening at a regular time, these are the places to
begin looking because the problem may be caused by an errant cron job.

Many individual programs can be misconfigured as well, usually by con-
figuration files that may be global (typically stored in /etc) or user-specific
(in the user’s home directory). If a program is misbehaving, particularly just
for some users, you should read the program’s documentation to learn where
its configuration files reside. You can then adjust the files as required, or in
the case of personalized files, delete them from the affected users’ directories.
This action should restore the default values.

http://www.sybex.com

624 Chapter 9 � Troubleshooting

Server Software Problems

Network servers can be tricky to debug because they’re non-interactive—
you don’t click an option and see the program produce an error message. In
most cases, you can learn a great deal about a server problem by examining
the system log files, as discussed earlier, in “Using Log Files to Identify
Problems.”

You can use the tail command to examine the last few lines of a log file just
after a problem occurs. For instance, if a server isn’t responding, you can try
connecting to the server from another machine, then you can type tail /var/
log/messages to see if the server has logged any messages concerning the
connection attempt. (You may need to use a different log file for some servers.)

Some common server problems include the following:

Failure to start Servers may fail to start up. This problem may be caused
by an incorrect super server configuration (in /etc/inetd.conf or
/etc/xinetd.d/servername), or by an incorrect SysV startup script
configuration. The usual problem with the latter is a startup script name
for a given runlevel that causes the server to stop rather than start. Both
issues are discussed in more detail in Chapter 6.

Failure to respond Sometimes a server is running but doesn’t respond to
queries. This may happen because a firewall, TCP Wrappers, xinetd con-
figuration, or other access control mechanism is blocking the client
request. It’s also possible that the server itself implements such a block, so
you should check the server’s configuration file. Chapter 5 covers all these
issues.

Slow responses Sometimes a server will respond, but it will do so very
slowly. If you’re receiving such complaints, you should first try to track
down which clients are experiencing slow responses; the problem may be
caused by slow routers or overloaded Internet backbones, for instance. It
could also be that the server’s network connection, CPU, RAM, or hard
disk is inadequate for the task. Finally, some servers are deliberately slow
at certain tasks. For instance, some mail servers pause for several seconds
if you enter an invalid destination address; this is a way of slowing down
spammers who try to test a system to see if they can use it as an open relay.

http://www.sybex.com

Diagnosing Software Problems 625

Unexpected responses If a server doesn’t generate the replies that you
expect, that’s usually an indication that the server’s not been configured
correctly. For instance, you might not be able to perform an anonymous
login to an FTP server, in which case you should examine the FTP server’s
configuration file. If you don’t see the Web pages you expect from a Web
server, the cause could be in the configuration file, or you may have put
the Web pages in the wrong location.

Crashing server A server program may respond but then crash or dis-
connect users. This problem is fairly rare in major servers, but it does still
occur sometimes, particularly in unusual servers. The cause can be just
about anything—a bug, an incorrect configuration, or even a hardware
failure.

Ultimately, troubleshooting a server is much like troubleshooting an ordi-
nary application, except that you’ll find most error messages in the server’s
log file rather than displayed directly on the screen.

Backup and Restore Problems

Backing up a computer, as described in Chapter 7, is an important under-
taking for the safety of your system. Without a backup, you may lose data,
or at least experience costly downtime, should any of several things happen.
These include a system compromise, hardware theft, hardware failure, and
even human error. Unfortunately, backups are not themselves immune to
problems. You should be prepared for these, or at least be familiar with
some problem causes and solutions.

The single worst time to discover a problem with your backup procedure is
when you need the backup in a time-critical emergency situation. Therefore,
you should test your backups and your emergency recovery procedures as
best as you can before an emergency occurs.

Because most backup systems for Linux use tapes, this section focuses
upon tape backup procedures. Some of these problems and solutions apply
to other media, such as CD-R or CD-RW devices, but others don’t. One of
the failings of magnetic media in general is that they can degrade with time,
particularly if they’re heavily used. For this reason, you should probably
replace tapes after they’ve been used about 100 times, or at the first sign they

http://www.sybex.com

626 Chapter 9 � Troubleshooting

may be becoming unreliable, such as unexplained failures during the verifi-
cation phase of a backup procedure.

Some backup and restore errors occur when backing up a system—for
instance, you might be unable to access the tape drive at all. Other problems
occur at restoration time, such as errors when recovering data. The most
common problems in both categories include the following:

Driver problems Backup hardware, like all other hardware, requires
driver support. Most EIDE/ATAPI and SCSI tape devices require support
for the underlying controller or host adapter and support for tape devices.
These drivers, if compiled as modules, must be loaded when you perform
a backup. If the drivers aren’t present, you’ll be unable to access the tape
device.

Tape drive access errors As described in Chapter 7, Linux uses device
files like /dev/ht0 and /dev/nst0 to provide access to a tape drive. You
should be able to access these devices for both reading and writing as the
user who performs the backup. This user is normally root, so access
shouldn’t be a problem. If you get a no such device error when you try
to access the tape device, you’ve probably entered the wrong device file-
name, or your drivers may not be loaded.

File access errors In order to back up a computer, the user who runs the
backup must have full read access to all the files. For this reason, you nor-
mally run a backup as root. (A non-root user can back up most system
files, but perhaps not other users’ files, and certainly not highly protected
files like /etc/shadow.) If you only want to back up your own user files,
you can use an ordinary account, but that account must have full read/write
access to the tape device file. Restoring files requires full read/write access
to all affected directories—again, root is the usual choice for performing
this task.

Media errors In many ways, the worst nightmare for backups is if the
tape develops errors. The problems might even occur after verification has
succeeded, particularly if the tape has been in storage for a while. To
reduce the risk of this problem, you should keep tapes stored at room tem-
perature (do not leave them in a hot car, for instance). Keep at least two
backups of the same computer. As described in Chapter 7, don’t use gzip
or bzip2 compression in conjunction with tar, because in the event of an
error, these will render all of the backup after the error unusable. Most

http://www.sybex.com

Diagnosing Network Problems 627

tape drives include compression features that don’t suffer from this prob-
lem; with them or with uncompressed backups, a single error is likely to
damage just a few files (possibly as few as one).

Files not found One common problem when using tar or similar utili-
ties from the command line is an inability to restore specific files. Unless
overridden with the -P (--absolute-paths) parameter, tar stores files
without the leading /. Therefore, you should not include the leading /
when restoring specific files or directories. (This also means you should
change to the root directory when doing restores.) If you don’t know the
exact name of a file, you can recover it by using tar’s -t (--list) com-
mand, but this can take some time. Some more sophisticated backup
packages include an index of files on a tape, along with point-and-click
means of selecting these files if you need to restore just some, which can
help reduce the chance that you’ll mistype a filename and therefore seek
through an entire backup without finding the file.

To head off restore-time problems, it’s important that you verify your
backups. This can usually be done using a backup-time verify option that
automatically performs a check immediately after backing up. (This may
return errors for some files that have legitimately changed between the
backup and verify passes.) Many tape drives include a separate read head
that verifies data immediately after it’s written. This feature can save time,
but it’s still wise to at least occasionally run a verify pass even with such
drives, in case data are corrupt when they reach the drive. (I once encoun-
tered precisely this problem—a three-way interaction of a tape drive, a Zip
drive, and the SCSI host adapter caused data corruption on backups.)

After restoring data, you may want to verify the information against any
summary information you have. For instance, if you restore an entire com-
puter, typing rpm -Va will verify restored RPM packages against the RPM
database. (Some packages will have legitimate deviations, such as changed
configuration files.) If you’ve installed Tripwire, it can be used for the same
purpose, although Tripwire will probably not check as many files.

Diagnosing Network Problems

Linux systems often operate on networks, and networking problems
involve issues that don’t arise with local problems. Network cabling,

http://www.sybex.com

628 Chapter 9 � Troubleshooting

interactions with other systems, router problems, and more can all crop up.
Unfortunately, it’s not always obvious when a network problem is related to
your local configuration and when it’s something that affects more systems.
Even if a problem only occurs on your Linux system, it’s possible that the
cause lies elsewhere. For instance, a cable might be bad, or a server might
contain a bug that manifests itself only with Linux clients. Your problem-
solving task begins when you review your configuration; after you have done
this, you can use more advanced diagnostic tools to localize the problem.

Reviewing Your Network Configuration

Many network problems are the result of an incorrect network configura-
tion. Therefore, it’s best to review these settings before proceeding with more
involved troubleshooting. A few commands and procedures are particularly
helpful in verifying that your network settings are correct. If you configured
your IP address using static numbers provided to you by a network admin-
istrator, you should also double-check that those numbers are correct; if you
wrote them down incorrectly, or if the administrator gave you the wrong
numbers, there’s a good chance that your network configuration won’t work.

If you use DHCP to configure your network settings, you should do what-
ever you can to verify that DHCP is functioning correctly. Try using ps to
verify the existence of a dhcpcd, dhclient, or pump process, depending
upon which your distribution uses. For instance, you might type the follow-
ing command:

$ ps ax | grep dhc

 340 ? S 0:00 /sbin/dhcpcd eth0

This output confirms that dhcpcd is running and is bound to eth0. Some
DHCP clients provide debugging information in log files or some way of
querying the system for information on leases. For instance, pump has a -s
option that provides information on the lease—pump -s returns the IP
address, netmask, DHCP server address, and so on. You may not be able to
confirm that these values are valid, but this command at least lets you know
that they’ve been assigned to the computer and that because of this the
DHCP client worked to a minimal degree—or that it did not.

Whether you use a static IP address or a dynamic system like DHCP or
PPP, you can verify basic interface functioning with ifconfig, as described
in Chapter 5. Typing ifconfig eth0, for instance, returns information on

http://www.sybex.com

Diagnosing Network Problems 629

the eth0 (first Ethernet) interface. Check that the IP address and network
mask are what they should be, or at least that they exist if they’re assigned
via DHCP or PPP.

If your computer can communicate with local systems but not computers
on other networks, it’s possible that you’ve specified the wrong gateway (aka
router) address. You can check this detail with the route command, thus:

$ route -n

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.19.1.0 0.0.0.0 255.255.255.0 U 0 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo

0.0.0.0 10.19.1.1 0.0.0.0 UG 0 0 0 eth0

This final line, with a Destination of 0.0.0.0 (called default if you omit
the -n option to route), shows the gateway system—10.19.1.1 in this exam-
ple. Verify this address against what it should be. You may also want to
check that there aren’t any extraneous routes. A system with one network
card is likely to list three routes—one for the local network (the 10.19.1.0
route in the preceding example), one for the localhost network (127.0.0.0),
and one for the default route. A system with multiple network cards will
have more routes, and one with no Internet connectivity (just a local network
connection) might have just two, without a default route. On rare occasion,
a system with just one network card may have more than three routes, but
such configurations are rare.

If you can access computers via IP address but not by name, chances are
your name server configuration is at fault. Check /etc/resolv.conf. It
should contain one or more lines like the following:

nameserver 10.19.1.171

Each of these lines should contain the name of one DNS server computer,
as provided by your network administrator or dynamic IP address system
(DHCP or PPP). Verify that these addresses are correct, and if they’re not,
edit the file appropriately. If there are any stray addresses listed, remove
them. /etc/resolv.conf may hold up to three nameserver lines.

http://www.sybex.com

630 Chapter 9 � Troubleshooting

DNS servers, like other servers, occasionally develop problems. DNS prob-
lems might therefore be a result of network problems outside of your control.
If you believe this is the case, contact the administrator responsible for the
DNS servers to report the problem.

Localizing the Source of the Problem

In addition to ifconfig, route, and diagnostic features of some DHCP cli-
ents, Linux provides several useful network diagnostic tools. The most basic
of these is ping, which is described in the “Network Diagnostic Tools” sec-
tion of Chapter 5. This tool tests basic connectivity between your computer
and another that you specify. If you can ping another computer, chances are
you can use other networking protocols to reach it, as well.

Be sure to test basic connectivity using both IP addresses and hostnames. If
the former works but not the latter, your system may have a DNS configura-
tion problem, as described earlier, or your network’s DNS servers may not be
working correctly.

When you are debugging basic connectivity problems, try pinging several
different systems:

� Pinging the localhost address (127.0.0.1) verifies that the most basic
Linux networking tools are operating. Because this address corre-
sponds to Linux itself and isn’t associated with any specific network
hardware, it should always work.

� You should be able to ping your own IP address on your network
interface hardware. (Use ifconfig to obtain this address, if you don’t
know what it should be.) If this test fails, it most probably indicates a
hardware failure, driver problem, or failure to configure the IP
address.

� Pinging other computers on your local network tests some of the low-
level network hardware (such as the wires leading to the network con-
nector); your network cabling; and any hubs, switches, and similar
devices on your local network.

http://www.sybex.com

Diagnosing Network Problems 631

� You should be able to ping systems on the Internet at large, if your net-
work is connected to the Internet. This tests the proper functioning of
your router and others on the Internet.

Some computers are configured to ignore pings. As a result, it’s possible that
you’ll be able to ping some computers but not others.

If you can ping some hosts but not others, you can use the traceroute
command to localize the problem. This command sends three packets to
each router between you and the destination system, and it records the time
it takes to receive a response. This is much like what ping does, except that
traceroute performs this test for each system between you and the desti-
nation. The result is that you should be able to spot the source of a break-
down, either because it doesn’t return all three packets or because it shows
a huge increase in the round-trip time. For instance, here’s the result of run-
ning traceroute:

$ traceroute -n 128.197.153.100

traceroute to 128.197.153.100 (128.197.153.100), 30 hops
�max, 40 byte packets

 1 66.92.68.1 21.187 ms 16.525 ms 16.385 ms

 2 63.251.141.219 14.609 ms 16.609 ms 16.662 ms

 3 63.251.128.6 16.551 ms 16.629 ms 16.661 ms

 4 63.145.1.93 16.667 ms 15.842 ms 17.348 ms

 5 63.145.1.78 16.591 ms 15.839 ms 15.892 ms

 6 128.197.254.62 16.638 ms 17.333 ms 15.866 ms

 7 128.197.153.100 16.617 ms 16.699 ms 16.706 ms

Omitting the -n parameter causes traceroute to display each interme-
diate router by name rather than by IP address. This example shows no prob-
lems. If the times (the values expressed in milliseconds [ms]) increase
suddenly between a pair of routers, or if one or more doesn’t respond (which
traceroute indicates by showing an asterisk rather than a response time),
then that router may be having problems. It may be overloaded, or it may be
connected in some inefficient way to the preceding router. The same is true
for the final destination system.

http://www.sybex.com

632 Chapter 9 � Troubleshooting

You’re not likely to obtain useful information from traceroute on any connec-
tion that doesn’t involve routers. For these local connections, ping will tell you
whether basic connectivity exists; traceroute doesn’t add any new information.

Another useful diagnostic tool is netstat, which can display many dif-
ferent types of network configuration information. When fed the appropri-
ate information, netstat can be used in place of ifconfig or route, or it
can be used to display information on the programs that are bound to spe-
cific ports. Chapter 5 discusses netstat in more detail.

Handling LILO Boot Errors

One of the first pieces of code a Linux system runs is the Linux Loader
(LILO). LILO is the boot loader that takes over from the BIOS, loads the
Linux kernel into memory, and turns the computer over to the kernel. Unfor-
tunately, this task is much more difficult than it sounds at first. The x86
BIOS was designed in days when 40MB hard disks were huge and 32-bit pro-
grams were fantasies (at least, on desktop computers). As the technologies
that go into computers have evolved, so has the BIOS. The result works
remarkably well, given its peculiar mix of requirements; but the combination
of the BIOS, the extremely variable x86 hardware market, and LILO’s own
needs means that LILO sometimes doesn’t behave properly. These problems
can be extremely frustrating because they mean that the system won’t boot.
LILO’s error codes are also extremely cryptic. Understanding these problems
and knowing how to work around them can help you turn a cryptic error
message into a booting system. Before proceeding with this section, you
should review “Configuring Boot Loaders” in Chapter 3.

When installed on non-x86 architectures, Linux doesn’t use LILO. These sys-
tems use other boot loaders, some of which are similar to LILO. (SuSE on
PowerPC calls its boot loader LILO, but it’s really derived from a PowerPC boot
loader called ybin.) Details of non-x86 boot loaders differ from those of LILO,
so you should consult documentation for your platform’s boot loader.

http://www.sybex.com

Handling LILO Boot Errors 633

LILO Boot Error Codes

When LILO can’t boot a system, it displays an error code. Unfortunately,
these codes are notoriously cryptic. Table 9.1 summarizes the LILO error
codes, so you can parse them and stand some chance of correcting the under-
lying problem.

T A B L E 9 . 1 LILO Error Codes, Their Meanings, and Possible Resolutions

Error Code Meaning Possible Resolution

(none) LILO hasn’t loaded. LILO may not have been installed, or it may have
been installed in the wrong location. Check the
boot line of /etc/lilo.conf, adjust it as neces-
sary, and type lilo to reinstall LILO. If LILO’s
installed on a partition, you may have to make it
the default boot partition using DOS’s FDISK or
Linux’s fdisk.

L error-code The main part of LILO has
booted, but it can’t locate the
second-stage boot loader,
/boot/boot.b.

The error-code is a 2-digit code delivered by the
BIOS. These codes are detailed in the LILO docu-
mentation. Most indicate a hardware error, such as
a bad hard disk. Some indicate a disk geometry
problem, in which the BIOS and LILO don’t agree
on how to treat disk addresses. Such problems can
often be overcome by changing disk geometry
options in the BIOS or by adding or removing
such options in /etc/lilo.conf.

LI The main part of LILO has
booted and loaded the
second-stage boot loader,
/boot/boot.b, but this
second-stage loader
won’t run.

As with the L error-code condition, these prob-
lems frequently indicate disk geometry mis-
matches, which may require you to adjust
geometry settings in the BIOS or /etc/lilo.conf.

LI1010... LILO has booted, but it can’t
locate your kernel image.

This problem is usually caused by installing a new
kernel over an old one and failing to rerun lilo.

http://www.sybex.com

634 Chapter 9 � Troubleshooting

Several of these problems relate to LILO’s inability to read files that have
changed or been moved. One critical thing to remember about LILO is that
it does not automatically recover data from changed configuration files; you
must type lilo after making any changes in order for those changes to take
effect. In this context, “changes” means both edits to configuration files and
moving or replacing files, such as kernel files. If you fail to do this and
encounter problems as a result, boot Linux in some other way, as described
shortly, and then type lilo to correct matters.

Error Code Meaning Possible Resolution

LIL The second-stage loader,
 /boot/boot.b, has loaded
and run, but it can’t read the
information it needs to work.

This problem is usually caused by failing hardware
or a disk geometry mismatch. If it is the latter, you
may be able to fix it by adjusting BIOS disk geom-
etry options or by setting or removing such
options in /etc/lilo.conf.

LIL? The second-stage boot
loader, /boot/boot.b, has
been loaded at an incorrect
address.

This problem can be caused by moving /boot/
boot.b without rerunning lilo or by a disk geom-
etry mismatch.

LIL- The disk descriptor table,
/boot/map, is corrupt.

This problem can be caused by moving /boot/map
without rerunning lilo or by a disk geometry mis-
match.

LILO The program has loaded and
run correctly.

If Linux fails to boot at this point, the problem is
most likely with the kernel, its drivers, or system
configuration files.

T A B L E 9 . 1 LILO Error Codes, Their Meanings, and Possible Resolutions (continued)

http://www.sybex.com

Non-LILO Boot Techniques 635

Non-LILO Boot Techniques

If LILO fails, you may need some other way to boot the computer. One
option may be to use a separate emergency disk set, as described in “Fixing
LILO from an Emergency Boot System” and “Using an Emergency Disk
Set.” In many cases, though, a simpler solution is to use an alternative
method of booting your current system. Options for doing this include the
following:

LOADLIN This is a DOS program that boots Linux. LOADLIN comes with
most Linux distributions, usually in a directory on the installation CD-
ROM called dosutils. To use LOADLIN, you need a DOS boot floppy or

Radical Surgery to Correct Disk Geometry Problems

There are several different ways to address data on a disk. Two popular
methods are logical block addressing (LBA) mode and cylinder/head/sector
(CHS) mode. The former uses a single number to specify a disk address, and
the latter uses a triplet of numbers. The x86 BIOS and EIDE drives have tra-
ditionally used CHS mode, although some BIOS extensions and SCSI disks
use LBA mode. Translating between the two and between different types of
CHS addressing causes many problems on x86 systems.

When a disk is moved from one computer to another, it’s not uncommon to
find that the old computer assigned one CHS geometry but the new com-
puter wants to use a different geometry. The result of this mismatch can be
an inability to boot with LILO, and sometimes even data loss. In such cases,
the best solutions often involve backing up the data, wiping the disk’s par-
tition table and boot sector, and starting from scratch. To do this, you can
use dd to fill the disk’s boot sector with zeroes:

dd if=/dev/zero of=/dev/hda bs=512 count=1

You should substitute the correct device identifier for /dev/hda, of course.
This procedure will wipe out all partitions on the disk! If you don’t need to
keep data when you are moving a disk from one computer to another, it’s
not a bad idea to perform this procedure as a matter of course.

http://www.sybex.com

636 Chapter 9 � Troubleshooting

partition, a copy of LOADLIN.EXE, and a copy of your Linux kernel. Boot
DOS and type LOADLIN VMLINUZ root=/dev/rootdevice ro, where
VMLINUZ is the name of the kernel and /dev/rootdevice is the name of
your root partition, such as /dev/hda3 or /dev/sda7.

Raw kernel on a floppy If written directly to a floppy, a raw Linux ker-
nel is capable of booting a computer. Copy the kernel to the floppy with
the command dd if=vmlinuz of=/dev/fd0, where vmlinuz is the ker-
nel filename. To boot, insert the floppy disk in a system configured to
boot from the floppy and turn on the power. For this to work, though, the
kernel needs to be configured with information on the location of your
root partition. This should happen automatically if you build your own
kernel, but if not, you need to issue the command rdev /dev/fd0 /dev/
rootdevice, where /dev/rootdevice is your root device partition.
Disks that hold a raw kernel don’t have filesystems, so they look like
they’re unformatted in DOS or Windows, and can’t be mounted in Linux.

LILO on a floppy You can install LILO to a floppy. This will result in a
quicker boot than using LOADLIN from a floppy or a raw kernel on a
floppy since the kernel will still reside on the computer. This approach
won’t get around problems caused by moving kernels or other files in
/boot, however. To install LILO on a floppy, edit /etc/lilo.conf so
that the boot line reads boot=/dev/fd0; then type lilo. (You’ll need to
edit this back if you want to subsequently install LILO on a hard disk.)

As a general rule, LOADLIN is the most flexible of these techniques since
you can create or modify a boot disk using DOS—say, by using a default ker-
nel from a Linux installation CD-ROM. A raw kernel floppy is an easy way
to boot because, once configured, you don’t need to remember the boot par-
tition; but by the same token, if you change your system’s configuration and
forget to update the emergency disk, you can’t boot the changed configura-
tion using that disk. Using LILO on a floppy is the least useful in getting
around a malfunctioning LILO on disk, but it can be useful in some situa-
tions. Some people prefer this approach to a regular disk-based LILO, in
fact, particularly for dual-boot computers; these people configure the hard
disk to boot directly to the non-Linux OS, and then they insert the LILO
boot floppy when booting Linux.

http://www.sybex.com

Using an Emergency Disk Set 637

Fixing LILO from an Emergency Boot System

If you have an emergency disk set, as described shortly, you may need
to recover a LILO system on hard disk using the emergency set. One possible
approach is to create a LOADLIN boot procedure using the hard disk’s kernel,
and then boot using it. A more direct approach, however, is to use the emer-
gency system’s copy of LILO to do the job. To do this, you must configure
/etc/lilo.conf in some specific ways:

� You must mount the regular disk root (/) partition somewhere in the
emergency system—say, at /mnt/std. If your /boot directory resides
on its own partition, you should mount it instead of or in addition to
the root partition.

� You must adjust all references to /boot or other files so that they
point to the regular partition. For instance, change /boot/vmlinuz to
/mnt/std/boot/vmlinuz.

� Configure the kernel images and other boot options as you would nor-
mally. For instance, the boot and root options should point to your
regular hard disk or partitions on it.

With any luck, when you type lilo, the boot loader will install itself nor-
mally. This isn’t guaranteed, though. If your emergency system uses a differ-
ent version of LILO than you have installed on your regular system, the
version mismatch may cause LILO installation to fail. In such cases, it’s usu-
ally easiest to boot using LOADLIN or the like and reinstall lilo using the reg-
ular system tools.

Using an Emergency Disk Set

It’s sometimes necessary to perform recovery operations on a computer
that won’t boot for reasons other than a LILO problem. For instance, the
/etc/fstab file that maps partitions to filesystems might be corrupt, or
changes to a startup script might cause the system to lock up or shut down
before the computer has finished booting. You’ll also need to do this if your
hard disk fails and you need to replace it and recover your system from a
backup. In these cases, you need to be able to boot a Linux system without
using the main partition. This is the role of an emergency disk. Such disks
come in many forms, from single-floppy distributions to complete Linux

http://www.sybex.com

638 Chapter 9 � Troubleshooting

installations stored on high-capacity removable disks or CD-ROMs. Know-
ing how to locate or create such a disk is a vital troubleshooting skill, and
knowing what tools are on such disks is important when the time comes to
use one.

Locating a Ready-Made Emergency Disk

There are several sources of ready-made Linux emergency disks. These can
often be downloaded from the Internet, and they require little or no config-
uration to use. Examples include the following:

Your distribution’s installation media Most distributions include some
sort of emergency disk system. These are sometimes accessed as an option
when you boot the installer. For instance, in Red Hat Linux, you type
linux rescue at the installer’s lilo: prompt. Some distributions include
separate boot images for this purpose; consult your documentation for
details.

Tom’s Root/Boot Disk This distribution’s official name, tomsrtbt, is
short for “Tom’s floppy which has a root filesystem and is also bootable,”
but an intermediate-length name for it is “Tom’s Root/Boot Disk.” It is a
complete, if small, Linux system that fits on a single 3.5-inch floppy disk.
It comes in packages for both Linux and DOS, so you can create the sys-
tem from DOS even if that’s all you have available in an emergency. Read
more about it at http://www.toms.net/rb.

�Linux This is another single-floppy distribution that’s similar in con-
cept to Tom’s Root/Boot Disk . You can learn more at its Web site,
http://mulinux.nevalabs.org.

ZipSlack Slackware (http://www.slackware.com) produces a version
of its distribution that installs in slightly under 100MB, and can boot
from a FAT partition. This distribution can fit on a small DOS partition
or a removable disk like a Zip or LS-120 disk. It’s more complete than a
single-floppy distribution, and it can be more easily customized with com-
mercial backup tools, custom kernel drivers, and so on.

Demo Linux Demo Linux, http://www.demolinux.org, is a complete
Linux distribution on CD-ROM. To use it, you’ll need to create a CD-R
from a 650MB file (instructions for doing this are on the Demo Linux
Web site), so you should have a fast Internet connection or a lot of
patience. Demo Linux is unusually complete; you can even run X using it
on most video hardware.

http://www.sybex.com

Using an Emergency Disk Set 639

SuSE Evaluation SuSE (http://www.suse.com) makes an evaluation
version of its OS available. The SuSE evaluation CD-ROM is similar to
Demo Linux in many ways, such as its size and support for GUI operation.

This is only a sampling of tiny Linux distributions; you can find more at
http://www.linux.org/dist/english.html; the last half of this Web
page lists small and specialty distributions. The Tom’s Root/Boot Disk page
also provides links to some other micro-distributions.

Creating a Custom Emergency Disk

Chances are one of the standard emergency disks will suit your purposes. If
not, you can create a custom disk. This task varies in difficulty depending
upon how you approach it. The simplest method is generally to modify an
existing emergency disk to suit your purposes. ZipSlack can be particularly
good for this because it’s very much like a normal Linux distribution (albeit
one missing many creature comforts, like X). You can recompile its kernel
(or compile a kernel for it on a regular distribution), add tools you need, and
so on. On a 100MB Zip disk, ZipSlack has a small amount of space for addi-
tions, but you can strip away some programs if you don’t need them. If you
have a larger disk from which to run it, such as a 250MB Zip disk, you have
more freedom to expand the installation.

If you modify a tiny distribution like Tom’s Root/Boot Disk, you’ll need
to be very careful in how you proceed. These distributions often use program
files that have been very carefully optimized for space, so replacing them or
adding more programs can exceed the space available on the disk. CD-based
emergency systems aren’t easily modified because of their read-only nature;
but if you mount such a system in a normal distribution, you can copy its
files to your own hard disk, customize them, and burn a new CD-R based on
your changes.

Although creating a custom emergency disk entails additional effort,
sometimes it’s necessary. This is most likely to be the case when your system
has unusual hardware that requires special drivers, or uses filesystems, net-
working features, or other configurations that aren’t supported in the com-
mon emergency disks.

Emergency Disk Recovery Tools

No matter what type of recovery disk you use, it should have certain tools.
For the most part, these are standard Linux programs; but in some cases you

http://www.sybex.com

640 Chapter 9 � Troubleshooting

may need a more exotic tool. Examples of programs you should have on any
emergency recovery disk include the following:

Drivers You’ll need drivers for any necessary hardware and filesystems
you intend to support. These can be a challenge for a single-floppy distri-
bution because they consume precious disk space and different comput-
ers’ needs aren’t identical. This challenge is particularly acute if you use an
unusual SCSI adapter and SCSI hard disks or some other unusual but vital
hardware.

A text editor Most emergency systems include at least Vi (discussed in
Chapter 7). Vi’s small size makes it a good choice for this role. Larger sys-
tems often include other editors, as well.

Disk utilities Your emergency system should include utilities that can be
used to prepare a disk to support a Linux system, such as fdisk and mkfs.
A copy of fsck can repair damaged filesystems (but not failing hardware).
If you use unusual filesystems, be sure you have the necessary support util-
ities for them.

Backup software Most emergency systems include tar at a minimum,
and often restore (the restore-time companion to dump), cpio, and per-
haps others. If you use commercial backup software, you’ll need to add it
to your emergency system. (If the software doesn’t fit on your emergency
system’s main disk, you may be able to store it on a separate floppy and
mount that floppy independently.)

Network software If you intend to access the network (say, to restore
data via a network backup system), you’ll need network hardware drivers
and one or more network client or server packages. These can quickly
consume the space available on a floppy rescue disk, but some are smaller
than others. Mounting an NFS export, for instance, requires only the nor-
mal mount command and appropriate kernel NFS support.

Some recovery disk methods require unusual features to access the recov-
ery disk itself. For instance, if you’re using a parallel-port Zip drive along
with ZipSlack, you must boot from a kernel stored on a boot floppy. That
kernel must include support for parallel-port Zip drives. As of the 2.4.3 ker-
nel, this works for parallel-port Zip drives but not for USB Zip drives. This
may be fixed in the future, of course.

http://www.sybex.com

Stopping, Starting, or Restarting Processes 641

Stopping, Starting, or Restarting Processes

Sometimes programs misbehave themselves. In such cases, you may
need to kill the process or restart it. Programs also sometimes crash, in which
case you may need to start the program up again. Some of these issues have
been covered elsewhere, such as in Chapter 7, but there are some special
troubleshooting considerations when managing processes.

When to Stop, Start, or Restart a Process

As discussed in Chapter 7, one common reason for stopping a process is if
that process has hung—that is, if it’s become unresponsive to its normal
forms of input. Hung processes do nobody any good, and they can do harm
by chewing up CPU time unnecessarily. You should try to be as sure as pos-
sible that a process has hung before killing it, though. Some programs
become unresponsive for brief periods as they process data, for instance.
You’ll have to be familiar with the normal patterns of your programs to
make the determination of whether or not a process is truly hung.

You might also want to kill a process if it’s gone wildly out of control—
for instance, if a program is generating huge output files that you don’t want.
Such processes can threaten others, by consuming limited resources like disk
space, CPU time, and memory.

You can kill most processes with the kill command, as discussed in
Chapter 7. For some services, it’s best to kill them by using their SysV startup
scripts, as described in Chapter 6. The reason is that some programs use lock
files, which are files that indicate the program is using some resource that
should not be shared. If you kill such a program with kill, the lock file may
be left behind, which will cause the program to fail the next time you try to
start it. You’ll often see an error message (possibly in the system’s log files)
concerning the presence of a lock file. If you see such a message, consult the
program’s documentation to learn where the lock file is stored. You can usu-
ally delete such files manually to work around the problem.

Restarting a program involves stopping it and then starting it again. You
might do this to force the program to reexamine its configuration files—but
many servers include other means of doing this. For instance, many servers
respond to the SIGHUP signal by rereading their configuration files, so you

http://www.sybex.com

642 Chapter 9 � Troubleshooting

can pass this signal with kill, as described in Chapter 7, to enact changes to
the server’s configuration without interrupting its service even briefly. Some
servers’ SysV startup files include a restart option that automatically stops
a server and starts it up again. Consult a program’s documentation to learn
what options it supports, or examine the SysV startup script to learn its
capabilities.

Working Around Recurring Problems

If you find yourself regularly stopping or restarting processes because they’ve
hung or crashed, the program is most likely buggy. Check with the pro-
gram’s maintainer to see if there is an updated version of the program.
Another possibility is a hardware problem. Subtle problems with CPUs,
motherboards, and RAM, as well as not-so-subtle problems with some other
components, sometimes manifest themselves in the form of specific pro-
grams that crash regularly. These crashes are sometimes accompanied by
kernel oopses. Sometimes these or other hardware errors can cause the com-
puter to crash entirely.

If you can’t replace a buggy program with an updated version, you may
need to work around it. One possibility is to replace it with another program
that does a similar job. If the program is truly unique, say because it performs
some obscure task, you might try fixing it yourself. Describing how to do this
is well beyond the scope of this book, however; consult a text on Linux pro-
gramming for more information. Short of replacing the program or fixing its
bug, you may be able to work around the problem by changing how you use
the software. If particular command sequences cause it to fail, don’t use
them. If a specific data file format doesn’t work, try using another. If a pro-
cess that should be running at all times crashes regularly and you simply
can’t seem to get it working again, try creating a cron job (Chapter 7) that
restarts the process if it has crashed. You can run this script as often as is nec-
essary to get acceptable performance. If the program is a server, you might
launch it from inetd or xinetd rather than using a SysV startup script.

http://www.sybex.com

Package Dependencies and Conflicts 643

Package Dependencies and Conflicts

Chapter 3 discusses package installation. Although this process often
proceeds smoothly, there are times when it doesn’t. The usual sources of
problems relate to unsatisfied dependencies or conflicts between packages.
The RPM and Debian package management systems are intended to help
you locate and resolve such problems, but on occasion (particularly when
mixing packages from different vendors), they can actually cause problems.
In either event, it pays to recognize these errors and know how to resolve them.

Working Around a Buggy Router

Networking hardware relies upon the Address Resolution Protocol (ARP) to
translate between TCP/IP addresses and networking hardware’s Media
Access Control (MAC) addresses. To do this, all the computers on a local
network segment maintain a cache of ARP solutions. If a device needs to
contact a computer whose name isn’t in the ARP cache, the device can send
a query to the network to locate the correct MAC address and create such an
entry. Unfortunately, this process occasionally goes wrong, particularly
when certain types of hardware sit between the two computers that must
communicate. Specifically, one computer (let’s assume it’s a router) may
lose its ARP entry for another computer (let’s say it’s your Linux box) and be
unable to generate a new ARP entry when it needs to send data to the Linux
box. The result is that incoming network traffic may not reach a Linux com-
puter unless the Linux system has sent data recently.

When I encountered this problem on a network on which I administered just
one computer, the solution was to create a cron job that used ping to send
a single packet to the router every ten minutes. This solution, although in
some sense unaesthetic, was quite effective, and illustrates the utility of
cron jobs in working around certain types of problems.

http://www.sybex.com

644 Chapter 9 � Troubleshooting

Although dependency and conflict problems are often discussed in terms of
RPM or Debian package requirements, they also occur with tarballs. These
more primitive packages lack the means to automatically detect these prob-
lems, though.

Real and Imagined Package Dependency Problems

Package dependencies and conflicts can arise for a variety of reasons, includ-
ing the following:

Missing libraries or support programs One of the most common depen-
dency problems is caused by a missing support package. For instance, all
K Desktop Environment (KDE) programs rely upon Qt, a widget set upon
which these programs are built. If Qt isn’t installed, you won’t be able to
install any KDE packages using RPMs or Debian packages. Libraries—
support code that can be used by many different programs as if it were
part of the program itself—are particularly common sources of problems
in this respect.

Incompatible libraries or support programs Even if a library or support
program is installed on your system, it may be the wrong version. For
instance, if a program requires Qt 2.2, the presence of Qt 1.4 won’t do
much good. Fortunately, Linux library naming conventions allow you to
install multiple versions of a library, in case you have programs with com-
peting requirements.

Duplicate files or features Conflicts arise when one package includes
files that are already installed and that belong to another package. Occa-
sionally broad features can conflict, as well, as in two Web server pack-
ages. Feature conflicts are usually accompanied by name conflicts.
Conflicts are most common when mixing packages intended for different
distributions because distributions may split files up across packages in
different ways.

Mismatched names RPM and Debian package management systems
give names to their packages. These names don’t always match across dis-
tributions. For this reason, if one package checks for another package by
name, the first package may not install on another distribution, even if the

http://www.sybex.com

Package Dependencies and Conflicts 645

appropriate package is installed, because that target package has a differ-
ent name. This problem was a common one when Red Hat packages were
installed on some non-Red Hat distributions in 1999 and 2000 because
Red Hat referred to the critical glibc library in a way that some others
didn’t.

Some of these problems are very real and serious. Missing libraries, for
instance, must be installed. (Sometimes, though, a seemingly missing library
isn’t quite as missing as it seems, as discussed shortly, in “Forcing the Instal-
lation.”) Others, like mismatched package names, are artifacts of the pack-
aging system. Unfortunately, it’s not always easy to tell into which category
a conflict fits. When using a package management system, you may be able
to use the error message returned by the package system, along with your
own experience with and knowledge of specific packages, to make a judg-
ment. For instance, if RPM reports that you’re missing a slew of libraries
with which you’re unfamiliar, you’ll probably have to track down at least
one package—unless you know you’ve installed the libraries in some other
way, in which case you may want to force the installation.

When installing tarballs, you won’t get any error messages during instal-
lation; you’ll only see problems when you try to run the program. These mes-
sages may relay an inability to locate a library or run a file, or they may
simply cause the program to crash or otherwise misbehave. Conflicts can be
particularly insidious with tarballs because you won’t be warned about con-
flicts, so installing a package can break an existing one, and you might not
notice the damage for some time. You can use the --keep-old-files qual-
ifier to keep tar from overwriting existing files, though.

Workarounds to Package Dependency Problems

When you encounter a package dependency or conflict, what can you do
about it? There are several approaches to these problems. Some of these
approaches work well in some situations but not others, so you should
review the possibilities carefully. The options include forcing the installa-
tion, modifying your system to meet the dependency, rebuilding the problem
package from source code, and finding another version of the problem package.

Forcing the Installation

One approach is to ignore the issue. Although this sounds risky, in some
cases involving failed RPM or Debian dependencies, it’s appropriate. For

http://www.sybex.com

646 Chapter 9 � Troubleshooting

instance, if the dependency is on a package that you installed by compiling
the source code yourself, you can safely ignore the dependency. When using
rpm, you can tell the program to ignore failed dependencies by using the
--nodeps parameter, thus:

rpm -i apackage.rpm --nodeps

You can force installation over some other errors, such as conflicts with
existing packages, by using the --force parameter:

rpm -i apackage.rpm --force

Do not use --nodeps or --force as a matter of course. Ignoring the depen-
dency checks can lead you into trouble, so you should use these options only
when you need to do so. In the case of conflicts, the error messages you
get when you first try to install without --force will tell you which packages’
files you’ll be replacing, so be sure you back them up or are prepared to rein-
stall the package in case of trouble.

If you’re using dpkg, you can use the --ignore-depend=package,
--force-depends, and --force-conflicts parameters to overcome
dependency and conflict problems in Debian-based systems. Because there’s
less deviation in package names and requirements among Debian-based sys-
tems, though, these options are less often needed on such systems.

Upgrading or Replacing the Depended-Upon Package

Officially, the proper way to overcome a package dependency problem is to
install, upgrade, or replace the depended-upon package. If a program
requires, say, Qt 1.44 or greater, you should upgrade an older version (such
as 1.40) to 1.44. To perform such an upgrade, you’ll need to track down and
install the appropriate package. This usually isn’t too difficult if the new
package you want comes from a Linux distribution; the appropriate
depended-upon package should come with the same distribution.

One problem with this approach is that packages intended for different
distributions sometimes have differing requirements. If you run Distribution A
and install a package that was built for Distribution B, the package will
express dependencies in terms of Distribution B’s files and versions. The

http://www.sybex.com

Package Dependencies and Conflicts 647

appropriate versions may not be available in a form intended for Distribu-
tion A, and by installing Distribution B’s versions, you can sometimes cause
conflicts with other Distribution A packages. Even if you install the upgraded
package and it works, you could run into problems in the future when it
comes time to install some other program or upgrade the distribution as a
whole—the upgrade installer might not recognize Distribution B’s package
or might not be able to upgrade to its own newer version.

Rebuilding the Problem Package

Some dependencies result from the libraries and other support utilities
installed on the computer that compiled the package, not from requirements
in the underlying source code. If the software is recompiled on a system that
has different packages, the dependencies will change. Therefore, rebuilding
a package from source code can overcome at least some dependencies.

If you use an RPM-based system, the command to rebuild a package is
straightforward: You call rpm with the name of the source package and use
--rebuild, as follows:

rpm --rebuild packagename-version.src.rpm

Of course, to do this you must have the source RPM for the package. This
can usually be obtained from the same location as the binary RPM. When
you execute this command, rpm extracts the source code and executes what-
ever commands are required to build a new package—or sometimes several
new packages. (One source RPM can build multiple binary RPMs.) The
compilation process can take anywhere from a few seconds to several hours,
depending upon the size of the package and the speed of your computer. The
result should be one or more new binary RPMs in /usr/src/distname/
RPMS/arch, where distname is a code for your distribution (such as RedHat
for Red Hat or OpenLinux for Caldera) and arch is your CPU architecture
(such as i386 or i586 for x86 or ppc for PowerPC). You can move these
RPMs to any convenient location and install them just like any others.

Source packages are also available for Debian systems, but aside from sites
devoted to Debian and related distributions, Debian source packages are rare.
The sites that do have these packages provide them in forms that typically
install easily on appropriate Debian or related systems. For this reason, it’s
less likely that you’ll rebuild a Debian package from source.

http://www.sybex.com

648 Chapter 9 � Troubleshooting

You can also recompile a package from a source tarball. Doing this
requires that you read the documentation that comes with the source pack-
age. Details differ from one package to another, but you must typically run
half a dozen or fewer commands to configure the compilation scripts for
your system, compile the software, and install the software. You may also
need to edit some configuration files manually. This process is best under-
taken if you have some experience with the process—but of course, every-
body who’s done it had to start with one package, so you may want to try
it some time simply to gain the experience.

However you do it, recompiling a program from source code requires
more software than installing a precompiled program does. At the very least,
you need whatever compiler is appropriate for the software (usually the
GNU C Compiler [GCC]). Especially for X-based programs, you’re also
likely to need header files for the libraries the program uses. These are special
files needed to compile a program to use the libraries, and they may not be
installed on an ordinary system. Header file packages frequently contain the
word devel in their names, as in qt-devel or ncurses-devel. You can
install these packages just like any other. The version you install should
match the version of the associated library, though; if this isn’t the case, pro-
grams that use the library might not compile properly, or they might not
work once they’ve been compiled.

Rebuilding a package from source code, even via RPM, doesn’t always
work. Part of the reason for this is that necessary header file packages might
be missing. Similarly, compilers or other development tools might be missing
or be the wrong version. Sometimes, the underlying source code relies upon
features that aren’t present in the version of the library you’re using. When
these problems occur, you’ll see error messages when you are preparing or
compiling the package. These error messages may be cryptic, or they may
refer specifically to a version conflict or the like. In such cases, you may need
to use some other method of working around the dependency problem.

Locating Another Version of the Problem Package

Frequently, the simplest way to fix a dependency problem or package con-
flict is to use a different version of the package you want to install. This could
be a newer or older official version (4.2.3 rather than 4.4.7, say), or it might be
the same official version but built for your distribution rather than for
another distribution. Sites like RPM Find (http://www.rpmfind.net) or
Debian’s package listing (http://www.debian.org/distrib/packages)
can be very useful in tracking down alternative versions of a package. Your

http://www.sybex.com

Package Dependencies and Conflicts 649

own distribution’s Web or FTP site can also be a good place to locate pack-
ages, as well.

If the package you’re trying to install requires newer libraries than you’ve got,
an older version may work with your existing libraries.

The main problem with locating another version of the package is that
sometimes you really need the version that’s not installing correctly. It might
have features that you need, or it might fix important bugs. On occasion,
other versions might not be available, or you might be unable to locate
another version of the package in your preferred package format. (You may
be able to convert from another format by using the alien tool described in
Chapter 3.)

Startup Script Problems

One particularly common problem when trying to install servers from one
distribution in another is in getting SysV startup scripts working. Although
all major Linux distributions use SysV startup scripts, these scripts are not
always transportable across distributions. Different distributions frequently
implement support routines in unique ways, so these scripts may be incom-
patible. The result is that the server you installed may not start up, even if the
links to the startup scripts are correct, as described in Chapter 6. The
“Startup Scripts” section of that chapter includes a discussion of ways
around this problem. Possibilities include modifying the startup script that
came with the server, building a new script based on another one from your
distribution, and starting the server through a local startup script like /etc/
rc.d/rc.local or /etc/rc.d/boot.local.

Startup script problems only affect servers and other programs that are
started automatically when the computer boots; they don’t affect typical user
applications or libraries.

http://www.sybex.com

650 Chapter 9 � Troubleshooting

Using Common Troubleshooting
Commands

Certain general-purpose commands and shell tools are very useful in
troubleshooting certain types of problems. These commands can be used in
other contexts, as well, and in fact, they aren’t usually thought of as exclu-
sively troubleshooting in nature. This section describes some of these com-
mands, breaking them down into file-location, file-examination, and
redirection tools.

File-Location Commands

You use file-location commands to locate a file on your computer. Most fre-
quently, these commands help you locate a file by name, or sometimes by
other criteria, such as modification date. These commands can search a
directory tree (including root, which scans the entire system) for a file match-
ing the specified criteria in any subdirectory.

find

The find utility implements a brute-force approach to finding files. This
program finds files by searching through the specified directory tree, check-
ing filenames, file creation dates, and so on to locate the files that match the
specified criteria. Because of this method of operation, find tends to be
slow, but it’s very flexible and is very likely to succeed, assuming the file for
which you’re searching exists. The find syntax is as follows:

find [path...] [expression...]

You can specify one or more paths in which find should operate; the pro-
gram will restrict its operations to these paths. The expression is a way of
specifying what you want to find. The find man page includes information
on these expressions, but some of the more common include the following:

-name pattern You can search for a filename that matches the speci-
fied pattern using this expression. If pattern is an ordinary filename,
find matches that name exactly. You can use wildcards if you enclose
pattern in quotes, and find will locate files that match the wildcard
filename.

http://www.sybex.com

Using Common Troubleshooting Commands 651

-perm mode If you need to find files that have certain permissions, you
can do so by using the -perm expression. mode may be expressed either
symbolically or in octal form. If you precede mode with a +, find locates
files in which any of the specified permission bits are set. If you precede
mode with a -, find locates files in which all the specified permission bits
are set.

-size n You can search for a file of a given size with this expression.
Normally, n is specified in 512-byte blocks, but you can modify this by
trailing the value with a letter code, such as c for bytes or k for kilobytes.

-gid GID This expression searches for files whose group ID (GID) is set
to GID.

-uid UID This expression searches for files owned by the user whose
user ID (UID) is UID.

-maxdepth levels If you want to search a directory and, perhaps,
some limited number of subdirectories, you can use the -maxdepth
expression to limit the search.

There are many variant and additional options; find is a very powerful
command. As an example of its use, consider the task of finding all C source
code files, which normally have names that end in .c, in all users’ home
directories. If these home directories reside in /home, you might issue the fol-
lowing command:

find /home -name "*.c"

The result will be a listing of all the files that match the search criteria.

Ordinary users may use find, but it doesn’t overcome Linux’s file permission
features. If you lack permission to list a directory’s contents, find will return
that directory name and the error message, Permission denied.

locate

The locate utility works much like find if you want to find a file by name,
but it differs in two important ways:

� locate is far less sophisticated in its search options. You normally use
it to search only on filenames, and the program returns all files that

http://www.sybex.com

652 Chapter 9 � Troubleshooting

contain the specified string. For instance, when searching for rpm,
locate will return other programs, like gnorpm and rpm2cpio.

� locate works from a database file that it maintains. Most distribu-
tions include a cron job that calls locate with options that cause it to
update its database periodically, such as once a night or once a week.
(You can also use the updatedb command to do this task at any time.)
For this reason, locate may not find recent files, or it may return the
names of files that no longer exist. If the database update utilities omit
certain directories, files in them won’t be returned by a locate query.

Because locate works from a database, it’s typically much faster than is
find, particularly on system-wide searches. It’s likely to return many false
alarms, though, especially if you want to find a file with a short name. To use
it, type locate search-string, where search-string is the string that
appears in the filename.

Some Linux distributions use slocate rather than locate. slocate includes
security features to prevent users from seeing the names of files in directories
they should not be able to access. On most systems that use slocate, the
locate command is a link to slocate, so locate implements slocate’s secu-
rity features.

whereis

The whereis program searches for files in a restricted set of locations, such
as standard binary file directories, library directories, and man page directo-
ries. This tool does not search user directories or many other locations that
are easily searched by find or locate. whereis is a quick way to find pro-
gram executables and related files like documentation or configuration files.

whereis returns filenames that begin with whatever you type as a search
criterion, even if those files contain extensions. This feature often turns up
configuration files in /etc, man pages, and similar files. To use the program,
type the name of the program you want to locate. For instance, the following
command locates ls:

$ whereis ls

ls: /bin/ls /usr/share/man/man1/ls.1.bz2

http://www.sybex.com

Using Common Troubleshooting Commands 653

The result shows both the ls executable (/bin/ls) and the ls man page.
whereis accepts several parameters that modify its behavior in various
ways. These are detailed in the program’s man page.

File-Examination Commands

Locating files by name, owner, or other surface characteristics is very con-
venient, but sometimes you need to locate files based on their contents, or
quickly examine files without loading them into a text editor. Naturally,
Linux provides tools to perform these tasks.

grep

grep is an extremely useful command. It searches for files that contain a
specified string and returns the name of the file and (if it’s a text file) a line
of context for that string. The basic grep syntax is as follows:

grep [options] pattern [files]

Like find, grep supports a large number of options. Some of the more
common options include the following:

-c or --count Instead of displaying context lines, grep displays the
number of lines that match the specified pattern.

-f file or --file=file Takes pattern input from the specified file,
rather than from the command line.

-i or --ignore-case Causes a case-insensitive search, rather than the
default case-sensitive search.

-r or --recursive Searches in the specified directory and all sub-
directories, rather than simply the specified directory.

The pattern is a regular expression, which can be a complex specifica-
tion that can match many different strings. Alphabetic and numeric charac-
ters are interpreted in a literal way in a regular expression, but some others
have special meaning. For instance, if you enclose a series of letters or num-
bers in square braces ([]), the system matches any one of those characters.
For instance, suppose you want to locate all the files in /etc that contain the
strings tty1 or tty2. You could enter the following command:

grep tty[12] /etc/*

http://www.sybex.com

654 Chapter 9 � Troubleshooting

You can use grep in conjunction with commands that produce a lot of
output in order to sift through that output for the material that’s important
to you. (Several examples throughout this book have used this technique.)
For instance, suppose you want to find the process ID (PID) of a running
xterm. You can use a pipe (described shortly, in “Redirection and Pipes”) to
send the result of a ps command (described in Chapter 7) through grep, thus:

ps ax | grep xterm

The result is a list of all running processes called xterm, along with their
PIDs. You can even do this in series, using grep to further restrict the output
on some other criterion, which can be useful if the initial pass still produces
too much output.

cat

The program cat has nothing to do with feline pets. Rather, it’s short for the
word “concatenate,” and it’s a tool for combining files, one after the other,
and sending them to standard output (that is, your screen, xterm, or remote
login session). One common use for cat is to forego the multifile aspect of
the command and display a single file. For instance, the following command
displays the contents of /etc/fstab:

$ cat /etc/fstab

This can be a good way to quickly view a short file. It’s much less effective
for large files, though, because the top of the file will scroll off the top of the
display. For very long files, it may also take a long time to scroll through the
entire file.

Another use of cat is to quickly combine two files into one. This is best
achieved in conjunction with the redirection operator (>), which is described
shortly. For instance, suppose you want to combine /etc/fstab with /etc/
fstab-addition. You might issue the following command:

cat /etc/fstab fstab-addition > fstab-plus

You could then examine the resulting file, fstab-plus. If fstab-
addition contains a new entry you wanted to add to /etc/fstab, copying
fstab-plus over the old /etc/fstab will accomplish the job. In fact, cat
can even serve as a quick-and-dirty way to create a text file, thus:

$ cat - > text.txt

http://www.sybex.com

Using Common Troubleshooting Commands 655

The - character from which cat is reading is a shorthand for standard
input—normally your keyboard. Anything you type after this point will be
entered into text.txt, until you press Ctrl+D. This keystroke terminates
the cat program, at which point text.txt will contain your desired text.
This can be a particularly useful trick if you’re using an extremely spare
emergency system and need to quickly create a configuration file.

more and less

A program that’s used in many OSs to allow users to view information in a
controlled way is known as more. Typing more filename results in a screen-
by-screen display of filename’s contents. You can press the Enter key to
move down one line of text, or the spacebar to move forward by one screen.
This can be a convenient way to view configuration or other text files.

Although more is useful, the original program has many limitations. For
instance, there’s no way to page backward through a file or search for text
within the file. These needs spawned a better version of more, which is
known as less in a twist of humor. In addition to paging forward, less
allows you to type in various keystrokes to do other things. Some of these are
modeled after the keystrokes used in the Emacs editor, such as Ctrl+V to
move forward by a screen and Esc-V to move backwards by a screen. You
can also search for text by typing / followed by the search pattern. Typing
q exits from less. You can learn more from the less man page.

Most Linux systems use less to display man pages, so you can practice the
less commands while viewing the less man page.

tail

Sometimes, you want to view the last few lines of a file, but not the beginning
of the file. For instance, you might want to check a log file to see if an action
you’ve just performed has created an entry. Because programs log actions at
the ends of log files, a way to quickly check the end of the file is convenient.
This was the purpose for which tail was written. It displays the last 10 lines
of a file (or if you include the -n num parameter, the last num lines). For
instance, to view the last 20 lines of /var/log/messages, you could type the
following command:

tail -n 20 /var/log/messages

http://www.sybex.com

656 Chapter 9 � Troubleshooting

Redirection and Pipes

Several of the preceding examples have used redirection and pipes (aka pipe-
lines). These are mechanisms that you can use to redirect the input to a pro-
cess or the output from a process. Redirection passes input to or from a file,
and a pipe allows you to tie two or more programs together so that one uses
the output of another as input.

Normally, the standard output of a program goes to the display you used
to launch it. The output redirection operator, >, changes this, sending stan-
dard output to a file that you specify. For instance, suppose you want to cap-
ture the output of ifconfig in a file called iface.txt. You could use the
following command to do this:

$ ifconfig > iface.txt

This operator wipes out the current iface.txt file, if it exists. If you
want to append information rather than overwrite it, you can use the >>
operator instead of >.

You can replace standard input by using the input redirection operator, <.
This is most useful when you must routinely provide the same information
to a program time after time. You can create a file with that information and
pass it to the program with the input redirection operator, thus:

$ superscript < script-input.txt

To have one program take another’s output as input, you use a pipe,
which is represented by a vertical bar (|). An earlier example illustrated this
process: The output of ps may contain too much information to be quickly
parsed, so you can pass its output through grep to locate just the informa-
tion you want, thus:

ps ax | grep xterm

This command searches for the string xterm in the ps output, and dis-
plays all the lines that match. The output of ps goes into grep, and grep’s
output appears on your screen. (You could use another pipe or redirect
grep’s output, if you prefer.)

http://www.sybex.com

Using Troubleshooting Resources 657

Using Troubleshooting Resources

Chances are you’re not the first person to experience any given prob-
lem. If you can tap the knowledge of somebody who’s been down the same
troubled path before, you may be able to traverse that path more quickly.
This is the motivation behind the existence of various troubleshooting
resources. Some of these are online, others come with your distribution, and
a few exist in non-electronic forms. These resources include the following:

Local documentation Most programs ship with documentation in any
of several different forms. Typically, installation and detailed use docu-
mentation appears in a subdirectory of /usr/doc or /usr/share/doc
named after the program. Most programs also ship with Linux man and
info pages, which can be accessed by typing man or info followed by the
program’s name or the name of a configuration file. These man and info
pages are typically much briefer than a conventional manual is, so they’re
most useful if you want to look up the name of a parameter or some other
minor detail.

HOWTOs Many Linux users have contributed Linux documentation in
the form of HOWTO documents. These are archived at http://www
.linuxdoc.org, among other places. Most Linux distributions ship with
some or all of these, typically in /usr/doc/HOWTO or /usr/share/doc/
HOWTO. (There are also mini-HOWTOs, which are like HOWTOs, but
shorter.) HOWTOs are more tutorial in nature than are man or info
pages. They aren’t usually comprehensive, but they do provide enough
information to get you started doing something. Some HOWTOs are tied
to topics rather than tools; they usually aren’t manuals for specific pro-
grams, but are guides to performing some task, hence the name. Some are
excellent, but others are outdated or confusing. All in all, if you need to
learn how to accomplish some goal, it’s worth looking for a HOWTO on
the topic.

Program Web pages Most Linux programs have associated Web pages,
and these Web pages frequently include documentation. This resource is
particularly helpful if you want to evaluate competing products or read up
on one before installing it. Program information included in package files
often points you to a program’s Web page. For instance, type rpm -qpi
packagename.rpm to find information on packagename in an RPM system.

http://www.sybex.com

658 Chapter 9 � Troubleshooting

Usenet news groups Usenet news is a forum in which individuals post
messages for all to read. Usenet posts are similar to e-mail messages in
many ways, except that they’re public. Most ISPs and organizations such
as universities maintain Usenet news servers, and you as an individual can
access these using Linux programs like tin (http://www.tin.org) or
Pan (http://pan.rebelbase.com). The Google Groups Web site
(http://groups.google.com) maintains a database of newsgroup post-
ings, so you can search for help in the form of previous queries about your
problem. You should probably do this before posting a new cry for help;
a quick search often turns up an answer much more quickly than does a
new posting.

Printed documentation Commercial programs often come with printed
documentation, and there are even books available for many open source
programs. Smaller programs are often mentioned in books on the topic in
general. Therefore, a trip to your bookstore or library can be quite worth-
while, particularly if you need to learn a topic in depth.

User groups Computer user groups have long been sources of informa-
tion. These are groups of people who meet in person periodically (often
once a month) to attend group-sponsored presentations and exchange
information. Attending a Linux user group (LUG) can provide you with
contacts that can be very useful in solving problems, or in learning about
Linux generally. You can find a LUG near you by browsing to http://
www.linux.org/users/index.html. User groups also often advertise in
local computer publications or post notices in local computer stores.

By taking advantage of any or all of these resources, you can learn a great
deal about Linux in a short period of time or solve almost any Linux prob-
lem. Not all resources are appropriate for solving all problems, though. For
instance, attending a LUG may not do you much good if the next meeting is
in two weeks and you need to solve a problem today. (You might be able to
call somebody you met at a LUG, though.)

Even if you don’t make extensive use of any given information resource, you
should at least take some time to familiarize yourself with the type of infor-
mation to be found in each of these sources. Knowing what information a
resource can provide can be very valuable if and when you need to locate that
type of information.

http://www.sybex.com

Exam Essentials 659

Summary

Troubleshooting involves many different tasks. You must normally
begin by tracking down the cause of the problem—is it software, hardware,
or user-induced? What specific component is involved? What causes are
likely given the symptoms? This last question is particularly tricky to answer
because answering it requires knowledge of proper and improper function-
ing of the malfunctioning component. Because of this, in order to be able to
effectively troubleshoot any problem on a Linux computer, you need exten-
sive knowledge of every feature of Linux and the hardware on which it runs.

This chapter discusses many common or important problems in Linux,
including boot errors, startup and shutdown problems and processes, and
package dependency issues. Each of these has its own set of symptoms and
solutions.

When you are working through a problem, there are several skills and
resources that are important for you to have. One of these is the ability to
boot an emergency system. These can be tiny floppy-based distributions,
dedicated Linux systems on larger removable media, or even emergency
installations on a hard disk. Such tools can help you get a system that won’t
even boot working again. Likewise, many Linux commands, such as find,
grep, and less, are extremely useful in debugging a Linux system. Finally,
knowing where to go to find help in your troubleshooting efforts is impor-
tant because even the most knowledgeable Linux administrator is likely to be
stumped now and then.

Exam Essentials

Summarize some ways you can localize a problem. Knowing whether a
problem appears consistently or inconsistently, whether it affects the
entire computer or just one or two programs, and whether it affects all
users or just some can be important clues to help you track down a problem.

Describe how the LILO boot process can go awry. If the BIOS can’t
locate LILO or if LILO can’t locate the kernel, the boot process will fail.
Either of these conditions may occur for various reasons, such as instal-
lation of LILO in the wrong location, a mismatch between CHS geome-
tries between the BIOS and LILO, or corruption of the kernel.

http://www.sybex.com

660

Chapter 9Summarize where you can get emergency Linux disk sets and how
theyÕre used.

Emergency disk sets come with most distributions or can be obtained from third parties (including other distribution maintainers).

To use them, you will need to boot from the emergency medium (often a

floppy disk), and occasionally you will need to insert a second medium

(like a Zip disk) to complete the boot process, after which you can use

them like a regular text-mode Linux login.

Explain when you might need to restart a process.

Processes some-times become unresponsive or otherwise misbehave, thus requiring a

restart. At other times you must restart a process to get it to reload a

changed configuration file.

Summarize methods of working around package dependency
problems.

You can sometimes force a package to install by using over-ride switches, but itÕs usually better to upgrade or replace the new or

depended-upon packages. Sometimes rebuilding a package from source

code will work around the problem, as well.

Describe where you can go to find help when you canÕt solve a problem.

Help exists in many locations, including official documentation (docu-

mentation files in

(�����

 or

(����������

, man pages, and info pages), online (program Web pages, HOWTOs, and Usenet newsgroups),

and in non-electronic form (books, magazines, and people).

���������

Displays or adjusts information on a computerÕs serial
port interface

����

Displays open files on a computer

�������(��

Displays latencies for every router between you and a
target computer

http://www.sybex.com

Key Terms 661

Key Terms

Before you take the exam, be certain you are familiar with the follow-
ing terms:

Command Description

find Locates files that match any of many search criteria,
such as name, owner, and permissions

locate Locates files in a system-wide database based on name

whereis Locates files in common binary, documentation, and
configuration directories

grep Locates files that include a specified search string

cat Concatenates multiple files; often used to display a
complete file on the screen

more Displays a file a screen at a time

less An improved version of more

tail Displays the last few lines of a file

Address Resolution Protocol (ARP) pipes

header file redirection

HOWTO document regular expression

kernel ring buffer software rot

Linux user group (LUG) standard input

lock file standard output

pipeline

http://www.sybex.com

662 Chapter 9 � Troubleshooting

Review Questions

1. When are you likely to encounter software rot?

A. When your computer has been infected by a virus

B. When you’ve installed a Trojan Horse

C. When a program accidentally deletes a device file

D. When disk corruption damages a program file

2. A multiuser system hosts a program called analyze, which is used by
most of the system’s users. One user comes to you to report that
analyze is crashing frequently, but no other user has this problem.
Which of the following is most likely to be true?

A. An overheating CPU is causing analyze to crash.

B. The user’s configuration file or data set is causing analyze to
crash.

C. You must change the user’s password to correct the problem.

D. A kernel or device driver bug is causing analyze to crash.

3. You’ve installed a new SCSI scanner, but you can’t get it to work.
Which of the following commands is most likely to provide some clues
as to what’s wrong?

A. dmesg | less

B. fdisk /dev/sda

C. scandiag

D. lsof | less

4. Which of the following commands will help you identify a process
that’s run out of control and is consuming an inordinate amount of
CPU time?

A. grep

B. fsck

C. top

D. cat /proc/cpuinfo

http://www.sybex.com

Review Questions 663

5. A user reports that files he’s copied to floppy disk from Linux are cor-
rupt or can’t be found when the floppy disk is read on another com-
puter. Which of the following problems is most likely to cause this
symptom?

A. The user ejected the disk without first unmounting it.

B. The user’s .floppy configuration file is corrupt.

C. The CD-ROM drive is malfunctioning, interfering with floppy
transfers.

D. The computer’s network drivers are buggy and causing data
corruption.

6. How can you work around the problem of open files that prevent you
from unmounting a filesystem?

A. Check the contents of /etc/mtab.

B. Type netstat to identify open files.

C. Type lsof to identify open files.

D. Type closefiles -a to close all open files.

7. Whenever you restart a Linux system, you need to manually mount
the /usr/local directory. What configuration file might you edit to
automate this process?

A. /etc/inittab

B. /etc/mtab

C. /usr/localtab

D. /etc/fstab

8. You’re operating a Web server, which had previously been working
well. Recently, though, you’ve noticed that it’s responding more
slowly to external requests. Which of the following might be causing
this problem? (Choose all that apply.)

A. The CPU may be going bad or overheating.

B. The Web server’s SysV startup script may be corrupt.

C. Traffic to the Web site may have picked up.

D. Runaway processes may be slowing down the server.

http://www.sybex.com

664 Chapter 9 � Troubleshooting

9. Which of the following should you do to avoid nasty surprises when
restoring a tape backup in an emergency situation? (Choose all that
apply.)

A. Verify every backup as soon as it’s made.

B. Use only tapes that have been tested at least a hundred times.

C. Test your emergency restore procedure before it’s needed.

D. Compress your tar backups with gzip rather than bzip2.

10. What type of troubleshooting information can the traceroute com-
mand provide?

A. Information on unresponsive or slow routers between you and any
site on the Internet

B. The contents of your computer’s routing table, including its
default route

C. Whether or not your hostname is set correctly

D. The mapping between a computer’s IP address and its hardware
address

11. Your computer won’t boot, and the LILO error code seems to indicate
a mismatch in cylinder/head/sector (CHS) geometry between the BIOS
and Linux. In a worst-case scenario, what might you need to do to cor-
rect this problem?

A. Use Linux’s dd to wipe out the master boot record (MBR) and re-
create all the disk’s partitions.

B. Use the w command in Linux’s fdisk to rewrite the disk’s partition
table.

C. Delete the computer’s BIOS so that it no longer interferes
with LILO.

D. Replace the hard disk with a model that’s more compatible
with LILO.

http://www.sybex.com

Review Questions 665

12. If LILO doesn’t work and you want to boot Linux, which of the fol-
lowing techniques might you use? (Choose all that apply.)

A. LOADLIN

B. System Commander

C. DOS’s SYS command

D. A raw kernel on a floppy disk

13. What media can be used for emergency Linux boots? (Choose all that
apply.)

A. Tapes

B. Floppies

C. CD-ROMs

D. Zip disks

14. Why might you want to modify an emergency recovery disk set?

A. To include custom or commercial packages that aren’t on conven-
tional emergency disk sets

B. To remove unnecessary tools like fdisk and fsck, making space
for other tools

C. To ensure that the disk set includes the latest versions of Netscape
and StarOffice

D. To add drivers for Web cameras, scanners, or sound cards

15. What is used to signal that a program is using a resource so that other
programs don’t attempt to use that same resource?

A. A lock file

B. A pipe

C. Redirection

D. A signal

http://www.sybex.com

666 Chapter 9 � Troubleshooting

16. Which of the following dependency problems is least likely to be
caused by a fundamental problem, and most likely to be caused by an
artificial naming mismatch?

A. Two packages both include files called /usr/bin/bigprog.

B. A package complains that it needs biglib-1.4, but you’ve
installed biglib-1.4plus.

C. Your system has the biglib-1.4 package installed, but a program
requires biglib-1.9.

D. A package complains that it needs biglib-devel-1.4, but you’ve
installed biglib-1.4.

17. Which of the following are disadvantages of rebuilding a package to
work around a dependency problem? (Choose all that apply.)

A. This approach won’t work if you use a CPU architecture other
than the one the developer used.

B. Rebuilding a package often requires development header files that
you may not have.

C. Rebuilding a package always loses dependency information.

D. Rebuilding a package takes more time than installing a conven-
tional binary package.

18. Which of the following file-location commands is likely to take the
most time to find a file that might be located anywhere on the
computer?

A. find

B. locate

C. whereis

D. They’re all equal in speed.

http://www.sybex.com

Review Questions 667

19. Which of the following commands is an improved version of more?

A. grep

B. tail

C. cat

D. less

20. Which of the following statements is a fair comparison of man pages
to HOWTO documents?

A. Man pages require Internet access to read; HOWTOs do not.

B. Man pages are a type of printed documentation; HOWTOs are
electronic.

C. Man pages describe software from a user’s point of view; HOW-
TOs are programmers’ documents.

D. Man pages are brief reference documents; HOWTOs are more
tutorial in nature.

http://www.sybex.com

668 Chapter 9 � Troubleshooting

Answers to Review Questions

1. D. Software rot is a condition in which a program file (or possibly a
configuration file, library, or other support file) becomes corrupt
because of a filesystem error or some other problem. This condition
has nothing to do with viruses or Trojans, nor does it refer to pro-
grams behaving in an incorrect way such as deleting a device file.

2. B. Because only one user is experiencing problems, chances are good
that the problem is related to this user’s configuration, method of
using the program, or data fed into the program. Hardware and kernel
problems would almost certainly influence other users, and probably
other programs. The user’s password is probably not involved because
the password is not normally used by programs once a user has logged in.

3. A. The dmesg utility displays system startup messages, which should
include information on SCSI devices detected by the SCSI host
adapter. (Piping dmesg through less allows you to view the output a
page at a time.)

4. C. The top utility displays information on the processes that are run-
ning at any given time, sorted by order of CPU time used. If a process
that normally consumes little CPU time shoots to the top of the list, it
may have hung or be misbehaving in some way.

5. A. Linux caches all disk transfers, including those to floppy disks, so
ejecting a floppy without first unmounting it can cause data corrup-
tion. There is no .floppy configuration file required for floppy access
in Linux. CD-ROM and network hardware and drivers are unlikely to
influence writing a file to a floppy disk.

6. C. The lsof program displays a list of all open files. (You may want
to pipe its output through grep to make its output more manageable).
Once you’ve found the open files on the partition you want to
unmount, you can close them.

7. D. /etc/fstab defines the partitions that a Linux system mounts
automatically when the system starts. Adding an entry for /usr/
local, or editing an existing entry, will make this directory mount
automatically.

http://www.sybex.com

Answers to Review Questions 669

8. C, D. Servers can become slow because of increased demand for the
server’s services or because local tools are consuming more of the
server computer’s resources. A bad or overheating CPU is likely to
manifest in server crashes rather than reduced server performance.
Likewise, a corrupt startup script is likely to cause the server to not
start at all.

9. A, C. Testing—both in the form of testing emergency restore proce-
dures generally and in the form of testing your backup media when
you make backups—can help detect and head off problems in an
emergency situation. Because tapes degrade with use, any tape that’s
been used (or tested) a hundred times is more likely than a new one to
have errors. In the event of an error at restore, tar archives com-
pressed with either gzip or bzip2 will restore only to the point of the
error. Without these forms of compression, more of an archive will be
recoverable.

10. A. traceroute returns three round-trip latencies between your com-
puter and each router that lies on the path between your system and
a target system. This information can help you identify network
bottlenecks.

11. A. Erasing the MBR and creating a new one often works around CHS
geometry problems, but at a potentially serious cost: All existing par-
titions will be lost. You’ll then have to re-create these partitions and
restore all data from a backup, or reinstall Linux from scratch.

12. A, D. LOADLIN is a DOS utility that can boot a kernel. Linux kernels
can also boot if placed on a floppy disk without a filesystem. Both
these methods will require some preparation before LILO fails. System
Commander is a boot loader that can’t boot Linux without the help of
LILO or GRUB. DOS’s SYS command will rewrite critical DOS boot
files, but won’t do anything to help if LILO fails.

13. B, C, D. Just about any medium that’s bootable or that can be used in
conjunction with another bootable medium can be used for an emer-
gency Linux installation. Larger media, such as CD-ROMs, support
more sophisticated emergency recovery systems. Tapes can’t be used
because Linux can’t store and use a normal Linux filesystem on a tape.

http://www.sybex.com

670 Chapter 9 � Troubleshooting

14. A. If you use a commercial or custom package for backups, unusual
filesystems, or the like, you’ll want to include support for these tools
on your emergency recovery disk. You should not remove fdisk or
fsck, both of which are likely to be important in some recovery situ-
ations. Netscape, StarOffice, Web cameras, scanners, and sound cards
are all unnecessary to emergency system operation, and so they won’t
exist on most emergency systems. (Very large ones, such as CD-
ROM–based systems, may include these tools, but they aren’t required
for emergency system operation.)

15. A. For some resources, such as RS-232 serial ports, programs create
special files, known as lock files, to signal to other programs that the
resource is being used. When the original program finishes, it deletes
the lock file so that other programs may use the resource. If this fails
to happen for some reason, you may need to manually remove the
lock file.

16. B. The package name biglib-1.4plus is a bit odd, and it probably
indicates that somebody built it as an expanded version of
the biglib-1.4 package. It’s probably compatible with the standard
biglib-1.4 package, but this isn’t certain. The other options are all
much more likely to be serious and real problems.

17. B, D. Rebuilding a package takes time and may not work if you lack
important header files or other development tools. It will often work
on CPUs other than the one the program’s author used, and if you use
an RPM or Debian source package, the result will be an RPM or
Debian package, complete with dependency information.

18. A. find operates by searching all files in a directory tree, and so it is
likely to take a long time to search all a computer’s directories. locate
uses a precompiled database, and whereis searches a limited set of
directories, so these commands will take less time.

19. D. less, like more, displays a text file a page at a time. less also
includes the ability to page backwards in the text file, search its con-
tents, and more.

20. D. Man pages are intended to give you quick information on com-
mands, configuration files, or the like. HOWTOs are intended as
introductions to packages or broad topics.

http://www.sybex.com

Glossary

http://www.sybex.com

672 Glossary

1024-cylinder limit The x86 BIOS has traditionally been unable to read
past the 1024th cylinder in a cylinder/head/sector (CHS) addressing scheme,
which has limited the size of hard disks—first to 504MB, then to just under
8GB. On a computer with an old BIOS, the 1024-cylinder limit prevents the
system from booting a kernel from higher than this limit, although Linux
itself uses addressing schemes that aren’t bothered by this limit. BIOSes
made since the late 1990s also include ways around the limit, if the software
understands those mechanisms. See also cylinder/head/sector (CHS)
addressing.

absolute directory name A directory name that begins with a slash (/),
indicating that it’s to be interpreted starting from the root (/) directory.

account Stored information and a reserved directory that allows one indi-
vidual to use a computer. The term is often used and thought of as if it were
a distinct virtual component of a computer that a person can use, as in “Sam
logged into his account.” or “Miranda’s account isn’t working.”

ACPI See Advanced Configuration and Power Interface (ACPI).

Address Resolution Protocol (ARP) A protocol used to obtain a network
hardware address based on an IP address.

Advanced Configuration and Power Interface (ACPI) A power man-
agement protocol. Linux includes limited ACPI support.

Advanced Power Management (APM) A power management protocol.
Linux includes better APM support than ACPI support.

anonymous FTP site A server that allows access via the FTP protocol,
using a username of anonymous and any password. (Conventionally, you
give your e-mail address as the password.) Anonymous FTP servers are com-
monly used for distributing files on the Internet.

APM See Advanced Power Management (APM).

AppleTalk A network protocol stack used by Apple with its Macintosh
computers. AppleTalk is used primarily on local networks for file and
printer sharing.

ARP See Address Resolution Protocol (ARP).

http://www.sybex.com

Glossary 673

bad block A sector on a disk that’s unable to reliably store data. Bad
blocks inevitably develop on magnetic media over time, but when this begins
to happen, the disk tends to deteriorate rapidly.

Basic Input/Output System (BIOS) A low-level software component
included on a computer’s motherboard in read-only memory (ROM) form.
The CPU runs BIOS code when it first starts up, and the BIOS is responsible
for locating and booting an OS or OS loader.

baud rate A measure of data transmission speed, commonly used over
serial lines, corresponding to the number of signal elements transmitted per
second. This term is often used as a synonym for “bits per second,” but many
modems encode more than one bit per signal element, so the two aren’t
always synonymous.

Berkeley Standard Distribution (BSD) Originally a set of add-on utili-
ties for the original AT&T Unix release. BSD later became an independent
family of Unix-like OSs. BSD also refers to specific components or ways of
doing things derived from these.

binary 1. The base-2 numbering system. 2. A program or file that contains
data other than plain text, such as graphics or program data. 3. The version
of a program that the computer runs, as opposed to the source code version of
the program.

binary package A file that contains a compiled and ready-to-run Linux
program, including necessary configuration files, documentation, and other
support files.

BIOS See Basic Input/Output System (BIOS).

bit A binary digit (0 or 1).

boot loader A program that directs the boot process. The BIOS calls the
boot loader, which loads the Linux kernel or redirects the boot process to
another boot loader.

boot sector The first sector of a disk or partition. The boot sector for a
bootable disk or partition includes boot loader code, although this code may
be absent from non-bootable disks or partitions. See also boot loader.

http://www.sybex.com

674 Glossary

broadband 1. High-speed (greater than 200Kbps) Internet connections
delivered to homes and small businesses. 2. Networking technologies that
allow simultaneous transmission of data, voice, and video.

broadcast A type of network access in which one computer sends a mes-
sage to many computers (typically all the computers on the sender’s local
network segment).

BSD See Berkeley Standard Distribution (BSD).

build number A number identifying minor changes made to a binary
package by its maintainer, rather than changes implemented by the pro-
gram’s author, which are reflected in the version number.

bus A data transfer mechanism within the computer, such as the SCSI bus
or the memory bus.

byte An 8-bit number, typically represented as falling between 0 and 255.

C library (libc) Standard programming routines used by many programs
written in the C programming language. The most common Linux C library
is also referred to as libc or GNU libc (glibc).

cache memory A fast form of memory that’s used to temporarily hold a
subset of a larger but slower memory store. When they are properly imple-
mented, caches can improve system performance. Hard disks include RAM
as cache for data on disk, and computers can implement their own disk
caches. Modern CPUs include a form of cache for RAM, and some mother-
boards include the same.

Card Services A package that helps integrate PC Card (aka PCMCIA)
devices into Linux.

central processing unit (CPU) The main chip on a computer, which
handles the bulk of its computational tasks.

checksum A simple file integrity check in which the values of individual
bits or bytes are summed up and compared to a stored value for a reference
version of the file.

http://www.sybex.com

Glossary 675

child process A relative term referring to a process that another one has
created. For instance, when you launch a program from a bash shell, the pro-
gram process is a child process of the bash shell process.

chipset One or more chips that implement the main features of a mother-
board or add-in board for a computer. The chipset is not the CPU, though;
the chipset provides more specialized functions, such as the ability to control
a hard disk or produce a video display.

CHS addressing See cylinder/head/sector (CHS) addressing.

CHS mode See cylinder/head/sector (CHS) mode.

CHS translation See cylinder/head/sector (CHS) translation.

CIFS See Common Internet Filesystem (CIFS).

client 1. A program that initiates data transfer requests using networking
protocols. 2. A computer that runs one or more client programs.

command prompt One or more characters displayed by a shell or other
program to indicate that you’re to type a command. Many Linux distribu-
tions use a dollar sign ($) as a command prompt for ordinary users, or a
pound sign (#) as a command prompt for root.

Common Internet Filesystem (CIFS) Name for an updated version of
the Server Message Block (SMB) file sharing protocols. CIFS is implemented
in Linux via the Samba suite.

compiler A program that converts human-readable source code for a pro-
gram into a binary format that the computer runs.

Complementary Metal Oxide Semiconductor (CMOS) setup utility A
part of the BIOS that gives the user the ability to control key chipset features,
such as enabling or disabling built-in ports.

conditional expression A construct of computer programming and
scripting languages used to express a condition, such as the equality of two
variables or the presence of a file on a disk. Conditional expressions allow a
program or script to take one action in one case and another action in the
other case.

http://www.sybex.com

676 Glossary

console 1. The monitor and keyboard attached directly to the computer.
2. Any command prompt, such as an xterm window.

Coordinated Universal Time (UTC) See Greenwich Mean Time.

copyleft Slang term referring to the GNU GPL or certain other open
source licenses.

core dump A record of a crashed process’s memory, stored in a disk file at
the time of the process’s crash. Core dumps can sometimes be used to
debug the cause of the crash.

CPU See central processing unit (CPU).

cracker An individual who breaks into computers. Crackers may do this
out of curiosity, malice, for profit, or for other reasons.

crash An event in which a program terminates abruptly and abnormally.
Crashes are typically the result of programming errors.

creating a filesystem Writing low-level filesystem (meaning 1) data
structures to a disk. This is sometimes also called high-level formatting. See
also filesystem.

crippleware Software that’s distributed without some important feature,
or that works for only a limited period of time, as a demonstration to pro-
duce sales of the full product.

cron job A program or script that’s run at a regular interval by the cron
daemon. See also system cron job and user cron job.

cylinder/head/sector (CHS) addressing A method of hard disk
addressing in which a triplet of numbers (a cylinder, a head, and a sector) are
used to identify a specific sector. CHS addressing contrasts with linear block
addressing (LBA).

cylinder/head/sector (CHS) mode See cylinder/head/sector (CHS)
addressing.

cylinder/head/sector (CHS) translation Modifying one CHS addressing
scheme into another. CHS translation is commonly used by BIOSes from the
mid-to-late 1990s to allow the systems to use hard disks between 504MB
and 8GB in capacity.

http://www.sybex.com

Glossary 677

daemon A program that runs constantly, providing background services.
Linux servers are typically implemented as daemons, although there are a
few non-server daemons.

Data Display Channel (DDC) A protocol that allows a computer to query
a monitor for its maximum horizontal and vertical refresh rates and other
vital statistics.

DDC See Data Display Channel (DDC).

Debian package A package file format that originated with the Debian
distribution, but is now used on several other distributions. Debian packages
feature excellent dependency tracking and easy installation and removal
procedures.

default route The route that network packets take if a more specific route
doesn’t direct them in some other way. The default route typically involves
a gateway or router system that can further redirect the packets.

demoware A demonstration version of a commercial program. See also
crippleware.

dependency A requirement of one software package that another one be
installed. For instance, most Linux programs include a dependency upon the
C library.

desktop computer A computer that sits on a desk and that’s used by an
individual for productivity tasks. A desktop computer is similar to a work-
station, but some people use “desktop” to refer to somewhat lower-powered
computers or those without network connections. See also workstation.

desktop environment A set of programs that provide a friendly graphical
environment for a Linux user.

development kernel A kernel with an odd middle number, such as
2.3.47. These kernels incorporate experimental features and are not as stable
as are release kernels. See also release kernel.

device file A special file, typically residing in the /dev directory, that pro-
vides programs with access to hardware. Device files exist for most types of
hardware, such as RS-232 serial ports, floppy disks, sound cards, and so on.
Many devices sport multiple device files.

http://www.sybex.com

678 Glossary

DHCP See Dynamic Host Configuration Protocol (DHCP).

DIMM See dual inline memory module (DIMM).

direct memory access (DMA) A means of transferring data between
devices (like sound cards or SCSI host adapters) and memory without
directly involving the CPU.

distribution A complete collection of a Linux kernel and programs neces-
sary to do work with Linux. Dozens of different Linux distributions exist,
each with its own unique characteristics; but they all work in a similar way
and can run the same programs, assuming similar vintages of critical support
libraries like libc.

DMA See direct memory access (DMA).

DNS See Domain Name System (DNS).

domain name A name associated with an organization or set of com-
puters. Individual computers are assigned names within a domain, and
domains can be partitioned into subdomains.

Domain Name System (DNS) A distributed set of computers that run
servers to convert between computer names (such as ns.example.com) and
IP addresses (such as 192.168.45.204). DNS servers are organized hierarchi-
cally and refer requests to systems responsible for successively more specific
domains.

dot file A Linux or Unix file whose name begins with a dot (.). Most
Linux shells and programs hide such files from the user, so user configura-
tion files usually come in this form to be unobtrusive in directory listings.

drag bar The window control, typically displayed at the top of the
window, that allows users to drag the window around the screen. The drag
bar is sometimes also called the title bar because the window’s title appears
in this area.

DRAM See dynamic RAM (DRAM).

dual inline memory module (DIMM) One of several types of small cir-
cuit boards on which memory chips are distributed, for ease of installation
in computers. DIMMs are used on some Pentium-level and later computers.

http://www.sybex.com

Glossary 679

Dynamic Host Configuration Protocol (DHCP) A protocol used on local
networks for dissemination of network configuration information. A single
DHCP server can maintain information for many DHCP clients, reducing
overall configuration effort.

dynamic RAM (DRAM) One of several types of RAM. Plain DRAM is
now largely obsolete in desktop computers.

dynamically linked Programs that call upon information in libraries by
loading a separate library file when the program runs. This contrasts with
statically linked programs. See also library.

effective user ID The owner associated with a running process. This may
or may not be the same as the user ID of the individual who ran the program.

EIDE See Enhanced Integrated Device Electronics (EIDE).

electrostatic discharge (ESD) A transfer of an electrical charge from one
body to another. ESD frequently occurs when a person who’s shuffled
around on a carpet in dry weather touches a metallic object such as a door-
knob or computer component. It can be very damaging to electronic devices
such as computers.

Enhanced Integrated Device Electronics (EIDE) A type of interface for
hard disks, CD-ROM drives, tape drives, and other mass storage devices.

envelope In networking, the portion of a data packet that directs the trans-
mission and routing of the packet. The envelope includes information such as
the source and destination addresses and other housekeeping information.

environment variable A setting that’s available from any program run-
ning in a session. Environment variables can define features such as the ter-
minal type being used, the path to search for executable programs, and the
location of an X server for GUI programs.

ESD See electrostatic discharge (ESD).

Ethernet The most common form of local networking in 2001.

ext2 See Second Extended Filesystem (ext2 or ext2fs).

ext2fs See Second Extended Filesystem (ext2 or ext2fs).

http://www.sybex.com

680 Glossary

extended INT13 BIOS routines added in the late 1990s to allow x86 com-
puters to boot from hard disks larger than 8GB.

extended partition A type of disk partition used on x86 systems.
Extended partitions are placeholders for one or more logical partitions.

external transfer rate The data transfer rate between one device and
another. The external transfer rate is frequently applied to disks and similar
devices in reference to the speed of the EIDE or SCSI interface, as opposed
to the speed of the drive mechanism itself. In this context, the external
transfer rate is almost always faster than the internal transfer rate.

failed dependency A state in which a package’s dependencies are not met
when attempting to install it, or in which removing a package would cause
other installed packages to have unmet dependencies.

FDDI See Fiber Distributed Data Interface (FDDI).

FHS See Filesystem Hierarchy Standard (FHS).

Fiber Distributed Data Interface (FDDI) A type of network hardware
that supports up to 100Mbps speeds over fiber-optic cables.

Fibre Channel A type of network hardware that supports up to
1062Mbps speeds over fiber-optic cables.

file access permissions See file permissions.

file manager A GUI program that allows users to manipulate files using
mouse point-and-click operations.

filename completion A feature of some shells that allows them to com-
plete a command or filename when you press the Tab key.

file owner The account with which a file is most strongly associated. The
owner often has permission to do more with a file than other users can do.

file permissions Linux’s file access control mechanism. Every file has an
owner, a group, and permissions that define how the owner, group mem-
bers, and all other users (the “world”) may access the file. Permissions
include read, write, and execute for the owner, group, and world.

http://www.sybex.com

Glossary 681

file sharing protocol A network protocol that allows one computer to
access files stored on a second computer as if the second computer’s files
were local to the first computer. Examples include SMB/CIFS (used on
Windows-dominated networks), NFS (used on Unix-dominated networks),
and AppleShare (used on Macintosh-dominated networks).

filesystem 1. The low-level data structures recorded on a disk in order to
direct the placement of file data. The filesystem determines characteristics
like the maximum partition size, the file naming rules, and what extra data
(time stamps, ownership, and so on) may be associated with a file. 2. The
overall layout of files and directories on a computer. For instance, a Linux
filesystem usually includes a root directory (/), several directories falling off
of this (/usr, /var, /boot, etc.), subdirectories of these, and so on.

Filesystem Hierarchy Standard (FHS) A standard that defines the names
and contents of critical directories in a Linux filesystem (meaning 2).

Filesystem Standard (FSSTND) An early attempt to define the names
and contents of critical directories in a Linux filesystem (meaning 2).
FSSTND has been supplanted by the FHS.

File Transfer Protocol (FTP) A simple protocol for transferring files over
TCP/IP networks.

file type code A code that defines the type of a file—a normal file, a direc-
tory, a symbolic link, and so on.

FireWire A name for IEEE-1394 that’s favored by Apple.

focus In the context of window managers, focus refers to the window that
receives input from the keyboard and mouse. Focus may be changed in var-
ious ways, depending upon the window manager and its settings. See also
window manager.

font server A program that provides font bitmaps to client programs on
the same or (sometimes) other computers. The font server may work directly
from font bitmaps, or it may generate the bitmaps from outline fonts such as
PostScript Type 1 or TrueType fonts.

formatting Writing data structures necessary for a disk to hold data. For-
matting may be either high-level or low-level. High-level formatting is syn-
onymous with creating a filesystem. Low-level formatting is seldom necessary
on hard disks, but it is more common on floppies. It entails re-creating the low-
level data structures that define the locations of individual sectors.

http://www.sybex.com

682 Glossary

fragmented Term referring to files whose contents are split across several
parts of a disk, rather than placed contiguously. File fragmentation tends to
degrade disk performance because it increases head movements when
reading files.

frame In networking, a data packet associated with network hardware
(such as Ethernet), as opposed to the software (such as TCP/IP).

frame buffer A low-level but standardized interface between software and
video hardware. X uses a frame buffer interface on many non-x86 computers.

free software Term favored by the Free Software Foundation to refer to
certain types of open source software. Used in this way, the term should not
be confused with freeware.

freeware Any software that may be distributed and used freely, whether
or not it’s open source. Not to be confused with free software, at least as the
term is most commonly used within the open source community. See also
free software.

FSSTND See Filesystem Standard (FSSTND).

FTP See File Transfer Protocol (FTP).

full duplex A mode of communication in which data can be transferred in
two directions at the same time.

gateway A computer that functions as a router between two networks.

General Public License (GPL) A software license developed by the Free
Software Foundation. The GPL is one of several open source licenses. It
allows anybody to modify a program and distribute modifications, so long
as the changed version is also distributed under the terms of the GPL.

getty A program that handles the login process from a text-mode console
or serial port.

GID See group ID (GID).

gigabit Ethernet A variety of Ethernet that can transfer 1,000 megabits
(1 gigabit) per second.

glibc A specific type of C library used on Linux systems since the late 1990s.

http://www.sybex.com

Glossary 683

GMT See Greenwich Mean Time (GMT).

GNOME See GNU Network Object Model Environment (GNOME).

GNU Recursive acronym for GNU’s Not Unix. GNU is a Free Software
Foundation (FSF) project to build an entirely open source OS that works like
Unix. The term is also used by some non-FSF projects.

GNU/Linux Generic term for a complete Linux OS to distinguish the com-
plete OS from the kernel alone. This term is favored by Debian; most other
distributions use “Linux” alone.

GNU Network Object Model Environment (GNOME) A common
desktop environment for Linux.

GPL See General Public License (GPL).

graphical user interface (GUI) A method of human/computer interaction
characterized by a graphical display, a mouse to move a pointer around the
screen, and the ability to perform actions by pointing at objects on the screen
and clicking a mouse button.

Greenwich Mean Time (GMT) The time in Greenwich, England, unad-
justed for daylight savings. Linux systems use this time internally and adjust
to local time by knowing the system’s time zone.

group A collection of users. Files are owned by a user and a group, and
group members may be given access to files independent of the owner and all
other users. This feature may be used to enhance collaborative abilities by
giving members of a group read/write access to particular files, while still
excluding those who aren’t members of the group.

group administrator A person with administrative authority over a
group. A group administrator can add or delete members from a group and
perform similar administrative tasks.

group ID (GID) A number associated with a particular group. Similar to a
user ID (UID).

group owner The group with which a file is most strongly associated,
after the file owner.

GUI See graphical user interface (GUI).

http://www.sybex.com

684 Glossary

hacker 1. An individual who is skilled at using or programming computers
and who enjoys using these skills in constructive ways. Many Linux pro-
grammers consider themselves hackers in this sense of the term. 2. A cracker
(see also cracker). This use of the term is more prevalent in the mass media,
but it is frowned upon in the Linux community.

half-duplex A type of data transmission in which data can be sent in only
one direction at a time.

hard link A directory entry for a file that has another directory entry. All
hard links are equally valid ways of accessing a file, and all must be deleted
before a file is deleted. See also soft link.

hardware address A code that uniquely identifies a single network inter-
face. This address is built into the device itself rather than assigned in Linux.

hash An encryption method in which a file or string is encoded in a manner
that cannot be reversed. Hashes are commonly used for password storage
and as a more secure variant on checksums, among other things. See also
checksum.

header files Files that contain interface definitions for software routines
contained in a library. Program source code that uses a library must refer to
the associated header files.

High-Performance Parallel Interface (HIPPI) A type of network hard-
ware that supports speeds of up to 1600Mbps over fiber-optic cabling.

HIPPI See High-Performance Parallel Interface (HIPPI).

home directory A directory associated with an account, in which the
user’s files reside.

hostname A computer’s human-readable name, such as
persephone.example.com.

hot swapping Adding or removing hardware while the computer is
turned on.

HOWTO documents Linux documentation that describes how to accom-
plish some task or use a particular program. HOWTOs are usually tutorial
in nature. They’re archived at http://www.linuxdoc.org, and all major
distributions ship with them as well.

http://www.sybex.com

Glossary 685

HTTP See Hypertext Transfer Protocol (HTTP).

hub A type of network hardware that serves as a central exchange point in
a network. Each computer has a cable that links to the hub, so all data pass
through the hub. Hubs echo all data they receive to all the other computers
to which they connect. See also switch.

hung Term used to describe a program that’s stopped responding to user
input, network requests, or other types of input to which it should respond.
Hung processes sometimes consume a great deal of CPU time.

Hypertext Transfer Protocol (HTTP) A protocol used for transferring
Web pages from a Web server to a Web browser.

IEEE-1394 An external bus technology that’s used to connect high-speed
external devices such as hard disks, scanners, and video equipment. IEEE-
1394 is rare in 2001, but it is likely to become more important in the future.
Linux 2.4.x includes limited IEEE-1394 support.

IMAP See Internet Message Access Protocol (IMAP).

incremental backup A type of backup in which only files that have
changed are backed up. This is used to reduce the time required to back up
a computer, at the cost of potentially greater restoration complexity.

Industry Standard Architecture (ISA) The expansion bus used on the
original IBM PC. ISA is still available on some computers in 2001. ISA is
inferior to PCI in most respects, but it has a huge installed base.

inode A filesystem (meaning 1) data structure that contains critical infor-
mation on the file, such as its size and location on the disk.

input/output (I/O) A term that describes the acceptance of data from an
external source or the sending of data to an external source. In some cases,
the “external source” may be internal to the computer, as in I/O between a
hard disk and the CPU or memory. In other cases, I/O is more clearly
external, as in network I/O.

Integrated Services Digital Network (ISDN) A type of digital telephone
service that also supports data transfer at speeds of up to 128Kbps. ISDN
never took off in North America, but is moderately popular in Europe.

http://www.sybex.com

686 Glossary

internal transfer rate The rate of data transfer within a device. This is
typically applied to hard disks and similar devices to describe how quickly
they can read or write data from their physical media.

internet Any collection of networks linked together by routers. See also
Internet.

Internet The largest network on Earth, which connects computers from
around the globe. When used in this way, the word is always capitalized. See
also internet.

Internet Message Access Protocol (IMAP) A protocol for exchanging
mail messages. The recipient initiates an IMAP session. IMAP differs from
POP in that IMAP allows the recipient to leave messages in organized folders
on the server; POP requires that the recipient download the messages to
organize them.

Internet Packet Exchange (IPX) A protocol that underlies much of
Novell networking. Despite the name, this protocol is unrelated to the
Internet.

interrupt request (IRQ) A method by which peripherals (SCSI host
adapters, sound cards, etc.) signal that they require attention from the CPU.
An IRQ also refers to a specific interrupt signal line. The x86 architecture
supports 16 IRQs, numbered 0–15, but IRQs 2 and 9 are linked, so in prac-
tice, there are only 15 IRQs, and many of these are used by basic hardware
like floppy disks.

I/O See input/output (I/O).

IP address A computer’s numeric TCP/IP address, such as
192.168.45.203.

IPv6 The “next-generation” Internet Protocol. This upgrade to TCP/IP
allows for a theoretical maximum of approximately 3.4 × 1038 addresses, as
opposed to the 4 billion addresses possible with the IPv4 that’s in common
use in 2001.

IPX See Internet Package Exchange (IPX).

IRQ See interrupt request (IRQ).

ISA See Industry Standard Architecture (ISA).

http://www.sybex.com

Glossary 687

ISDN See Integrated Services Digital Network (ISDN).

journaling filesystem A type of filesystem that maintains a record of its
operations. Such filesystems can typically recover quickly after a power
failure or system crash. See also filesystem.

jumper Metal pins on a circuit board that may be shorted via a plastic and
metal cap (which is also called a jumper). When a jumper is so set, it alters
the behavior of the circuit board. Jumpers were especially common on old
ISA cards, and they still exist on some motherboards and many disk devices.

KDE See K Desktop Environment (KDE).

K Desktop Environment (KDE) A common desktop environment on
Linux.

kernel The core program of any Linux system. The kernel provides inter-
faces between the software and the hardware and controls the operation of
all other programs. Technically, the kernel is the only component that is
Linux; everything else, such as shells, X, and libraries, is available on other
Unix-like systems.

kernel module A driver or other kernel-level program that may be loaded
or unloaded as required.

kernel module autoloader A utility that loads and unloads kernel mod-
ules as required by the kernel, obviating the need to manually load and
unload kernel modules.

kernel oops A kernel error and its aftermath (such as a program or system
crash). These errors are most commonly caused by a bug in the kernel or a
hardware problem.

kernel ring buffer A record of recent messages generated by the Linux
kernel. Immediately after a Linux system boots, this buffer contains the
bootup messages generated by drivers and major kernel subsystems. This
buffer may be viewed with the dmesg command.

laptop computer A small portable computer, typically somewhat smaller
than a briefcase. Laptops use special miniaturized components. Special soft-
ware requirements of laptops include power management (APM or ACPI)
and Card Services. A laptop computer is also known as a notebook computer.

http://www.sybex.com

688 Glossary

LBA See linear block addressing (LBA).

LCD See liquid crystal display (LCD).

libc See C library (libc).

library A collection of code that’s potentially useful to many programs.
This code is stored in special files to save disk space and RAM when running
programs that use the library.

LILO See Linux Loader (LILO).

linear block addressing (LBA) A method of accessing data on a disk that
uses a single sector number to retrieve data from that sector. LBA contrasts
with cylinder/head/sector (CHS) addressing. Some sources refer to LBA as
logical block addressing.

Linux 1. The open source kernel designed by Linus Torvalds as the core of
a Unix-like operating system (OS). 2. A complete OS built around Linus Tor-
vald’s kernel. See also GNU/Linux.

Linux Loader (LILO) The most popular Linux boot loader. Can boot a
Linux kernel or redirect the boot process to another boot loader in a non-Linux
partition, thus booting other OSs. See also boot loader.

Linux user group (LUG) A group of Linux users who meet on a regular
basis (usually monthly) to exchange information, attend presentations, and
help each other.

liquid crystal display (LCD) A type of flat-panel display that’s common
on laptops and is becoming more common on desktop systems. LCDs are
lightweight and consume little electricity, but they’re more expensive to pro-
duce than are conventional monitors.

load average A measure of the demands for CPU time by running pro-
grams. A load average of 0 means no demand for CPU time; 1 represents a
single program placing constant demand on the CPU; and values higher than 1
represent multiple programs competing for CPU time. The top and uptime
commands both provide load average information.

LocalTalk A type of network hardware common on older Macintosh
networks.

http://www.sybex.com

Glossary 689

lock file A file that’s created by an application to indicate that some
resource (such as an RS-232 serial port) is in use, in order to prevent conflicts
over accessing that resource.

log file A text file maintained by the system as a whole or an individual
server, in which important system events are recorded. Log files typically
include information on user logins, server access attempts, and automatic
routine maintenance.

log rotation A routine maintenance process in which the computer sus-
pends recording data in log files, renames them, and opens new log files. It
then deletes old log files. This process keeps log files available for a time, but
ultimately it deletes them, preventing them from growing to consume all
available disk space.

logical block addressing (LBA) See linear block addressing (LBA).

logical partition A type of x86 hard disk partition that has no entry in the
primary partition table. Instead, logical partitions are carried within an
extended partition.

loop A programming or scripting construct allowing multiple executions
of a segment of code. Typically terminated through the use of a conditional
expression.

LUG See Linux user group (LUG).

MAC address See Media Access Control (MAC) address.

machine name The portion of a hostname that identifies a computer on a
network, as opposed to the network as a whole (for instance, gingko is the
machine name portion of gingkgo.example.com). The machine name is
sometimes used in reference to the entire hostname.

main memory The main type of RAM in a computer, as opposed to cache
memory.

major version number The first number in a program’s version number.
For instance, if a program’s version number is 1.2.3, the major version
number is 1.

master One of two EIDE/ATAPI devices on a single EIDE chain. The
master device gets a lower Linux device letter than the slave device does.

http://www.sybex.com

690 Glossary

Master Boot Record (MBR) The first sector of a hard disk. The MBR
contains code that the BIOS runs during the boot process, as well as the pri-
mary partition table.

MBR See Master Boot Record (MBR).

Media Access Control (MAC) address Low-level address associated
with a piece of network hardware. The MAC address is usually stored on the
hardware itself, and it is used for local network addressing only. Addressing
between networks (such as on the Internet) uses higher-level addresses, such
as an IP address.

mode The permissions of a file. In conjunction with the file’s owner and
group, the mode determines who may access a file and in what ways.

mode lines Definition of the timings required by particular video resolu-
tions running at particular refresh rates.

modem This word is short for “modulator/demodulator.” It’s a device for
transferring digital data over an analog transmission medium. Traditionally,
the analog transmission medium has been the normal telephone network,
but the word “modem” is increasingly being applied to devices used for
broadband Internet access, as well.

module A kernel driver or other kernel component that’s stored in a sep-
arate file. Linux can load modules on demand or on command, saving RAM
when modules aren’t in use and reducing the size of the kernel.

motherboard The main circuit board in a computer. The CPU, RAM, and
add-on cards typically plug directly into the motherboard, although some
designs place some of these components on extender cards. The mother-
board is also sometimes referred to as the mainboard or the system board.

mount point A directory in a filesystem (meaning 2) at which a new file-
system (meaning 1) is attached. Mount points are typically empty directories
before their host filesystems are mounted.

mounted A state in which a filesystem (meaning 1) is attached to its asso-
ciated mount point.

NetBEUI A network stack similar to AppleTalk or TCP/IP in broad out-
line, but used primarily only on local networks.

http://www.sybex.com

Glossary 691

NetBIOS Networking protocols that are often used in conjunction with
NetBEUI or TCP/IP. NetBIOS underlies the SMB/CIFS file sharing protocols
used by Microsoft Windows and implemented in Linux by Samba.

netmask See network mask.

Network Filesystem (NFS) A file sharing protocol used among Linux
and Unix computers.

Network Information Service (NIS) A network protocol that allows
computers to share simple database files. Commonly used to provide cen-
tralized login authentication and as a substitute for DNS on small networks.

network mask A bit pattern that identifies the portion of an IP address
that’s an entire network and the part that identifies a computer on that net-
work. The pattern may be expressed as four decimal bytes separated by dots
(as in 255.255.255.0) or as the number of network bits following an IP
address and a slash (as in 192.168.45.203/24). The network mask is also
referred to as the netmask or subnet mask.

NFS See Network Filesystem (NFS).

NIS See Network Information Service (NIS).

non-rewinding tape device A tape device file that does not cause the tape
to automatically rewind when the job is done. The non-rewinding nature of
the device is indicated by the presence of a leading n in the device filename,
such as /dev/nst0 or /dev/nht0. This file is used for handling multiple
backups on a single tape. See also rewinding tape device.

notebook computer See laptop computer.

open mail relay An SMTP mail server that’s configured to relay mail from
anywhere to anywhere. Open mail relays are frequently abused by spammers
to obfuscate their messages’ true origins.

open source A type of software that’s freely redistributable, is available
with source code, and may be modified by anybody wanting to do so. (There
is a formal 9-point definition, which is summarized in Chapter 1, “Planning
the Implementation.”)

http://www.sybex.com

692 Glossary

Open System Interconnection (OSI) model A means of describing net-
work stacks, such as TCP/IP, NetBEUI, or AppleTalk. In the OSI model,
such stacks are broken down into several layers, each of which communi-
cates directly with the layers above and below it.

OSI model See Open Systems Interconnection (OSI) model.

packet A limited amount of data packaged together with an envelope and
sent over a network. See also envelope.

packet filter A type of firewall that operates on individual network data
packets, passing or rejecting packets based on information such as the source
and destination addresses and ports.

pager In X, this is a utility, window manager feature, or desktop environ-
ment feature that provides several virtual desktops. You can run separate
programs in each virtual desktop and switch between them, thus minimizing
desktop clutter.

parameter An option passed to a program on a command line, or occa-
sionally as part of a configuration file.

parent process A relative term referring to the process that started
another. For instance, if you launch a program from a bash shell, the bash
shell process is the new program’s parent process.

partition A contiguous part of a hard disk that’s set aside to hold a single
filesystem (meaning 1). Also used as a verb to describe the process of creating
partitions on a hard disk.

partition table The disk data structure that describes the layout of parti-
tions on a hard disk.

path A colon-delimited list of directories in which program files may be
found. (Similar lists define the locations of directories, fonts, and other file
types.)

payload The portion of a network data packet that contains the actual
data to be transmitted, as opposed to the envelope.

PC Card A type of expansion card that’s common on laptop computers.
This interface is commonly used for Ethernet cards, modems, and storage
devices. Also known as PCMCIA.

http://www.sybex.com

Glossary 693

PCI See Peripheral Component Interconnect (PCI).

PCL See Printer Control Language (PCL).

PCMCIA See Personal Computer Memory Card International Association
(PCMCIA).

peripheral A device that connects to and is controlled by a computer.
Many peripherals, such as Web cams and keyboards, are external to the
computer’s main box. Some definitions include devices that reside within
the computer’s main box, such as hard disks and CD-ROM drives.

Peripheral Component Interconnect (PCI) An expansion bus capable of
much higher speeds than the older ISA bus. x86 computers sold in 2001 usu-
ally include several PCI slots.

permission bit A single bit used to define whether or not a given user or
class of users has a particular type of access to a file. For instance, the
owner’s execute permission bit determines whether the owner can run a file
as a program. The permission bits together comprise the file’s mode.

Personal Computer Memory Card International Association

(PCMCIA) 1. An earlier name for PC Card (but one that’s still used by
many Linux utilities and documentation). 2. The trade group that developed
the PC Card standard.

PIO See Programmed Input/Output (PIO).

pipe A method of executing two programs so that one program’s output
serves as the second program’s input. Piped programs are separated in a
Linux shell by a vertical bar (|).

pipeline See pipe.

plug-and-play (PnP) A term applied to hardware (especially ISA cards,
and sometimes PCI cards) to denote that no hardware configuration is
required, especially via jumpers. PnP devices often require special configura-
tion via Linux files, however.

Point-to-Point Protocol (PPP) A method of initiating a TCP/IP connec-
tion between two computers over an RS-232 serial line or modem.

http://www.sybex.com

694 Glossary

port number A number that identifies the program from which a data
packet comes or to which it’s addressed. When a program initiates a network
connection, it associates itself with one or more ports, allowing other sys-
tems to uniquely address data.

Post Office Protocol (POP) A mail server protocol in which the recipient
initiates transfer of messages. Differs from IMAP in that POP doesn’t pro-
vide any means for the recipient to organize and store messages on the server.

PostScript A programming language used on many high-end printers.
PostScript is optimized for displaying text and graphics on the printed page.
The Linux program Ghostscript converts from PostScript to bitmapped for-
mats understood by many low-end and mid-range printers.

power-on self-test (POST) A series of hardware checks performed by an
x86 computer when it boots, to guarantee minimal functionality.

PnP See plug-and-play (PnP).

POST See power-on self-test (POST).

PPP See Point-to-Point Protocol (PPP).

primary boot loader The first boot loader run by the BIOS.

primary partition A type of x86 partition that’s defined in a data structure
contained in the hard disk’s partition table in the MBR. An x86 computer
can host only four primary partitions.

print queue A storage place for files waiting to be printed.

Printer Control Language (PCL) A language developed by Hewlett-
Packard for controlling printers. (Many of Hewlett-Packard’s competitors
now use PCL.) PCL is most commonly found on mid-range laser printers,
but some inkjet printers also support the language. There are several PCL
variants, the most common ranging from PCL 3 to PCL 6.

printer driver A software component that converts printable data gener-
ated by an application into a format that’s suitable for a specific model of
printer. In Linux, printer drivers usually reside in Ghostscript, but some
applications include a selection of printer drivers to print directly to various
printers.

http://www.sybex.com

Glossary 695

process A piece of code that’s maintained and run by the Linux kernel sep-
arately from other pieces of code. Most processes correspond to programs
that are running. One program can be run multiple times, resulting in several
processes.

Programmed Input/Output (PIO) A method of data transfer between
memory and expansion cards in which the CPU actively performs the
transfer. PIO tends to consume much more CPU time than DMA does.

proprietary A protocol, file format, hardware design, program, or other
technology that uses features unique to the technology in question. Propri-
etary technologies are often difficult to handle in an open source environ-
ment because they’re often poorly documented or because developers must
sign nondisclosure agreements before they can obtain the documentation.

protocol stack A collection of drivers, kernel procedures, and other soft-
ware that implements a standard means of communicating across a network.
Two computers must support compatible protocol stacks to communicate.
The most popular protocol stack today is TCP/IP.

proxy server A server (typically on a local network) that stands in for
remote servers. Proxy servers can buffer transfers, provide security, and pro-
vide access controls.

public domain Intellectual property (software, music, books, etc.) that’s
either outlived its copyright or for which the author has removed the copy-
right. (No software is yet old enough to have outlived its copyright.) Public
domain software may be modified and redistributed by anybody who wants
to do so.

pull mail protocol A mail protocol in which the recipient initiates the
transfer. Examples include POP and IMAP.

push mail protocol A mail protocol in which the sender initiates the
transfer. SMTP is the most common push mail protocol.

RAMbus Dynamic RAM (RDRAM) A type of RAM used in RIMMs.

random access A method of access to a storage device (RAM, hard disk,
etc.) in which information may be stored or retrieved in an arbitrary order
with little or no speed penalty. See also sequential access.

RDRAM See RAMbus Dynamic RAM (RDRAM).

http://www.sybex.com

696 Glossary

RDRAM Inline Memory Module (RIMM) A small circuit board that holds
memory chips configured as RDRAM. Used in some Pentium II and later
computers.

Red Hat Package Manager (RPM) A package file format designed by
Red Hat but now used on many other distributions, as well. RPM features
excellent dependency tracking and easy installation and removal procedures.

redirection A procedure in which a program’s standard output is sent to
a file rather than to the screen, or in which the program’s standard input is
obtained from a file rather than from the keyboard. See also standard input
and standard output.

regular expression A method of matching textual information that may
vary in important ways but that contains commonalities. The regular expres-
sion captures the commonalities and uses various types of wildcards to
match variable information.

relative directory name A directory name that’s specified relative to the
current directory. Relative directory names often include the parent specifi-
cation (..), which indicates the current directory’s parent.

release kernel A kernel with an even second number, such as 2.2.17 or
2.4.3. Release kernels should have few bugs, but they sometimes lack drivers
for the latest hardware. See also development kernel.

release number See build number.

remote login server A type of server that allows individuals at distant
locations to use a computer. Examples include Telnet, SSH, and XDM.

Request for Comments (RFC) An Internet standards document. RFCs
define how protocols like Telnet and SMTP operate, thus allowing tools
developed by different companies or individuals to interoperate.

rewinding tape device A tape device file that causes the tape to automat-
ically rewind when the access is complete. The rewinding nature of the device
is indicated by the lack of a leading n in the device filename, such as /dev/
st0 or /dev/ht0. This file is often used for reading or writing the first
backup on a tape. See also non-rewinding tape device.

RFC See Request for Comment (RFC).

http://www.sybex.com

Glossary 697

ribbon cable A type of cable in which insulated wires are laid side by side,
typically bound together by plastic. The result is a wide but thin multi-
conductor cable that resembles a ribbon.

RIMM See RDRAM Inline Memory Module (RIMM).

root directory The directory that forms the base of a Linux filesystem
(meaning 2). All other directories are accessible from the root directory,
either directly or via intermediate directories.

root filesystem The filesystem (meaning 1) on a Linux system that corre-
sponds to the root directory, and often several directories based on it.

root partition The partition associated with the root filesystem.

router A computer that transfers data between networks. See also
gateway.

RPM See Red Hat Package Manager (RPM).

runlevel A number associated with a particular set of services that are
being run. Changing runlevels changes services or can shut down or restart
the computer.

Samba Web Administration Tool (SWAT) A server that allows adminis-
trators to configure Samba servers from another computer by using an ordi-
nary Web browser.

script kiddies Individuals with little knowledge or skill, who break into
computers using scripts created by others. Such break-ins often leave
obvious traces, and script kiddies frequently cause collateral damage that
produces system instability.

scripting language Interpreted computer programming language
designed for writing small utilities to automate simple but repetitive tasks.
Examples include Perl, Python, Tcl, and shell scripting languages like those
used by bash and tcsh.

SCSI See Small Computer System Interface (SCSI).

Second Extended Filesystem (ext2 or ext2fs) The most common file-
system (meaning 1) in Linux from the mid-1990s through 2001.

secondary boot loader A boot loader that’s launched by another boot
loader.

http://www.sybex.com

698 Glossary

Secure Shell (SSH) A remote login protocol and program that uses
encryption to ensure that intercepted data packets cannot be used by an
interloper. Generally regarded as the successor to Telnet on Linux systems.

Sequenced Packet Exchange (SPX) Part of the Novell networking
stack, along with IPX.

sequential access A method of accessing a storage medium that requires
reading or writing data in a specific order. The most common example is a
tape; to read data at the end of a tape, you must wind past the interceding
data. See also random access.

server 1. A program that responds to data transfer requests using net-
working protocols. 2. A computer that runs one or more server programs.

Server Message Block (SMB) A file sharing protocol common on
Windows-dominated networks. SMB is implemented in Linux via the
Samba suite. Also known as the Common Internet Filesystem (CIFS).

server program See server, meaning 1.

set group ID (SGID) A special type of file permission used on program
files to make the program run with the permissions of its group. (Normally,
the user’s group permissions are used.)

set user ID (SUID) A special type of file permission used on program files
to make the program run with the permissions of its owner, rather than those
of the user who runs the program.

SGID See set group ID (SGID).

shadow password A method of storing encrypted passwords separately
from most other account information. This allows the passwords to reside in
a file with tighter security options than the rest of the account information,
which improves security when compared to storing all the account informa-
tion in one file with looser permissions.

shareable files Files that might reasonably be shared with another com-
puter. These include users’ data files and standard program files.

shareware Software that’s freely redistributable but for which the author
requests payment.

shell A program that provides users with the ability to run programs,
manipulate files, and so on.

http://www.sybex.com

Glossary 699

shell script A program written in a language that’s built into a shell.

signal In reference to processes, a signal is a code that the kernel uses to
control the termination of the process or to tell it to perform some task. Sig-
nals can be used to kill processes.

SIMM See Single Inline Memory Module (SIMM).

Simple Mail Transfer Protocol (SMTP) The most common push mail
protocol on the Internet. SMTP is implemented in Linux by servers like send-
mail, Postfix, Exim, and qmail.

Simple Network Management Protocol (SNMP) A protocol for
reporting on the status of a computer over a network, or adjusting a com-
puter’s settings remotely.

Single Inline Memory Module (SIMM) A small circuit board that holds
memory chips for easy installation in a computer. SIMMs come in 30- and
72-pin varieties. They were used on 80386, 80486, many Pentium-level, and
a few Pentium II systems. They are still used in many peripherals such as
printers.

slave The second of two possible devices on an EIDE chain. The slave
device has a higher Linux device number than the master device does.

Small Computer System Interface (SCSI) An interface standard for
hard disks, CD-ROM drives, tape drives, scanners, and other devices.

smart filter A program, run as part of a print queue, that determines the
type of a file and passes it through appropriate programs to convert it to a
format that the printer can handle.

SMB See Server Message Block (SMB).

SMTP See Simple Mail Transfer Protocol (SMTP).

SNMP See Simple Network Management Protocol (SNMP).

soft link A type of file that refers to another file on the computer. When a
program tries to access a soft link, Linux passes the contents of the linked-to file
to the program. If the linked-to program is deleted, the soft link stops
working. Deleting the soft link doesn’t affect the original file. Also referred
to as a symbolic link. See also hard link.

http://www.sybex.com

700 Glossary

software modem Modems that implement key functionality in software
that must be run by the host computer. These modems require special
drivers, which are uncommon in Linux.

software rot Deterioration of software caused by filesystem errors, acci-
dental overwriting of software files, and so on.

source package A file that contains complete source code for a program.
The package may be compiled into a binary package, which can then be
installed on the computer.

source RPM A type of source package that uses the RPM file format.

spam Unsolicited bulk e-mail. (When capitalized, this word is a trademark
that refers to a canned meat made by Hormel.)

spawn The action of one process starting another.

spool directory A directory in which print jobs, mail, or other files wait to
be processed. Spool directories are maintained by specific programs, such as
the printing system or SMTP mail server.

SPX See Sequenced Packet Exchange (SPX).

SSH See Secure Shell (SSH).

stable kernel See release kernel.

standard input The default method of delivering input to a program. It
normally corresponds to the keyboard at which you type.

standard output The default method of delivering purely text-based
information from a program to the user. It normally corresponds to a text-
mode screen, xterm window, or the like.

startup script A script that controls part of the Linux boot process.

static files Files that don’t change except through direct intervention of
the system administrator. Examples include system binary and configuration
files. Static files may be stored on partitions that are mounted read-only.

statically linked Programs that incorporate library code into their fin-
ished binary executables. Statically linked programs are larger and use more
RAM than their dynamically linked counterparts, but they don’t depend
upon the underlying library existing on the computer.

http://www.sybex.com

Glossary 701

sticky bit A special file permission bit that’s most commonly used on
directories. When set, only a file’s owner may delete the file, even if the direc-
tory in which it resides can be modified by others.

subdomain A subdivision of a domain. A subdomain may contain com-
puters or subdomains of its own.

subnet mask See network mask.

SUID See set user ID (SUID).

super server A server that listens for network connections intended for
other servers and launches those servers. Examples on Linux are inetd and
xinetd.

superuser A user with extraordinary rights to manipulate critical files on
the computer. The superuser’s username is normally root.

swap file A disk file configured to be used as swap space.

swap partition A disk partition configured to be used as swap space.

swap space Disk space used as an extension to a computer’s RAM. Swap
space allows a system to run more programs or to process larger data sets
than would otherwise be possible.

SWAT See Samba Web Administration Tool (SWAT).

switch A type of network hardware that serves as a central exchange point
in a network. Each computer has a cable that links to the switch, so all data
pass through the switch. A switch usually sends data only to the computer to
which it’s addressed. See also hub.

symbolic link See soft link.

system cron job A cron job that handles system-wide maintenance tasks,
like log rotation or deletion of unused files from /tmp. See also user cron job.

System V (SysV) A form of AT&T Unix that defined many of the stan-
dards used on modern Unixes and Unix clones, such as Linux.

SysV See System V (SysV).

http://www.sybex.com

702 Glossary

SysV startup script A type of startup script that follows the System V
startup standards. Such a script starts one service or related set of services.

tarball A package file format based on the tar utility. Tarballs are easy to
create and are readable on any version of Linux, or most non-Linux systems.
They contain no dependency information and are not easy to remove once
installed, however.

TCP/IP See Transmission Control Protocol/Internet Protocol (TCP/IP).

Telnet A protocol used for performing remote text-based logins to a com-
puter. Telnet is a poor choice for connections over the Internet because it
passes all data, including passwords, in an unencrypted form, which is a
security risk. See also Secure Shell (SSH).

terminal program A program that’s used to initiate a simple text-mode
connection between two computers, especially via a modem or RS-232 serial
connection.

text editor A program for editing text files on a computer.

title bar See drag bar.

Token Ring A type of network hardware that supports speeds of up to
16Mbps on twisted-pair cabling.

Transmission Control Protocol/Internet Protocol (TCP/IP) The net-
work stack that’s most popular in 2001, and the one upon which the Internet
is built.

UID See user ID (UID).

umask See user mask (umask).

Universal Serial Bus (USB) A type of interface for low- to medium-speed
external devices, such as keyboards, mice, cameras, modems, scanners, and
removable disk drives. Linux added USB support with the 2.2.18 and 2.4.x
kernels.

unshareable files Files that are not reasonably shared with another com-
puter. The most common example is system configuration files.

USB See Universal Serial Bus (USB).

http://www.sybex.com

Glossary 703

user An individual who has an account on a computer. This term is some-
times used as a synonym for account.

user cron job A cron job created by an individual user to handle tasks for
that user, such as running a CPU-intensive job late at night when other users
won’t be disturbed by the job’s CPU demands. See also system cron job.

user ID (UID) A number associated with a particular account. Linux uses
the UID internally for most operations, and it converts to the associated user-
name only when interacting with people.

user mask (umask) A bit pattern representing the permission bits that are
to be removed from files created from a process.

user private group A group strategy in which every user is associated
with a unique group. Users may then add other users to their groups in order
to control access to files on an individual basis.

username The name associated with an account, such as theo or
miranda. Linux usernames are case-sensitive and may be from 1 to 32 char-
acters in length, although they’re usually entirely lowercase and no longer
than 8 characters.

UTC See Coordinated Universal Time (UTC) and Greenwich Mean Time.

variable In computer programming or scripting, a “placeholder” for data.
Variables may change from one run of a program to another, or even during
a single run of a program.

variable files Files that may vary without direct intervention by the system
administrator. Examples include users’ data files and log files. Variable files
must be stored on partitions mounted for read/write access.

virtual filesystem A filesystem that doesn’t correspond to a real disk par-
tition, removable disk, or network export. /proc is a virtual filesystem in
Linux that provides access to information on the computer’s hardware.

widget A GUI control, such as a button to be pressed.

widget set A set of programming tools that provide useful GUI elements,
such as buttons, menu bars, and dialog boxes. A widget set is used by pro-
grammers to implement common GUI features.

http://www.sybex.com

704 Glossary

wildcard A character or group of characters that, when used in a shell as
part of a filename, match more than one character. For instance, b??k
matches book, back, and buck, among many other possibilities.

window manager A program that provides decorative and functional
additions to the plain windows provided by X. Linux supports dozens of
window managers.

workstation A type of computer that’s used primarily by one individual at
a time to perform productivity tasks, such as drafting, scientific or engi-
neering simulations, or writing. See also desktop computer.

X Shortened form of X Window System.

X client A program that uses X to interact with the user.

X Display Manager (XDM) A program that directly accepts either remote
or local logins to a computer using X without involving a text-based login
protocol like Telnet or SSH. Some Linux distributions use the original XDM
program, but other distributions use variants like the GNOME Display
Manager (GDM) or KDE Display Manager (KDM), both of which provide
additional features.

XDM See X Display Manager (XDM).

X server A program that implements X for a computer; especially the
component that interacts most directly with the video hardware.

X Window System The GUI environment for Linux. The X Window
System is a network-aware, cross-platform GUI that relies upon several addi-
tional components (such as a window manager and widget sets) to provide
a complete GUI experience.

XFree86 A set of X servers and related utilities for Linux and other OSs.

xterm A program that allows the running of text-mode programs in X. As
used in this book, xterm refers both to the original xterm program and to
various programs that provide similar functionality.

zombie A process that’s been killed, but for which the parent hasn’t
removed the process table entries. The zombie shows up in ps listings, but it
doesn’t normally consume CPU time or memory. Zombies cannot be killed
with kill; you must kill the parent process to remove the zombie.

http://www.sybex.com

	Using Your Sybex Electronic Book
	Linux+ Study Guide
	Frontmatter
	Acknowledgments
	Introduction
	What Is Linux?
	Why Become Linux+ Certified?
	How to Become Linux+ Certified
	Who Should Buy This Book
	How This Book Is Organized
	Bonus CD-ROM Contents
	Conventions Used in This Book
	The Exam Objectives
	Assessment Test
	Answers to Assessment Test

	Chapter 1: Planning the Implementation
	Evaluating Computer Requirements
	Workstations
	Servers
	Dedicated Appliances
	Special Needs

	Determining Available Resources
	Utilizing Existing Hardware
	Balancing Budgetary Limitations
	Considering Available Expertise

	Deciding What Hardware to Use
	A Rundown of PC Hardware
	CPU
	RAM
	Hard Disk Space
	Network Hardware
	Video Hardware
	Miscellaneous Hardware

	Checking Hardware Configuration before Installation
	Checking Cabling
	Checking IRQs, DMA, and I/O Settings
	Checking EIDE Devices
	Checking SCSI Devices
	Checking BIOS Settings

	Planning Disk Partitioning
	Understanding the PC Partitioning System
	Linux Partition Requirements
	Common Optional Partitions
	Linux Filesystem Options
	Partitioning Tools

	Linux and Non-Linux Solutions
	Linux vs. Proprietary OSs
	Linux vs. Other Open Source OSs
	A Rundown of Linux Distributions

	Determining Software Needs
	Common Workstation Programs
	Common Server Programs
	Useful Software on Any System
	Validating Software Requirements

	Understanding Software Licenses
	Open Source Software Licenses
	Commercial Software Licenses
	Miscellaneous Software Licenses
	Using Licensed Software in Linux
	Linux Distributions' Licenses

	Locating Linux Software
	Locating Open Source Software
	Locating Commercial Software

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 2: Installing Linux
	Selecting an Installation Method
	Media Options
	Methods of Interaction during Installation

	Starting the Installation
	Selecting Basic Installation Parameters
	Language
	License Terms

	Installation Class and Hardware Detection
	Installation Class
	Disk Detection
	Mouse and Keyboard

	Configuring Disks
	Disk Partitioning
	Creating Filesystems

	Choosing Packages for Installation
	Install-Time User Configuration
	root Password Options
	User Account Creation

	Miscellaneous Settings
	Install-Time Network Configuration
	Mandrake Summary Configuration
	Service Configuration
	Boot Options

	Initial X Configuration
	Checking Post-Installation Log Files
	Additional Possible Configuration Options
	Post-Installation X Configuration
	Selecting an X Server
	Configuring X

	Configuring Window Managers
	Understanding the Role of the Window Manager
	Common Window Managers for Linux
	Running a Window Manager

	Understanding Widget Sets
	Configuring Desktop Environments
	Common Desktop Environments for Linux
	Running a Desktop Environment
	Mixing and Matching Desktop Environment Components

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 3: Software Management
	Basic Command Shell Use
	Starting a Shell
	Viewing Files and Directories
	Manipulating Files
	Launching Programs
	Shell Shortcuts

	Package Concepts
	File Collections
	The Installed File Database
	Rebuilding Packages

	Installing and Removing Packages
	RPM Packages
	Debian Packages
	Tarballs
	Converting between Package Formats
	GUI Package Management Tools

	Validating Proper Program Functioning
	Checking an Application on a Test System
	Checking an Application on a Production System
	Ongoing Application Monitoring

	Kernel Issues
	The Role of the Kernel
	Kernel Version Numbering
	When to Recompile the Kernel

	Configuring Boot Loaders
	The Role of the Boot Loader
	Available Boot Loaders
	An Overview of the LILO Configuration File
	Adding a New Kernel to LILO
	Adding a New OS to LILO

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 4: Users and Security
	Linux Multiuser Concepts
	User Accounts: The Core of a Multiuser System
	Groups: Linking Users Together for Productivity
	Mapping UIDs and GIDs to Users and Groups
	The Importance of Home Directories

	File Permissions
	File Access Permissions
	Changing File Ownership and Permissions
	Setting Default Permissions

	Configuring User Accounts
	Adding Users
	Modifying User Accounts
	Deleting Accounts

	Configuring Groups
	Adding Groups
	Modifying Group Information
	Deleting Groups

	Common User and Group Strategies
	The User Private Group
	Project Groups
	Multiple Group Membership

	Account Security
	Enforcing User Password Security
	Steps to Reduce the Risk of Compromised Passwords
	Disabling Unused Accounts

	Filesystem Security
	Evaluating Your User File Permissions Scheme
	Evaluating Permissions on Programs
	Removing Unnecessary Programs
	Keeping Software Up-to-Date
	Detecting Intruders

	Setting Process Permissions
	The Risk of SUID and SGID Programs
	When Is SUID or SGID Necessary?
	Finding SUID or SGID Programs

	Monitoring Log Files
	Locating Important Log Files
	Information Recorded in Log Files
	Usual and Unusual Log File Activity
	Tools to Aid in Log File Analysis

	Physical Security
	What an Intruder Can Do with Physical Access
	Steps to Mitigate Damage from Physical Attacks

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 5: Networking
	Understanding Networks
	Basic Functions of Network Hardware
	Types of Network Hardware
	Network Packets
	Network Protocol Stacks

	Network Addressing
	Types of Network Addresses
	DNS and Routers: Linking It All Together
	Network Ports

	Basic Network Configuration
	Clients and Servers
	DHCP Configuration
	Static IP Address Configuration
	Using GUI Configuration Tools

	Configuring Remote Client Access
	Initiating a PPP Connection
	Using ISDN Services
	Using DSL or Cable Modem Services

	Network Application Configuration
	Using a Web Browser
	Using an E-Mail Client
	Using X Programs Remotely
	Using an FTP Client
	Accessing SMB/CIFS Shares
	Accessing NFS Shares
	Using an SNMP Client
	Using NIS
	Setting Up a Remote Access Server

	Setting Remote Access Rights
	Controlling Access via a Firewall
	Controlling Access via TCP Wrappers
	Controlling Access via xinetd
	Controlling Access via Passwords
	Controlling Access via File Permissions

	Remote System Administration
	Text-Mode Logins
	GUI Logins
	File Transfers
	Remote Administration Protocols

	Network Diagnostic Tools
	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 6: Managing Files and Services
	Basic Configuration File Locations
	User Configuration Files
	System Configuration Files

	Format of Common Configuration Files
	Startup Scripts
	/etc/inittab
	/etc/fstab
	/etc/modules.conf
	/etc/profile
	Additional Files

	Setting Environment Variables
	The Role of Environment Variables
	Where to Set Environment Variables
	The Meanings of Common Environment Variables

	Starting and Stopping Services
	Starting and Stopping via SysV Scripts
	Editing inetd.conf
	Editing xinetd.conf or xinetd.d Files
	Custom Startup Files

	Setting the Runlevel
	Understanding the Role of the Runlevel
	Using init or telinit to Change the Runlevel
	Permanently Changing the Runlevel

	Basic GUI Use
	Features Offered by Window Managers
	Features Offered by Desktop Environments
	Launching an Xterm
	GUI Administrative Tools

	Basic Shell Scripting
	Beginning a Shell Script
	Using External Commands
	Using Variables
	Using Conditional Expressions

	Documenting System Configuration
	Maintaining an Administrator's Log
	Backing Up Important Configuration Files

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 7: Managing Partitions and Processes
	Partition Management and Maintenance
	Using fdisk to Create Partitions
	Creating New Filesystems
	Checking a Filesystem for Errors

	Partition Control
	Identifying Partitions
	Mounting and Unmounting Partitions
	Using df

	Understanding the Linux Filesystem Hierarchy
	The FSSTND and FHS
	Important Directories and Their Contents
	Using du

	Backing Up and Restoring a Computer
	Common Backup Hardware
	Common Backup Programs
	Planning a Backup Schedule
	Preparing for Disaster: Backup Recovery

	File Manipulation Commands
	Navigating the Linux Filesystem
	Manipulating Files
	Manipulating Directories

	Editing Files with Vi
	Vi Modes
	Basic Text Editing Procedures
	Saving Changes

	Managing Cron Jobs
	The Role of Cron
	Creating System Cron Jobs
	Creating User Cron Jobs

	Handling Core Dumps
	Understanding Core Dumps
	Locating and Deleting Unneeded Core Files

	Managing Processes
	Examining Process Lists with ps
	Restricting Processes' CPU Use
	Killing Processes

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 8: Hardware Issues
	Adding Swap Space
	Evaluating Swap Space Use
	Adding a Swap File
	Adding a Swap Partition

	Basic Printing
	The Linux Printing Architecture
	Using PostScript and Ghostscript
	BSD and LPRng Configuration and Use
	Monitoring and Controlling the Print Queue

	Adding New Hardware
	Locating Hardware Drivers
	Configuring Hardware in Linux
	Making Hardware Accessible to Users

	Managing Kernel Modules
	Kernel Module Configuration Files
	Inserting and Removing Kernel Modules

	Diagnosing Hardware Problems
	Core System Problems
	EIDE/ATA Problems
	SCSI Problems
	Problems with Peripherals
	Identifying Supported and Unsupported Hardware

	Using Linux with a Laptop
	Special Laptop Installation Issues
	Understanding Power Management
	Using PC Card Devices

	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Chapter 9: Troubleshooting
	Localizing the Problem
	Symptoms of Hardware Problems
	Symptoms of Kernel Problems
	Symptoms of Application Software Problems
	Symptoms of Configuration Problems
	Symptoms of User Problems

	Problem Identification
	Using Log Files to Identify Problems

	Using System Status Tools to Identify Problems
	Evaluating User Complaints
	Diagnosing Software Problems
	Filesystem Problems
	Configuration File Problems
	Server Software Problems
	Backup and Restore Problems

	Diagnosing Network Problems
	Reviewing Your Network Configuration
	Localizing the Source of the Problem

	Handling LILO Boot Errors
	LILO Boot Error Codes

	Non-LILO Boot Techniques
	Fixing LILO from an Emergency Boot System
	Using an Emergency Disk Set
	Locating a Ready-Made Emergency Disk
	Creating a Custom Emergency Disk
	Emergency Disk Recovery Tools

	Stopping, Starting, or Restarting Processes
	When to Stop, Start, or Restart a Process
	Working Around Recurring Problems

	Package Dependencies and Conflicts
	Real and Imagined Package Dependency Problems
	Workarounds to Package Dependency Problems
	Startup Script Problems

	Using Common Troubleshooting Commands
	File-Location Commands
	File-Examination Commands
	Redirection and Pipes

	Using Troubleshooting Resources
	Summary
	Exam Essentials
	Commands in This Chapter
	Key Terms
	Review Questions
	Answers to Review Questions

	Glossary

	Exit

	copyright: Copyright ©2001 SYBEX, Inc., Alameda, CA
	link:

